
3rd Edition

Version Control
with Git
Powerful Tools and Techniques for
Collaborative Software Development

Prem Kumar Ponuthorai
& Jon Loeliger

SOF T WARE DEVELOPMENT

“This book progresses
from the most basic Git
concepts to advanced
usage, so it will serve
both readers who are
new to Git as well as
experienced users
looking for tips and
tricks.”

—Jeff King
Git Contributor, Open Source Developer

Version Control with Git

US $59.99	 CAN $74.99
ISBN: 978-1-492-09119-6

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Get up to speed on Git for tracking, branching, merging,
and managing code revisions. Through a series of step-by-
step tutorials, this practical guide takes you quickly from Git
fundamentals to advanced techniques, and provides friendly
yet rigorous advice for navigating the many functions of this
open source system for version control.

Authors Prem Kumar Ponuthorai and Jon Loeliger break
down Git concepts according to level of proficiency. This
thoroughly revised edition also includes tips for manipulating
trees, extended coverage of the reflog and stash, and a
complete introduction to GitHub. Git lets you manage code
development in a virtually endless variety of ways, once you
understand how to harness the system’s flexibility. This book
shows you how.

•	 Leverage the advantages of a distributed version control
system

•	 Learn how to use Git for several real-world development
scenarios

•	 Gain insight into Git’s common use cases, initial tasks, and
basic functions

•	 Learn how to manage merges, conflicts, patches, and diffs

•	 Apply advanced techniques such as rebasing and hooks

•	 Migrate projects from different version control systems
to Git

•	 Navigate, use, and contribute to repositories hosted on
GitHub using lightweight branch-based workflow

Prem Kumar Ponuthorai is responsible
for strategizing and enabling GitHub’s
offerings for the Expert Services
Delivery organization. Having built on
his software engineering background
by becoming a Git convert, Prem has
given Git workshops at conferences and
provided training in Git for enterprise
customers across diverse industries.

Jon Loeliger is a freelance software
engineer who contributes to open
source projects such as Linux,
U-Boot, and Git. He’s given tutorial
presentations on Git at many
conferences including Linux World,
and has written several papers on Git
for Linux Magazine. Jon holds degrees
in computer science from Purdue
University.

Prem Kumar Ponuthorai and Jon Loeliger

Version Control with Git
Powerful Tools and Techniques for

Collaborative Software Development

THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09119-6

[LSI]

Version Control with Git
by Prem Kumar Ponuthorai and Jon Loeliger

Copyright © 2023 Prem Kumar Ponuthorai. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editors: Virginia Wilson
and Shira Evans
Production Editor: Beth Kelly
Copyeditor: Audrey Doyle

Proofreader: Piper Editorial Consulting, LLC
Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

May 2009: First Edition
August 2012: Second Edition
November 2022: Third Edition

Revision History for the Third Edition
2022-10-21: First Release
2022-11-04: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492091196 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Version Control with Git, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492091196

Table of Contents

Preface. xi

Part I. Thinking in Git

1. Introduction to Git. 3
Git Components 3
Git Characteristics 5
The Git Command Line 6
Quick Introduction to Using Git 9

Preparing to Work with Git 9
Working with a Local Repository 10
Working with a Shared Repository 19
Configuration Files 20

Summary 24

2. Foundational Concepts. 25
Repositories 25

Git Object Store 26
Index 28
Content-Addressable Database 29
Git Tracks Content 29
Pathname Versus Content 31
Packfiles 32

Visualizing the Git Object Store 33
Git Internals: Concepts at Work 36

Inside the .git Directory 36

iii

Blob Objects and Hashes 38
Tree Object and Files 39
A Note on Git’s Use of SHA1 41
Tree Hierarchies 42
Commit Objects 43
Tag Objects 46

Summary 47

Part II. Fundamentals of Git

3. Branches. 55
Motivation for Using Branches in Git 56
Branching Guidelines 56

Branch Names 57
Dos and Don’ts in Branch Names 57

Managing Branches 58
Working in Branches 59
Creating Branches 61
Listing Branch Names 63
Viewing Branches and Their Commits 63
Switching (Checking Out) Branches 66
Merging Changes into a Different Branch 70
Creating and Checking Out a New Branch 72
Detached HEAD 74
Deleting Branches 76

Summary 78

4. Commits. 79
Commits: Recorded Units of Change 80
Atomic Changesets 80
Identifying Commits 81

Absolute Commit Names 82
Refs and Symrefs 83
Relative Commit Names 85

Commit History 87
Viewing Old Commits 88
Commit Graphs 90
Commit Ranges 96

Summary 101

iv | Table of Contents

5. File Management and the Index. 103
Importance of the Index 103
File Classifications in Git 105
Using git add 107
Notes on Using git commit 111

Using git commit --all 111
Writing Commit Log Messages 113

Using git rm 113
Using git mv 116
A Note on Tracking Renames 117
The .gitignore File 118
Summary 121

6. Merges. 123
Merge: A Technical View 123
Merge Examples 124

Preparing for a Merge 124
Merging Two Branches 125
A Merge with a Conflict 127

Working with Merge Conflicts 130
Locating Conflicted Files 131
Inspecting Conflicts 132
How Git Keeps Track of Conflicts 138
Finishing Up a Conflict Resolution 140
Aborting or Restarting a Merge 141

Merge Strategies 142
Degenerate Merges 145
Normal Merges 148
Specialty Merges 150
Applying Merge Strategies 151
Merge Drivers 152

How Git Thinks About Merges 153
Merges and Git’s Object Model 153
Squash Merges 154
Why Not Just Merge Each Change One by One? 155

Summary 156

7. Diffs. 157
Forms of the git diff Command 159
Simple git diff Example 163
Understanding the git diff Output 166

Table of Contents | v

git diff and Commit Ranges 168
git diff with Path Limiting 171
How Git Derives diffs 173
Summary 174

Part III. Intermediate Skills

8. Finding Commits. 177
Using git bisect 177
Using git blame 183
Using Pickaxe 184
Summary 185

9. Altering Commits. 187
Philosophy of Altering Commit History 188
Caution About Altering History 189
Using git revert 191
Changing the HEAD Commit 192
Using git reset 194
Using git cherry-pick 203
reset, revert, and checkout 205
Rebasing Commits 206

Using git rebase -i 209
rebase Versus merge 213

Summary 219

10. The Stash and the Reflog. 221
The Stash 221

Use Case: Interrupted Workflow 222
Use Case: Updating Local Work in Progress with Upstream Changes 227
Use Case: Converting Stashed Changes Into a Branch 230

The Reflog 232
Summary 237

11. Remote Repositories. 239
Part I: Repository Concepts 240

Bare and Development Repositories 240
Repository Clones 242
Remotes 243
Tracking Branches 244

vi | Table of Contents

Referencing Other Repositories 246
Referring to Remote Repositories 246
The refspec 248

Part II: Example Using Remote Repositories 251
Creating an Authoritative Repository 252
Make Your Own Origin Remote 253
Developing in Your Repository 256
Pushing Your Changes 256
Adding a New Developer 258
Getting Repository Updates 260

Part III: Remote Repository Development Cycle in Pictures 265
Cloning a Repository 266
Alternate Histories 267
Non-Fast-Forward Pushes 268
Fetching the Alternate History 269
Merging Histories 270
Merge Conflicts 271
Pushing a Merged History 271

Part IV: Remote Configuration 272
Using git remote 273
Using git config 274
Using Manual Editing 275

Part V: Working with Tracking Branches 275
Creating Tracking Branches 276
Ahead and Behind 279

Adding and Deleting Remote Branches 280
Bare Repositories and git push 282
Summary 283

12. Repository Management. 285
Publishing Repositories 286

Repositories with Controlled Access 287
Repositories with Anonymous Read Access 288
Repositories with Anonymous Write Access 292

Repository Publishing Advice 292
Repository Structure 293

Shared Repository Structure 294
Distributed Repository Structure 294

Living with Distributed Development 295
Changing Public History 295
Separate Commit and Publish Steps 296

Table of Contents | vii

No One True History 297
Knowing Your Place 298

Upstream and Downstream Flows 299
The Maintainer and Developer Roles 299
Maintainer–Developer Interaction 300
Role Duality 301

Working with Multiple Repositories 303
Your Own Workspace 303
Where to Start Your Repository 304
Converting to a Different Upstream Repository 305
Using Multiple Upstream Repositories 306
Forking Projects 308

Summary 311

Part IV. Advanced Skills

13. Patches. 315
Why Use Patches? 316
Generating Patches 317
Patches and Topological Sorts 325
Mailing Patches 326
Applying Patches 330
Bad Patches 337
Patching Versus Merging 338
Summary 338

14. Hooks. 339
Types of Hooks 339
A Note on Using Hooks 340
Installing Hooks 342

Example Hooks 342
Creating Your First Hook 344

Available Hooks 346
Commit-Related Hooks 346
Patch-Related Hooks 347
Push-Related Hooks 348
Other Local Repository Hooks 349

To Hook or Not 350
Summary 350

viii | Table of Contents

15. Submodules. 351
Gitlinks 352
Submodules 354

Why Submodules? 355
Working with Submodules 355

Submodules and Credential Reuse 364
Git Subtrees 364

Adding a Subproject 365
Pulling Subproject Updates 367
Changing the Subproject from Within the Superproject 367

Git Submodule and Subtree Visual Comparison 368
Summary 370

16. Advanced Manipulations. 371
Interactive Hunk Staging 371
Loving git rev-list 381

Date-Based Checkout 382
Retrieve an Old Version of a File 384

Recovering a Lost Commit 386
The git fsck Command 387
Reconnecting a Lost Commit 391

Using git filter-repo 391
Examples Using git filter-repo 392

Summary 399

Part V. Tips and Tricks

17. Tips, Tricks, and Techniques. 403
Interactive Rebase with a Dirty Working Directory 403
Garbage Collection 404
Tips for Recovering Commits 407
Recovering from an Upstream Rebase 407
Quick Overview of Changes 409
Cleaning Up 410
Using git-grep to Search a Repository 411
Updating and Deleting refs 413
Following Files That Moved 414
Have You Been Here Before? 415
Migrating to Git 416

Migrating from a Git Version Control System 416

Table of Contents | ix

Migrating from a Non-Git Version Control System 420
A Note on Working with Large Repositories 425

Git LFS 426
Repository Before Git LFS and After Git LFS 427
Installing Git LFS 430
Tracking Large Objects with Git LFS 431
Useful Git LFS Techniques 434
Converting Existing Repositories to Use Git LFS 436

Summary 438

18. Git and GitHub. 439
About GitHub 439
Types of GitHub Accounts 440
GitHub in the Git Ecosystem 444
Hosting a Repository in GitHub 447

Repository View 450
Code 453
Issues 456
Pull Requests 459

The GitHub Flow 471
Resolving Merge Conflicts in GitHub 474
Development Workflows 482
Integrating with GitHub 485
Summary 488

A. History of Git. 489

B. Installing Git. 497

Index. 501

x | Table of Contents

Preface

Git is a free, open source, distributed version control system created by Linus Tor‐
valds. Git requires low operational overhead, yet is flexible and powerful enough
to support the demands of complex, large-scale, distributed software development
projects.

Our goal in this book is to show you how to get the most out of Git and how to
manage a Git repository with ease. By the end, you will have learned Git’s philosophy,
fundamental concepts, and intermediate to advanced skills for tracking content,
collaborating, and managing your projects across teams.

Who This Book Is For
We wrote this book with software engineers (developers, infrastructure engineers,
DevOps, etc.) in mind as our primary audience. As such, most of the concepts
and examples we use relate to the daily routines and tasks of folks in the software
development industry. However, Git is robust enough to track content in areas as
varied as data science, graphic design, and book authoring, just to name a few. (Case
in point: we used Git as our underlying versioning system to keep track of reviews
and edits while writing this book!) Regardless of your title or level of proficiency, if
you are using Git as your version control system, you will find value in these pages.

Essential Know-How
Prior experience with any version control system, its aims, and its goals will be a
helpful foundation to understand how Git works and to build upon your knowledge
as you read this book. You should have some familiarity with using any command-
line tool, such as the Unix shell, along with basic knowledge of shell commands,
because we use a lot of command-line instructions in the examples and discussions in
the book. A general understanding of programming concepts is also a plus.

xi

We developed the examples on the macOS and Ubuntu environments. The examples
should work under other platforms such as Debian, Solaris, and Windows (using
Git-installed command-line tools, such as Git for Windows), but you can expect
slight variations.

Some exercises in the examples may require system-level operations that need root
access on machines. Naturally, in such situations you should have a clear understand‐
ing of the responsibilities of operations that need root access.

New in This Revision
In this third edition, we take an entirely new, modular approach to the topics by
breaking down the concepts of Git. We start by introducing you to the basics and the
fundamental philosophy of Git, then gradually build upon intermediate commands
to help you efficiently supplement your daily development workflow, and finally
conclude with advanced git commands and concepts to help you become proficient
in understanding the inner mechanics of how Git works under the hood.

Another change we made in this edition was adding more illustrations to explain
complex Git concepts to give you a mental model for easier comprehension. We also
highlight features from the latest release of Git and provide you with examples and
tips that can help improve your current distributed development workflow.

Navigating the Book
We organized this edition into categories according to the reader’s familiarity and
experience using Git. While we categorize the sections to get progressively more
advanced to incrementally build your proficiency with Git, we designed the chapters
within each section so that you can leverage the content either as standalone topics or
as a series of topics building on one another sequentially.

We strove to apply a consistent structure and a consistent approach to teaching
concepts in every chapter. We encourage you to take a moment to internalize this
format. This will help you leverage and navigate the book as a handy reference at any
point in the future.

If you have picked up the book amid juggling other responsibilities and are wonder‐
ing what would be the best order to hit the ground running, fret not. Table P-1 will
help guide you toward the chapters we feel will help you gain the most knowledge in
the least amount of time.

xii | Preface

Table P-1. Categories matrix

Thinking in Git Fundamentals of Git Intermediate skills Advanced skills Tips and tricks
Software engineering x x x x x

Data scientist x x x x

Graphic designers x x x

Academia x x x

Content authors x x x

Installing Git
To reinforce the lessons taught in the book, we highly encourage you to practice
the example code snippets on your development machine. To follow along with the
examples, you will need Git installed on your platform of choice. Because the steps
to install Git vary according to the version of your operating system, we’ve provided
instructions on how to install Git in Appendix B accordingly.

A Note on Inclusive Language
Another important point we would like to highlight about the examples is that
we feel strongly about diversity and inclusion in tech, and raising awareness is a
responsibility we take seriously. As a start, we will be using the word main to indicate
the default branch name.

Omissions
Due to its active community base, Git is constantly evolving. Even as we write this
edition, another new version of Git was published for commercial use: version 2.37.1,
to be precise. It was not our intention to leave information out of this book; it’s simply
the inevitable reality when writing about an ever-changing technology.

We deliberately chose not to cover all of Git’s own core commands and options so
that we could instead focus on common and frequently used commands. We also do
not cover every Git-related tool available, simply because there are too many.

Despite these omissions, we feel confident that this book will equip you with a
strong foundation and prepare you to dive deeper into the realms of Git if the need
arises. For a detailed list of release changes, you can look up the Release Notes
documentation for Git.

Preface | xiii

https://oreil.ly/R2nn4
https://oreil.ly/R2nn4

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a useful hint or a tip.

This icon indicates a warning or caution.

This icon indicates a general note.

Furthermore, you should be familiar with basic shell commands to manipulate files
and directories. Many examples will contain commands such as these to add or
remove directories, copy files, or create simple files:
Command to create a new directory
$ mkdir newdirectory

Command to write content into a file
$ echo "Test line" > file.txt

Command to append content at the end of a file
$ echo "Another line" >> file.txt

xiv | Preface

Command to make a copy of a file
$ cp file.txt copy-of-file.txt

Command to remove a file
$ rm newdirectory/file

Command to remove a file
$ rmdir newdirectory

Commands, root permissions, and commands that need to be executed with root
permissions appear as a sudo operation:
Install the Git core package $ sudo apt-get install git-core

How you edit files or effect changes within your working directory is pretty much up
to you. You should be familiar with a text editor. In this book, we’ll denote the process
of editing a file by either a direct comment or a pseudocommand:
edit file.c to have some new text $ edit index.html

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/VCG3e.

Preface | xv

https://oreilly.com
https://oreilly.com
https://oreil.ly/VCG3e

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
The collective sum of the knowledge of many outweighs the sum of one. In light of
that, this project is made possible with the help of many people. I personally owe
a huge thank-you to Matthew McCullough, who provided me the opportunity to
continue to teach the world about Git and GitHub in this edition of the book. I
also thank Jon Loeliger, the main author of the book, who’s work provided a great
reference to dig deep into the weeds of Git knowledge in earlier editions of the book.

I would like to thank my tech reviewers, Jeff King, Jess Males, Aaron Sumner, Donald
Ellis, and Mislav Marohnić, who had to read through the raw writings of the book
and provided immense feedback to ensure that the chapters took shape in a way that
was comprehensible for everyone.

Also, I’d like to thank Taylor Blau, who provided early guidance and valuable feed‐
back in earlier chapters of the book, which helped me approach the overall structure
for later parts of the book. Lars Schneider developed the idea and concept for the
section “Git LFS” on page 426, which was based on a talk he prepared; for this, I
thank him deeply. The works of Elijah Newren, Derrick Stolee, and Vincent Driessen
are referenced with permission, and I am grateful for their contribution. I would
also like to thank Peter Murray; our talks about the structure of the book provided
me assurance and guidance that I was on the right track with the changes being
introduced for this third edition.

To my editors and to the staff at O’Reilly—especially Shira Evans, Virginia Wilson,
Beth Kelly, Audrey Doyle, Kim Sandoval, Sue Klefstad, David Futato, Karen Mont‐
gomery, Kate Dullea, Suzanne Huston, and Melissa Duffield—I extend a heartfelt
thank-you for your patience, motivation, and cheering to ensure that we would get
this across the finish line.

Finally, I want to thank my wife, Tejirl, and my daughter, Temyksciraa, for providing
unconditional moral support and patience; for sacrificing family dinners, date nights,
and holidays; and most of all, for believing in me. Thanks also to my parents, Ponu‐
thorai and Jayaletchmy, who taught me perseverance. And a special thank-you to

xvi | Preface

mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Raksha, my sweet White Swiss Shepherd, who patiently waited by my side through‐
out the entire writing process.

Attributions
The Git Trademark Policy is available online.

Linux® is the registered trademark of Linus Torvalds in the United States and other
countries.

PowerPC® is a trademark of International Business Machines Corporation in the
United States, other countries, or both.

Unix® is a registered trademark of The Open Group in the United States and other
countries.

Preface | xvii

https://oreil.ly/YU0BU

PART I

Thinking in Git

The chapters in this first part of the book introduce you to Git and its foundations.
We start by providing you with an overarching view of the Git ecosystem, followed by
a look at Git’s characteristics so that you can learn what makes Git unique and how it
operates. Following this, we share examples of what it looks like to work with Git via
the command-line interface and some code examples.

In the second part of the book, we dive into the technicalities of how Git works
internally. We start by explaining repositories before discussing the Git object store,
further solidifying the notion that Git under the hood is really a content-addressable
database. We made the decision to discuss Git internals early in the book because we
believe it will help you prepare for later chapters.

In a nutshell, the first two chapters of Part I aim to put you in a Git mindset. Git
is perceived to have a steep learning curve, but it really has to do with the way you
understand how files and projects are being version-controlled, especially if you are
transitioning from a traditional centralized version control system to Git, which is
distributed in its implementation. It is this transition that may make understanding
Git complex early on. You can rest assured that once you learn to think in Git, the rest
of the technical skill will flow.

CHAPTER 1

Introduction to Git

Simply put, Git is a content tracker. Given that notion, Git shares common principles
of most version control systems. However, the distinct feature that makes Git unique
among the variety of tools available today is that it is a distributed version control
system. This distinction means Git is fast and scalable, has a rich collection of
command sets that provide access to both high-level and low-level operations, and is
optimized for local operations.

In this chapter you will learn the fundamental principles of Git, its characteristics,
and basic git commands, and you’ll receive some quick guidance on creating and
adding changes to a repository.

We highly recommend that you take time to grasp the important concepts explained
here. These topics are the building blocks of Git and will help you understand the
intermediate and advanced techniques for managing a Git repository as part of your
daily work. These foundational concepts will also help you ramp up your learning
when we break down the inner workings of Git in chapters grouped in Part II,
“Fundamentals of Git”, Part III, “Intermediate Skills”, and Part IV, “Advanced Skills”.

Git Components
Before we dive into the world of git commands, let’s take a step back and visualize an
overview of the components that make up the Git ecosystem. Figure 1-1 shows how
the components work together.

Git GUI tools act as a frontend for the Git command line, and some tools have
extensions that integrate with popular Git hosting platforms. The Git client tools
mostly work on the local copy of your repository.

3

Figure 1-1. Overview of Git components

When you are working with Git, a typical setup includes a Git server and Git clients.
You can possibly forgo a server, but that would add complexity to how you maintain
and manage repositories when sharing revision changes in a collaborative setup and
would make consistency more difficult (we will revisit this in Chapter 11). The Git
server and clients work as follows:

Git server
A Git server enables you to collaborate more easily because it ensures the availa‐
bility of a central and reliable source of truth for the repositories you will be
working on. A Git server is also where your remote Git repositories are stored; as
common practice goes, the repository has the most up-to-date and stable source
of your projects. You have the option to install and configure your own Git
server, or you can forgo the overhead and opt to host your Git repositories on
reliable third-party hosting sites such as GitHub, GitLab, and Bitbucket.

Git clients
Git clients interact with your local repositories, and you are able to interact with
Git clients via the Git command line or the Git GUI tools. When you install and
configure a Git client, you will be able to access the remote repositories, work on
a local copy of the repository, and push changes back to the Git server. If you are
new to Git, we recommend starting out using the Git command line; familiarize
yourself with the common subset of git commands required for your day-to-day
operations and then progress to a Git GUI tool of your choice.

The reason for this approach is that to some extent, Git GUI tools tend to provide
terminologies that represent a desired outcome that may not be part of Git’s standard
commands. An example would be a tool with an option called sync, which masks the
underlying chaining of two or more git commands to achieve a desired outcome. If

4 | Chapter 1: Introduction to Git

for some reason you were to enter the sync subcommand on the command line, you
might get this confusing output:
$ git sync

git: 'sync' is not a git command. See 'git --help'.

The most similar command is
 svn

git sync is not a valid git subcommand. To ensure that your local
working copy of the repository is in sync with changes from the
remote Git repository, you will need to run a combination of these
commands: git fetch, git merge, git pull, or git push.

There are a plethora of tools available at your disposal. Some Git GUI tools are
fancy and extensible via a plug-in model that provides you the option to connect
and leverage features made available on popular third-party Git hosting sites. As
convenient as it may be to learn Git via a GUI tool, we will be focusing on the
Git command-line tool for examples and code discussions, since this builds a good
foundational knowledge that will lead to Git dexterity.

Git Characteristics
Now that we have given an overview of the Git components, let’s learn about the
characteristics of Git. Understanding these distinct traits of Git enables you to effort‐
lessly switch from a centralized version control mindset to a distributed version
control mentality. We like to refer to this as “Thinking in Git”:

Git stores revision changes as snapshots
The very first concept to unlearn is the way Git stores multiple revisions of a file
that you are working on. Unlike other version control systems, Git does not track
revision changes as a series of modifications, commonly known as deltas; instead,
it takes a snapshot of changes made to the state of your repository at a specific
point in time. In Git terminology this is known as a commit. Think of this as
capturing a moment in time, as through a photograph.

Git is enhanced for local development
In Git, you work on a copy of the repository on your local development machine.
This is known as a local repository, or a clone of the remote repository on a Git
server. Your local repository will have the resources and the snapshots of the
revision changes made on those resources all in one location. Git terms these
collections of linked snapshots repository commit history, or repo history for short.
This allows you to work in a disconnected environment since Git does not need
a constant connection to the Git server to version-control your changes. As a

Git Characteristics | 5

natural consequence, you are able to work on large, complex projects across
distributed teams without compromising efficiency and performance for version
control operations.

Git is definitive
Definitive means the git commands are explicit. Git waits for you to provide
instructions on what to do and when to do it. For example, Git does not automat‐
ically sync changes from your local repository to the remote repository, nor does
it automatically save a snapshot of a revision to your local repo history. Every
action requires your explicit command or instruction to tell Git what is required,
including adding new commits, fixing existing commits, pushing changes from
your local repository to the remote repository, and even retrieving new changes
from the remote repository. In short, you need to be intentional with your
actions. This also includes letting Git know which files you intend to track, since
Git does not automatically add new files to be version-controlled.

Git is designed to bolster nonlinear development
Git allows you to ideate and experiment with various implementations of features
for viable solutions to your project by enabling you to diverge and work in
parallel along the main, stable codebase of your project. This methodology, called
branching, is a very common practice and ensures the integrity of the main
development line, preventiing any accidental changes that may break it.

In Git, the concept of branching is considered lightweight and inexpensive because a
branch in Git is just a pointer to the latest commit in a series of linked commits. For
every branch you create, Git keeps track of the series of commits for that branch. You
can switch between branches locally. Git then restores the state of the project to the
most recent moment when the snapshot of the specified branch was created. When
you decide to merge the changes from any branch into the main development line,
Git is able to combine those series of commits by applying techniques that we will
discuss in Chapter 6.

Since Git offers many novelties, keep in mind that the concepts and
practices of other version control systems may work differently or
may not be applicable at all in Git.

The Git Command Line
Git’s command-line interface is simple to use. It is designed to put full control of
your repository into your hands. As such, there are many ways to do the same thing.
By focusing on which commands are important for your day-to-day work, we can
simplify and learn them in more depth.

6 | Chapter 1: Introduction to Git

As a starting point, just type git version or git --version to determine whether
your machine has already been preloaded with Git. You should see output similar to
the following:
$ git --version
git version 2.37.0

If you do not have Git installed on your machine, please refer to Appendix B to
learn how you can install Git according to your operating system platform before
continuing with the next section.

Upon installation, type git without any arguments. Git will then list its options and
the most common subcommands:
 $ git

 usage: git [-v | --version] [-h | --help] [-C <path>] [-c <name>=<value>]
 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
 [-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
 [--super-prefix=<path>] [--config-env=<name>=<envvar>]
 <command> [<args>]

 These are common Git commands used in various situations:

 start a working area (see also: git help tutorial)
 clone Clone a repository into a new directory
 init Create an empty Git repository or reinitialize an existing one

 work on the current change (see also: git help everyday)
 add Add file contents to the index
 mv Move or rename a file, a directory, or a symlink
 restore Restore working tree files
 rm Remove files from the working tree and from the index

 examine the history and state (see also: git help revisions)
 bisect Use binary search to find the commit that introduced a bug
 diff Show changes between commits, commit and working tree, etc
 grep Print lines matching a pattern
 log Show commit logs
 show Show various types of objects
 status Show the working tree status

 grow, mark and tweak your common history
 branch List, create, or delete branches
 commit Record changes to the repository
 merge Join two or more development histories together
 rebase Reapply commits on top of another base tip
 reset Reset current HEAD to the specified state
 switch Switch branches
 tag Create, list, delete or verify a tag object signed with GPG

 collaborate (see also: git help workflows)
 fetch Download objects and refs from another repository
 pull Fetch from and integrate with another repository or a local branch
 push Update remote refs along with associated objects

 'git help -a' and 'git help -g' list available subcommands and some((("git help command")))
 concept guides. See 'git help <command>' or 'git help <concept>'
 to read about a specific subcommand or concept.
 See 'git help git' for an overview of the system.

The Git Command Line | 7

For a complete list of git subcommands, type git help --all.

As you can see from the usage hint, a small handful of options apply to git. Most
options, shown as [ARGS] in the hint, apply to specific subcommands.

For example, the option --version affects the git command and produces a version
number:
 $ git --version
 git version 2.37.0

In contrast, --amend is an example of an option specific to the git subcommand
commit:
 $ git commit --amend

Some invocations require both forms of options (here, the extra spaces in the
command line merely serve to visually separate the subcommand from the base
command and are not required):
 $ git --git-dir=project.git repack -d

For convenience, documentation for each git subcommand is available using git
help subcommand, git --help subcommand, git subcommand --help, or man git-
subcommand.

The complete Git documentation is online.

Historically, Git was provided as a suite of many simple, distinct, standalone com‐
mands developed according to the Unix philosophy: build small, interoperable tools.
Each command sported a hyphenated name, such as git-commit and git-log.
However, modern Git installations no longer support the hyphenated command
forms and instead use a single git executable with a subcommand.

The git commands understand both “short” and “long” options. For example, the
git commit command treats the following examples equivalently:
 $ git commit -m "Fix a typo."
 $ git commit --message="Fix a typo."

8 | Chapter 1: Introduction to Git

https://oreil.ly/7njp8

The short form, -m, uses one hyphen, whereas the long form, --message, uses two.
(This is consistent with the GNU long options extension.) Some options exist in only
one form.

You can create a commit summary and detailed message for the
summary by using the -m option multiple times:
 $ git commit -m "Summary" -m "Detail of Summary"

Finally, you can separate options from a list of arguments via the bare double dash
convention. For instance, use the double dash to contrast the control portion of the
command line from a list of operands, such as filenames:
 $ git diff -w main origin -- tools/Makefile

You may need to use the double dash to separate and explicitly identify filenames
so that they are not mistaken for another part of the command. For example, if
you happened to have both a file and a tag named main.c, then you will need to be
intentional with your operations:
 # Checkout the tag named "main.c"
 $ git checkout main.c

 # Checkout the file named "main.c"
 $ git checkout -- main.c

Quick Introduction to Using Git
To see Git in action, you can create a new repository, add some content, and track a
few revisions. You can create a repository in two ways: either create a repository from
scratch and populate it with some content, or work with an existing repository by
cloning it from a remote Git server.

Preparing to Work with Git
Whether you are creating a new repository or working with an existing repository,
there are basic prerequisite configurations that you need to complete after installing
Git on your local development machine. This is akin to setting up the correct date,
time zone, and language on a new camera before taking your first snapshot.

At a bare minimum, Git requires your name and email address before you make
your first commit in your repository. The identity you supply then shows as the
commit author, baked in with other snapshot metadata. You can save your identity in
a configuration file using the git config command:
 $ git config user.name "Jon Loeliger"
 $ git config user.email "jdl@example.com"

Quick Introduction to Using Git | 9

If you decide not to include your identity in a configuration file, you will have to
specify your identity for every git commit subcommand by appending the argument
--author at the end of the command:
 $ git commit -m "log message" --author="Jon Loeliger <jdl@example.com>"

Keep in mind that this is the hard way, and it can quickly become tedious.

You can also specify your identity by supplying your name and email address to the
GIT_AUTHOR_NAME and GIT_AUTHOR_EMAIL environment variables, respectively. If set,
these variables will override all configuration settings. However, for specifications set
on the command line, Git will override the values supplied in the configuration file
and environment variable.

Working with a Local Repository
Now that you have configured your identity, you are ready to start working with
a repository. Start by creating a new empty repository on your local development
machine. We will start simple and work our way toward techniques for working with
a shared repository on a Git server.

Creating an initial repository
We will model a typical situation by creating a repository for your personal website.
Let’s assume you’re starting from scratch and you are going to add content for your
project in the local directory ~/my_website, which you place in a Git repository.

Type in the following commands to create the directory, and place some basic content
in a file called index.html:
 $ mkdir ~/my_website
 $ cd ~/my_website
 $ echo 'My awesome website!' > index.html

To convert ~/my_website into a Git repository, run git init. Here we provide the
option -b followed by a default branch named main:
 $ git init -b main

 Initialized empty Git repository in ../my_website/.git/

If you prefer to initialize an empty Git repository first and then add files to it, you can
do so by running the following commands:
 $ git init -b main ~/my_website

 Initialized empty Git repository in ../my_website/.git/

 $ cd ~/my_website
 $ echo 'My awesome website!' > index.html

10 | Chapter 1: Introduction to Git

You can initialize a completely empty directory or an existing
directory full of files. In either case, the process of converting the
directory into a Git repository is the same.

The git init command creates a hidden directory called .git at the root level of your
project. All revision information along with supporting metadata and Git extensions
are stored in this top-level, hidden .git folder.

Git considers ~/my_website to be the working directory. This directory contains the
current version of files for your website. When you make changes to existing files or
add new files to your project, Git records those changes in the hidden .git folder.

For the purpose of learning, we will reference two virtual directories that we call Local
History and Index to illustrate the concept of initializing a new Git repository. We will
discuss the Local History and Index in Chapters 4 and 5, respectively.

Figure 1-2 depicts what we have just explained:
.
└── my_website
 ├── .git/
 │ └── Hidden git objects
 └── index.html

Figure 1-2. Initial repository

The dotted lines surrounding the Local History and Index represent the hidden
directories within the .git folder.

Quick Introduction to Using Git | 11

Adding a file to your repository
Up to this point, you have only created a new Git repository. In other words, this Git
repository is empty. Although the file index.html exists in the directory ~/my_website,
to Git, this is the working directory, a representation of a scratch pad or directory
where you frequently alter your files.

When you have finalized changes to the files and want to deposit those changes into
the Git repository, you need to explicitly do so by using the git add file command:
 $ git add index.html

Although you can let Git add all the files in the directory and
all subdirectories using the git add . command, this stages every‐
thing, and we advise you to be intentional with what you are
planning to stage, mainly to prevent sensitive information or
unwanted files from being included when commits are made. To
avoid including such information, you can use the .gitignore file,
which is covered in Chapter 5.
The argument ., the single period or dot in Unix parlance, is
shorthand for the current directory.

With the git add command, Git understands that you intend to include the final
iteration of the modification on index.html as a revision in the repository. However,
so far Git has merely staged the file, an interim step before taking a snapshot via a
commit.

Git separates the add and commit steps to avoid volatility while providing flexibility
and granularity in how you record changes. Imagine how disruptive, confusing, and
time-consuming it would be to update the repository each time you add, remove, or
change a file. Instead, multiple provisional and related steps, such as an add, can be
batched, thereby keeping the repository in a stable, consistent state. This method also
allows us to craft a narrative of why we are changing the code. In Chapter 4 we will
dive deeper into this concept.

We recommend that you strive to group logical change batches before making a
commit. This is called an atomic commit and will help you in situations where you’ll
need to do some advanced Git operations in later chapters.

Running the git status command reveals this in-between state of index.html:
 $ git status

 On branch main

 No commits yet

 Changes to be committed:

12 | Chapter 1: Introduction to Git

 (use "git rm --cached <file>..." to unstage)
 new file: index.html

The command reports that the new file index.html will be added to the repository
during the next commit.

After staging the file, the next logical step is to commit the file to the repository. Once
you commit the file, it becomes part of the repository commit history; for brevity, we
will refer to this as the repo history. Every time you make a commit, Git records
several other pieces of metadata along with it, most notably the commit log message
and the author of the change.

A fully qualified git commit command should supply a terse and meaningful log
message using active language to denote the change that is being introduced by the
commit. This is very helpful when you need to traverse the repo history to track
down a specific change or quickly identify changes of a commit without having to dig
deeper into the change details. We dive in deeper on this topic in Chapters 4 and 8.

Let’s commit the staged index.html file for your website:
 $ git commit -m "Initial contents of my_website"

 [main (root-commit) c149e12] initial contents of my_website
 1 file changed, 1 insertion(+)
 create mode 100644 index.html

The details of the author who is making the commit are retrieved
from the Git configuration we set up earlier.

In the code example, we supplied the -m argument to be able to provide the log
message directly on the command line. If you prefer to provide a detailed log message
via an interactive editor session, you can do so as well. You will need to configure Git
to launch your favorite editor during a git commit (leave out the -m argument); if it
isn’t set already, you can set the $GIT_EDITOR environment variable as follows:
 # In bash or zsh
 $ export GIT_EDITOR=vim

 # In tcsh
 $ setenv GIT_EDITOR emacs

Git will honor the default text editor configured in the shell envi‐
ronment variables VISUAL and EDITOR. If neither is configured, it
falls back to using the vi editor.

Quick Introduction to Using Git | 13

After you commit the index.html file into the repository, run git status to get an
update on the current state of your repository. In our example, running git status
should indicate that there are no outstanding changes to be committed:
 $ git status

 On branch main
 nothing to commit, working tree clean

Git also tells you that your working directory is clean, which means the working
directory has no new or modified files that differ from what is in the repository.

Figure 1-3 will help you visualize all the steps you just learned.

The difference between git add and git commit is much like you organizing a group
of schoolchildren in a preferred order to get the perfect classroom photograph: git
add does the organizing, whereas git commit takes the snapshot.

Figure 1-3. Staging and adding a file to a repository

Making another commit
Next, let’s make a few modifications to index.html and create a repo history within the
repository.

Convert index.html into a proper HTML file, and commit the alteration to it:
 $ cd ~/my_website

 # edit the index.html file.

 $ cat index.html
 <html>
 <body>
 My website is awesome!
 </body>
 </html>

 $ git commit index.html -m 'Convert to HTML'

14 | Chapter 1: Introduction to Git

 [main 521edbe] Convert to HTML
 1 file changed, 5 insertions(+), 1 deletion(-)

If you are already familiar with Git, you may be wondering why we skipped the git
add index.html step before we committed the file. It is because the content to be
committed may be specified in more than one way in Git.

Type git commit --help to learn more about these options:
 $ git commit --help

 NAME
 git-commit - Record changes to the repository

 SYNOPSIS
 git commit [-a | --interactive | --patch] [-s] [-v] [-u<mode>] [--amend]
 [--dry-run] [(-c | -C | --squash) <commit> | --fixup [(amend|reword):]<commit>)]
 [-F <file> | -m <msg>] [--reset-author] [--allow-empty]
 [--allow-empty-message] [--no-verify] [-e] [--author=<author>]
 [--date=<date>] [--cleanup=<mode>] [--[no-]status]
 [-i | -o] [--pathspec-from-file=<file> [--pathspec-file-nul]]
 [(--trailer <token>[(=|:)<value>])...] [-S[<keyid>]]
 [--] [<pathspec>...]

 ...

Detailed explanations of the various commit methods are also
explained in the git commit --help manual pages.

In our example, we decided to commit the index.html file with an additional argu‐
ment, the -m switch, which supplied a message explaining the changes in the commit:
'Convert to HTML'. Figure 1-4 explains the method we just discussed.

Figure 1-4. Staging and adding changes to a tracked file in a repository

Quick Introduction to Using Git | 15

1 Strictly speaking, they are not in chronological order but rather are a topological sort of the commits.

Note that our usage of git commit index.html -m 'Convert to HTML' does not
skip the staging of the file; Git handles it automatically as part of the commit action.

Viewing your commits
Now that you have more commits in the repo history, you can inspect them in a
variety of ways. Some git commands show the sequence of individual commits,
others show the summary of an individual commit, and still others show the full
details of any commit you specify in the repository.

The git log command yields a sequential history of the individual commits within
the repository:
 $ git log

 commit 521edbe1dd2ec9c6f959c504d12615a751b5218f (HEAD -> main)
 Author: Jon Loeliger <jdl@example.com>
 Date: Mon Jul 4 12:01:54 2022 +0200

 Convert to HTML

 commit c149e12e89a9c035b9240e057b592ebfc9c88ea4
 Author: Jon Loeliger <jdl@example.com>
 Date: Mon Jul 4 11:58:36 2022 +0200

 Initial contents of my_website

In the preceding output, the git log command prints out detailed log information
for every commit in the repository. At this point you have only two commits in your
repo history, which makes it easier to read the output. For repositories with many
commit histories, this standard view may not help you traverse a long list of detailed
commit information with ease; in such situations you can provide the --oneline
switch to list a summarized commit ID number along with the commit message:
 $ git log --oneline

 521edbe (HEAD -> main) Convert to HTML
 c149e12 Initial contents of my_website

The commit log entries are listed, in order, from most recent to oldest1 (the original
file); each entry shows the commit author’s name and email address, the date of the
commit, the log message for the change, and the internal identification number of the
commit. The commit ID number is explained in “Content-Addressable Database” on
page 29. We will discuss commits in more detail in Chapter 4.

If you want to see more detail about a particular commit, use the git show command
with a commit ID number:

16 | Chapter 1: Introduction to Git

 $ git show c149e12e89a9c035b9240e057b592ebfc9c88ea4

 commit c149e12e89a9c035b9240e057b592ebfc9c88ea4
 Author: Jon Loeliger <jdl@example.com>
 Date: Mon Jul 4 11:58:36 2022 +0200

 Initial contents of my_website

 diff --git a/index.html b/index.html
 new file mode 100644
 index 0000000..6331c71
 --- /dev/null
 +++ b/index.html
 @@ -0,0 +1 @@
 +My awesome website!

If you run git show without an explicit commit number, it simply
shows the details of the HEAD commit, in our case, the most recent
one.

The git log command shows the commit logs for how changes for each commit are
included in the repo history. If you want to see concise, one-line summaries for the
current development branch without supplying additional filter options to the git
log --oneline command, an alternative approach is to use the git show-branch
command:
 $ git show-branch --more=10

 [main] Convert to HTML
 [main^] Initial contents of my_website

The phrase --more=10 reveals up to an additional 10 versions, but only two exist so
far and so both are shown. (The default in this case would list only the most recent
commit.) The name main is the default branch name.

We will discuss branches and revisit the git show-branch command in more detail
in Chapter 3.

Viewing commit differences
With the repo history in place from the addition of commits, you can now see
the differences between the two revisions of index.html. You will need to recall the
commit ID numbers and run the git diff command:
 $ git diff c149e12e89a9c035b9240e057b592ebfc9c88ea4 \
 521edbe1dd2ec9c6f959c504d12615a751b5218f

 diff --git a/index.html b/index.html
 index 6331c71..8cfcb90 100644
 --- a/index.html
 +++ b/index.html
 @@ -1 +1,5 @@
 -My awesome website!

Quick Introduction to Using Git | 17

 +<html>
 +<body>
 My website is awesome!
 +</body>
 +</html>

The output resembles what the git diff command produces. As per conven‐
tion, the first revision commit, 9da581d910c9c4ac93557ca4859e767f5caf5169, is
the earlier of the content for index.html, and the second revision commit,
ec232cddfb94e0dfd5b5855af8ded7f5eb5c90d6, is the latest content of index.html.
Thus, a plus sign (+) precedes each line of new content after the minus sign (–), which
indicates removed content.

Do not be intimidated by the long hex numbers. Git provides many
shorter, easier ways to run similar commands so that you can avoid
large, complicated commit IDs. Usually the first seven characters
of the hex numbers, as shown in the git log --oneline example
earlier, are sufficient. We elaborate on this in “Content-Addressable
Database” on page 29.

Removing and renaming files in your repository
Now that you have learned how to add files to a Git repository, let’s look at how to
remove a file from one. Removing a file from a Git repository is analogous to adding
a file but uses the git rm command. Suppose you have the file adverts.html in your
website content and plan to remove it. You can do so as follows:
 $ cd ~/my_website
 $ ls
 index.html adverts.html

 $ git rm adverts.html
 rm 'adverts.html'

 $ git commit -m "Remove adverts html"
 [main 97ff70a] Remove adverts html
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 adverts.html

Similar to an addition, a deletion also requires two steps: express your intent to
remove the file using git rm, which also stages the file you intend to remove. Realize
the change in the repository with a git commit.

Just as with git add, with git rm we are not directly deleting
the file; instead, we are changing what is tracked: the deletion or
addition of a file.

18 | Chapter 1: Introduction to Git

You can rename a file indirectly by using a combination of the git rm and git add
commands, or you can rename the file more quickly and directly with the command
git mv. Here’s an example of the former:
 $ mv foo.html bar.html
 $ git rm foo.html
 rm 'foo.html'

 $ git add bar.html

In this sequence, you must execute mv foo.html bar.html at the onset to prevent
git rm from permanently deleting the foo.html file from the filesystem.

Here’s the same operation performed with git mv:
 $ git mv foo.html bar.html

In either case, the staged changes must subsequently be committed:
 $ git commit -m "Moved foo to bar"
 [main d1e37c8] Moved foo to bar
 1 file changed, 0 insertions(+), 0 deletions(-)
 rename foo.html => bar.html (100%)

Git handles file move operations differently than most similar systems, employing
a mechanism based on the similarity of the content between two file versions. The
specifics are described in Chapter 5.

Working with a Shared Repository
By now you have initialized a new repository and have been making changes to it.
All the changes are only available to your local development machine. This is a good
example of how you can manage a project that is only available to you. But how can
you work collaboratively on a repository that is hosted on a Git server? Let’s discuss
how you can achieve this.

Making a local copy of the repository

You can create a complete copy, or a clone, of a repository using the git clone com‐
mand. This is how you collaborate with other people, making changes on the same
files and keeping in sync with changes from other versions of the same repository.

For the purposes of this tutorial, let’s start simple by creating a copy of your existing
repository; then we can contrast the same example as if it were on a remote Git
server:
 $ cd ~
 $ git clone my_website new_website

Although these two Git repositories now contain exactly the same objects, files,
and directories, there are some subtle differences. You may want to explore those
differences with commands such as the following:

Quick Introduction to Using Git | 19

 $ ls -lsa my_website new_website
 ...
 $ diff -r my_website new_website
 ...

On a local filesystem like this, using git clone to make a copy of a repository is quite
similar to using cp -a or rsync. In contrast, if you were to clone the same repository
from a Git server, the syntax would be as follows:
 $ cd ~

 $ git clone https://git-hosted-server.com/some-dir/my_website.git new_website
 Cloning into 'new_website'...
 remote: Enumerating objects: 2, done.
 remote: Counting objects: 100% (2/2), done.
 remote: Compressing objects: 100% (103/103), done.
 remote: Total 125 (delta 45), reused 65 (delta 18), pack-reused 0
 Receiving objects: 100% (125/125), 1.67 MiB | 4.03 MiB/s, done.
 Resolving deltas: 100% (45/45), done.

Once you clone a repository, you can modify the cloned version, make new commits,
inspect its logs and history, and so on. It is a complete repository with a full history.
Remember that the changes you make to the cloned repository will not be automati‐
cally pushed to the original copy on the repository.

Figure 1-5 depicts this concept.

Figure 1-5. Cloning a shared repository

Try not to be distracted by some of the terms you see in the output. Git supports a
richer set of repository sources, including network names, for naming the repository
to be cloned. We will explain these forms and usage in Chapter 11.

Configuration Files
Git configuration files are all simple text files in the style of .ini files. The configura‐
tion files are used to store preferences and settings used by multiple git commands.
Some of the settings represent personal preferences (e.g., should a color.pager
be used?), others are important for a repository to function correctly (e.g., core

20 | Chapter 1: Introduction to Git

repositoryformatversion), and still others tweak git command behavior a bit (e.g.,
gc.auto). Like other tools, Git supports a hierarchy of configuration files.

Hierarchy of configuration files
Figure 1-6 represents the Git configuration files hierarchy in decreasing precedence:

.git/config
Repository-specific configuration settings manipulated with the --file option
or by default. You can also write to this file with the --local option. These
settings have the highest precedence.

~/.gitconfig
User-specific configuration settings manipulated with the --global option.

/etc/gitconfig
System-wide configuration settings manipulated with the --system option if you
have proper Unix file write permissions on the gitconfig file. These settings have
the lowest precedence. Depending on your installation, the system settings file
might be somewhere else (perhaps in /usr/local/etc gitconfig) or may be absent
entirely.

Figure 1-6. Git configuration files hierarchy

For example, to store an author name and email address that will be used on all the
commits you make for all of your repositories, configure values for user name and
user.email in your $HOME/.gitconfig file using git config --global:
 $ git config --global user.name "Jon Loeliger"
 $ git config --global user.email "jdl@example.com"

Quick Introduction to Using Git | 21

If you need to set a repository-specific name and email address that would override a
--global setting, simply omit the --global flag or use the --local flag to be explicit:
 $ git config user.name "Jon Loeliger"
 $ git config user.email "jdl@special-project.example.org"

You can use git config -l (or the long form --list) to list the settings of all the
variables collectively found in the complete set of configuration files:
 # Make a brand-new, empty repository
 $ mkdir /tmp/new
 $ cd /tmp/new
 $ git init

 # Set some config values
 $ git config --global user.name "Jon Loeliger"
 $ git config --global user.email "jdl@example.com"
 $ git config user.email "jdl@special-project.example.org"

 $ git config -l
 user.name=Jon Loeliger
 user.email=jdl@example.com
 core.repositoryformatversion=0
 core.filemode=true
 core.bare=false
 core.logallrefupdates=true
 user.email=jdl@special-project.example.org

When specifying the command git config -l, adding the options
--show-scope and --show-origin will help to print the various
sources for the configurations! Try this out with git config -l
--show-scope --show-origin in your terminal.

Because the configuration files are simple text files, you can view their contents with
cat and edit them with your favorite text editor too:
 # Look at just the repository-specific settings

 $ cat .git/config
 [core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
ignorecase = true

precomposeunicode = true

 [user]
 email = jdl@special-project.example.org

The content of the configuration text file may be presented
with some slight differences according to your operating system
type. Many of these differences allow for different filesystem
characteristics.

22 | Chapter 1: Introduction to Git

If you need to remove a setting from the configuration files, use the --unset option
together with the correct configuration files flag:
 $ git config --unset --global user.email

Git provides you with many configuration options and environment variables that
frequently exist for the same purpose. For example, you can set a value for the editor
to be used when composing a commit log message. Based on the configuration,
invocation follows these steps:

1. GIT_EDITOR environment variable1.
2. core.editor configuration option2.
3. VISUAL environment variable3.
4. EDITOR environment variable4.
5. The vi command5.

There are more than a few hundred configuration parameters. We will not bore you
with them but will point out important ones as we go along. A more extensive (yet
still incomplete) list can be found on the git config manual page.

A complete list of all git commands is online.

Configuring an alias

Git aliases allow you to substitute common but complex git commands that you
type frequently with simple and easy-to-remember aliases. This also saves you the
hassle of remembering or typing out those long commands, and it saves you from the
frustration of running into typos:
 $ git config --global alias.show-graph \
 'log --graph --abbrev-commit --pretty=oneline'

In this example, we created the show-graph alias and made it available for use in any
repository we create. When we use the command git show-graph, it will give us
the same output we got when we typed that long git log command with all those
options.

Quick Introduction to Using Git | 23

https://oreil.ly/Gj2zg

Summary
You will surely have a lot of unanswered questions about how Git works, even after
everything you’ve learned so far. For instance, how does Git store each version of a
file? What really makes up a commit? Where did those funny commit numbers come
from? Why the name “main”? And is a “branch” what I think it is? These are good
questions. What we covered gives you a glimpse of the operations you will commonly
use in your projects. The answer to your questions will be explained in detail in
Part II.

The next chapter defines some terminology, introduces some Git concepts, and
establishes a foundation for the lessons found in the rest of the book.

24 | Chapter 1: Introduction to Git

CHAPTER 2

Foundational Concepts

In the previous chapter, you learned the foundations of Git, its characteristics, and
typical applications of version control. It probably sparked your curiosity and left you
with a good number of questions. For instance, how does Git keep track of revisions
of the same file at every commit on your local development machine? What are the
contents of the hidden .git directory, and what is their significance? How is a commit
ID generated, why does it look like gibberish, and should you take note of it?

If you have used another version control system, such as SVN or CVS, you may
notice that some of the commands described in the preceding chapter seemed famil‐
iar. Although Git serves the same function and provides all the operations you expect
from a modern version control system, an exception to this notion is that the inner
workings and principles of Git differ in some fundamental and surprising ways.

In this chapter, we explore why and how Git differs by examining the key compo‐
nents of its architecture and some important concepts. We will focus on the basics,
common terminology, and the relationship between Git objects and how they are uti‐
lized, all through the lens of a single repository. The fundamentals you’ll learn in this
chapter also apply when you’re working with multiple interconnected repositories.

Repositories
A Git repository is simply a key–value pair database containing all the information
needed to retain and manage the revisions and history of files in a project. A Git
repository retains a complete copy of the entire project throughout its lifetime.
However, unlike most other version control systems, the Git repository provides not
only a complete working copy of all the files stored in the project but also a copy of
the repository (key–value pair database) itself with which to work.

25

Figure 2-1 illustrates this explanation.
.
├── my_website
│ └── .git
│ └── Hidden git objects
└── index.html

Figure 2-1. Git repository

We use the term repository to describe the entire project and its
key–value pair database as a single unit.

Besides file data and repository metadata, Git also maintains a set of configuration
values within each repository. We already worked with some of these in the previous
chapter, specifically, the repository user’s name and email address. These configura‐
tion settings are not propagated from one repository to another during a clone or
duplicating operation. Instead, Git manages and inspects configuration and setup
information on a per-environment, per-user, and per-repository basis.

Within a repository, Git maintains two primary data structures: the object store and
the index. All of this repository data is stored at the root of your working directory in
the hidden subdirectory named .git.

The object store is designed to be efficiently copied during a clone operation as part
of the mechanism that supports a fully distributed version control system. The index
is transitory information, is private to a repository, and can be created or modified on
demand as needed.

The next two sections describe the object store and index in more detail.

Git Object Store
At the heart of Git’s repository implementation is the object store. It contains your
original data files and all the log messages, author information, dates, and other
information required to rebuild or restore any version or branch of the project to a
specific state in time.

26 | Chapter 2: Foundational Concepts

Git places only four types of objects in the object store: blobs, trees, commits,
and tags. These four atomic objects form the foundation of Git’s higher-level data
structures:

Blobs
Each version of a file is represented as a blob. Blob, a contraction of “binary large
object,” is a term that’s commonly used in computing to refer to some variable
or file that can contain any data and whose internal structure is ignored by the
program. A blob is treated as being opaque. A blob holds a file’s data but does not
contain any metadata about the file or even its name.

Trees
A tree object represents one level of directory information. It records blob identi‐
fiers, pathnames, and a bit of metadata for all the files in one directory. It can also
recursively reference other (sub)tree objects and thus build a complete hierarchy
of files and subdirectories. In simple terms, a tree records the contents of a single
level in the directory hierarchy. It lists files and subtrees by including their name
and an identifier for the Git object they represent (either a blob OID or another
tree for subdirectories).

Commits
A commit object holds metadata for each change introduced into the repository,
including the author, committer, commit date, and log message. Each commit
points to a tree object that captures, in one complete snapshot, the state of the
repository at the time the commit was performed. The initial commit, or root
commit, has no parent. Most commits have one commit parent, although later in
the book we explain how a commit can reference more than one parent.

Tags
A tag object assigns an yet presumably human-readable name to a specific object,
usually a commit. 9da581d910c9c4ac93557ca4859e767f5caf5169 refers to an
exact, well-defined commit, but a more familiar tag name like Ver-1.0-Alpha
might make more sense!

The four objects in the object store are immutable. Note that only
an annotated tag is immutable. A lightweight tag is not an immuta‐
ble object, since it can be used as a reference that we can update
directly.

Over time, all the information in the object store changes and grows, tracking and
modeling your project edits, additions, and deletions. To use disk space and network
bandwidth efficiently, Git compresses and stores the objects in packfiles, which are
also placed in the object store.

Repositories | 27

Index
The index stores binary data and is private to your repository. The content of the
index is temporary and describes the structure of the entire repository at a specific
moment in time. More specifically, it provides a cached representation of all the blob
objects that reflects the current state of the project you are working on.

The information in the index is transitory, meaning it’s a dynamic stage between your
project’s working directory (filesystem) and the repository’s object store (repository
commit history). As such, the index is also called the staging directory.

Figure 2-2 provides a visual representation of this concept:
.
└── repository
 ├── .git/
 └── Index

Figure 2-2. Index/staging directory

The index is one of the key distinguishing features of Git. This is because you are
able to alter the content of the index methodically, allowing you to have finer control
over what content will be stored in the next commit. In short, the index allows
a separation between incremental development steps and the committal of those
changes.

Here’s how it works. As a software engineer, you usually add, delete, or edit a file or a
set of files. These are changes that affect the current state of the repository. Next, you
will need to execute the git add command to stage these changes in the index. Then
the index keeps records of those changes and keeps them safe until you are ready to

28 | Chapter 2: Foundational Concepts

commit them. Git also allows you to remove changes recorded in the index. Thus the
index allows a gradual transition of the repository (curated by you) from an older
version to a newer, updated version.

As you’ll see in Chapter 6, the index also plays an important role in a merge oper‐
ation, allowing multiple versions of the same file to be managed, inspected, and
manipulated simultaneously.

Content-Addressable Database
Git is also described as a content-addressable storage system. This is because the
object store is organized and implemented to store key–value pairs of each object it
generates under the hood when you are version-controlling your project. Each object
in the object store is associated with a unique name produced by applying SHA1 to
the content of the object, yielding a SHA1 hash value.

Git uses the complete content of an object to generate the SHA1 hash value. This hash
value is believed to be effectively unique to that particular content at a specific state in
time, thus the SHA1 hash is used as a sufficient index or name for that object in Git’s
object store. Any tiny change to a file causes the SHA1 hash to change, causing the
new version of the file to be indexed separately.

SHA1 values are 160-bit values that are usually represented as a 40-digit hexadecimal
number, such as 9da581d910c9c4ac93557ca4859e767f5caf5169. Sometimes, during
display, SHA1 values are abbreviated to a smaller, easier-to-reference prefix. Git users
use the terms SHA1, hash, and sometimes object ID interchangeably.

Globally Unique Identifiers
An important characteristic of the SHA1 hash computation is that it always computes
the same ID for identical content, regardless of where that content is. In other words,
the same file content in different directories and even on different machines yields the
exact same SHA1 hash ID. Thus the SHA1 hash ID of a file is an effective globally
unique identifier.

A powerful corollary is that files or blobs of arbitrary size can be compared for
equality across the internet by merely comparing their SHA1 identifiers.

We will explore this property in a little more detail in the next section.

Git Tracks Content
Git is much more than a version control system. Based on what we learned earlier, it
will help you understand the inner mechanics of Git if you think of Git as a content
tracking system.

Repositories | 29

1 Monotone, Mercurial, OpenCMS, and Venti are notable exceptions here.

This distinction, however subtle, guides much of the design principle of Git and is
perhaps the key reason it can perform internal data manipulations with relative ease,
and without compromising performance when done right. Yet this is also perhaps
one of the most difficult concepts for new users of Git to grasp, so some exposition is
worthwhile.

Git’s content tracking is manifested in two critical ways that differ fundamentally
from almost all other version control systems:1

• First, Git’s object store is based on the hashed computation of the contents of its•
objects, not on the file or directory names from the user’s original file layout.

• Second, Git’s internal database efficiently stores every version of every file, not•
their differences as files go from one revision to the next.

Let’s explore this a little more. When Git places a file into the object store, it does
so based on the hash of the data (file content) and not on the name of the file (file
metadata). In fact, Git does not track file or directory names, which are associated
with files in secondary ways. The data is stored as a blob object in the object store.
Again, Git tracks content instead of files.

If two separate files have exactly the same content, whether in the same or different
directories, Git stores only a single copy of that content as a blob within the object
store. Git computes the hash code of each file only according to its content, deter‐
mines that the files have the same SHA1 values and thus the same content, and places
the blob object in the object store indexed by that SHA1 value. Both files in the
project, regardless of where they are located in the user’s directory structure, use that
same object for content.

Because Git uses the hash of a file’s complete content as the name for that file, it must
operate on each complete copy of the file. It cannot base its work or its object store
entries on only part of the file’s content or on the differences between two revisions
of that file. Using the earlier example of two separate files having exactly the same
content, if one of those files changes, Git computes a new SHA1 for it, determines
that it is now a different blob object, and adds the new blob to the object store. The
original blob remains in the object store for the unchanged file to use.

For this reason, your typical view of a file that has revisions and appears to progress
from one revision to another revision is simply an artifact. Git computes this history
as a set of changes between different blobs with varying hashes, rather than storing a
filename and a set of differences directly. It may seem odd, but this feature allows Git
to perform certain tasks with ease.

30 | Chapter 2: Foundational Concepts

Figure 2-3 provides a visual representation of this concept.

Figure 2-3. Blob object

Pathname Versus Content
As with many other version control systems, Git needs to maintain an explicit list
of files that form the content of the repository. However, this need not require that
Git’s manifest be based on filenames. Indeed, Git treats the name of a file as a piece of
data that is distinct from the contents of that file. In this way, it separates index from
data in the traditional database sense. It may help to look at Table 2-1, which roughly
compares Git to other familiar systems.

Table 2-1. Database comparison

System Index mechanism Data store
Relational database Indexed Sequential Access Method (ISAM) Data records

Unix filesystem Directories (/path/to/file) Blocks of data

Git .git/objects/`hash`, tree object contents Blob objects, tree objects

The names of files and directories come from the underlying filesystem, but Git does
not really care about the names. Git merely records each pathname and makes sure it
can accurately reproduce the files and directories from its content, which is indexed
by a hash value. This set of information is stored in the Git object store as the tree
object.

Git’s physical data layout isn’t modeled after the user’s file directory structure. Instead,
it has a completely different structure that can nonetheless reproduce the user’s origi‐
nal file and directory layout in a project. Git’s internal structure is a more efficient
data structure for its own operations and storage considerations.

Repositories | 31

When Git needs to create a working directory, it says to the filesystem, “Hey! I have
this big blob of data that is supposed to be placed at pathname path/to/directory/file.
Does that make sense to you?” The filesystem is responsible for saying, “Ah, yes, I
recognize that string as a set of subdirectory names, and I know where to place your
blob of data! Thanks!”

Figure 2-4 provides a visual representation of this concept.

Figure 2-4. Tree object

Packfiles
Next, let’s look at how Git stores the blob and tree objects in its object store. If you’re
following closely, you might think that Git is implementing an inefficient method to
store the complete content of every version of every file directly in its object store.
Even if Git compresses the files, it is still inefficient to have the complete content of
different versions of the same file. For instance, what if we only add, say, one line to a
file? Git will still store the complete content of both versions.

Luckily, that’s not how Git internally stores the objects in its database. Instead, Git
uses a more efficient storage mechanism called packfiles. Git uses zlib, a free software
library that implements the DEFLATE algorithm to compress each object prior to
storing it in its object store. We will dive deeper into packfiles in Chapter 11.

For efficiency, Git’s algorithm by design generates deltas against
larger objects to be mindful of the space required to save a com‐
pressed file. This size optimization is also true for many other
delta algorithms because removing data is considered cheaper than
adding data in a delta object.

32 | Chapter 2: Foundational Concepts

https://zlib.net
https://oreil.ly/GD3OL

Take note that packfiles are stored in the object store alongside the other objects.
They are also used for efficient data transfer of repositories across a network.

Visualizing the Git Object Store
Now that we know how Git efficiently stores its objects, let’s discuss how Git objects
fit and work together to form a complete system:

• The blob object is at the “bottom” of the data structure; it references no other Git•
objects and is referenced only by tree objects. It can be considered a leaf node in
relation to the tree object. In the figures that follow, each blob is represented by a
rectangle.

• Tree objects point to blobs and possibly to other trees as well. Any given tree•
object might be pointed at by many different commit objects. Each tree is repre‐
sented by a triangle. In Chapter 15, we will learn how a tree object can also point
to a commit object, but for now, we will keep it simple.

• A circle represents a commit. A commit points to one particular tree that is•
introduced into the repository by the commit.

• Each tag is represented by a parallelogram. Each tag can point to, at most, one•
commit.

The branch is not a fundamental Git object, yet it plays a crucial role in naming
commits. Each branch is pictured as a rectangle:
.
└── ~/project
 ├── .git
 │ └── .git/objects/*
 ├── file dead23
 └── file feeb1e

Figure 2-5 captures how all the pieces fit together. This diagram shows the state of a
repository after a single, initial commit added two files. Both files are in the top-level
directory. Both the main branch and a tag named V1.0 point to the commit with ID
1492.

Visualizing the Git Object Store | 33

Figure 2-5. Git objects

Now let’s make things a bit more complicated. Let’s leave the original two files as is,
adding a new subdirectory with one file in it. The resulting object store looks like
Figure 2-6:
.
└── ~/project
 ├── .git
 │ └── .git/objects/*
 ├── file dead23
 ├── file feeb1e
 └── newsubdir
 └── file 1010b

As in Figure 2-5, the new commit has added one associated tree object to represent
the total state of the directory and file structure. Because the top-level directory is
changed by the addition of the new subdirectory, the content of the top-level tree
object has changed as well, so Git introduces a new tree, cafed00d.

However, the blobs dead23 and feeb1e didn’t change from the first commit to the
second commit. Git realizes that the IDs haven’t changed and thus they can be
directly referenced and shared by the new cafed00d tree.

34 | Chapter 2: Foundational Concepts

Figure 2-6. Git objects after a second commit

Pay attention to the direction of the arrows between commits. The parent commit or
commits come earlier in time. Think of it as a DAG diagram: a directed acyclic graph
where each node is directed from an earlier node in a single direction to form its
topological ordering of the graph.

Therefore, in Git’s implementation, each commit points back to its parent or parents.
Many people get confused by this because the state of a repository is conventionally
portrayed in the opposite direction: as a dataflow from the parent commit to child
commits. In other words, ordered from left to right, the rightmost commit in a DAG
diagram represents the latest state of a repository.

In Chapter 4, we extend these pictures to show how the history of a repository is built
up and manipulated by various commands.

Visualizing the Git Object Store | 35

Git Internals: Concepts at Work
With some tenets out of the way, let’s peek under the hood and see how all these
concepts fit together in a Git repository. We will start by creating a new repository
and inspecting the internal files and object store in much greater detail. We’ll do this
by starting at the bottom of Git’s data structure and working our way up in the object
store.

Before we go any further, it is important to know that Git has a few categories of
commands to implement its inner mechanics. To get a detailed, categorized list of all
the commands, type git help -a in your terminal. Git commands are categorized as
follows:

• Main porcelain commands (high-level commands for routine Git operations)•
• Ancillary commands (commands that help query Git’s internal data store)•
• Low-level commands (plumbing commands for internal Git operations)•
• External commands (commands that extend the standard Git operations)•
• Commands that act as a bridge with a selected version control tool (interacting•

with other commands)
• Command aliases (custom aliases created by users to mask complex Git•

commands)

Typically, for our daily use and interaction with Git, we will mostly use a subset of
the main porcelain commands. In this section, we will be using some low-level or
plumbing commands to better understand Git internals.

Again, typing git help -a on your terminal will give you a full list
of the command and the category it belongs to.

Inside the .git Directory
To begin, initialize an empty repository using git init, and then run the tree .git
command to reveal what’s created:
 $ mkdir /tmp/hello
 $ cd /tmp/hello
 $ git init -b main
 Initialized empty Git repository in /tmp/hello/.git/

 # List all the files in the current directory
 $ tree .git
 .git
 ├── HEAD

36 | Chapter 2: Foundational Concepts

 ├── config
 ├── description
 ├── hooks
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── info
 │ └── exclude
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 8 directories, 17 files

As you can see, .git contains a lot of stuff. The files are displayed based on a
template directory that you can adjust if desired by passing in the --template=tem
plate_directory option. For example, if you prefer to create a new repository that
implements custom Git hooks, you can point to a template that is preconfigured
with a custom directory structure and Git hook files. We will discuss Git hooks in
Chapter 14.

Depending on the version of Git you are using, your actual mani‐
fest may look a little different. For example, older versions of Git do
not use a .sample suffix on the .git/hooks files. You can learn more
about the command by running man git-init in the command
line.

In general, you don’t have to view or manipulate the files in the .git directory. These
“hidden” files are considered part of Git’s plumbing or configuration commands.

Initially, the .git/objects directory (the directory for all of Git’s objects) is empty,
except for a few placeholders:
 $ find .git/objects

 .git/objects
 .git/objects/pack
 .git/objects/info

Git Internals: Concepts at Work | 37

Let’s now carefully create a simple object:
 $ echo "hello world" > hello.txt
 $ git add hello.txt

If you typed “hello world” exactly as it appears here (with no changes to spacing or
capitalization), then your objects directory should now look like this:
 $ find .git/objects
 .git/objects
 .git/objects/3b
 .git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad
 .git/objects/pack
 .git/objects/info

Note that there is only one object at this point in time: the blob object with a
SHA1 ID generated based on the content of the file hello.txt. All of this looks pretty
mysterious. But it’s not, as the following sections explain.

Blob Objects and Hashes
When we created the file hello.txt and staged it in the index directory using git add,
Git internally created a blob object. At this point, Git doesn’t care that the filename is
hello.txt. Git cares only about what’s inside the file: the sequence of 12 bytes that rep‐
resent “hello world” and the terminating newline (the same blob created earlier). Git
performs a few operations on this blob, calculates its SHA1 hash, and enters it into
the object store as a file named after the hexadecimal representation of the hash. The
hash in this case is 3b18e512dba79e4c8300dd08aeb37f8e728b8dad. The 160 bits of a
SHA1 hash correspond to 20 bytes, which takes 40 bytes of hexadecimal to display, so
the content is stored as .git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad.

Git inserts a / after the first two digits to improve filesystem efficiency. (Some filesys‐
tems slow down if you put too many files in the same directory; making the first byte
of the SHA1 into a directory is an easy way to create a fixed, 256-way partitioning of
the namespace for all possible objects with an even distribution.)

You can verify that the content in the file is not changed by Git (it’s still the same
comforting “hello world”) by using the generated hash value to extract the content
from the object store, utilizing a low-level plumbing command:
 # Using the git cat-file command
 $ git cat-file -p 3b18e512dba79e4c8300dd08aeb37f8e728b8dad
 hello world

or
 # Using the git hash-object command
 $ echo "hello world" | git hash-object --stdin
 3b18e512dba79e4c8300dd08aeb37f8e728b8dad

38 | Chapter 2: Foundational Concepts

Git also knows that 40 characters is a bit chancy to type by hand, so
it provides a command to look up objects by a unique prefix of the
object hash:
 $ git rev-parse 3b18e512d
 3b18e512dba79e4c8300dd08aeb37f8e728b8dad

How Do We Know a SHA1 Hash Is Unique?
There is an extremely slim chance that two different blobs will yield the same SHA1
hash. When this happens, it is called a collision. However, a SHA1 collision is so
unlikely that you can safely bank on it never interfering with your use of Git. But
could a collision happen at random? Let’s see.

With 160 bits, you have 2160 or about 1048 (1 with 48 zeros after it) possible SHA1
hashes. That number is just incomprehensibly huge. Even if you hired a trillion
people to produce a trillion new unique blobs per second for a trillion years, you
would still only have about 1043 blobs.

If you hashed 280 random blobs, you might find a collision. Don’t take our word for it;
read Bruce Schneier’s blog post “Cryptanalysis of SHA-1”.

SHA1 has traditionally been known to be a cryptographically secure hash. That is,
until recently, when security researchers were able to point out flaws in the integrity
of the SHA1 hash function. They published their findings on their website, Shattered.

Starting with version 2.13.0, Git began implementing logic to detect and reject the
kind of attacks described in the SHAttered paper. The probability of such an attack
vector being repeated is not something that can be guaranteed in the future. For this
reason, Git introduced a new repository format extension that enables the use of
SHA256 instead of SHA1. It is described in detail in the Git technical documentation.

Now let’s move up the data structure to understand how pathnames and filenames are
stored by Git.

Tree Object and Files
Now that the “hello world” blob is safely ensconced in the object store, let’s take a
look at how it is associated with a filename. Git wouldn’t be very useful if it couldn’t
find files by name.

As mentioned before, Git tracks the pathnames of files through another kind of
object, called a tree. When you use git add, Git creates an object for the contents of
each file you add, but it doesn’t create an object for your tree right away. Instead, it
updates the index. The index is found in .git/index and keeps track of file pathnames

Git Internals: Concepts at Work | 39

https://oreil.ly/BtN34
https://shattered.io
https://oreil.ly/RW7eA

and corresponding blobs. Each time you run commands such as git add, git rm, or
git mv, Git updates the index with the new pathname and blob information.

Whenever you want, you can create a tree object from your current index by cap‐
turing a snapshot of its current information with the low-level git write-tree
command (an action you will rarely execute in your typical daily work).

At the moment, the index contains exactly one file, hello.txt:
 $ git ls-files -s
 100644 3b18e512dba79e4c8300dd08aeb37f8e728b8dad 0 hello.txt

Here you can see the association of the file, hello.txt, and the 3b18e5… blob.

Next, let’s capture the index state and save it to a tree object:
 $ git write-tree
 68aba62e560c0ebc3396e8ae9335232cd93a3f60

 $ find .git/objects
 .git/objects
 .git/objects/68
 .git/objects/68/aba62e560c0ebc3396e8ae9335232cd93a3f60
 .git/objects/pack
 .git/objects/3b
 .git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad
 .git/objects/info

Now there are two objects: the “hello world” blob object at 3b18e5 and a new one, the
tree object, at 68aba6. As you can see, the SHA1 object name corresponds exactly to
the subdirectory and filename in .git/objects.

But what does a tree look like? Because it’s an object, just like blob, you can use the
same low-level plumbing command to view it:
 $ git cat-file -p 68aba6
 100644 blob 3b18e512dba79e4c8300dd08aeb37f8e728b8dad hello.txt

The contents of the object should be easy to interpret. The first number, 100644,
represents the file attributes of the object in octal, which should be familiar to anyone
who has used the Unix chmod command. Here, 3b18e5 is the object name of the hello
world blob, and hello.txt is the name associated with that blob.

It is now easy to see that the tree object has captured the information that was in the
index when you ran git ls-files -s.

40 | Chapter 2: Foundational Concepts

A Note on Git’s Use of SHA1
Before inspecting the contents of the tree object in more detail, let’s reemphasize an
important feature of SHA1 hashes:
 $ git write-tree
 68aba62e560c0ebc3396e8ae9335232cd93a3f60

 $ git write-tree
 68aba62e560c0ebc3396e8ae9335232cd93a3f60

 $ git write-tree
 68aba62e560c0ebc3396e8ae9335232cd93a3f60

In the preceding example, every time you compute another tree object for the same
index (no adding or removing of files), the SHA1 hash remains exactly the same. Git
doesn’t need to re-create a new tree object. If you’re following these steps on your
computer, you should be seeing exactly the same SHA1 hashes as the ones published
in this book.

In this sense, the hash function is a true function in the mathematical sense: for a
given input, it always produces the same output. Such a hash function is sometimes
called a digest to emphasize that it serves as a sort of summary of the hashed object.
This is also true for any hash function; even the lowly parity bit has this property.

For example, if you create the exact same content as another developer, regardless of
where or when or how both of you work, an identical hash is proof enough that the
full content is identical too. In fact, Git treats them as identical, and this notion is
extremely important.

But hold on a second—aren’t SHA1 hashes unique? What happened to the trillions of
people with trillions of blobs per second that never produce a single collision? This is
a common source of confusion among new Git users. So read on carefully, because if
you can understand this distinction, then everything else in this chapter will be easy.

Identical SHA1 hashes in this case do not count as a collision. It would be a collision
only if two different objects produced the same hash. Here, you created two separate
instances of the very same content, and the same content always has the same hash.

Git depends on another consequence of the SHA1 hash function: it doesn’t matter
how you got a tree called 68aba62e560c0ebc3396e8ae9335232cd93a3f60. If you have
it, you can be extremely confident that it is the same tree object that, say, another
reader of this book has. Consider the following:

Scenario 1
Bob might have created the tree by combining commits A and B from Jennie and
commit C from Sergey on a shared repository.

Git Internals: Concepts at Work | 41

Scenario 2
Working in that same shared repository, you might have created the same tree
but via a different path. You might have gotten commit A from Sue and an
update from Lakshmi that combines commits B and C.

The results are the same for the generated tree object in both scenarios. This facili‐
tates distributed development with Git.

If you’re asked to look for object 68aba62e560c0ebc3396e8ae9335232cd93a3f60 and
find such an object, then since SHA1 is a cryptographic hash, you can be confident
that you’re looking at precisely the same data from which the hash was created.

The converse is also true: if you don’t find an object with a specific hash in your
object store, then you can be confident that you do not hold a copy of that exact
object. To summarize, you can determine whether your object store does or does not
have a particular object even though you know nothing about its (potentially very
large) contents. The hash thus serves as a reliable label or name for the object.

Tree Hierarchies
In our examples from the previous section, we only have information regarding a
single file, but in actuality, projects contain complex, deeply nested directories that
are refactored and moved around over time. In this section, we will be creating a new
subdirectory that contains an identical copy of the hello.txt file to see how Git handles
this scenario:
 $ pwd
 /tmp/hello
 $ mkdir subdir
 $ cp hello.txt subdir/
 $ git add subdir/hello.txt
 $ git write-tree
 492413269336d21fac079d4a4672e55d5d2147ac

 $ git cat-file -p 4924132693
 100644 blob 3b18e512dba79e4c8300dd08aeb37f8e728b8dad hello.txt
 040000 tree 68aba62e560c0ebc3396e8ae9335232cd93a3f60 subdir

The new top-level tree contains two items: the original hello.txt file as well as the new
subdir directory, which is of type tree instead of blob.

Look more closely at the object name subdir. Do you notice anything unusual?
Indeed, it’s our old friend, the SHA1 68aba62e560c0ebc3396e8ae9335232cd93a3f60!

How can this be, you ask? Well, the new tree for subdir contains only one file,
hello.txt, and that file contains the same old “hello world” content. So the subdir tree
is exactly the same as the older, top-level tree! And yes, you are correct if you pointed
out that it is for this reason alone that it has the same SHA1 object name as before:
traits of a true function in the mathematical sense.

42 | Chapter 2: Foundational Concepts

Let’s look at the .git/objects directory and see what this most recent change affected:
 $ find .git/objects
 .git/objects
 .git/objects/49
 .git/objects/49/2413269336d21fac079d4a4672e55d5d2147ac
 .git/objects/68
 .git/objects/68/aba62e560c0ebc3396e8ae9335232cd93a3f60
 .git/objects/pack
 .git/objects/3b
 .git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad
 .git/objects/info

There are still only three unique objects: a blob containing “hello world”; one tree
containing hello.txt, which contains the text “hello world” plus a new line; and a
second tree that contains another reference to hello.txt along with the first tree.

Figure 2-7 illustrates this concept.

Figure 2-7. Tree hierarchies

Commit Objects
The next object to discuss is the commit. Now that hello.txt has been added with the
git add command and the tree object has been produced with git write-tree, we
can create a commit object using low-level plumbing commands like this:

 $ echo -n "Commit a file that says hello\n"
 | git commit-tree 492413269336d21fac079d4a4672e55d5d2147ac
 3ede4622cc241bcb09683af36360e7413b9ddf6c

Git Internals: Concepts at Work | 43

The result will look something like this:
 $ git cat-file -p 3ede462
 tree 492413269336d21fac079d4a4672e55d5d2147ac
 author Jon Loeliger <jdl@example.com> 1656932750 +0200
 committer Jon Loeliger <jdl@example.com> 1656932750 +0200

 Commit a file that says hello

Figure 2-8 illustrates this concept.

Figure 2-8. Commit object

If you’re following along on your computer, you probably found that the commit
object you generated does not have the exact same value as the one in this example.
If you’ve understood everything so far, the reason for that should be obvious: our
commit object is not the same as your commit object.

Your commit object contains your name and the time you made the commit, whereas
our commit object contains a different timestamp and author name, so of course it is
different.

44 | Chapter 2: Foundational Concepts

On the other hand, your commit does have the same tree. This is why commit
objects are separate from their tree objects: different commits often refer to exactly
the same tree. When that happens, Git is smart enough to transfer around only the
new commit object, which is tiny, instead of the entire tree and blob objects, which
are probably much larger.

In real life, you can (and should!) pass over the low-level plumbing commands
git write-tree and git commit-tree used in the examples. You can just use the
porcelain git commit command. You don’t need to remember all those plumbing
commands to be a perfectly happy Git user.

In essence, a basic commit object is fairly simple, and it’s the last ingredient required
for a real version control system. The commit object just shown is the simplest
possible one, containing the following:

• The name of a tree object that actually identifies the associated files•
• The name of the person who composed the new version (the author) and the•

time when it was composed
• The name of the person who placed the new version into the repository (the•

committer) and the time when it was committed
• A description of the reason for this revision (the commit message)•

By default, the author and committer are the same; there are a few situations where
they’re different.

You can use the command git show --pretty=fuller to see
additional details about a given commit.

A use case closer to home is when a project contains multiple commits. In such
a situation, when you make a new commit in the project you can give it one or
more parent commits. Given this context, consider the most recent commit (or its
associated tree object) in the project. Because it contains, as part of its content, the
hash of its parent commits and of its tree, and that in turn contains the hash of all
of its subtrees and blobs recursively through the whole data structure, it follows by
induction that the hash of the original commit uniquely identifies the state of the
whole data structure rooted at that commit.

By following back through the chain of parents, you can discover the history of your
project, thus the term commit history. Commit objects are also stored in a graph
structure, although it’s completely different from the structures used by tree objects.
More details about commits and the commit graph are given in Chapter 4.

Git Internals: Concepts at Work | 45

Tag Objects
Finally, the last object Git manages is the tag. Although Git implements only one
kind of tag object in its object store, it supports two basic tag types, usually called a
lightweight tag and an annotated tag.

Lightweight tags are simply references to a commit object and are usually considered
private to a repository. Lightweight tags are not stored as permanent objects in the
object store.

An annotated tag creates an object. It contains a message, supplied by you, and can be
digitally signed using a GnuPG key according to RFC 4880.

Git treats both lightweight and annotated tag names equivalently for the purposes of
associating a commit with a meaningful, human-readable name.

A typical use case for an annotated tag is when you’re creating
a specific release version for your projects. A typical use case for
a lightweight tag is when you need a temporary label attached to a
commit object.

You create an annotated, unsigned tag with a message on a commit using the git tag
command:
 $ git tag -a V1.0 3ede462

Git will launch your configured default editor after the command is issued, and you
can provide a tag message to complete the operation.

You can view the newly created tag object via the git cat-file -p command, but
what is the SHA1 of the tag object? To find it, use the tip in “Blob Objects and
Hashes” on page 38:
 $ git rev-parse V1.0
 6b608c1093943939ae78348117dd18b1ba151c6a

 $ git cat-file -p 6b608c
 object 3ede4622cc241bcb09683af36360e7413b9ddf6c
 type commit
 tag V1.0
 tagger Jon Loeliger <jdl@example.com> 1656932858 +0200

 Tag version 1.0

In addition to the log message and author information, the tag refers to the commit
object 3ede462.

Git usually tags a commit object, which points to a tree object, which encompasses
the total state of the entire hierarchy of files and directories within your repository.

46 | Chapter 2: Foundational Concepts

Recall from Figure 2-5 that the V1.0 tag points to the commit named 1492, which in
turn points to a tree (8675309) that spans multiple files. Thus the tag simultaneously
applies to all files of that tree.

This is unlike CVS, for example, which will apply a tag to each individual file and
then rely on the collection of all those tagged files to reconstitute a whole tagged
revision. And whereas CVS lets you move the tag on an individual file, Git requires a
new commit, encompassing the file state change onto which the tag will be moved.

Summary
We have discussed the inner workings of Git to an elaborate extent, so let’s now recap
the key takeaways from this chapter. We started with a high-level discussion of the
repository, where we learned about the various working directories Git replies upon,
mainly the index, working directory, and local history. We continued with the Git
object store and analyzed each of the immutable Git objects. We also learned how to
interact with those internal objects directly using low-level git commands that you
would rarely use on a daily basis. Grasping this concept should highlight the fact that
Git as a concept is merely a simple content-addressable database whereby its inner
mechanics are somewhat direct, yet may at times be difficult to comprehend. We also
described visually the relationship between the objects in Git’s object store to help
establish a good foundation for the chapters in Part II of the book.

Summary | 47

PART II

Fundamentals of Git

The following chapters highlight how Git manages files, explain the importance of
the index and how it relates to this process, and take a detailed look at the commit
object and the important role that branches play in a Git repository.

Before we proceed, we would like to explain why we chose to discuss these topics in
this order.

In “Git Internals: Concepts at Work” on page 36, we dissected the available objects
within the Git object store. Let’s look at how the objects are created and when they
establish links with each other.

First we will create an empty directory and inspect the content using the tree
command:
 $ mkdir myrepo && cd myrepo

 $ git status
 fatal: not a git repository (or any of the parent directories): .git

 $ tree .git
 .git [error opening dir]

 0 directories, 0 files

Since this is not a Git repository, there is no .git directory. Next, we will initialize an
empty Git repository and reinspect the directory content:
 $ git init -b main
 Initialized empty Git repository in /myrepo/.git/

 $ tree .git
 .git

 ├── HEAD
 ├── config
 ├── description
 ├── hooks
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── info
 │ └── exclude
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 8 directories, 17 files

Here we see that the .git folder is created; this is where the git objects will be stored
in their respective folders.

When initializing, we created a branch named main. In Chapter 3, we will learn that
branches are just pointers to commit objects, specifically, to the HEAD or tip commit
of the current branch. Let’s examine the content of the HEAD directory from the tree
output:
 $ cat .git/HEAD
 ref: refs/heads/main

It points to the name of the branch we created earlier. Let’s further examine what it
contains:
 $ cat .git/refs/heads/main
 cat: .git/refs/heads/main: No such file or directory

Interestingly, we have a branch, but the content is empty. We will circle back to this
later.

We will now create a file and run the tree .git command again:
 $ echo "Hello Git" > file
 $ tree .git
 .git
 ├── HEAD
 ├── config
 ├── description
 ├── hooks

 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── info
 │ └── exclude
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 8 directories, 17 files

Notice that there is no index directory created yet. Next, we mark the file to be
tracked by Git:
 $ git add file
 $ tree .git
 .git
 ├── HEAD
 ├── config
 ├── description
 ├── hooks
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── index
 ├── info
 │ └── exclude
 ├── objects
 │ ├── 9f
 │ │ └── 4d96d5b00d98959ea9960f069585ce42b1349a
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 9 directories, 19 files

Once the file is tracked, running the tree .git command will reveal two changes.
One, we now have an index directory that is of the type binary, and two, we have
some new content in the object directory; we will discuss this in more detail in
Chapter 5:
 $ cat .git/index
 DIRCb�Fx��
 b�Fx��

 ��I���
 ��������B�4�file��(���[�o+�fu���\%

Let’s examine the content of the object directory using some low-level git commands:
 # check the type of object
 $ git cat-file -t 9f4d96
 blob

 # check the content of object
 $ git cat-file -p 9f4d96
 Hello Git

Here you can see that the content is of type blob and is what we supplied.

We will now make our first commit:
 $ git commit -m "Initial commit"
 [main (root-commit) 75f501d] Initial commit
 1 file changed, 1 insertion(+)
 create mode 100644 file

 # run tree .git to investigate changes in the git object store
 $ tree .git
 .git
 ├── COMMIT_EDITMSG
 ├── HEAD
 ├── config
 ├── description
 ├── hooks
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── index
 ├── info
 │ └── exclude
 ├── logs
 │ ├── HEAD
 │ └── refs
 │ └── heads

 │ └── main
 ├── objects
 │ ├── 16
 │ │ └── b2356b798a3bfa903c9a54dc608282f4394e2b
 │ ├── 9f
 │ │ └── 4d96d5b00d98959ea9960f069585ce42b1349a
 │ ├── 75
 │ │ └── f501da811525b594f2240e015eeebeed388042
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 │ └── main
 └── tags

 14 directories, 25 files

Observe the changes. When the first commit is created, you get the SHA summary
with the label (root commit). This same abbreviated SHA shows up in full length in
the object directory. We can validate this using the following:
 # check the content of the commit object
 $ git cat-file -p 75f501
 tree 16b2356b798a3bfa903c9a54dc608282f4394e2b
 author Prem Kumar Ponuthorai <ppremk@gmail.com> 1658662758 +0200
 committer Prem Kumar Ponuthorai <ppremk@gmail.com> 1658662758 +0200

 Initial commit

We also see that the commit object contains the tree object. Looking into the tree
object further reveals that it is linked to the blob object we created earlier. We will
discuss this in more detail in Chapter 4:
 # check the content of the tree object
 $ git cat-file -p 16b23
 100644 blob 9f4d96d5b00d98959ea9960f069585ce42b1349a readme.md

Since we have a commit object, let’s go back and look in the .git/refs/heads/main
directory:
 $ cat .git/refs/heads/main
 75f501da811525b594f2240e015eeebeed388042

This time we have some content, and that content is the commit object SHA. We’ve
come full circle now. This relationship is illustrated briefly in Figure II-1.

These examples showcase the Git internals and how they are intricately linked, which
made it challenging for us to determine the best possible way to order the chapters.
In the end we decided to stick to an outside-in, top-down approach whereby we
start by explaining what branches are, followed by commits, and finally how files are
managed along with their relation to the index within a Git repository. Our rationale
was that we wanted to approach these topics in the order in which you would be

implementing them in your daily routine. In other words, we start at the surface and
then peek under the hood to show you the inner mechanics of Git.

Figure II-1. Git objects relationship

So what does this mean to you? You may encounter some concepts or verbiage along
the way that aren’t fully explained immediately, which may be confusing or might
raise even more questions. When you are feeling this, just note it and keep going. At
the end of this part of the book, it will all make sense.

1 We are aware of the time travel paradox and the complications that can arise, so we shall stick to only
imagining the timelines and not do the actual time travel yet.

CHAPTER 3

Branches

A branch allows the user to launch a separate line of development within a software
project. When you create a branch, you are creating a fork from a specific state of the
project’s timeline. This allows development to progress in multiple directions simul‐
taneously. Think of it as time travel, where you have the ability to create alternate
parallel timelines from a single starting point. A branch also gives you the ability to
create different versions of a project. Often, a branch can be reconciled and merged
with other branches to combine divergent efforts.

Creating branches in Git is considered a lightweight and inexpensive operation. This
is because a branch is just a pointer to a specific commit object in a Git repository.
Git allows many branches, and thus many different lines of development within a
repository can exist simultaneously at any given moment. Moreover, Git has first-rate
support for merges between branches. As a result, most Git users make routine use of
branches and are naturally encouraged to do so frequently.

In this chapter, we will take a top-down approach to thinking about how branches
function in Git by looking at how developers maintain multiple lines of development
within a project. The concept discussed in this chapter will complement the key
takeaways we learned in Chapter 2.

We will show you how to list, view, select, create, and discard branches. We will also
provide some best practices so that your branches don’t disrupt the fabric of time and
the existence of parallel timelines.1

55

Motivation for Using Branches in Git
In a Git repository, a branch can be created for a countless number of technical,
philosophical, managerial, and even social reasons. The distributed nature of Git,
combined with a well-thought-out branching strategy, enables the existence of vari‐
ous development workflows that provide a structured way of working on projects
among diverse teams. Here are some common rationales:

• A branch can reflect the stages of your project development lifecycle—for exam‐•
ple, the stable, development, release candidate, and production release stages.
This can provide clarity and streamline the workflow among teams in a system‐
atic and coordinated manner.

• More often than not, a branch is also used to represent a specific product release.•
If you want to start a new-release version of your project but you know that some
of your customers may want to stick with an older-release version, you have the
option to maintain the older-release version as a separate branch for backward
compatibility.

• A branch provides you an option to iterate and work on a specific feature or•
to research a fix for a bug in your project in an isolated development environ‐
ment. This enables you to create multiple feature branches that encapsulate well-
defined concepts or ideas that you can consolidate via a merge prior to cutting
a release. Git’s branching system is robust yet inexpensive; thus this approach is
encouraged and is not considered overkill when working with small changes in
each branch you create. The word feature simply indicates that each branch in the
repository has a particular purpose.

• An individual branch in a large and complex project can represent the work•
of an individual developer. This method of working enables teams with com‐
plicated project development requirements to segregate the implementation of
different moving parts of a project independently, before creating a new branch
to integrate and unify the multiple moving parts into a final product for specific
releases.

Git also has the notion of a tracking branch, or a branch to keep clones of a repository
in sync. Chapter 11 explains how to use a tracking branch.

Branching Guidelines
Establishing best practices and clear practical guidelines in your projects ensures
their success and provides a pleasant experience for everyone involved. Working with
branches in a Git repository is no exception. In this section, we will elaborate on
some common practices and guidelines when you are working with branches in Git.

56 | Chapter 3: Branches

Branch Names
The name you assign to a branch is essentially arbitrary, though there are some
imposed limitations. When you initialize a new repository, Git assigns a default
branch name. As of Git version 2.37.1, the default branch name is master, but this is
subject to change in an effort to be respectful and inclusive in naming conventions.
The default branch in Git is used by developers to maintain their projects’ robust and
stable codebase. Git allows you to rename or even delete the default branch. If you are
initializing a new repository, you can change the default branch name as follows:
 $ git init --initial-branch=branch-name

 or

 $ git init -b branch-name

Alternatively, you can edit the Git configuration file to include the init.default
Branch attribute to always use a specified default branch name of your choice:
 $ git config --global init.defaultBranch branch-name

If you plan to rename a Git repository’s branch name while preserving the reposi‐
tory’s commit history, you can easily do so like this:
 $ git branch -m old-branch-name new-branch-name

To support scalability and categorical organization, you can create a hierarchical
branch name that resembles a Unix pathname. As an example, suppose you want
to easily identify, via branch name, various feature implementations and bug fixes
or represent changes contributed by you as an individual (if your contribution will
be picked up and merged by an integration manager): you can create a hierarchical
structure on separate branches named something like features/feature-A, bug/
ticket-no-x, and ppremk/feature-B.

An advantage when using hierarchical branch names is that Git, just like the Unix
shell, supports wildcards. For instance, given the naming scheme bug/ticket-no-x
and bug/ticket-no-y, you can select all bug branches at once with a clever and
familiar shorthand:
 git show-branch 'bug/*'

Dos and Don’ts in Branch Names
Branch names must conform to a few simple rules:

• You can use the forward slash (/) to create a hierarchical name scheme. However,•
the name cannot end with a slash.

• No slash-separated component can begin with a dot (.). A branch name such as•
feature/.new is invalid.

Branching Guidelines | 57

• The name cannot start with a minus sign (–).•
• The name cannot contain two consecutive dots (..) anywhere.•
• The name cannot include any spaces or other whitespace characters.•
• The name cannot include a character that has special meaning to Git, including•

the tilde (~), caret (^), colon (:), question mark (?), asterisk (*), and open square
bracket ([).

• The name cannot include an ASCII control character, which is any byte with a•
value lower than \040 octal, or the DEL character (\177 octal).

These branch name rules are enforced by the git check-ref-format plumbing
command, and they are designed to ensure that each branch name is easily typed and
usable as a filename within the .git directory and scripts.

Managing Branches
Other than the default branch, a repository may have many different branches during
a project’s lifespan; however, you will naturally work in only a single branch at a time,
which is the current or active branch. The active branch helps determine which files
are checked out in your working directory: in other words, it reflects the state of a file
currently in development.

Furthermore, the current branch is often an implicit operand in Git commands, such
as the target of the merge operation. By default, every time you initialize a new Git
repository, main is the active branch, but you can create additional branches and
make any branch the current branch.

Figure 3-1 presents a commit graph containing two branches. Notice how the HEAD
points to the branch name and stays updated, pointing to the latest commit in the
branch. Keep this graph structure in mind when you manipulate branches because
it reinforces your understanding of the elegant and simple object model underlying
Git’s branches. We will explore commits in detail in Chapter 4.

Figure 3-1. Commit graph with branches

58 | Chapter 3: Branches

Working in Branches
Creating a branch in your repository allows the content of the repository to split
in multiple directions, with each direction representing a branch. Let’s assume you
have two branches in your repository: a default branch and a divergent line of
development. Every commit you create will be applied to only one of the branches—
that is, whichever branch is marked as active.

Adhering to the branch naming rules and guidelines, it will help if your branch name
is terse and reflects the context of its purpose. The branch name will always refer to
the most recent commit on the branch, also called the tip or HEAD of the branch.
By technical definition, a branch name is a simple pointer to a specific commit; thus
the branch name moves forward incrementally as you add new commits to the active
branch you are developing on. Figure 3-2 illustrates this concept.

Figure 3-2. Branch name as a dynamic pointer

Since a branch name is dynamic and points to the tip or HEAD commit in the series
of commits on the branch, Git doesn’t keep track of where or from which specific
commit a branch originated. If you need to refer to an older commit in the branch,
you will need to provide an explicit commit object ID or a relative name such as
dev~5 (which means move the branch name pointer back by five commits, starting
from the current commit). If you need a static reference point of a particular commit
in a branch, because the branch represents a stable point in the project, you can
explicitly assign either a lightweight or an annotated tag name. Figure 3-3 illustrates
this concept.

Managing Branches | 59

Figure 3-3. Branch name versus tag name

A branch includes sufficient commits to rebuild the history of the project along the
branch from which it diverged, all the way back to the beginning of the project.

Branches Versus Tags
A branch and a tag may seem similar, but they serve different purposes.

A tag can be used as a temporary bookmark (lightweight tag) or as a fixed reference
point (annotated tag) to delineate when a specific version of a product was released.
Thus tags are static and always point to a specific commit object in a Git repository.

A branch points to and moves with each commit made during development. Each
reference to the branch (branch name) will follow every diverging line of develop‐
ment within your repository. Thus branches are dynamic.

So when should you use a tag, and when should you use a branch? The decision is
ultimately up to you and your project development policies. However, you should
consider the key differentiating characteristic: is the reference static and immutable,
or is it dynamic? If it’s the former, you should use a tag. If it’s the latter, you should use
a branch.

You can name a branch and a tag with the same name. If you do,
you will have to use their full ref names to distinguish them. For
example, you could use refs/tags/v1.0 and refs/heads/v1.0.
We recommend that you simply avoid using the same name for
both a branch and a tag, unless you have a compelling reason to do
so. The sequence Git uses to determine which reference to use is
based on the rule explained in the gitrevisions documentation.

60 | Chapter 3: Branches

https://oreil.ly/Mvm6S

In Figure 3-4, the development branch points to the tip or HEAD commit Z, the most
recent commit in that branch. If you want to reproduce the state of the repository as
it was at Z, then all the commits reachable from Z back to the original commit, A, are
needed. The reachable portion of the graph is highlighted with wide lines and covers
every commit except S, G, H, J, K, and L. Do note that the arrows from commit W to F
and commit X to R represent a merge operation between the respective branches. We
will revisit what a merge operation is in Chapter 6.

Figure 3-4. Commits reachable from development

Each of your branch names, as well as the committed content on each branch, is
local to your repository. However, when making your repository available to others,
you can publish or elect to make one or any number of branches and the associated
commits available too. Publishing a branch must be done explicitly; we will elaborate
on this in Chapter 11. Also, if your repository is cloned, your branch names and the
development on those branches will all be part of the newly cloned repository copy.

Creating Branches
Git is built to support an arbitrarily complex branching structure. This includes cre‐
ating new branches from existing branches and creating forks diverging into multiple
branches from the same commit.

When you create a new branch, it is always based upon an existing commit within
the repository. This can be the current tip or HEAD commit, or it can be a different
commit that you reference explicitly using its commit SHA (commit object ID).

A branch may be short lived or long lived; its lifetime is, again, your decision. Within
the span of its lifetime, a given branch name may be added and deleted multiple times
as you see fit for your development needs.

The basic form of the command to create a new branch is as follows:

Managing Branches | 61

 $ git branch branchname start-point

If you do not specify a start-point, the default start point will be the tip or HEAD
commit on the currently active branch. In other words, the default is to start a new
branch at the point where you’re working right now.

Note that the git branch command merely introduces the name of a branch into
the repository. It does not change your working directory to use the new branch. The
command simply creates a new named branch at the given commit. This also means
that there will be no changes to the files in your working directory, nor will there be
implicit changes to the branch context. And, of course, no new commits will be made
when the command is executed.

You can’t actually start working on the branch until you switch to it, as we will show
in “Switching (Checking Out) Branches” on page 66. The main reason for this is
because the tip or HEAD is still pointing to the active branch from when you created
the new branch. Figure 3-5 helps illustrate this concept.

Figure 3-5. The HEAD, active branch, and new branch

Suppose that your project’s branching strategy reflects its production release versions,
and you are tasked with fixing a bug in a certain release. It may be convenient to
use the start-point parameter to create a new bug-fix branch from the most recent
commit of the specified release branch. This enables you to switch your working
directory to reflect the project’s state at the point that represents the release.

For instance, you might specify a branch named rel-2.3 to represent Production
Version 2.3 of your project. You can make a bug fix on a separate branch for the
specified version as follows:
 $ git branch bugs/fix-1311 rel-2.3

The start-point parameter accepts a branch name, a commit
SHA, or a tag name. Using the commit SHA gives you the freedom
to point to any commits in a series of commits within the devel‐
opment line of any branch. In other words, it allows you to fork
in multiple directions from a single commit to explore alternate
solutions from a common starting point:
 $ git branch bugs/fix-1311 e69de29bb2d1d6434b8b29ae775ad8c2e48c5391

62 | Chapter 3: Branches

Listing Branch Names
The git branch command lists branch names found in the repository:
 $ git branch
 bugs/pr-1311
 development
 * main

In this example, three branches are shown. The active branch currently checked into
your working directory is identified by the asterisk. This example also shows two
other branches, bugs/pr-1311 and development.

Without additional parameters, only branches in the local repository are listed. As
you’ll see in Chapter 11, there may be additional remote tracking branches in your
repository. You can list those branches by providing the git branch command with
the -r parameter option. You can list both local and remote branches with the -a
parameter.

Viewing Branches and Their Commits
The git show-branch command provides more detailed output than the git branch
command. It lists the commits that contribute to one or more branches in roughly
reverse chronological order. As with the git branch command, when no option
parameter is provided, the git show-branch command will list the local branches.
When you use the git show-branch command with the option -r, it shows the
remote tracking branches; with the option -a, it shows all local and remote branches.

The git show-branch command output is divided into two parts, separated by a line
of dashes (---).

The section above the separator lists the following:

• The names of branches enclosed in square brackets, one per line•
• Each branch name prefixed with special characters: an asterisk (*) to denote the•

current branch and an exclamation point (!) to reference feature branches
• Each branch name with its one-line commit message from the most recent•

commit in that branch, which can be helpful as a quick reference

The section below the separator lists each commit together with its branch name,
adhering to the following conventions:

• As an output in a matrix format, stating which commits are present in each listed•
branch’s respective columns.

Managing Branches | 63

• Prefixed with special characters. A plus sign (+) indicates that the commit is•
present in the listed branch, an asterisk (*) indicates that the commit is present
in the current branch, and a minus sign (–) denotes that the commit is a merge
commit on the branch.

• With its one-line commit message. As mentioned earlier, Git assigns the branch•
name to the most recent commit; thus previous commits on the same branch will
have the same branch name with a special trailing character: a caret (^).

Let’s look at an output from the git show-branch command:
 $ git show-branch

 ! [bugs/pr-1] Fix Problem Report 1

 * [dev] Improve the new development

 ! [main] Added Bob's fixes.

 * [dev] Improve the new development.
 * [dev‸] Start some new development.
 + [bugs/pr-1] Fix Problem Report 1.
 +*+ [main] Add Bob's fixes.

Commits within the branch bugs/pr-1 start in the first column.

Commits within the current branch dev start in the second column.

Commits within the branch main start in the third column.

Use the separator dashes as columns and the branch names as
column headers. This helps in reading the matrix output.

For example, both of the following commits are identified by asterisks and are present
in the dev branch:
 ! ...
 * [dev] Improve the new development
 ! ...

 * [dev] Improve the new development
 * [dev‸] Start some new development.
 ...
 ...

These two commits are not present in any other branch. They are listed in reverse
chronological order: the most recent commit is at the top, and the oldest commit is at
the bottom. We will discuss in Chapter 4 why branch names are suffixed with carets
(^`) to represent a penultimate commit. Similarly, dev and dev^ are the two most
recent commits on the branch dev.

64 | Chapter 3: Branches

Although the commits within a branch are ordered, branches
themselves are listed in an arbitrary order. This is because all
branches have equal status; there is no rule stating that one branch
is more important than another.

If the same commit is present in multiple branches, it will have a plus sign or an
asterisk indicator for each branch. Thus the last commit shown in the previous
output is present in all three branches:
 ! [bugs/pr-1] Fix Problem Report 1
 * [dev] Improve the new development
 ! [main] Added Bob's fixes.

 ...
 ...

 +*+ [main] Added Bob's fixes.

The first plus sign means the commit is in bugs/pr-1, the asterisk means the same
commit is in the current branch dev, and the second plus sign means the commit is
also in the main branch.

When invoked, the git show-branch command traverses all the commits on all
branches being shown, stopping the listing on the most recent common commit
present on all of them. In the earlier example, Git listed four commits before it found
one common to all three branches (Added Bob's fixes.), at which point it stopped.

Stopping at the first common commit is the default heuristic for reasonable behav‐
ior. It is presumed that reaching such a common point yields sufficient context to
understand how the branches relate to each other. If for some reason you actually
want more commit history, use the --more=num option, specifying the number of
additional commits you want to see going back in time along the common branch.

The git show-branch command’s output displays a maximum
number of 29 branches and commits at a time.

If you want to limit the history shown for the git show-branch command, you
can pass in the branch names as parameters. For example, if a new branch named
bugs/pr-2 is added starting at the main commit, it would look like this:

Managing Branches | 65

 $ git branch bugs/pr-2 main
 $ git show-branch
 ! [bugs/pr-1] Fix Problem Report 1
 ! [bugs/pr-2] Added Bob's fixes.
 * [dev] Improve the new development
 ! [main] Added Bob's fixes.

 * [dev] Improve the new development
 * [dev‸] Start some new development.
 + [bugs/pr-1] Fix Problem Report 1
 ++*+ [bugs/pr-2] Added Bob's fixes.

If you want to see the commit history for just the bugs/pr-1 and bugs/pr-2
branches, you could use the following:
 $ git show-branch bugs/pr-1 bugs/pr-2
 ! [bugs/pr-1] Fix Problem Report 1
 ! [bugs/pr-2] Added Bob's fixes.
 --
 + [bugs/pr-1] Fix Problem Report 1
 ++ [bugs/pr-2] Added Bob's fixes.

Fortunately, in our examples we used a well-structured naming convention for our
branches; thus we can use wildcard matching of branch names as well. The same
results can be achieved using the simpler bugs/* branch wildcard name:
 $ git show-branch bugs/*
 ! [bugs/pr-1] Fix Problem Report 1
 ! [bugs/pr-2] Added Bob's fixes.
 --
 + [bugs/pr-1] Fix Problem Report 1
 ++ [bugs/pr-2] Added Bob's fixes.

Switching (Checking Out) Branches
As we mentioned earlier, you can only work on one branch at a time; this reflects the
state of the files in your working directory. When you need to work on a different
branch, you will need to use the git checkout command:
 $ git checkout branch

When you specify a branch name to the git checkout command, it makes that
branch the new, current working branch. Consequently, it changes your working
directory file and directory structure to match the state of the given branch. Git also
has a built-in mechanism to safeguard any uncommitted changes in your current
working directory when you are checking out to another branch, to keep you from
losing data during the process.

The git checkout command can be used to not only get a specific
branch state but also to give you access to all the states of the
repository going back from the tip of the branch to the beginning
of the project.

66 | Chapter 3: Branches

A basic example of checking out a branch
Let’s use the previous section’s example to better understand the state of the working
directory before and after changing branches using the git checkout command.
Suppose we want to shift gears from the dev branch to the bugs/pr-1 branch to
provide a solution to the problem. We can do so as follows:
 $ git branch
 bugs/pr-1
 bugs/pr-2
 * dev
 main

 $ git checkout bugs/pr-1
 Switched to branch "bugs/pr-1"

 $ git branch
 * bugs/pr-1
 bugs/pr-2
 dev
 main

The files and the directory structure of your working directory will be updated to
reflect the state and contents of the new branch, bugs/pr-1. Naturally, the extent
of that change depends on the differences between your now current branch, bugs/
pr-1, and the previous branch, dev. The effects of changing branches can be general‐
ized as follows:

• Files and directories present in the branch being checked out but not in the•
current branch are checked out of the object store and placed into your working
directory. If there were files in the bugs/pr-1 branch that were not present in the
dev branch, you will see those new files appearing in your working directory.

• Files and directories present in your current branch but absent in the branch•
being checked out will be removed from your working directory. Any files that
were present in the dev branch but were not part of the bugs/pr-1 branch will
disappear from your working directory.

• Files common to both branches are modified to reflect the content present in•
the checked-out branch. If there is a file that is common to both the dev and
bugs/pr-1 branches, the content of the file will be modified to match the state it
was in when the commit was made in the bugs/pr-1 branch.

The checkout or switching branches operation happens almost
instantaneously. This is one of the features of Git that truly and
strongly differentiates it from many other version control systems.
Git is also good at determining the minimum set of files and direc‐
tories that actually need to change during a checkout operation.

Managing Branches | 67

Checking out when you have uncommitted changes
In the previous example, we demonstrated checking out to a branch when your work‐
ing directory was clean: we changed branches when there were no files or directories
that were modified or newly created. Let’s take a look at some caveats when checking
out branches when you have some uncommitted changes in your working directory.

By default, Git precludes the accidental removal or modification of data in your local
working directory without your explicit request. Files and directories in your working
directory that are not being tracked (i.e., are not in one of Git’s object stores) are
always left alone; Git won’t remove or modify them.

However, if you have local modifications to a file that are different from changes that
are present on the new branch you are switching to, Git issues an error message such
as the following and refuses to check out the target branch:
 $ git branch
 bugs/pr-1
 bugs/pr-2
 dev
 * main

 $ git checkout dev
 error: Your local changes to the following files would be overwritten by checkout:
 NewStuff
 Please, commit your changes or stash them before you can switch branches.
 Aborting

In this case, a message warns that something has caused Git to stop the checkout
request. But what? You can find out by inspecting the contents of the file NewStuff, as
it is locally modified in the current working directory, and the target dev branch:

 # Show what NewStuff looks like in the working directory
 $ cat NewStuff
 Something
 Something else

 # Show that the local version of the file has an extra line that
 # is not committed in the working directory's current branch (main)
 $ git diff NewStuff
 diff --git a/NewStuff b/NewStuff
 index 0f2416e..5e79566 100644
 --- a/NewStuff
 +++ b/NewStuff
 @@ -1 +1,2 @@
 Something
 +Something else

 # Show what the file looks like in the dev branch
 $ git show dev:NewStuff
 Something
 A text existing in the dev branch version

68 | Chapter 3: Branches

If Git brashly honored the request to check out the dev branch, your local modifica‐
tions to NewStuff in your working directory would be overwritten by the version
from dev. By default, Git detects this potential loss and prevents it from happening.

If you really don’t care about losing changes in your working direc‐
tory and are willing to throw them away, you can force Git to
perform the checkout by using the -f option.

Seeing the error message from the earlier example, you might be prompted to update
the file within the index/staging directory and then proceed with the branch checkout.
However, this isn’t quite sufficient because using git add to update the new contents
of the file NewStuff into the index/staging directory only places the contents of that file
in the index/staging directory; it won’t commit it to any branch. Thus Git still can’t
check out the new branch without losing your change, so it will fail again:
 # Move file to index/staging directory
 $ git add NewStuff

 $ git checkout dev
 error: Your local changes to the following files would be overwritten by checkout:
 NewStuff
 Please, commit your changes or stash them before you can switch branches.
 Aborting

Indeed, the file would still be overwritten. Clearly, just adding it to the index isn’t
sufficient.

You could just issue git commit at this point to commit your change into your
current branch (main). But suppose you want the change to be made in the new dev
branch instead. You seem to be stuck: you can’t put your change into the dev branch
until you check it out, and Git won’t let you check it out because your change is
present.

Luckily, there are ways out of this catch-22. One approach uses the stash and is
described in Chapter 10. Another approach is described in “Merging Changes into a
Different Branch” on page 70, where we will merge the changes of the file while at
the same time switching to the intended branch.

Git checkout: Working with files versus branches

Although the git checkout command is used to change working branches, it also
provides robust options to restore states of files. Consider the following:
 # change to a dev branch
 $ git checkout dev

 # restore state for a specific file

Managing Branches | 69

 # four commits back from the tip or HEAD commit
 $ git checkout dev~4 index.js

It can also be used to restore a deleted file in your working directory from the index/
staging directory:
 # recover deleted file from index/staging directory
 $ rm -rf server.js
 $ git checkout server.js

When using the git checkout command, it can get confusing if you have the same
name for a branch and a file. If your goal is to work on a file instead of a branch, you
will need to specify -- followed by the filename. Git will understand that it should not
interpret subsequent arguments as options:
 # checkout a file with the same name of a branch
 $ git checkout -- file-with-same-branch-name.js

New Experimental Commands for Working with Branches
In Git version 2.23.0, a new command, git switch, was introduced to allow you to
switch to a specific branch in your repository:
 $ git switch branch

Additionally, the git restore command was introduced to allow for restore opera‐
tions on file states:
 $ git restore [options] file

Both the git switch and git restore commands are experimental, and their
intended behavior may change in the future, as mentioned in the official Git manual
pages.

Merging Changes into a Different Branch
Picking up from the previous section, the current state of your working directory
conflicted with that of the branch you wanted to switch to. In order to keep your file
changes in your working directory and switch to a new branch at the same time, you
will need to perform a merge while checking out to your target branch.

You are able to do so by providing the -m option with your git checkout command;
Git attempts to carry your local change into the new working directory by perform‐
ing a merge operation between your local modifications and the state of the file in the
target branch:
 $ git checkout -m dev
 M NewStuff
 Switched to branch "dev"

70 | Chapter 3: Branches

https://oreil.ly/y3Cxy

In this example, Git has modified the file NewStuff and checked out the dev branch
successfully. This merge operation occurs entirely in your working directory; it does
not introduce a merge commit on any branch. The reason for this is because, via
the -m option, Git performed a three-way merge between your current branch, the
current state of your working directory, and the target branch you are checking out
to. It is not an explicit merge between two branches.

In the event a merge conflict happens while switching branches with the -m option,
you will need to resolve the conflict manually. Git will modify the affected file and
place conflict resolution markers within the file. We will learn more about merges and
helpful techniques to resolve merge conflicts in Chapter 6:
 # Conflict resolution markers (<<<,===,>>>) in the NewStuff file as a result
 # of merge conflict when merging while switching branches

 $ cat NewStuff
 Something
 <<<<<<< dev:NewStuff
 A text existing in the dev branch version
 =======
 Something else
 >>>>>>> local:NewStuff

If Git can check out a branch, change to it, and merge your local modifications
cleanly without any merge conflicts, then the checkout request succeeds.

Suppose you’re on the main branch in your development repository and you’ve made
some changes to the NewStuff file. Moreover, you realize that the changes you made
really should be made on another branch, perhaps because they fix Problem Report 1
and should be committed on the bugs/pr-1 branch.

Here is the setup. Start on the main branch. Make some changes to some files, which
are represented here by adding the text Some bug fix to the file NewStuff:
 $ git show-branch
 ! [bugs/pr-1] Fix Problem Report 1
 ! [bugs/pr-2] Added Bob's fixes.
 ! [dev] Started developing NewStuff
 * [main] Added Bob's fixes.

 + [dev] Started developing NewStuff
 + [dev‸] Improve the new development
 + [dev~2] Start some new development.
 + [bugs/pr-1] Fix Problem Report 1
 +++* [bugs/pr-2] Added Bob's fixes.

 $ echo "Some bug fix" >> NewStuff

 $ cat NewStuff
 Something
 Some bug fix

Managing Branches | 71

At this point, you realize that all this work should be committed on the bugs/pr-1
branch and not the main branch. For reference, here is what the NewStuff file looks
like in the bugs/pr-1 branch prior to the checkout in the next step:
 $ git show bug/pr-1:NewStuff
 Something

To carry your changes into the desired branch, simply attempt to check it out:
 $ git checkout -m bug/pr-1
 M NewStuff
 Switched to branch "bug/pr-1"

 $ cat NewStuff
 Something
 Some bug fix

Here, Git was able to correctly merge the changes from your working directories and
the target branch and leave them in your new working directory structure. You might
want to verify that the merge went according to your expectations by using git diff:
 $ git diff
 diff --git a/NewStuff b/NewStuff
 index 0f2416e..b4d8596 100644
 --- a/NewStuff
 +++ b/NewStuff
 @@ -1 +1,2 @@
 Something
 +Some bug fix

That one-line addition (+Some bug fix) is correct.

Finding Base Branch Information for Merged Branches
A merge operation between branches does not eliminate any of the source or target
branches’ names. A merge is the complement of a branch. When you merge, the
content of one or more branches is joined with an implicit target branch.

Because the original commit from which a branch was started is not explicitly identi‐
fied, that commit (or its equivalent) can be found algorithmically using the name of
the original branch from which the new branch forked:
 $ git merge-base original-branch new-branch

We will learn more about the complex process of merging branches in Chapter 6.

Creating and Checking Out a New Branch
In “Creating Branches” on page 61, we learned how to create branches, and in
“Switching (Checking Out) Branches” on page 66, we learned how to switch to a

72 | Chapter 3: Branches

specific branch. Sometimes you may want to create a new branch and switch to it at
the same time. Git provides a shortcut for this with the -b new-branch option:
 $ git checkout -b new-branch

As an example use case, we will start with the same setup as the previous one, except
now we will create a new branch instead of switching to an existing branch. In other
words, we are in the main branch, editing files, and we want all of the changes to be
committed on an entirely new branch named bugs/pr-3. The sequence is as follows:
 $ git branch
 bugs/pr-1
 bugs/pr-2
 dev
 * main

 $ git checkout -b bugs/pr-3
 M NewStuff
 Switched to a new branch "bugs/pr-3"

 $ git show-branch
 ! [bugs/pr-1] Fix Problem Report 1
 ! [bugs/pr-2] Added Bob's fixes.
 * [bugs/pr-3] Added Bob's fixes.
 ! [dev] Started developing NewStuff
 ! [main] Added Bob's fixes.

 + [dev] Started developing NewStuff
 + [dev‸] Improve the new development
 + [dev~2] Start some new development.
 + [bugs/pr-1] Fix Problem Report 1
 ++*++ [bugs/pr-2] Added Bob's fixes.

To reiterate, the command:
 $ git checkout -b new-branch start-point

is exactly the same as the following two commands in sequence, assuming your
working directory is clean:
 $ git branch new-branch start-point
 $ git checkout new-branch

When you are using the -b new-branch option to create and switch to a new branch,
if the name of the new branch conflicts with an existing branch name, Git will not
allow you to complete the command:
 $ git checkout -b shiny-branch-name
 fatal: A branch named 'shiny-branch-name' already exists.

You may bypass this default behavior with the -B new-branch option. This method
will switch and reset the branch, causing you to lose any prior work done in the
branch with the same name:
 $ git checkout -B shiny-branch-name
 Switched to and reset branch shiny-branch-name

Managing Branches | 73

 # Equivalent to the following two commands in sequence
 # -f option is used to discard any local changes in your working directory

 $ git branch -f branch [start-point]
 $ git checkout branch

Detached HEAD
By default, every time you check out to a branch, you are typically checked out at the
tip or HEAD commit of the named branch. However, Git also allows you to specifically
check out to any commit, either by referencing the commit via a tag name or by
directly addressing it using the commit SHA (object ID) in the start-point option
with the git checkout command.

In such cases, when you check out to a specific commit, you will be in a state known
as detached HEAD mode. Figure 3-6 illustrates this concept. Take note of the HEAD
pointer and the named branch main; they both point to different commits.

Figure 3-6. Detached HEAD mode

Git puts you in detached HEAD mode when you do the following:

• Check out a commit that is not the tip of a branch, by direct reference or via a•
named tag.

• Check out a tracking branch. You might do this to explore changes recently•
brought into your repository from a remote repository.

• Start a git bisect operation, as described in “Using git bisect” on page 177.•
• Use the git submodule update command.•

Let’s explore detached HEAD mode with an example:
 # Using a cloned repository of Git source code!
 $ cd git

 $ git checkout v2.9.0-rc2
 Note: switching to 'v2.9.0-rc2'.

 You are in 'detached HEAD' state. You can look around, make experimental
 changes and commit them, and you can discard any commits you make in this
 state without impacting any branches by switching back to a branch.

 If you want to create a new branch to retain commits you create, you may

74 | Chapter 3: Branches

 do so (now or later) by using -c with the switch command. Example:

 git switch -c <new-branch-name>

 Or undo this operation with:

 git switch -

 Turn off this advice by setting config variable advice.detachedHead to false

 HEAD is now at 49fa3dc761 Git 2.9-rc2

As mentioned in the preceding output, while in detached HEAD mode, you are free to
add new commits as experimental changes in your development project. Figure 3-7
illustrates this concept.

Figure 3-7. New commits while in detached HEAD mode

Commits C4 and C5 in Figure 3-7 are also known as unreachable commits in this
context: in other words, there is no permanent reference to the commits other than
the HEAD while it’s in detached HEAD mode. When you switch to another named
branch, commits C4 and C5 will eventually be purged by the routine Git garbage
collection operation.

If you decide to keep those commits, you must first create a new branch:
 $ git checkout -b new_branch

This will give you a new, proper branch based on the commit where the detached
HEAD was. You can then continue with normal development.

You can also create a named tag pointing to commit C5 to keep
those commits and work on commit C5 at a later time. It is easier
to do this while you are still in detached HEAD mode. If you switch
to another branch, you will need to recover commit C5 via the git
reflog command and then add a reference to it.

The output from the git branch command will help you determine whether you are
in detached HEAD mode:

Managing Branches | 75

 $ git branch
 * (HEAD detached at 49fa3dc761)
 main

On the other hand, if you are finished with the detached HEAD and want to simply
abandon that state, you can convert to a named branch by simply entering git
checkout branch:
 $ git checkout main
 Updating files: 100% (3013/3013), done.
 Previous HEAD position was 49fa3dc761 Git 2.9-rc2
 Switched to branch 'main'
 Your branch is up to date with 'origin/main'.

 $ git branch
 * main

Deleting Branches
To delete a branch, you may use the command git branch -d branch name. This
action will remove the named branch from your local repository:
 $ git branch -d branch

If you plan to also delete remote tracking branches, you will need to provide the
-r option together with the command. We will cover remote tracking branches in
Chapter 11.

By default, Git prevents you from deleting the branch you are currently working on.
Removing your current branch would leave Git unable to determine the state of your
working directory. Instead, you must always name a noncurrent branch.

But there is another subtle issue. Git won’t allow you to delete a branch that contains
commits that are not also present on the current branch, as hinted in the error mes‐
sage in the following example. That is, Git prevents you from accidentally removing
development in commits that will be lost if the branch were to be deleted:
 $ git checkout main
 Switched to branch "main"

 $ git branch -d bugs/pr-3
 error: The branch 'bugs/pr-3' is not fully merged.
 If you are sure you want to delete it, run 'git branch -D bugs/pr-3'.

Let us examine this with the git show-branch command:
 $ git show-branch
 ! [bugs/pr-1] Fix Problem Report 1
 ! [bugs/pr-2] Added Bob's fixes.
 ! [bugs/pr-3] Added a bug fix for pr-3.
 ! [dev] Started developing NewStuff
 * [main] Added Bob's fixes..

 + [bugs/pr-3] Added a bug fix for pr-3.

76 | Chapter 3: Branches

 + [dev] Started developing NewStuff
 + [dev‸] Improve the new development
 + [dev~2] Start some new development.
 + [bugs/pr-1] Fix Problem Report 1
 ++++* [bugs/pr-2] Added Bob's fixes.

In this git show-branch output, the commit “Added a bug fix for pr-3” is found only
on the bugs/pr-3 branch. If that branch were to be deleted, there would no longer be
a way to access that commit.

By stating that the bugs/pr-3 branch is not fully merged, Git is telling you that the
line of development represented by the bugs/pr-3 branch does not contribute to the
development of the current branch, main.

Again, this is merely a friendly reminder. Git is not mandating that all branches be
merged into the main branch before they can be deleted. Remember, a branch is
simply a name or pointer to a commit that has actual content. Instead, Git is keeping
you from accidentally losing content from the branch to be deleted that is not merged
into your current branch.

If the content from the deleted branch is already present on another branch, checking
that branch out and then requesting the branch deletion from that context would
work. Another approach is to merge the content from the branch you want to delete
into your current branch. Then the other intended branch can be safely deleted:
 $ git merge bugs/pr-3
 Updating 7933438..401b78d
 Fast forward
 NewStuff | 1 +
 1 files changed, 1 insertions(+), 0 deletions(-)

 $ git show-branch
 ! [bugs/pr-1] Fix Problem Report 1
 ! [bugs/pr-2] Added Bob's fixes.
 ! [bugs/pr-3] Added a bug fix for pr-3.
 ! [dev] Started developing NewStuff
 * [main] Added a bug fix for pr-3.

 + * [bugs/pr-3] Added a bug fix for pr-3.
 + [dev] Started developing NewStuff
 + [dev‸] Improve the new development
 + [dev~2] Start some new development.
 + [bugs/pr-1] Fix Problem Report 1
 ++++* [bugs/pr-2] Added Bob's fixes.

 $ git branch -d bugs/pr-3
 Deleted branch bugs/pr-3.

 $ git show-branch
 ! [bugs/pr-1] Fix Problem Report 1
 ! [bugs/pr-2] Added Bob's fixes.
 ! [dev] Started developing NewStuff
 * [main] Added a bug fix for pr-3.

 * [main] Added a bug fix for pr-3.
 + [dev] Started developing NewStuff

Managing Branches | 77

 + [dev‸] Improve the new development
 + [dev~2] Start some new development.
 + [bugs/pr-1] Fix Problem Report 1
 +++* [bugs/pr-2] Added Bob's fixes.

Finally, as the error message suggests, you can override Git’s safety check by using
-D instead of -d. Do this if you are certain you don’t want the extra content in that
branch.

Git does not maintain any form of historical record of branch names being created,
moved, manipulated, merged, or deleted. Once a branch name has been removed, it
is gone.

The commit history on that branch, however, is a separate question. Git will eventu‐
ally prune away commits that are no longer referenced and reachable from some
named reference, such as a branch name or tag name. If you want to keep those
commits, you must either merge them into a different branch, make a branch for
them, or point a tag reference to them. Otherwise, without a reference to them,
commits and blobs are unreachable and will eventually be collected as garbage by the
git gc tool.

If you accidentally remove a branch or other ref, you can recover
it by using the git reflog command. Other commands such as
git fsck and configuration options such as gc.reflogExpire and
gc.pruneExpire can also help you recover lost commits, files, and
branch heads.

Summary
In this chapter, we started by explaining the motivation for using branches in Git.
We then learned about some recommended guidelines for working with branches.
In “Managing Branches” on page 58, we dove into detailed use cases and scenarios
for working with branches in Git on a daily basis for your projects. Specifically,
this section dealt with the technicalities of how you will be managing and working
with your Git repository’s branches. When you approach this chapter as a whole,
you will realize that when working with branches, a lot of the heavy lifting is in
the way you plan your line of development, from branch naming conventions to
an agreed-upon process for systematically introducing changes to your main stable
branch, whether those changes are meant to fix a bug or introduce a new set of
features for your project. Once you have established this norm, you can leverage the
techniques we covered here to effectively work with multiple sets of branches within
your repositories.

78 | Chapter 3: Branches

CHAPTER 4

Commits

A commit is a snapshot capturing the current state of a repository at a moment in
time. Commit snapshots are chained together, with each new snapshot pointing to its
predecessor. Over time, a sequence of changes is represented as a series of commits.

Git uses a commit as a means to record changes to a repository. At face value, a
Git commit is comparable to a check-in or commit found in other version control
systems. However, the similarities are only at the surface. Under the hood, the inner
mechanics of how Git creates and manages commits are entirely unique.

When you make a commit, Git takes a snapshot of the current state of the index
directory and stores it in the object store as discussed briefly in Chapter 2. The
snapshot does not contain a copy of every file and directory in the index. Instead, Git
compares the current state of the index to the previous commit snapshot and derives
a list of affected files and directories when you are creating a new commit. Based on
this list, Git creates new blob objects for any file that is changed and new tree objects
for any directory that has changed, and it reuses any blob or tree object that has not
changed.

We will discuss how to prepare the index directory for a commit in Chapter 5. In
this chapter, we will focus on what happens when you make a commit. First we will
first explore how commits are introduced and understand the importance of atomic
changesets. Then we will look at how to identify commits and how to view commit
histories.

Git is well suited to frequent commits and provides a rich set of commands for
manipulating them. We will show you how several commits, each with small, well-
defined changes, can also lead to better organization of changes and easier manipula‐
tion of patch sets.

79

1 Git also records a mode flag indicating the executability of each file. Changes in this flag are also part of a
changeset.

Commits: Recorded Units of Change
A commit is the only method for introducing changes to a repository. This mandate
provides auditability and accountability. Under no circumstances should repository
data change without a record of the change via a commit! Imagine the chaos if
content in the repository changed somehow and there was no record of how it
happened, who did it, or why.

Commits are explicitly introduced by developers; this is the most typical scenario.
However, there are occasions when Git itself can introduce a commit. For instance,
a merge operation creates a new commit in the repository, in addition to any com‐
mits made by the developers before the merge. You will learn more about this in
Chapter 6.

The frequency with which you create commits is pretty much up to you. Logically,
you should introduce a commit at well-defined points in time when your develop‐
ment is at a latent stage, such as when all test suites pass.

You might think it would be time-consuming to compare the entire index to some
prior state, yet the whole process is remarkably fast. This is because, as you may recall
from Chapter 2, every Git object has an SHA1 hash, and if two objects, even two
subtrees, have the same SHA1 hash, the objects in comparison are identical. Thus, Git
can avoid swaths of recursive comparisons by pruning subtrees that have the same
content.

Nevertheless, this should not mean that you should hesitate to introduce commits
regularly.

Atomic Changesets
Every Git commit represents a single atomic changeset with respect to the previous
state. Regardless of the number of directories, files, lines, or bytes that change with a
commit,1 either all changes apply or none do.

From the perspective of the underlying Git object model, the rationale behind atom‐
icity becomes clearer. A commit snapshot represents the state of the total set of
modified files and directories, which also means that it represents a given tree state.
Thus, a changeset between two snapshots represents a complete transformation from
one tree state to another. Again, you can only switch from one state to the other;
you cannot make incremental switches. We will discuss how to derive the differences
between commits in Chapter 7.

80 | Chapter 4: Commits

https://oreil.ly/rlThS

As a developer, this is an important principle that you should not undermine. Con‐
sider the following workflow of moving a function from one file to another. If you
remove the function from the first file with one commit and then add it to the second
file with another commit, a small “semantic gap” remains in the history of your
repository during which time the function is gone. Two commits occurring in the
reverse order is also problematic. In each case, before the first commit and after the
second one, your code is semantically consistent, but after the first commit, the code
is faulty.

However, with an atomic commit that simultaneously deletes the function from
the first file and adds it to the second file, no such semantic gap appears in the
history. An understanding of this concept allows you to structure your commits more
appropriately.

Git doesn’t care why files are changing. That is, the content of the changes doesn’t
matter. You might move a function from one file to another and expect this to be
handled as one unitary move. Alternatively, you can commit the removal and then
later commit the addition. Git doesn’t care. It has nothing to do with the semantics of
what is in the files.

Identifying Commits
Every commit in Git can be referenced explicitly or implicitly. Being able to identify
individual commits is an essential task for your routine development requirements.
For example, to create a branch, you must choose a commit from which to diverge;
to compare code variations, you must specify two commits; and to edit the commit
history, you must provide a collection of commits.

When you reference a commit explicitly, you are referencing it using its absolute
commit names, and when you reference a commit implicitly, you are doing so using
its refs, symrefs, or relative commit names.

You’ve already seen examples of explicit commit references and implicit commit ref‐
erences in code snippets in Chapters 1 through 3. The unique, 40-digit hexadecimal
SHA1 commit ID is an explicit reference, whereas HEAD, which always points to the
most recent commit in a branch, is an implicit reference; see Table 4-1.

Table 4-1. Difference between explicit and implicit commits

Explicit Implicit
Identified via Absolute commit name Refs, symrefs, relative commit names

Example 34043c95636aee319d606a7a380697cae4f1bfcc HEAD, HEAD^2, etc.

Identifying Commits | 81

At times, when discussing a particular commit with a colleague working on the
same data but in a distributed environment, it’s best to use a commit name that is
guaranteed to be the same in both repositories. On the other hand, if you’re working
within your own repository and need to refer to the state a few commits back on a
branch, a simple relative name works perfectly.

Fortunately, Git provides many different mechanisms for naming a commit, each
with advantages and some more useful than others, depending on the context.

Absolute Commit Names
The most rigorous name for a commit is its object ID, the SHA1 hash identifier. The
SHA1 hash ID is an absolute name, meaning it can only refer to exactly one commit.
It doesn’t matter where the commit is in the repository’s history; the SHA1 hash ID
always points to and identifies the same commit.

Each commit ID is globally unique, not just for one repository but for any and all
repositories. If you compare a reference to a specific commit ID in your repository
with another developer’s repository and the same commit ID is found, you can be
assured that both of you have the same commit and content.

Furthermore, because the data that contributes to a commit ID contains the state of
the whole repository tree as well as the prior commit state, you can also be certain
that both of you are referencing the same complete line of development leading up to
and including the commit.

Because a 40-digit hexadecimal SHA1 number makes for a tedious and error-prone
entry, Git allows you to shorten this number to a unique prefix within a repository’s
object database. Let’s take a look at an example from Git’s own repository:
 $ git log -1 --pretty=oneline HEAD
 30cc8d0f147546d4dd77bf497f4dec51e7265bd8 ... A regression fix for 2.37

 $ git log -1 --pretty=oneline 30c
 fatal: ambiguous argument '30c': unknown revision or path not in the working tree.
 Use '--' to separate paths from revisions, like this:
 'git <command> [<revision>...] -- [<file>...]'

 $ git log -1 --pretty=oneline 30cc8d
 a5828ae6b52137b913b978e16cd2334482eb4c1f ... A regression fix for 2.37

Although a tag name isn’t a globally unique name, it is absolute
in that it points to a unique commit and doesn’t change over time
(unless you explicitly change it, of course).

82 | Chapter 4: Commits

Refs and Symrefs
A ref points to an SHA1 hash ID within the Git object store. Technically, a simple
ref may point to any Git object, but generally it refers to a commit object. A symbolic
reference, or symref, is a name that indirectly points to a Git object. Think of it as a
shortcut pointing to the actual Git object. It is still just a ref.

Each symbolic ref has a definitive, full name that begins with refs/, and each
is stored hierarchically within the repository in the .git/refs/ directory. There are
basically three different namespaces represented in refs/:

• refs/heads/ref for your local branches•
• refs/remotes/ref for your remote tracking branches•
• refs/tags/ref for your tags•

Local branch names, remote tracking branch names, and tag names are some exam‐
ples of refs. As an example, a local feature branch named dev is really a short form
of refs/heads/dev. Whereas remote tracking branches are in the refs/remotes/
namespace, so origin/main is a short form of refs/remotes/origin/main. Finally, a
tag such as v1.8.17 is short for refs/tags/v1.8.17.

When searching or referencing a ref, you may use the fully qualified ref name (refs/
heads/main) or its abbreviation (main). In the event that you are searching for a
branch and there is a tag with the same name, Git applies a disambiguation heuristic
and uses the first match according to this list from the git rev-parse man page:
 .git/ref
 .git/refs/ref
 .git/refs/tags/ref
 .git/refs/heads/ref
 .git/refs/remotes/ref
 .git/refs/remotes/ref/HEAD

The first matching rule (.git/ref) is usually used by Git internally. They are HEAD,
ORIG_HEAD, FETCH_HEAD, CHERRY_PICK_HEAD, and MERGE_HEAD.

Technically, the name of the Git directory, .git, can be changed.
Thus, Git’s internal documentation uses the variable $GIT_DIR
instead of the literal .git.

Identifying Commits | 83

Git internally maintains the following symrefs automatically for particular reasons:

HEAD

HEAD always refers to the most recent commit on the current branch. When you
change branches, Git automatically updates HEAD to refer to the new branch’s
latest commit.

ORIG_HEAD

Certain operations, such as merge and reset, record the previous version of HEAD
in ORIG_HEAD just prior to adjusting it to a new value. You can use ORIG_HEAD to
recover or revert to the previous state or to make a comparison.

FETCH_HEAD

When remote repositories are used, git fetch records the heads of all branches
fetched in the file .git/FETCH_HEAD. FETCH_HEAD is a shorthand for the head
of the last branch fetched and is valid only immediately after a fetch operation.
Using this symref, you can find the HEAD of commits from git fetch even if
an anonymous fetch that doesn’t specifically name a branch is used. The fetch
operation is covered in Chapter 11.

MERGE_HEAD

When a merge is in progress, the tip of the other branch is temporarily recorded
in the symref MERGE_HEAD. In other words, MERGE_HEAD is the commit that is
being merged into HEAD.

CHERRY_PICK_HEAD

When cherry-picking is used via the git cherry-pick command, the
CHERRY_PICK_HEAD symref will record the commits you have selected for the
intended operation. The git cherry-pick command is covered in Chapter 8.

All of these symbolic references are managed by the low-level plumbing command
git symbolic-ref.

Although it is possible to create your own branch with one of these
special symbolic names, it isn’t a good idea. Also, newer versions
of Git have safeguards in place that prevent you from using certain
symbolic names (e.g., HEAD).

84 | Chapter 4: Commits

2 Yes, you can actually introduce multiple root commits into a single repository. This happens, for example,
when two different projects and their entire repositories are brought together and merged into one.

There is a whole raft of special character variants for ref names. The two most
common, the caret (^) and tilde (~), are described in the next section. In another twist
on refs, colons can be used to refer to alternate versions of a common file involved in
a merge conflict. This procedure is described in Chapter 6.

Relative Commit Names
In addition to Git using absolute commit names, and refs, and symrefs, Git also pro‐
vides mechanisms for identifying a commit relative to another reference, commonly
the tip of a branch. This comes in handy when you are working on your local
repository and need to quickly reference changes in past commits.

Again, you’ve seen some of these names already, such as main and main^`, where
main^ always refers to the penultimate commit on the main branch. There are others
as well: you can use main^^, main~2, and even a complex name like main~10^2~2^2.

Except for the first or root commit,2 each commit is derived from at least one earlier
commit and possibly many, where direct ancestors are called parent commits. For a
commit to have multiple parent commits, it must be the result of a merge operation.
As a result, there will be a parent commit for each branch contributing to a merge
commit.

Within a single generation, the caret is used to select a different parent. Given a
commit C, C^1 is the first parent, C^2 is the second parent, and C^n is the n^th^
parent, as shown in Figure 4-1.

Figure 4-1. Multiple parent names

The tilde is used to go back before an ancestral parent and select a preceding
generation. Again, given the commit C, C~1 is the first parent, C~2 is the first grand‐
parent, and C~3 is the first great-grandparent. When there are multiple parents in
a generation, the first parent of the first parent is followed. You might also notice

Identifying Commits | 85

that both C^1 and C~1 refer to the first parent; either name is correct, as shown in
Figure 4-2.

Figure 4-2. Multiple parent names with ancestors

Git supports other abbreviations and combinations as well. The abbreviated forms C^
and C~ are the same as C^1 and C~1, respectively. Also, C^^; is the same as C^1^1, and,
because that means “the first parent of the first parent of commit C,” it refers to the
same commit as C~2.

Keep in mind that, in the presence of a merge operation, an abbreviated expression
such as C^ or C^^ may not return a result that you expect, as it would if you were
working on a branch with a linear commit history. Figure 4-3 illustrates that C^^ is
not the same as C^2.

Figure 4-3. C^^ versus C^2

By combining a ref and instances of carets and tildes, arbitrary commits may be
selected from the ancestral commit graph of ref. Remember, though, that these
names are relative to the current value of ref. If a new commit is made on top of ref,
the commit graph is amended with a new generation, and each “parent” name shifts
farther back in the history and graph.

Here’s an example from Git’s own history when its main branch was at commit
a5828ae6b52137b913b978e16cd2334482eb4c1f. Using the command:
 git show-branch --more=25

86 | Chapter 4: Commits

and limiting the output to the final 25 lines, you can inspect the graph history and
examine a complex branch merge structure:
 $ git reset --hard a5828ae6b52137b913b978e16cd2334482eb4c1f
 HEAD is now at a5828ae6b5 Git 2.31

 $ git show-branch --more=25
 [main] Git 2.31
 [main^] Merge branch 'jn/mergetool-hideresolved-is-optional'
 [main^^2] doc: describe mergetool configuration in git-mergetool(1)
 [main^^2^] mergetool: do not enable hideResolved by default
 [main^^2~2] mergetool: add per-tool support and overrides for the hideResolved flag
 [main~2] Merge branch 'tb/pack-revindex-on-disk'
 [main~2^2] pack-revindex.c: don't close unopened file descriptors
 [main~3] Merge tag 'l10n-2.31.0-rnd2' of git://github.com/git-l10n/git-po
 [main~3^2] l10n: zh_CN: for git v2.31.0 l10n round 1 and 2
 [main~3^2^] Merge branch 'master' of github.com:vnwildman/git
 [main~3^2^^2] l10n: vi.po(5104t): for git v2.31.0 l10n round 2
 [main~3^2~2] Merge branch 'l10n/zh_TW/210301' of github.com:l10n-tw/git-po
 [main~3^2~2^2] l10n: zh_TW.po: v2.31.0 round 2 (15 untranslated)
 [main~3^2~3] Merge branch 'po-id' of github.com:bagasme/git-po
 [main~3^2~3^2] l10n: Add translation team info
 [main~3^2~4] Merge branch 'master' of github.com:Softcatala/git-po
 [main~3^2~4^2] l10n: Update Catalan translation
 [main~3^2~5] Merge branch 'russian-l10n' of github.com:DJm00n/git-po-ru
 [main~3^2~5^2] l10n: ru.po: update Russian translation
 [main~3^2~6] Merge branch 'pt-PT' of github.com:git-l10n-pt-PT/git-po
 [main~3^2~6^2] l10n: pt_PT: add Portuguese translations part 1
 [main~3^2~7] l10n: de.po: Update German translation for Git v2.31.0
 [main~4] Git 2.31-rc2
 [main~5] Sync with Git 2.30.2 for CVE-2021-21300
 [main~5^2] Git 2.30.2
 [main~6] Merge branch 'jt/transfer-fsck-across-packs-fix'

 $ git rev-parse main~3^2~2^
 8278f870221711c2116d3da2a0165ab00368f756

Between main~3 and main~4, a merge took place that introduced a couple of other
merges as well as a simple commit named main~3^2~2^2. That happens to be commit
8278f870221711c2116d3da2a0165ab00368f756.

The command git rev-parse is the final authority on translating any form of
commit name—tag, relative, shortened, or absolute—into an actual, absolute commit
hash ID within the object database.

Commit History
The primary command to show the history of commits is git log. It has more
options, parameters, bells, whistles, colorizers, selectors, formatters, and doodads
than the fabled ls. But don’t worry. Just as with ls, you don’t need to learn all the
details right away. Next, we will dive into the nooks and crannies of commit history
for a repository.

Commit History | 87

Viewing Old Commits
When you execute the git log command, the output will include every associated
commit and its log messages in your commit history, reachable from the specified
starting point.

As an example, if you execute the git log command without any additional options,
it is the same as executing the command git log HEAD. The result will be an
output of all commits starting with the HEAD commit and all reachable commits way
back through the commit graph (commit graphs will be discussed in the following
section). The results are given in reverse chronological order by default, but keep in
mind that, when Git traverses back through your commit history, the reverse order
adheres to the commit graph and not the time when the snapshot was taken.

Being explicit on the starting point for the log output using the command git log
commit can be useful for viewing the history of a branch. Let’s use the command to
view an example output from the Git repository itself:
 $ git log main -2
 commit 30cc8d0f147546d4dd77bf497f4dec51e7265bd8 (HEAD -> main, ...)
 Author: Junio C Hamano <gitster@pobox.com>
 Date: Sat Jul 2 17:01:34 2022 -0700

 A regression fix for 2.37

 Signed-off-by: Junio C Hamano <gitster@pobox.com>

 commit 0f0bc2124b25476504e7215dc2af92d5748ad327
 Merge: e4a4b31577 4788e8b256
 Author: Junio C Hamano <gitster@pobox.com>
 Date: Sat Jul 2 21:56:08 2022 -0700

 Merge branch 'js/add-i-delete'

 Rewrite of "git add -i" in C that appeared in Git 2.25 didn't
 correctly record a removed file to the index, which was fixed.

 * js/add-i-delete:
 add --interactive: allow `update` to stage deleted files

Log information is an authoritative source of truth. However, rolling back through
the entire commit history of a large repository is likely not very practical or meaning‐
ful. Typically, a limited range of history is more informative and easier to work on.

One way to constrain history is to specify a commit range, a technique that we
will cover later in this chapter. You are able to limit the history range using the
form since..until. Given a range, git log shows all commits following since and
running through until. You can also specify a count as a natural place to start, for
example, git log -3.

88 | Chapter 4: Commits

Here’s an example:
 $ git log --pretty=short --abbrev-commit main~9..main~7

 commit be7935ed8b
 Author: Junio C Hamano <gitster@pobox.com>

 Merged the open-eintr workaround for macOS

 commit 58d581c344
 Author: Elijah Newren <newren@gmail.com>

 Documentation/RelNotes: improve release note for rename detection work

Here, git log shows the commits between main~9 and main~7, or the seventh and
eighth prior commits on the main branch. You’ll learn about ranges in “Commit
Ranges” on page 96.

In the example, we introduced two formatting options, --pretty=short and --
abbrev-commit. The former adjusts the amount of information about each commit
and has several variations, including oneline, short, medium, and full, to name a
few. The latter simply requests that the SHA1 hash IDs be abbreviated.

You can also use the format:string option to specify how the log information is
customized and displayed.

Here’s an example:
 $ git log --pretty=format:"%an was the author of commit %h, %ar with%nthe commit titled: [%s]%n" \
 > --abbrev-commit main~9..main~7

 Junio C Hamano was the author of commit be7935ed8b, 12 days ago with
 the commit titled: [Merged the open-eintr workaround for macOS]

 Elijah Newren was the author of commit 58d581c344, 12 days ago with
 the commit titled: [Documentation/RelNotes: improve release note for rename detection work]

You can provide the option -n together with the git log command to limit the out‐
put to at most n commits. This restricts the output according to the specified number.
In addition, combining the -p option will print the patch, or changes introduced by
the commit, while limiting the result sets. This helps you get more details regarding a
commit by providing more context.

Here’s an example:
 $ git log -1 -p 4fe86488
 commit 4fe86488e1a550aa058c081c7e67644dd0f7c98e
 Author: Jon Loeliger <jdl@freescale.com>
 Date: Wed Apr 23 16:14:30 2008 -0500

 Add otherwise missing --strict option to unpack-objects summary.

 Signed-off-by: Jon Loeliger <jdl@freescale.com>
 Signed-off-by: Junio C Hamano <gitster@pobox.com>

Commit History | 89

 diff --git a/Documentation/git-unpack-objects.txt b/Documentation/git-unpack-objects.txt
 index 3697896..50947c5 100644
 --- a/Documentation/git-unpack-objects.txt
 +++ b/Documentation/git-unpack-objects.txt
 @@ -8,7 +8,7 @@ git-unpack-objects - Unpack objects from a packed archive

 SYNOPSIS

 -'git-unpack-objects' [-n] [-q] [-r] <pack-file
 +'git-unpack-objects' [-n] [-q] [-r] [--strict] <pack-file

If you would like to know which files changed in a commit along with a tally of how
many lines were modified in each file, the --stat option will be your go-to option.

Here’s an example:
 $ git log --pretty=short --stat main~9..main~7

 commit be7935ed8bff19f481b033d0d242c5d5f239ed50
 Author: Junio C Hamano <gitster@pobox.com>

 Merged the open-eintr workaround for macOS

 Documentation/RelNotes/2.31.0.txt | 5 +++++
 1 file changed, 5 insertions(+)

 commit 58d581c3446cb616b216307d6b47539bccd494cf
 Author: Elijah Newren <newren@gmail.com>

 Documentation/RelNotes: improve release note for rename detection work

 Documentation/RelNotes/2.31.0.txt | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

Another command to display objects from the Git object store is
git show. You can also use it to inspect a commit:
 $ git show HEAD~2

The output will show the commit log message and the textual diff
for files included in the commits.

Commit Graphs
So far we have been using the git log command with options that display results in a
linear format. Although it is useful to understand the commit history leading up to a
certain point in the timeline of a project, it isn’t always clear in this flattened view that
two consecutive commits may not belong to a single branch.

90 | Chapter 4: Commits

3 A graph is a collection of nodes and a set of edges between the nodes. Commonly, the directed acyclic graph
(DAG) diagram is used when explaining Git commit history.

The --graph option used in combination with the git log command prints out a
textual representation of the repository’s commit history. In this view, you are able
to visualize the forks from a commit and the point in which branches merge in the
timeline of the repository.

Following is a simplified commit history for the Git source code from its early days:

 $ git log 89d21f4b649..0a02ce72d9 --oneline --graph
 * 0a02ce72d9 Clean up the Makefile a bit.
 * 839a7a06f3 Add the simple scripts I used to do a merge with content conflicts.
 * b51ad43140 Merge the new object model thing from Daniel Barkalow
 |\
 | * b5039db6d2 [PATCH] Switch implementations of merge-base, port to parsing
 | * ff5ebe39b0 [PATCH] Port fsck-cache to use parsing functions
 | * 5873b67eef [PATCH] Port rev-tree to parsing functions
 | * 175785e5ff [PATCH] Implementations of parsing functions
 | * 6eb8ae00d4 [PATCH] Header files for object parsing
 * | a4b7dbef4e [PATCH] fix bug in read-cache.c which loses files when merging...
 * | 1bc992acac [PATCH] Fix confusing behaviour of update-cache --refresh on...
 * | 6ad6d3d36c Update README to reflect the hierarchical tree objects...
 * | 64982f7510 [PATCH] (resend) show-diff.c off-by-one fix
 * | 75118b13bc Pass a "merge-cache" helper program to execute a merge on...
 * | 74b2428f55 [PATCH] fork optional branch point normazilation
 * | d9f98eebcd Ignore any unmerged entries for "checkout-cache -a".
 * | 5e5128ed1c Remove extraneous ',' ';' and '.' characters from...
 * | 08ca0b04ba Make the revision tracking track the object types too.
 * | d0d7cbe730 Make "commit-tree" check the input objects more carefully.
 * | 7d60ad7cc9 Make "parse_commit" return the "struct revision" for the commit.
 |/
 * 6683463ed6 Do a very simple "merge-base" that finds the most recent...
 * 15000d7899 Make "rev-tree.c" use the new-and-improved "mark_reachable()"
 * 01796b0e91 Make "revision.h" slightly better to use.

The --oneline option is shorthand for --pretty=oneline

--abbrev-commit used together.

The repository’s commit history is usually visualized as a graph3 for the purpose
of reference when discussing certain Git commands. It is most often related to
operations that might modify the commit history of the repository. We will discuss
rewriting commit histories in Chapter 8.

If you recall, in the “Visualizing the Git Object Store” on page 33, we included a figure
to help you visualize the layout and relationship between objects stored in the Git
object store. That figure is reproduced here as Figure 4-4.

Commit History | 91

Figure 4-4. Git objects

If we were to map out a repository’s commit history using Figure 4-4, even for
a small repository with just a handful of commits, merges, and patches, that map
would become too unwieldy to render in this kind of detail. Figure 4-5 shows a more
complete but still somewhat simplified commit graph in the same format. Imagine
how it would appear if all commits and all data structures were rendered.

Figure 4-6 shows the same commit graph as Figure 4-5 but without depicting the tree
and blob objects. Branch names are also shown in the commit graphs as supporting
reference.

We can further simplify Figure 4-5 with an important observation about commits:
each commit introduces a tree object that references one or more blob objects and
represents the entire state of the repository when a commit snapshot was made.
Therefore, a commit can be pictured as just a name, simplifying the blueprint of the
repository’s commit history immensely.

Figures 4-5 and 4-6 are examples of a directed acyclic graph (DAG). A DAG has the
following important properties:

• The edges within the graph are all directed from one node to another.•
• Starting at any node in the graph, there is no path along the directed edges that•

leads back to the starting node.

92 | Chapter 4: Commits

Figure 4-5. Full commit graph

Figure 4-6. Simplified commit graph

Git implements the history of commits within a repository as a DAG. In the commit
graph, each node is a single commit, and all edges are directed from one descendant
node to another parent node, forming an ancestor relationship. The individual com‐
mit nodes are often labeled as shown in Figure 4-7, and they are used to describe the
history of the commits and the relationship between them.

Commit History | 93

Figure 4-7. Labeled commit graph

An important facet of a DAG is that Git doesn’t care about the time or timing
(absolute or relative) of commits. The actual timestamp of a commit can be mislead‐
ing because a computer’s clock can be set incorrectly or inconsistently. Within a
distributed development environment, the problem is exacerbated. What is certain,
though, is that if commit Y points to parent X, then X captures the repository state
prior to the repository state of commit Y, regardless of what timestamps might be on
the commits.

Building on that notion, Figure 4-7 shows the following:

• Time is roughly left to right.•
• A is the root commit because it has no parent, and B occurred after A.•
• Both E and C occurred after B, but no claim can be made about the relative timing•

between C and E; either could have occurred before the other.
• The commits E and C share a common parent, B. Thus, B is the origin of a branch.•
• The main branch begins with commits A, B, C, and D.•
• Meanwhile, the sequence of commits A, B, E, F, and G forms the branch named•
pr-17. The branch pr-17 points to commit G, as discussed in Chapter 3.

• Commit H is a merge commit, where the pr-17 branch has been merged into the•
main branch. The merge operation is discussed in more detail in Chapter 6.

• Because it’s a merge, H has more than one commit parent—in this case, D and G.•
• After this commit is made, main will be updated to refer to the new commit H,•

but pr-17 will continue to refer to G.

In time, as you learn and reference many DAG diagrams of commits, you will soon
notice a recurring pattern:

94 | Chapter 4: Commits

4 The gitk command is not a git subcommand; it is its own independent command and installable package.

• Normal commits have exactly one parent, which is the previous commit in the•
history. When you make a change, your change is the difference between your
new commit and its parent.

• There is usually only one commit with zero parents: the root commit.•
• A merge commit has more than one parent commit.•
• A commit with more than one child is the place where history began to diverge•

and formed a new branch.

In practice, the fine points of intervening commits are considered unimportant. Also,
the implementation detail of a commit pointing back to its parent is often elided, as
shown in Figure 4-8.

Figure 4-8. Commit graph without arrows

Time is still vaguely left to right, two branches are shown, and there is one identified
merge commit (H), but the actual directed edges are simplified because they are
implicitly understood.

The commit graphs are a fairly abstract representation of the actual commit history,
in contrast to tools that provide concrete representations of commit history graphs.
With these tools, though, time is usually represented from bottom to top, from the
oldest to the most recent commit. Conceptually, it is the same information. In the
next section we will briefly discuss the freely distributed gitk tool.4 In addition to
gitk, a variety of other tools are available as either a paid or free version.

Using gitk to view the commit graph
A commit graph can help you visualize a complicated structure and relationship. The
gitk command can draw a picture of a repository DAG representing the repository’s
commit history.

Commit History | 95

Let’s look at an example of a simple repository with two branches and simple com‐
mits to add files:
 $ mkdir commit-graph-repo
 # Operations to add new files, create new branch and merge branch
 ...
 ...
 $ gitk

The gitk program can do a lot of things, but let’s just focus on the DAG for now. The
graph output looks something like Figure 4-9.

Figure 4-9. Merge viewed with gitk

There is no permanent record of branch start points, but Git
can algorithmically determine them via the git merge-base

command.

Commit Ranges
The git log command operates on a series of commits and is one of many com‐
mands that allow you to traverse the commit history of your repository. To be precise,
when you specify commit Y as a starting point to git log, you are actually requesting
Git to show the log for all commits that are reachable from commit Y.

In a Git commit graph, the set of reachable commits is the set of commits that you
can reach from a given commit by traversing the directed parent links. Conceptually
and in terms of dataflow, the set of reachable commits is the set of ancestor commits
that flow into and contribute to a given starting commit.

In graph theory, a node X is said to be reachable from another node
A if you can start at A, travel along the arcs of the graph according
to the rules, and arrive at X. The set of reachable nodes for node A
is the collection of all nodes reachable from A.

96 | Chapter 4: Commits

There are several options in Git that allow you to include and exclude commits
within a specified range. These options are not limited to the git log command;
they are also applicable for other supported Git subcommands. For example, you can
exclude a specific commit X and all commits reachable from X with the expression ^X.
Typically, a range is used to examine a branch or part of a branch.

A range is denoted with a double-period notion (..), as in start..end, where start
and end may be specified as described in “Identifying Commits” on page 81.

A commit range, start..end, is defined as the set of commits inclusive of end and
exclusive of start. Usually this is simplified to just the phrase “in end but not start.”
Figure 4-11 provides an illustrated explanation.

In “Viewing Old Commits” on page 88, you saw how to use a commit range with git
log. The example used the range main~9..main~7 to specify the eighth and seventh
prior commits on the main branch. To visualize the range, consider the commit
graph in Figure 4-10. Branch M is shown over a portion of its commit history that is
linear.

Figure 4-10. Linear commit history

Recall that time flows from left to right, so M~11 is the oldest commit shown, M~6 is
the most recent commit shown, and A is the eighth prior commit.

The range M~9..M~7 represents two commits, the eighth and seventh oldest commits,
which are labeled A and B. The range does not include M~9 (recall the phrase “in M~7
but not M~9”).

Commit Ranges as a Set Operation
When we view commit ranges as a mathematical set operation, it provides added
clarity. Commits reachable from any provided commits form a set, and commits
reachable from any provided commits with a ^ in front are removed from the set. For
example:
 $ git log ^X Y

can be paraphrased as “give me all commits that are reachable from Y and don’t give
me any commit leading up to and including X.”

The double-period notation X..Y is shorthand for ^X Y. Thus, the following may be
used interchangeably:

Commit History | 97

 $ git log X..Y
 $ git log ^X Y

Combining the two forms, the commit range X..Y is mathematically equivalent to
^X Y. Reiterating this as a set subtraction: list everything leading up to Y minus
everything leading up to and including X.

There are two other range permutations as well. If you leave either the start or end
commit out of the range, HEAD is assumed. Thus:

• ..end is equivalent to HEAD..end.•

• start.. is equivalent to start..HEAD.•

Returning to the commit series from the earlier example, when viewed as a set
operation, here’s how M~9..M~7 specifies just two commits, A and B:

1. Begin with everything leading up to M~7, as shown in the first line of Figure 4-11.1.
a. Find everything leading up to and including M~9, as shown in the second linea.

of the figure.
i. Subtract M~9 from M~7 to get the commits shown in the third line of thei.

figure.

Figure 4-11. Interpreting ranges as set subtraction

When your repository history is a simple linear series of commits, it’s fairly easy to
understand how a range works. But when branches or merges are involved in the
graph, things can become a bit tricky, so it’s important to understand the rigorous
definition.

98 | Chapter 4: Commits

Let’s look at a few more examples. Keep in mind that these examples are abstract
representations only and are designed to be simple and easy to comprehend. The
merge operation is used to support the concept, and its technical aspects will be
described in detail in Chapter 6.

We start with the case of a main branch with a linear history, as shown in Figure 4-12.
The sets B..E, ^B E, and C, D, and E are equivalent.

Figure 4-12. Simple linear history

In Figure 4-13, the main branch at commit V was merged into the feature branch
at B.

Figure 4-13. main branch merged into feature branch

The range feature..main represents those commits in main but not in feature.
Because each commit on the main branch prior to and including V (i.e., the set {…, T,
U, V}) contributes to feature, those commits are excluded, leaving W, X, Y, and Z.

The inverse of the previous example is shown in Figure 4-14. Here, feature has been
merged into main.

Figure 4-14. feature branch merged into main branch

Commit History | 99

In this example, the range feature..main, again representing those commits in main
but not in feature, is the set of commits on the main branch leading up to and
including V, W, X, Y, and Z.

However, we have to be a little careful and consider the full history of the feature
branch. Consider the case where it originally started as a branch of main and then
merged again, as shown in Figure 4-15.

Figure 4-15. A branch and a merge

In this case, feature..main contains only the commits W, X, Y, and Z. Remember, the
range will exclude all commits that are reachable (going back or left over the graph)
from feature (i.e., the commits D, C, B, A, and earlier), as well as V, U, and earlier from
the other parent of B. The result is just W through Z.

Finally, just as start..end can be thought of as representing a set subtraction oper‐
ation, the notation A…B (using three periods) represents the symmetric difference
between A and B, or the set of commits that are reachable from either A or B but
not from both. Because of the function’s symmetry, neither commit can really be
considered a start or end. In this sense, A and B are equal.

More formally, the set of revisions in the symmetric difference between A and B, A…B
is given by thte following:
 $ git rev-list A B --not $(git merge-base --all A B)

Let’s look at the example in Figure 4-16.

Figure 4-16. Example of symmetric difference

100 | Chapter 4: Commits

The commits that contribute to main are (I, H, . . . , B, A, W, V, U). The commits that
contribute to dev are (Z, Y, . . . , U, C, B, A).

The union of those two sets is (A, . . . , I, U, . . . , Z). The merge base between main and
dev is commit W. In more complex cases, there might be multiple merge bases, but
here we have only one. The commits that contribute to W are (W, V, U, C, B, and A);
those are also the commits that are common to both main and dev, so they need to be
removed to form the symmetric difference: (I, H, Z, Y, X, G, F, E, D).

It may be helpful to think of the symmetric difference between two branches, A and
B, as “show everything in branch A or in branch B but only back to the point where
the two branches diverged.”

We can compute each piece of the symmetric difference definition:
 A...B = (A OR B) AND NOT (merge-base --all A B)

Now that we’ve described what commit ranges are, how to write them, and how they
work, it’s important to reveal that Git doesn’t actually support a true range operator.
It is purely a notational convenience that A..B represents the underlying ^A B form.
Git actually allows much more powerful commit set manipulation on its command
line. Commands that accept a range are actually accepting an arbitrary sequence of
included and excluded commits. For example, you could use:
 $ git log ^dev ^feature ^bugfix main

to select those commits in main but not in any of the dev, feature, or bugfix
branches.

Once again, all of these examples may be a bit abstract, but the power of range
representation really comes to light when you consider that any branch name can
be used as part of the range. As described in “Tracking Branches” on page 244,
if one of your branches represents the commits from another repository, you can
quickly discover the set of commits that are in your repository and are not in another
repository!

Summary
We started this chapter by introducing commits as a recorded unit of change, further
explaining the importance of commits needing to be recorded as an atomic change‐
set. Next, we gradually built up your proficiency in commits by first introducing you
to the various ways in which a commit can be identified. We stressed the importance
of learning how to identify commits because this is the building block for many
intermediate to advanced Git commands and concepts that will help you confidently
tackle any complex requirements that may come your way when dealing with reposi‐
tories in future projects. We also discussed how you can view a repository’s commit

Summary | 101

history along with methods to effectively constrain a range or set of the history to
better understand how a repository came to being in its current state. Understanding
commit ranges may be tricky in the beginning, but you will be able to comprehend
the overall idea when you start analyzing repository commit history with specific use
cases, especially those that require you to traverse the commit history to a specific
state of the repository.

102 | Chapter 4: Commits

CHAPTER 5

File Management and the Index

When you work in any version control system, you edit in your working directory
and commit your changes to your repository for safekeeping. Git also works in this
way but inserts an intermediate layer, the index, between the working directory and
the repository. The index, also known as the staging directory, is used to stage, or
collect, alterations to any files as a final step before the commit.

The index can be regarded as a cache of the current state of your working directory
and plays an important role when you are creating a new commit, when you are
querying the status of your repository, and when you are performing a merge opera‐
tion between two branches. (Merges are covered in Chapter 6.) For the purpose of
explaining the fundamentals, we will focus on the importance of the index directory
in relation to commits, which are covered in Chapter 4.

In this chapter, we will explain how the index or staging directory in Git is unique
compared to other version control systems. We will also explain how to manage
the index and your collections of files while describing how to add and remove a
file from your repository. We will show you how to rename a file in Git and how
to catalog the state of the index, before concluding with how to make Git ignore
temporary and other irrelevant files that need not be tracked for version control in
your repository.

Importance of the Index
When you manage your code with Git, you edit in your working directory, accumu‐
late changes in your index, and commit whatever has amassed in the index as a single
changeset. This concept makes more sense when you think of it from the perspective
of writing a newspaper article. You prepare a draft version, your editor reviews and
proposes changes, you incorporate those changes, and finally the article is published.

103

The draft represents your working directory in Git, the editor’s changes represent
what you will incorporate into your index directory, and the published article is the
final commit.

Technically, you can think of Git’s index as a set of intended or prospective modifica‐
tions. You add, remove, move, or repeatedly edit files right up to the culminating
commit, which actualizes the accumulated changes in the repository. Thus most of
the critical work actually precedes the commit step. Figure 5-1 illustrates this concept.

Figure 5-1. Index and file operations concept

In Figure 5-1, the version of main.o in the “Local history” block represents the
final version of the file from the index/staging directory after concluding any edit
operations on the file.

As explained in “Index” on page 28, the index is one of the most important data
structures in Git (see the Git technical documentation). It is a binary file, and it
contains a sorted list of file pathnames in its virtual state along with its permissions
and a reference to the SHA1 ID of the corresponding blob objects. Essentially, the
index contains the virtual tree state, representing a tree object that will be referenced
by a future commit. (Blob and tree objects are discussed in Chapter 2.)

The operations to add, remove, or edit files commonly use Git’s porcelain (high-level)
commands, which hide the details of the index from you and make your job easier.
As an example, you can query the state of the index at any time with the command
git status. This command explicitly calls out what files Git considers staged. It
does so by comparing the virtual tree state with your working tree and displays the
differences as an output.

You can also peer into the internal state of Git with plumbing (low-level) commands,
such as git ls-files. The following snippet shows an example output of the index
using this command:
 $ git ls-files -s
 100644 e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 0 README.md
 100644 6ff87c4664981e4397625791c8ea3bbb5f227e69 0 NewFile.md

104 | Chapter 5: File Management and the Index

https://oreil.ly/dBb9O

In other words, Git’s index doesn’t contain any file content; it simply tracks what you
want to commit. When you run git commit, Git checks the index rather than your
working directory to discover what to commit.

When staging a file into the index, you’ll also likely find the git diff command to be
useful. (Diffs are discussed extensively in Chapter 7.) This command can display two
different sets of changes: git diff displays the changes that remain in your working
directory and are not staged, and git diff --cached shows changes that are staged
and will therefore contribute to your next commit.

git diff --staged is a synonym for git diff—cached. The com‐
mands can be used interchangeably.

You can use both variations of git diff to guide you through the process of staging
changes. Initially, git diff is a large set of all modifications, and --cached is empty.
As you stage, the former set will shrink, and the latter set will grow. If all your
working changes are staged and ready for a commit, the --cached will be full and git
diff will show nothing.

File Classifications in Git
Since the index is a transitory state, a dynamic layer between your working directory
and Git’s object store, it is important to understand how Git keeps track of the state of
your files.

Git classifies your files into three groups: tracked, ignored, and untracked:

Tracked
A tracked file is any file already in the repository or any file that is staged in the
index. To add a new file, somefile, to this group, run git add somefile.

Ignored
An ignored file must be explicitly declared invisible or ignored in the repository
even though it may be present within your working directory. A software project
tends to have a good number of ignored files. Commonly ignored files include
temporary and scratch files, personal notes, compiler output, and most files
generated automatically during a build. Git maintains a default list of files to
ignore, and you can configure your repository to recognize others. Ignored files
are discussed in detail in “The .gitignore File” on page 118.

File Classifications in Git | 105

Untracked
An untracked file is any file not found in either of the previous two categories.
Git considers the entire set of files in your working directory and subtracts both
the tracked files and the ignored files to yield what is untracked.

Let’s explore the different categories of files by creating a brand-new working direc‐
tory and repository and then working with some files:
 # Initialize new empty git repository
 $ cd /tmp/my_stuff
 $ git init --initial-branch=main

 $ git status
 On branch main

 No commits yet

 nothing to commit (create/copy files and use "git add" to track)

 # Add new file with some content
 $ echo "New data" > data

 $ git status
 On branch main

 No commits yet

 Untracked files:
 (use "git add <file>..." to include in what will be committed)
 data

 nothing added to commit but untracked files present (use "git add" to track)

In the preceding snippet, we initialized a new Git repository with a default branch
name main using the --initial-branch option with the git init command.

In the new, empty repository, there are no files, thus the tracked, ignored, and
untracked sets are empty. Once we created data and ran git status, Git reported a
single, untracked file.

Next, we will simulate how to explicitly ignore a file in the Git repository:
 # Manually create an example junk file
 $ touch main.o

 $ git status
 On branch main

 No commits yet

 Untracked files:
 (use "git add <file>..." to include in what will be committed)
 data
 main.o

 nothing added to commit but untracked files present (use "git add" to track)

 # Explicitly add main.o as an ignored file via .gitignore file

106 | Chapter 5: File Management and the Index

 $ echo main.o > .gitignore

 $ git status
 On branch main

 No commits yet

 Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .gitignore
 data

 nothing added to commit but untracked files present (use "git add" to track)

This example replicates what editors and build environments produce, often leaving
temporary or transient files among your source code. Such files shouldn’t be tracked
as source files in a repository. To have Git ignore a file within a directory, simply add
that file’s name to the special file .gitignore. We will revisit the .gitignore file later in
this chapter.

Thus, in the code snippet, the main.o file is ignored, but git status now shows
a new, untracked file called .gitignore. Although the .gitignore file has special mean‐
ing to Git, it is managed just like any other normal file within your repository.
Until .gitignore is added, Git considers it untracked.

The next few sections demonstrate different ways to change the tracked status of a file
as well as how to add or remove it from the index.

Using git add
Making a commit is a two-step process: first you stage your changes and then you
commit the changes.

The command git add stages a file. If a file is untracked, the command git add
converts that file’s status to tracked. When git add is used on a directory name, all of
the files and subdirectories beneath it are staged recursively.

Let’s continue the example from the previous section:
 $ git status
 On branch main

 No commits yet

 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 .gitignore
 data

 # Track both new files.
 $ git add data .gitignore

 $ git status

Using git add | 107

1 You did see the --cached in the git status output, didn’t you?

 On branch main

 No commits yet

 Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore
 new file: data

The first git status shows you that two files are untracked and reminds you that
to make a file tracked, you simply need to use git add. After git add, both data
and .gitignore are staged and tracked and are ready to be added to the repository on
the next commit. Figure 5-2 illustrates this concept.

Figure 5-2. Index and file classifications in Git

In terms of Git’s object model, the entirety of each file at the moment you issued git
add was copied into the object store and indexed by its resulting SHA1 name. Staging
a file is also called caching a file1 or putting a file in the index.

You can use git ls-files to peer under the object model hood and find the SHA1
values for those staged files:
 $ git ls-files --stage
 100644 0487f44090ad950f61955271cf0a2d6c6a83ad9a 0 .gitignore
 100644 534469f67ae5ce72a7a274faf30dee3c2ea1746d 0 data

Figure 5-3 captures this visually.

108 | Chapter 5: File Management and the Index

Figure 5-3. Index and staged files

Most of the day-to-day changes within your repository will likely be simple edits.
After any edit and before you commit your changes, run git add to update the index
with the absolute latest and greatest version of your file. If you don’t, you’ll have two
different versions of the file: one captured in the object store and referenced from the
index, and the other in your working directory.

To continue the example, let’s change the file data so it’s different from the one in the
index and use the arcane git hash-object file command (which you’ll hardly ever
invoke directly) to directly compute and print the SHA1 hash for the new version:
 $ git ls-files --stage
 100644 0487f44090ad950f61955271cf0a2d6c6a83ad9a 0 .gitignore
 100644 534469f67ae5ce72a7a274faf30dee3c2ea1746d 0 data

 # edit "data" to contain...
 $ cat data
 New data
 And some more data now

 $ git hash-object data
 e476983f39f6e4f453f0fe4a859410f63b58b500

Using git add | 109

After the file is amended, the previous version of the file in the object store and index
has SHA1 534469f67ae5ce72a7a274faf30dee3c2ea1746d. However, the updated ver‐
sion of the file has SHA1 e476983f39f6e4f453f0fe4a859410f63b58b500.

Let’s update the index using the git add command to contain the new version of the
file:
 $ git add data
 $ git ls-files --stage
 100644 0487f44090ad950f61955271cf0a2d6c6a83ad9a 0 .gitignore
 100644 e476983f39f6e4f453f0fe4a859410f63b58b500 0 data

Figure 5-4 captures this visually. Note the new SHA1 ID for data.

Figure 5-4. Index and updated staged files

The index now has the updated version of the file. Again, “the file data has been
staged,” or loosely speaking, “the file data is in the index.” The latter phrase is less
accurate because the file is actually in the object store, and the index merely refers to
it virtually. The seemingly idle play with SHA1 hashes and the index brings home a
key point: think of git add not as “add this file” but more as “add this index content.”

In any event, the important thing to remember is that the version of a file in your
working directory can be out of sync with the version staged in the index. When it
comes time to make a commit, Git uses the version in the index.

110 | Chapter 5: File Management and the Index

The --interactive option to either git add or git commit can
be a useful way to explore which files you would like to stage for a
commit.

Notes on Using git commit
Following are some brief pointers on how the index is affected when you are working
with commits.

Using git commit --all
The -a or --all option to git commit causes Git to automatically stage all unstaged,
tracked file changes, including removals of tracked files from the working copy
before it performs the commit.

Let’s see how this works by setting up a few files with different staging characteristics:
 # Setup test repository
 $ mkdir /tmp/commit-all-example
 $ cd /tmp/commit-all-example
 $ git init --initial-branch=main
 Initialized empty Git repository in /tmp/commit-all-example/.git/

 $ echo something >> ready
 $ echo something else >> notyet
 $ git add ready notyet
 $ git commit -m "Setup"
 [main (root-commit) 63ae368]] Setup
 2 files changed, 2 insertions(+)
 create mode 100644 notyet
 create mode 100644 ready

 # Modify file "ready" and "git add" it to the index
 # edit ready
 $ git add ready

 # Modify file "notyet", leaving it unstaged
 # edit notyet

 # Add a new file in a subdirectory, but don't add it
 $ mkdir subdir
 $ echo Nope >> subdir/new

Next, we use git status to see what a regular commit (without command-line
options) would do:
 $ git status
 On branch main
 Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: ready

 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)

Notes on Using git commit | 111

 (use "git restore <file>..." to discard changes in working directory)
 modified: notyet

 Untracked files:
 (use "git add <file>..." to include in what will be committed)
 subdir/

Here, the index is prepared to commit just the one file named ready because it’s the
only file that’s been staged.

However, if you run git commit --all, Git recursively traverses the entire reposi‐
tory; stages all known, modified files; and commits them. In this case, when your
editor presents the commit message template, it should indicate that the modified
and known file notyet will, in fact, be committed as well:
 # Please enter the commit message for your changes. Lines starting
 # with '#' will be ignored, and an empty message aborts the commit.
 #
 # On branch main
 # Changes to be committed:
 # modified: notyet
 # modified: ready
 #
 # Untracked files:
 # subdir/
 #

However, because the directory named subdir/ is new and no filename or path within
it is tracked, not even the --all option causes it to be committed. Concluding the
commit with an appropriate message will result in the following output:
 [main a6f75bb] Some --all thing.
 2 files changed, 2 insertions(+)

While Git recursively traverses the repository looking for modified and removed files,
the completely new subdir/ directory and all of its files do not become part of the
commit; they remain in the working directory.

For convenience, Git allows you to combine the two steps, git add
and git commit, when you change an existing tracked file in the
repository:
 $ git commit -m trackedfile

But if you move or remove a file, you don’t have that luxury. The
two steps must then be separate:
 $ git rm somefile
 $ git commit

112 | Chapter 5: File Management and the Index

Writing Commit Log Messages
If you do not directly supply a log message on the command line, Git launches an
editor and prompts you to write one. Git selects which editor to launch from your
configuration, as described in “Configuration Files” on page 20.

If you are in the editor writing a commit log message and for some reason decide to
abort the operation, simply exit the editor without saving; this results in an empty log
message, prompting Git to abort the commit:
 $ git commit ready

 # Configured Editor launched
 # Exit editor without writing a commit message

 Aborting commit due to empty commit message.

If it’s too late for that because you’ve already saved, just delete the entire log message
and save again. Git will not process an empty (no text) commit.

Using git rm
The command git rm is, naturally, the inverse of git add. It removes a file from both
the repository and the working directory. However, because removing a file tends
to be more problematic (if something goes wrong) than adding a file, Git treats the
removal of a file with a bit more care.

Git is able to remove a file in two situations: when you need to remove a file from
the index only and when you need to remove a file from both the index and the
working directory simultaneously. Since Git will not automatically remove a file from
the working directory, you can use the regular rm command for that purpose.

Removing a file from your directory and the index does not remove the file’s existing
history from the repository. Any versions of the file that are part of its history already
committed in the repository remain in the object store and retain that history.

Continuing the example from “File Classifications in Git” on page 105, let’s “acciden‐
tally” introduce an additional file that shouldn’t be staged and see how to remove it:
 $ echo "Random stuff" > oops

 $ git rm oops
 fatal: pathspec 'oops' did not match any files

 # You can't use "git rm" on files Git is not tracking
 # Use "rm oops" to delete the file from the working directory

Using git rm | 113

Because git rm is also an operation on the index, the command won’t work on a file
that hasn’t been previously added to the repository or index; Git must first be aware
of a file in order to track it. So let’s accidentally stage the oops file:
 # Accidentally stage "oops" file
 $ git add oops

 $ git status
 On branch main

 No commits yet

 Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: .gitignore
 new file: data
 new file: oops

To convert a file from staged to unstaged, use git rm --cached. Let’s observe how
this affects the index:
 $ git ls-files --stage
 100644 0487f44090ad950f61955271cf0a2d6c6a83ad9a 0 .gitignore
 100644 e476983f39f6e4f453f0fe4a859410f63b58b500 0 data
 100644 6bece861cc8fd34181e6d43264acfe1503486538 0 oops

 $ git rm --cached oops
 rm 'oops'

 $ git ls-files --stage
 100644 0487f44090ad950f61955271cf0a2d6c6a83ad9a 0 .gitignore
 100644 e476983f39f6e4f453f0fe4a859410f63b58b500 0 data

The git rm --cached command removes the file from the index and leaves it in the
working directory:
 $ git status
 On branch main

 No commits yet

 Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: .gitignore
 new file: data

 Untracked files:
 (use "git add <file>..." to include in what will be committed)
 oops

In contrast, the git rm command removes the file from both the index and the
working directory.

114 | Chapter 5: File Management and the Index

Using git rm --cached to make a file untracked while leaving
a copy in the working directory is dangerous because you may
forget that it is no longer being tracked. Using this approach also
overrides Git’s check that the working file’s contents are current. Be
cautious about which command you intend to use.

If you want to remove a file once it’s been committed, just stage the request through a
simple git rm filename:
 $ git commit -m "Add some files"
 [main (root-commit) 57cbafa] Add some files
 2 files changed, 2 insertions(+)
 create mode 100644 .gitignore
 create mode 100644 data

 $ git rm data
 rm 'data'

 $ git status
 On branch main
 Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 deleted: data

Before Git removes a file, it checks to make sure the version of the file in the
working directory matches the latest version in the current branch (the version in the
most recent commit, the HEAD). This verification precludes the accidental loss of any
changes (due to your editing) that may have been made to the file.

Use git rm -f to force the removal of your file. Force is an explicit
mandate and removes the file even if you have altered it since your
last commit.

And in case you really meant to keep a file that you accidentally removed, simply add
it back:
 $ git add data
 fatal: pathspec 'data' did not match any files

Darn! Git removed the working copy too! But don’t worry. Version control systems
are good at recovering old versions of files:
 $ git checkout HEAD -- data
 $ cat data
 New data
 And some more data now

 $ git status
 On branch main
 nothing to commit, working tree clean

Using git rm | 115

Using git mv
Suppose you need to move or rename a file. You can use a combination of git rm
on the old file and git add on the new file, or you can use git mv directly. Given
a repository with a file named stuff that you want to rename newstuff, the following
sequences of commands are equivalent Git operations:
 $ mv stuff newstuff
 $ git rm stuff
 $ git add newstuff

and
 $ git mv stuff newstuff

In both cases, Git removes the pathname stuff from the index; adds a new pathname,
newstuff; keeps the original content for stuff in the object store; and reassociates that
content with the pathname newstuff.

Picking up from the earlier example, and since data is back in the example repository,
let’s rename it and commit the change:
 # Check the index before renaming file
 $ git ls-files --stage
 100644 0487f44090ad950f61955271cf0a2d6c6a83ad9a 0 .gitignore
 100644 534469f67ae5ce72a7a274faf30dee3c2ea1746d 0 data

 $ git mv data mydata

 $ git status
 On branch main
 Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 renamed: data -> mydata

 # Check the index with the renamed file
 # Note that the SHA1 ID remains the same with the new pathname
 $ git ls-files --stage
 100644 0487f44090ad950f61955271cf0a2d6c6a83ad9a 0 .gitignore
 100644 534469f67ae5ce72a7a274faf30dee3c2ea1746d 0 mydata

 $ git commit -m "Moved data to mydata"
 [main 4b7a819] Moved data to mydata
 1 file changed, 0 insertions(+), 0 deletions(-)
 rename data => mydata (100%)

If you happen to check the history of the file, you may be a bit disturbed to see that
Git has apparently lost the history of the original data file and remembers only that it
renamed data to the current name:

116 | Chapter 5: File Management and the Index

 $ git log mydata
 commit 4b7a81923c636716d2b035574ca569018c723f21 (HEAD -> main)
 Author: Prem Kumar Ponuthorai <ppremk@gmail.com>
 Date: Mon Apr 5 23:56:05 2021 +0200

 Moved data to mydata

Git does still remember the whole history, but the display is limited to the particular
filename you specified in the command. The --follow option asks Git to trace back
through the log and find the full history associated with the content:
 $ git log --follow mydata
 commit 4b7a81923c636716d2b035574ca569018c723f21 (HEAD -> main)
 Author: Prem Kumar Ponuthorai <ppremk@gmail.com>
 Date: Mon Apr 5 23:56:05 2021 +0200

 Moved data to mydata

 commit 57cbafaf8f20187395f6806aa7bc579fcbf7acde
 Author: Prem Kumar Ponuthorai <ppremk@gmail.com>
 Date: Mon Apr 5 23:37:48 2021 +0200

 Add some files

One of the classic problems with version control systems is that renaming a file can
cause the system to lose track of the file’s history. Git preserves this information even
after a rename.

A Note on Tracking Renames
Let’s take a look at SVN, an example of a traditional revision control system, and
then compare it with Git to see how the two systems keep track of files renamed in
different ways.

SVN does a lot of work tracking when a file is renamed and moved around because
it only keeps track of diffs between files. If you move a file, it’s essentially the same as
deleting all the lines from the old file and adding them to the new one. But it would
be inefficient to transfer and store all the contents of the file again whenever you do
a simple rename; imagine renaming a whole subdirectory that contains thousands of
files.

To alleviate this situation, SVN tracks each rename explicitly. If you want to rename
hello.txt to subdir/hello.txt, you must use svn mv instead of svn rm and svn add on
the files. Otherwise, SVN has no way to see that it’s a rename and must go through
the inefficient delete/add sequence just described.

Next, given this exceptional feature of tracking a rename, the SVN server needs a
special protocol to tell its clients, “Please move hello.txt into subdir/hello.txt.” Further‐
more, each SVN client must ensure that it performs this operation correctly.

A Note on Tracking Renames | 117

Git, on the other hand, doesn’t keep track of a rename. You can move or copy hello.txt
anywhere you want, but doing so affects only tree objects. (Remember that tree
objects store the relationships between content, whereas the content itself is stored in
blobs.) A look at the differences between two trees makes it obvious that the same
unique blob has moved to a new place. And even if you don’t explicitly examine the
differences, every part of the system knows it already has that blob, so every part
knows it doesn’t need another copy of it.

In this situation, as in many other places, Git’s simple hash-based storage system
simplifies a lot of things that baffle or elude other version control systems.

Problems with Tracking a Rename
Tracking the renaming of a file engenders a perennial debate among developers of
version control systems.

A simple rename is fodder enough for dissension. The argument becomes even more
heated when the file’s name changes and then its content changes. Then the scenarios
turn the parley from practical to philosophical: Is that “new” file really a rename,
or is it merely similar to the old one? How similar should the new file be before
it’s considered the same file? If you apply someone’s patch that deletes a file and
re-creates a similar one elsewhere, how is that managed? What happens if a file is
renamed in two different ways on two different branches? Is it less error-prone to
automatically detect renames in such a situation, as Git does, or to require the user to
explicitly identify renames, as SVN does?

In real-life situations, it seems that Git’s system for handling file renames is superior,
compared to the same effortful methods in SVN; but, that said, there is no perfect
system for handling renames…yet.

The .gitignore File
Earlier in this chapter, you saw how to use the .gitignore file to exclude main.o,
an irrelevant file. As in that example, you can skip any file by adding its name
to .gitignore in the same directory. Additionally, you can ignore the file everywhere by
adding it to the .gitignore file in the topmost directory of your repository. But Git also
supports a much richer mechanism.

A .gitignore file can contain a list of filename patterns that specify what files to ignore.

The pattern format of .gitignore is as follows:

• Blank lines are ignored. Lines starting with a pound sign (#) can be used for•
comments, but # doesn’t represent a comment if it follows other text on the line.

118 | Chapter 5: File Management and the Index

• A simple, literal filename matches a file in any directory with that name.•
• A directory name is marked by a trailing slash (/). This matches the named•

directory and any subdirectory but does not match a file or a symbolic link.
• A pattern containing shell globbing characters, such as an asterisk (*), is expan‐•

ded as a shell glob pattern. Just as in standard shell globbing, the match cannot
extend across directories, and so an asterisk can match only a single file or
directory name. But an asterisk can still be part of a pattern that includes slashes
to specify directory names (e.g., debug/*.o).

• An initial exclamation point (!) inverts the sense of the pattern on the rest of•
the line. Additionally, any file excluded by an earlier pattern but matching an
inversion rule is included. An inverted pattern overrides lower precedence rules.

Following is an example based on the preceding explanations:
 $ cat .gitignore
 # Example Pattern Format of a .gitignore file

 # Below is not a comment. The "#" is part of an expression as its first character
 \#*.tmp

 # Literal filename
 somefile.log

 # Directory exclusion
 my_package/

 # Glob pattern expression
 *.[oa]
 *.log
 debug/*.o

 # Inverting a glob pattern expression (do not ignore the important.log file)
 !important.log

Table 5-1 lists some example output to match the globbing patterns supported by
the .gitignore file.

Table 5-1. Globbing pattern example output

Globbing pattern Matches
*.log .log

important.log
file.log
dir/anotherfile.log

*.[oa] file.o
file.a

tmp/ tmp/files.log
tmp/subdir/files.log
parent/tmp/files.log
grandparent/tmp/files.log

The .gitignore File | 119

Globbing pattern Matches
file.log file.log

dir/file.log

dir/**/file dir/file
dir/subdir/file
dir/subdir/subsubdir/file

**/file dir/file
anotherdir/file
file

file?.log file1.log
file2.log

!important.log important.log
dir/important.log
(the above files will not be ignored)

Two asterisks (**) used adjacently in globbing patterns that include
a directory name may match differently, as per the examples in
Table 5-1.

Furthermore, Git allows you to have a .gitignore file in any directory within your
repository. Each file affects its directory and all subdirectories. The .gitignore rules
also cascade: you can override the rules in a higher directory by including an inverted
pattern (using the initial !) in one of the subdirectories.

To resolve a hierarchy with multiple .gitignore directories and to allow command-line
addenda to the list of ignored files, Git honors the following precedence, from highest
to lowest:

• Patterns specified on the command line.•
• Patterns read from .gitignore in the same directory.•
• Patterns in parent directories, proceeding upward. Hence, the current directory’s•

patterns overrule the parents’ patterns, and the parents close to the current
directory take precedence over higher parents.

• Patterns from the .git/info/exclude file.•
• Patterns from the file specified by the configuration variable core.excludesFile.•

Because a .gitignore file is treated as a regular file within your repository, it is copied
during clone operations and applies to all copies of your repository. In general, you
should place entries into your version-controlled .gitignore files only if the patterns
apply to all derived repositories universally.

120 | Chapter 5: File Management and the Index

If the exclusion pattern is somehow specific to your one repository and should
not (or might not) be applicable to anyone else’s clone of your repository, then
the patterns should instead go into the .git/info/exclude file because that file is not
propagated during clone operations. Its pattern format and treatment are the same
as .gitignore files.

Here’s another scenario. It’s typical to exclude .o files, which are generated from
source by the compiler. To ignore .o files, place *.o in your top-level .gitignore. But
what if you also had a particular *.o file that was, say, supplied by someone else and
for which you couldn’t generate a replacement yourself? You’d likely want to explicitly
track that particular file. You might then have a configuration like this:
.
└── my_package
 ├── .gitignore
 ├── vendor_files
 └── .gitignore

 $ cd my_package
 $ cat .gitignore
 *.o

 $ cd my_package/vendor_files
 $ cat .gitignore
 !driver.o

The combination of rules means that Git will ignore all .o files within the repository
but will track one exception, the file driver.o within the vendor_files subdirectory.

Summary
By now, you should have the basic skills to manage files. Nonetheless, keeping track
of what file is where in the working directory, index, and repository history can be
a little overwhelming. To overcome this, it is important for you to take the time and
fully understand the importance of index and file classifications in Git so that you can
grasp the importance of the index directory in combination with how Git classifies
and tracks files in your project repositories. Once you understand this concept, you
can take advantage of the technical aspects of how to add, remove, and even exclude
files in your repositories to meet your project goals with ease.

Summary | 121

CHAPTER 6

Merges

Because Git is a distributed version control system, it allows developers in dispersed
geographical locations to make and record changes independently, and it permits
two or more developers to combine their changes at any time, all without a central
repository. Technically, this is an operation that combines two or more different lines
of development, and it is formally known as a merge in Git.

In this chapter, we’ll explain how to merge two or more different lines of develop‐
ment via some simple merge examples, and we’ll share some techniques for resolving
a merge conflict when it occurs. We will also discuss merge strategies in Git and take
a peek at what happens in the Git object store when a merge operation is executed.

Merge: A Technical View
In Git, a merge unifies two or more commit histories of branches. Most often, a
merge unites just two branches, although Git supports a merge of three or more
branches at the same time.

A merge must occur within a single repository—that is, all the branches to be
merged must be present in the same repository. How the branches come to be in the
repository is not important. (As you will see in Chapter 11, Git provides mechanisms
for referring to other repositories and for bringing remote branches into your current
working repository.)

When modifications in one branch do not conflict with modifications found in
another branch, Git computes a merge result and creates a new commit that repre‐
sents the new, unified state. But when branches have conflicts, Git does not resolve
the dispute. Instead, Git marks such contentious changes as “unmerged” in the index
and leaves reconciliation up to you, the developer (to reiterate what we explained in
“Git Characteristics” on page 5, Git waits for you to provide instructions on what to

123

do and when to do it). When Git cannot merge branches automatically, it’s also up to
you to make the final commit once all conflicts are resolved.

Merge Examples
The git merge operation is context sensitive. Your current branch is always the target
branch, and changes from other branches are merged into the current branch.

In the following example, we will switch to our main-branch to set it as our current
branch and merge a modified-branch into it:
 $ git checkout main-branch
 $ git merge modified-branch

An easier way to remember a merge operation in Git is to think
about it in a source versus target perspective—that is, you have
some changes in another branch (source branch), and you want to
merge that branch into your current branch (target branch).

Let’s work through a pair of example merges, one without conflicts and one with
substantial overlaps. To simplify the examples in this chapter, we’ll use multiple
branches per the techniques presented in Chapter 3.

Preparing for a Merge
As a general rule, your Git life will be much easier if you start each merge with a
clean working directory and index. During a normal merge, Git creates new versions
of files and places them in your working directory when it is finished. Furthermore,
Git uses the index to store temporary and intermediate versions of files during the
operation.

If you have modified files in your working directory or if you’ve modified the index
via git add or git rm, then your repository has a dirty working directory or index. If
you start a merge in a dirty state, Git may be unable to combine the changes from all
the branches and from those in your working directory or index in one pass.

You don’t have to start with a clean directory. Git still performs the
merge, for example, if the files affected by the merge operation and
the dirty files in your working directory are not commonly affected
by the introduced change. However, starting with a clean directory
is easier and is the tactic we prefer.

124 | Chapter 6: Merges

Merging Two Branches
For the simplest scenario, let’s set up a repository with a single file, create two
branches, and then merge the pair of branches together again:
 $ mkdir merge-conflict

 # Initialize new repository
 $ git init -b main
 Initialized empty Git repository in /merge-conflict/.git/

 # Create new file
 $ cat > file
 Line 1 stuff
 Line 2 stuff
 Line 3 stuff
 ^D

 # Add and commit file
 $ git add file
 $ git commit -m "Initial 3 line file"
 [main (root-commit) 21a352e] Initial 3 line file
 1 file changed, 3 insertions(+)
 create mode 100644 file

Let’s create another commit on the main branch:
 $ cat > other_file
 Here is stuff on another file!
 ^D

 $ git add other_file
 $ git commit -m "Another file"
 [main e5d26c6] Another file
 1 file changed, 1 insertion(+)
 create mode 100644 other_file

So far, the repository has one branch with two commits, where each commit intro‐
duced a new file. Next, let’s change to a different branch and modify the first file:
 $ git checkout -b alternate main^
 Switched to a new branch "alternate"

 $ git show-branch
 * [alternate] Initial 3 line file
 ! [main] Another file
 --
 + [main] Another file
 *+ [alternate] Initial 3 line file

Here, the alternate branch is initially forked from the main^ commit, one commit
behind the current head.

We’ll make one more trivial change to the file so that you have something to merge,
and then we’ll commit it. Remember, it’s best to commit outstanding changes and
start a merge with a clean working directory:

Merge Examples | 125

 $ cat >> file
 Line 4 alternate stuff
 ^D

 $ git commit -a -m "Add alternate's line 4"
 [alternate 97e7ffe] Add alternate's line 4
 1 file changed, 1 insertion(+)

Now there are two branches, and each has a different line of development work. A
second file has been added to the main branch, and a modification has been made
to the alternate branch. Because the two changes do not affect the same parts of a
common file, a merge should proceed smoothly and without incident.

Because the git merge operation is context sensitive, we need to ensure that the main
branch is the target branch and the changes in the alternate branch are merged into
it. In this case, we need to check out to the main branch before we continue:
 $ git checkout main
 Switched to branch "main"

 # Check to ensure no dirty working directory or index
 $ git status
 On branch main
 nothing to commit, working tree clean

 # Yep, ready for a merge!

 # Git prompts the default merge message in your default editor
 # when you hit return, save, and continue
 $ git merge alternate
 Merge made by the 'ort' strategy.
 file | 1 +
 1 file changed, 1 insertion(+)

You can use another commit graph viewing tool, a part of git log, to see what’s been
done:
 $ git log --graph --decorate --pretty=oneline --abbrev-commit

 * 2dce921 (HEAD -> main) Merge branch 'alternate'
 |\
 | * 97e7ffe (alternate) Add alternate's line 4
 * | e5d26c6 Another file
 |/
 * 21a352e Initial 3 line file

Conceptually, this is the same commit graph described in “Commit Graphs” on page
90, except that this graph is turned sideways, with the most recent commits at the top
rather than at the right. The two branches have split at the initial commit, 21a352e;
each branch shows one commit (e5d26c6 and 97e7ffe); and the two branches merge
again at commit 2dce921.

126 | Chapter 6: Merges

Using git log --graph is an excellent alternative to graphical
tools such as gitk. The visualization provided by git log --graph
is well suited to dumb terminals, such as when you SSH into a
server.

Technically, Git performs each merge symmetrically to produce one identical, com‐
bined commit that is added to your current branch. The other branch is not affected
by the merge. Because the merge commit is added only to your current branch, you
can say, “I merged the source branch into this target branch.”

A Merge with a Conflict
The merge operation can typically proceed without prompting the user when Git can
successfully resolve any differences between either side of the merge. But because
the merge operation can take any number of independent, varying, and potentially
conflict-ridden lines of development, this is not always the case. When this happens,
the user is prompted to resolve any conflicts that Git could not resolve automatically.

Let’s work through a scenario in which a merge leads to a conflict. We’ll begin
with the results of the merge from the previous section and introduce independent
and conflicting changes on the main and alternate branches. We’ll then merge the
alternate branch into the main branch, face the conflict, resolve it, and commit the
final result.

On the main branch, we will create a new version of a file named file that has a few
additional lines in it, and then we’ll commit the changes:
 $ git checkout main

 $ cat >> file
 Line 5 stuff
 Line 6 stuff
 ^D

 $ git commit -a -m "Add line 5 and 6"
 [main 6c5634c] Add line 5 and 6
 1 file changed, 2 insertions(+)

Next, on the alternate branch, let’s modify the same file differently. Whereas we
made new commits to the main branch, the alternate branch has not progressed yet:
 $ git checkout alternate
 Switched to branch "alternate"

 $ git show-branch
 * [alternate] Add alternate's line 4
 ! [main] Add line 5 and 6
 --
 + [main] Add line 5 and 6
 *+ [alternate] Add alternate's line 4

Merge Examples | 127

 # In this branch, "file" left off with "Line 4 alternate stuff"

 $ cat >> file
 Line 5 alternate stuff
 Line 6 alternate stuff
 ^D

 $ cat file
 Line 1 stuff
 Line 2 stuff
 Line 3 stuff
 Line 4 alternate stuff
 Line 5 alternate stuff
 Line 6 alternate stuff

 $ git diff
 diff --git a/file b/file
 index a29c52b..802acf8 100644
 --- a/file
 +++ b/file
 @@ -2,3 +2,5 @@ Line 1 stuff
 Line 2 stuff
 Line 3 stuff
 Line 4 alternate stuff
 +Line 5 alternate stuff
 +Line 6 alternate stuff

 $ git commit -a -m "Add alternate line 5 and 6"
 [alternate 0ca87a4] Add alternate line 5 and 6
 1 file changed, 2 insertions(+)

Let’s review the scenario. The current branch history looks like this:
 $ git show-branch
 * [alternate] Add alternate line 5 and 6
 ! [main] Add line 5 and 6
 --
 * [alternate] Add alternate line 5 and 6
 + [main] Add line 5 and 6
 *+ [alternate^] Add alternate's line 4

To continue, we will check out the main branch and try to perform the merge:
 $ git checkout main
 Switched to branch "main"

 $ git merge alternate
 Auto-merging file
 CONFLICT (content): Merge conflict in file
 Automatic merge failed; fix conflicts and then commit the result.

When a merge conflict like this occurs, you should almost invariably investigate the
extent of the conflict using the git diff command. Here, the single file named file
has a conflict in its content:

128 | Chapter 6: Merges

 $ git diff
 diff --cc file
 index 4d77dd1,802acf8..0000000
 --- a/file
 +++ b/file
 @@@ -2,5 -2,5 +2,10 @@@ Line 1 stuf
 Line 2 stuff
 Line 3 stuff
 Line 4 alternate stuff
 ++<<<<<<< HEAD:file
 +Line 5 stuff
 +Line 6 stuff
 ++=======
 + Line 5 alternate stuff
 + Line 6 alternate stuff
 ++>>>>>>> alternate:file

The git diff command shows the differences between the file in your working
directory and the index. In the traditional diff command output style, the changed
content is presented between <<<<<<< and =======, with an alternate between
======= and >>>>>>>. However, additional plus and minus signs are used in the
combined diff format to indicate changes from multiple sources relative to the final
resulting version.

The previous output shows that the conflict covers lines 5 and 6, where different
changes were deliberately made in the two branches. It’s then up to you to resolve the
conflict. When resolving a merge conflict, you are free to choose any resolution you
would like for the file. That includes picking lines from only one branch or the other,
or picking a mix from both branches, or even making up something completely new
and different. Although that last option might not be fixing the conflict entirely, it is
still a valid choice.

In this case, we resolve the conflict by choosing a line from each branch as the
makeup of our resolved version. The edited file now has this content:
 $ cat file
 Line 1 stuff
 Line 2 stuff
 Line 3 stuff
 Line 4 alternate stuff
 Line 5 stuff
 Line 6 alternate stuff

If you are happy with the conflict resolution, to mark it as resolved, you should git
add the file to the index, staging it for the next commit:
 $ git add file

Merge Examples | 129

After you have resolved conflicts and staged final versions of each file in the index
using git add, it is finally time to commit the merge using git commit. Git places
you in your default editor with a template message that looks like this:
 Merge branch 'alternate'

 # Conflicts:
 # file
 #
 # It looks like you may be committing a merge.
 # If this is not correct, please run
 # git update-ref -d MERGE_HEAD
 # and try again.

 # Please enter the commit message for your changes. Lines starting
 # with '#' will be ignored, and an empty message aborts the commit.
 #
 # On branch main
 # All conflicts fixed but you are still merging.
 #
 # Changes to be committed:
 # modified: file
 #

As usual, the lines beginning with the pound sign (#) are comments and are meant
solely for your information while you write a message. All comment lines are ulti‐
mately elided from the final commit log message. Feel free to alter or augment the
commit message as you see fit, perhaps adding a note about how the conflict was
resolved.

When you exit the editor, Git should indicate the successful creation of a new merge
commit:
 $ git commit
 # Edit merge commit message
 [main f1fa82f] Merge branch 'alternate'

 $ git show-branch
 ! [alternate] Add alternate line 5 and 6
 * [main] Merge branch 'alternate'
 --
 - [main] Merge branch 'alternate'
 +* [alternate] Add alternate line 5 and 6

You can see the resulting merge commit (the tip or HEAD commit) using the
following:
 $ git log

Working with Merge Conflicts
As demonstrated by the previous example, there are instances when conflicting
changes can’t be merged automatically.

130 | Chapter 6: Merges

Let’s create another scenario with a merge conflict to explore the tools Git provides
to help resolve disparities. Starting with a common hello file containing just the word
hello, let’s create two different branches with two different variants of the file:
 $ git init -b main
 Initialized empty Git repository in /tmp/conflict/.git/

 $ echo hello > hello
 $ git add hello
 $ git commit -m "Initial hello file"
 [main (root-commit) e8a1845] Initial hello file
 1 file changed, 1 insertion(+)
 create mode 100644 hello

 $ git checkout -b alt
 Switched to a new branch "alt"
 $ echo world >> hello
 $ echo 'Yay!' >> hello
 $ git commit -a -m "One world"
 [alt 84e436c] One world
 1 file changed, 2 insertions(+)

 $ git checkout main
 $ echo worlds >> hello
 $ echo 'Yay!' >> hello
 $ git commit -a -m "All worlds"
 [main 0d7dfb7] All worlds
 1 file changed, 2 insertions(+)

We now have one branch with the file hello and the content “world” and another
branch with a different version of the file hello and the content “worlds”—a deliberate
difference.

As in the earlier example, if you check out to the main branch and try to merge the
alt branch into it, a conflict arises:
 $ git merge alt
 Auto-merging hello
 CONFLICT (content): Merge conflict in hello
 Automatic merge failed; fix conflicts and then commit the result.

As expected, Git warns you about the conflict found in the hello file.

Locating Conflicted Files
But what if Git’s helpful directions scrolled off the screen or there were many files
with conflicts? Luckily, Git keeps track of problematic files by marking each one in
the index as conflicted or unmerged.

You can also use either the git status command or the git ls-files -u command
to show the set of files that remain unmerged in your working tree. Naturally, the git
status command provides you with some hints about what you should do to resolve
a conflict and conclude the merge:

Working with Merge Conflicts | 131

 $ git status
 On branch main
 You have unmerged paths.
 (fix conflicts and run "git commit")
 (use "git merge --abort" to abort the merge)

 Unmerged paths:
 (use "git add <file>..." to mark resolution)
 both modified: hello

 no changes added to commit (use "git add" and/or "git commit -a")

 $ git ls-files -u
 100644 ce013625030ba8dba906f756967f9e9ca394464a 1 hello
 100644 e63164d9518b1e6caf28f455ac86c8246f78ab70 2 hello
 100644 562080a4c6518e1bf67a9f58a32a67bff72d4f00 3 hello

We will explain why there are three different versions of hello in “How Git Keeps
Track of Conflicts” on page 138.

You can use git diff to show what’s not yet merged, but it will show all of the gory
details too! In the next section, we will learn how to inspect a file with conflicts.

Inspecting Conflicts
When a conflict appears, the working directory copy of each conflicted file is
enhanced with three-way diff or merge markers (also commonly referred to as conflict
resolution markers, when addressing a merge conflict). Continuing from where the
example left off, the resulting conflicted file now looks like this:
 $ cat hello
 hello
 <<<<<<< HEAD
 worlds
 =======
 world
 >>>>>>> alt
 Yay!

The merge markers delineate the two possible versions of the conflicting chunk of the
file. In one version, the chunk says “worlds”; in the other version, it says “world.” See
Figure 6-1 for a visual representation of the merge marker delineation.

The three-way merge marker lines (<<<<<<<<, ========, and
>>>>>>>>) are automatically generated, but they’re just meant to
be read by you, not (necessarily) a program. You should delete
them with your text editor once you resolve the conflict. A quick
method to ensure that all markers are deleted is to run the git
diff -–check command, which highlights any remaining merge
markers.

132 | Chapter 6: Merges

You could simply choose one phrase or the other, remove the conflict markers, and
then run git add and git commit, but let’s explore some of the other features Git
offers to help resolve conflicts.

Figure 6-1. Merge marker delineation

git diff with conflicts

Git has a special, merge-specific variant of git diff to display the changes made
against both parents simultaneously. In the example, it looks like this:
 $ git diff
 diff --cc hello
 index e63164d,562080a..0000000
 --- a/hello
 +++ b/hello
 @@@ -1,3 -1,3 +1,7 @@@
 hello
 ++<<<<<<< HEAD
 +worlds
 ++=======
 + world
 ++>>>>>>> alt
 Yay!

Working with Merge Conflicts | 133

So what does it all mean? It’s the simple combination of two diffs: one of the first
parent, called HEAD, and one of the second parent, or alt. (Don’t be surprised if the
second parent is an absolute SHA1 name representing some unnamed commit from
some other repository!) To make things easier, Git also gives the second parent the
special name MERGE_HEAD.

You can compare both the HEAD and MERGE_HEAD versions against the working direc‐
tory (“merged”) version:
 $ git diff HEAD
 diff --git a/hello b/hello
 index e63164d..1f2f61c 100644
 --- a/hello
 +++ b/hello
 @@ -1,3 +1,7 @@
 hello
 +<<<<<<< HEAD
 worlds
 +=======
 +world
 +>>>>>>> alt
 Yay!

 $ git diff MERGE_HEAD
 diff --git a/hello b/hello
 index 562080a..1f2f61c 100644
 --- a/hello
 +++ b/hello
 @@ -1,3 +1,7 @@
 hello
 +<<<<<<< HEAD
 +worlds
 +=======
 world
 +>>>>>>> alt
 Yay!

Note that the line starting with index captures different abbreviated SHA1 IDs.

Alternatively, you can use the git diff --ours command, which is a synonym
for git diff HEAD, because it shows the differences between “our” version and
the merged version. Similarly, git diff MERGE_HEAD can be written as git diff
--theirs.

You can use git diff --base to see the combined set of changes
since the merge base, which would otherwise be rather awkwardly
written as follows:
 $ git diff $(git merge-base HEAD MERGE_HEAD)

134 | Chapter 6: Merges

If you line up the two diffs side by side, all the text except the + columns are the same,
so Git prints the main text only once and prints the + columns next to each other.
Figure 6-2 illustrates this.

Figure 6-2. Merged diffs side by side

The conflict found by git diff has two columns of information prepended to each
line of output. A plus sign (+) in a column indicates a line addition, a minus sign
(–) indicates a line removal, and a blank indicates a line with no change. The first
column shows what’s changing versus your version, and the second column shows
what’s changing versus the other version. The conflict marker lines are new in both
versions, so they get a ++. The world and worlds lines are new in only one version or
the other, so they have just a single + in the corresponding column.

Suppose you edit the file to pick a third option, like this:
 $ cat hello
 hello
 worldly ones
 Yay!

Then the new git diff output is the following:
 $ git diff
 diff --cc hello
 index e63164d,562080a..0000000
 --- a/hello
 +++ b/hello

Working with Merge Conflicts | 135

 @@@ -1,3 -1,3 +1,3 @@@
 hello
 - worlds
 -world
 ++worldly ones
 Yay!

If you prefer, you can choose one or the other original version, like this:
 $ cat hello
 hello
 world
 Yay!

The git diff output would then be as follows:
 $ git diff
 diff --cc hello
 index e63164d,562080a..0000000
 --- a/hello
 +++ b/hello

Wait! Something strange happened there. Where does it show that the world line was
added to the base version? Where does it show that the worlds line was removed
from the HEAD version? As you have resolved the conflict in favor of the MERGE_HEAD
version, Git deliberately omits the diff because it thinks you probably don’t care about
that section anymore.

Running git diff on a conflicted file shows you only the sections that really have
a conflict. In a large file with numerous changes scattered throughout, most of those
changes don’t have a conflict; either one side of the merge changed a particular
section or the other side did. When you’re trying to resolve a conflict, you rarely care
about those sections, so git diff trims out uninteresting sections using a simple
heuristic: if a section has changes on only one side, that section isn’t shown.

This optimization has a slightly confusing side effect: once you resolve something
that used to be a conflict by simply picking one side or the other, it stops showing up.
That’s because you modified the section so that it changes only one side or the other
(i.e., the side that you didn’t choose), so to Git it looks like a section that was never
conflicted at all.

This is really more a side effect of the implementation than an intentional feature, but
you might consider it useful anyway: git diff shows you only those sections of the
file that are still conflicted, so you can use it to keep track of the conflicts you haven’t
fixed yet.

136 | Chapter 6: Merges

git log with conflicts

While you’re in the process of resolving a conflict, you can use some special git log
options to help you figure out exactly where the changes came from and why. Try
this:
 $ git log --merge --left-right -p

 commit < 0d7dfb7f23cd5f4d6debedc27f7f85d5c72d5423 (HEAD -> main)
 Author: Prem Kumar Ponuthorai <ppremk@demo.com>
 Date: Thu Sep 2 23:10:35 2021 +0200

 All worlds

 diff --git a/hello b/hello
 index ce01362..e63164d 100644
 --- a/hello
 +++ b/hello
 @@ -1 +1,3 @@
 hello
 +worlds
 +Yay!

 commit > 84e436cd3353739c67fd0fce36e18fc42b31d153 (alt)
 Author: Prem Kumar Ponuthorai <ppremk@demo.com>
 Date: Thu Sep 2 23:09:07 2021 +0200

 One world

 diff --git a/hello b/hello
 index ce01362..562080a 100644
 --- a/hello
 +++ b/hello
 @@ -1 +1,3 @@
 hello
 +world
 +Yay!

This command shows all the commits in both parts of the history that affect the
conflicted files in your merge, along with the actual changes each commit introduced.
If you wondered when, why, how, and by whom the line worlds came to be added to
the file, you can see exactly which set of changes introduced it.

The options provided to git log are as follows:

• --merge shows only commits related to files that produced a conflict.•
• --left-right displays < if the commit was from the “left” side of the merge•

(“our” version, the one you started with) or > if the commit was from the “right”
side of the merge (“their” version, the one you’re merging in).

• -p shows the commit message and the patch associated with each commit.•

Working with Merge Conflicts | 137

If your repository is more complicated and several files have conflicts, you could also
provide the exact filename(s) you’re interested in as a command-line option, like this:
 $ git log --merge --left-right -p hello

Our examples here have been kept small for demonstration purposes. Of course, real-
life situations are likely to be significantly larger and more complex. One technique to
mitigate the pain of large merges with nasty, extended conflicts is to use several small
commits with well-defined effects contained to individual concepts.

Git handles small commits well, so there is no need to wait until
the last minute to commit large, widespread changes. Smaller com‐
mits and more frequent merge cycles reduce the pain of dealing
with complex conflict resolutions.

How Git Keeps Track of Conflicts
Git keeps track of all the information about a conflicted merge by keeping a record of
the information in the following areas:

• .git/MERGE_HEAD contains the SHA1 of the commit you’re merging in. You•
don’t really have to use the SHA1 yourself; Git knows to look in that file when‐
ever you talk about MERGE_HEAD.

• .git/MERGE_MSG contains the default merge message used when you git•
commit after resolving the conflicts.

• The Git index contains three copies of each conflicted file: the merge base, “our”•
version, and “their” version. These three copies are assigned the stage numbers 1,
2, and 3, respectively.

• The conflicted version (merge markers and all) is not stored in the index. Instead,•
it is stored in a file in your working directory. When you run git diff without
any parameters, the comparison is always between what’s in the index and what’s
in your working directory.

To see how the index entries are stored, you can use the git ls-files plumbing
command as follows:
 $ git ls-files -s
 100644 ce013625030ba8dba906f756967f9e9ca394464a 1 hello
 100644 e63164d9518b1e6caf28f455ac86c8246f78ab70 2 hello
 100644 562080a4c6518e1bf67a9f58a32a67bff72d4f00 3 hello

The -s option to git ls-files shows all the files with all stages. If you want to see
only the conflicted files, use the -u option instead.

138 | Chapter 6: Merges

In other words, the hello file is stored three times, and each has a different hash
corresponding to the three different versions. You can look at a specific variant by
using git cat-file:
 $ git cat-file -p e63164d951
 hello
 worlds
 Yay!

You can also use some special syntax with git diff to compare different versions of
the file. For example, if you want to see what changed between the merge base and
the version you’re merging in, you can do this:
 $ git diff :1:hello :3:hello
 diff --git a/:1:hello b/:3:hello
 index ce01362..562080a 100644
 --- a/:1:hello
 +++ b/:3:hello
 @@ -1 +1,3 @@
 hello
 +world
 +Yay!

Using the stage numbers to name a version is different from git diff --theirs,
which shows the differences between their version and the resulting, merged (or still
conflicted) version in your working directory. The merged version is not yet in the
index, so it doesn’t even have a number.

If you know for certain which version of a file to use to quickly
resolve a conflict, the git checkout command accepts the --ours
or --theirs option as shorthand for simply checking out (a file
from) one side or the other of a conflicted merge. However, these
two options can be used only during a conflict resolution.

Continuing with our example, because we fully edited and resolved the working copy
version in favor of their version, there should be no difference now:
 $ cat hello
 hello
 world
 Yay!

 $ git diff --theirs
 * Unmerged path hello

All that remains is an unmerged path reminder to add it to the index.

Working with Merge Conflicts | 139

Finishing Up a Conflict Resolution
Let’s make one last change to the hello file before declaring it merged:
 $ cat hello
 hello
 everyone
 Yay!

Now that the file is fully merged and resolved, git add reduces the index to just a
single copy of the hello file again:
 $ git add hello
 $ git ls-files -s
 100644 ebc56522386c504db37db907882c9dbd0d05a0f0 0 hello

That lone 0 between the SHA1 and the pathname tells you that the stage number for a
nonconflicted file is zero.

You must work through all the conflicted files as recorded in the index. You cannot
commit as long as there is an unresolved conflict. Therefore, as you fix the conflicts
in a file, run git add (or git rm, git update-index, etc.) on the file to clear its
conflict status.

Be careful not to git add files with lingering conflict markers
(again running the git diff –-check will yield results of residual
merge markers). Although that will clear the conflict in the index
and allow you to commit, your file won’t be correct.

Finally, you can git commit the end result and use git show to see the merge
commit:
 $ cat .git/MERGE_MSG
 Merge branch 'alt'

 # Conflicts:
 # hello

 $ git commit
 [main d67ecec] Merge branch 'alt'

 $ git show
 commit d67ecec075281cebb32a9eedd76242b6e9ac76a8 (HEAD -> main)
 Merge: 0d7dfb7 84e436c
 Author: Prem Kumar Ponuthorai <ppremk@demo.com>
 Date: Sun Sep 5 21:49:53 2021 +0200

 Merge branch 'alt'

 diff --cc hello
 index e63164d,562080a..ebc5652
 --- a/hello
 +++ b/hello
 @@@ -1,3 -1,3 +1,3 @@@

140 | Chapter 6: Merges

 hello
 - worlds
 -world
 ++everyone
 Yay!

You should notice two interesting things when you look at a merge commit:

• There is a new, second line in the header that says Merge:. Normally, there’s no•
need to show the parent of a commit in git log or git show, since there is only
one parent and it’s typically the one that comes right after it in the log. But merge
commits typically have two (and sometimes more) parents, and those parents are
important to understanding the merge. Hence, git log and git show always
print the SHA1 of each ancestor.

• The diff of a merge commit is not a normal diff. It is always in the combined•
diff or “conflicted merge” format. A successful merge in Git is simply the combi‐
nation of other changes that already appeared in the history. Thus, showing the
contents of a merge commit shows only the parts that are different from one of
the merged branches, not the entire set of changes. It also tells you the name of
the file in the combined diff format.

Aborting or Restarting a Merge
If you have botched a conflict resolution and want to return to the original conflict
state before trying to resolve it again, use the following:
 $ git checkout -m

This will restore the index with the versions of the file that are marked as conflicted
(the versions of the file you see when you run git ls-files -u).

If you start a merge operation but then decide for some reason that you don’t want to
complete it, Git provides an easy way to abort the operation. Prior to executing the
final git commit on the merge commit, use the following:
 $ git merge --abort

This command restores both your working directory and the index to the state
immediately prior to the git merge command.

If you want to abort or discard the merge after it has finished (i.e., after it has
introduced a new merge commit), use the following command:
 $ git reset --hard ORIG_HEAD

Prior to beginning the merge operation, Git saves your original branch HEAD in the
ORIG_HEAD ref for just this purpose.

Working with Merge Conflicts | 141

You should be very careful here, though. If you did not start the merge with a clean
working directory and index, you could get into trouble and lose any uncommitted
changes you have in your directory.

You can initiate a git merge request with a dirty working directory, but if you
execute git reset --hard, your dirty state prior to the merge is not fully restored.
Instead, the reset loses your dirty state in the working directory area. In other words,
you requested a --hard reset to the HEAD state! (See “Using git reset” on page 194.)

Merge Strategies
So far, our examples have been easy to handle because there are only two branches.
It might seem like Git’s extra complexity of directed acyclic graph (DAG)–shaped
history and long, hard-to-remember commit IDs isn’t really worth it. And maybe it
isn’t for such a simple case. So let’s look at something a little more complicated.

Imagine that instead of just one person working on your repository, there are three.
To keep things simple, suppose that each developer—Alice, Bob, and Cal—is able
to contribute changes as commits on three separate eponymous branches within a
shared repository.

Because the developers are all contributing to separate branches, let’s leave it up to
one person, Alice, to manage the integration of the various contributions. In the
meantime, each developer is allowed to leverage the development of the others by
directly incorporating or merging a coworker’s branch, as needed.

Eventually, the developers develop a repository with a commit history, as shown in
Figure 6-3.

Figure 6-3. Potential merge setup

Imagine that Cal started the project and Alice joined in. Alice worked on it for a
while, then Bob joined in. In the meantime, Cal has been working away on his own
version.

142 | Chapter 6: Merges

Eventually, Alice merged in Bob’s changes, and Bob kept on working without merging
Alice’s changes back into his tree. There are now three different branch histories
(Figure 6-4).

Figure 6-4. After Alice merges in Bob

Let’s imagine that Bob wants to get Cal’s latest changes. The diagram is looking pretty
complicated now, but this part is still relatively easy. Trace up the tree from Bob,
through Alice, until you reach the point where she first diverged from Cal. That’s A,
the merge base between Bob and Cal. To merge from Cal, Bob needs to take the set
of changes between the merge base, A, and Cal’s latest, Q, and three-way-merge them
into his own tree, yielding commit K. The result is the history shown in Figure 6-5.

Figure 6-5. After Bob merges in Cal

You can always find the merge base between two or more branches
by using git merge-base. It is possible for there to be more than
one equally valid merge base for a set of branches.

So far, so good.

Merge Strategies | 143

Alice now decides that she, too, wants to get Cal’s latest changes, but she doesn’t
realize Bob has already merged Cal’s tree into his. So she just merges Cal’s tree into
hers. That’s another easy operation because it’s obvious where she diverged from Cal.
The resulting history is shown in Figure 6-6.

Figure 6-6. After Alice merges in Cal

Next, Alice realizes that Bob has done some more work, L, and wants to merge from
him again. What’s the merge base (between L and E) this time?

Unfortunately, the answer is ambiguous. If you trace all the way back up the tree,
you might think the original revision from Cal is a good choice. But that doesn’t
really make sense: both Alice and Bob now have Cal’s newest revision. If you ask for
the differences from Cal’s original revision to Bob’s latest version, it will also include
Cal’s newer changes, which Alice already has, and which is likely to result in a merge
conflict.

What if you use Cal’s latest revision as the base? That’s better but still not quite right:
if you take the diff from Cal’s latest to Bob’s latest, you get all of Bob’s changes. But
Alice already has some of Bob’s changes, so you’ll probably get a merge conflict there
too.

And what if you use the version that Alice last merged from Bob, version J? Creating
a diff from there to Bob’s latest will include only the newest changes from Bob, which
is what you want. But it will also include the changes from Cal, which Alice already
has!

What to do?

This kind of situation is called a criss-cross merge because changes have been merged
back and forth between branches. If changes moved in only one direction (e.g., from
Cal to Alice to Bob but never from Bob to Alice or from Alice to Cal), then merging
would be simple. Unfortunately, life isn’t always that easy.

The Git developers originally wrote a straightforward mechanism to join two
branches with a merge commit, but scenarios like the one just described soon led
them to realize that a more clever approach was needed. Hence, the developers

144 | Chapter 6: Merges

1 Yes, you can force Git to create one anyway by using the --no-ff option in the fast-forward case. However,
you should fully understand why you want to do so.

generalized, parameterized, and introduced alternate, configurable merge strategies
to handle different scenarios.

Let’s look at the various strategies and see how to apply each one.

Degenerate Merges
There are two common degenerate scenarios that lead to merges, and they are called
already up-to-date and fast-forward. Because neither of these scenarios actually intro‐
duces a new merge commit after performing the git merge,1 some might consider
them not to be true merge strategies.

Already up-to-date
When all the commits from the other branch (its HEAD) are already present in
your target branch, even if it has advanced on its own, the target branch is said to
be already up-to-date. As a result, no new commits are added to your branch.

For example, if you perform a merge and immediately follow it with the exact
same merge request, then you will be told that your branch is already up-to-date:

 # Show that alt is already merged into main
 $ git show-branch
 ! [alt] One world
 * [main] Merge branch 'alt'
 --
 - [main] Merge branch 'alt'
 +* [alt] One world

 # Try to merge alt into main again
 $ git merge alt
 Already up to date.

Figures 6-7, 6-8, and 6-9 illustrate what we have just explained.

Figure 6-7. Merge between two branches

Merge Strategies | 145

Figure 6-8. Merge commit

Figure 6-9. Merge commit again (already up-to-date)

Fast-forward
A fast-forward merge happens when your HEAD branch is already fully present
and represented in the other branch. This is the inverse of the already up-to-date
case.

Because your HEAD is already present in the other branch (likely due to a common
ancestor), Git simply tacks onto your HEAD the new commits from the other
branch. Git then moves your branch HEAD to point to the final, new commit.
Naturally, the index and your working directory are also adjusted accordingly to
reflect the new, final commit state.

The fast-forward case is particularly common on tracking branches because they
simply fetch and record the remote commits from other repositories. Your local
tracking branch HEADs will always be fully present and represented because that is
where the branch HEAD was after the previous fetch operation. See Chapter 11 for
more details.

Figures 6-10 and 6-11 visualize the concept we just discussed.

146 | Chapter 6: Merges

Figure 6-10. Before fast-forward merge

Figure 6-11. After fast-forward merge

It is important for Git to handle these cases without introducing actual commits.
Imagine what would happen in the fast-forward case if Git created a commit. Merg‐
ing branch A into B would first produce Figure 6-12. Then merging B into A would
produce Figure 6-13, and merging back again would yield Figure 6-14.

Figure 6-12. First nonconverging merge

Figure 6-13. Second nonconverging merge

Figure 6-14. Third nonconverging merge

Merge Strategies | 147

Each new merge is a new commit, so the sequence will never converge on a steady
state and reveal that the two branches are identical.

Normal Merges
The following merge strategies produce a final commit, known as the merge commit,
which is added to your current branch and represents the combined state of the
merge:

Resolve
The resolve strategy operates on only two branches, locating the common ances‐
tor as the merge basis and performing a direct three-way merge by applying the
changes from the merge base to the tip of the other branch HEAD onto the current
branch.

Recursive
The recursive strategy is similar to the resolve strategy in that it can join only two
branches at once. However, it is designed to handle the scenario where there is
more than one merge base between the two branches. In this case, Git forms a
temporary merge of all the common merge bases and then uses that as the base
from which to derive the resulting merge of the two given branches via a normal
three-way merge algorithm.

The temporary merge basis is thrown away, and the final merge state is commit‐
ted on your target branch.

Octopus
The octopus strategy is specifically designed to merge more than two branches
simultaneously. Conceptually, it is fairly simple; internally, it calls the recursive
merge strategy multiple times, once for each branch you are merging.

However, this strategy cannot handle a merge that requires any form of conflict
resolution that would necessitate user interaction. In such a case, you are forced
to do a series of normal merges, resolving the conflicts one step at a time.

Merge-ort
The merge-ort strategy implements the recursive strategy, but internally it is
a complete rewrite from the ground up. It boasts a significant performance
improvement and resolves some long-standing issues regarding imprecise merge
outcomes.

It does so by caching and reusing internal computational commons when imple‐
menting a merge. The merge-ort strategy also allows developers who are working
in repositories with partial clones to conclude more merge operations without

148 | Chapter 6: Merges

2 That’s the “Zero, One, or Infinity Principle” at work.

having to download the full tree from the upstream repository. We will be
discussing partial clones in Chapter 17.

Recursive merges
A simple criss-cross merge example is shown in Figure 6-15.

Figure 6-15. Simple criss-cross merge

The nodes a and b are both merge bases for a merge between A and B. Either
one could be used as the merge base and yield reasonable results. In this case, the
recursive strategy would merge a and b into a temporary merge base, using that as the
merge base for A and B.

Because a and b could have the same problem, merging them could require another
merge of still older commits. That is why this algorithm is called recursive.

Octopus merges
The main reasons why Git supports merging multiple branches all at once are for
generality and design elegance. In Git, a commit can have no parents (the initial
commit), one parent (a normal commit), or more than one parent (a merge commit).
Once you have more than one parent, there is no particular reason to limit that
number to only two, so Git data structures support multiple parents.2 The octopus
merge strategy is a natural consequence of the general design decision to allow a
flexible list of commit parents.

Octopus merges look nice in diagrams, so Git users tend to use them as often as
possible. You can just imagine the rush of endorphins a developer gets when merging
six branches of a program into one. Besides looking pretty, octopus merges don’t
actually do anything extra. You could just as easily make multiple merge commits,
one per branch, and accomplish exactly the same thing.

Merge Strategies | 149

The largest known octopus merge to date is between 66 parent
branches, which resulted in a single merge commit in the Linux
kernel code base.

Specialty Merges
There are two special merge strategies that you should be aware of because they can
sometimes help you solve strange problems. Feel free to skip this section if you don’t
have a strange problem. The two special strategies are ours and subtree.

These merge strategies each produce a final commit, added to your current branch,
that represents the combined state of the merge:

Ours
The ours strategy merges in any number of other branches, but it actually
discards changes from those branches and uses only the files from the current
branch. The result of an ours merge is identical to the current HEAD, but any other
named branches are also recorded as commit parents. This is useful if you know
you already have all the changes from the other branches but want to combine
the two histories anyway. That is, it lets you record that you have somehow
performed the merge, perhaps directly by hand, and that future Git operations
shouldn’t try to merge the histories again. Git can treat this as a real merge no
matter how it came to be.

Subtree
The subtree strategy merges in another branch, but everything in that branch
is merged into a particular subtree of the current tree. You don’t specify which
subtree; Git determines that automatically.

Ours and subtree merges
You can use these two merge strategies together. For example, once upon a time, the
gitweb program (which is now part of Git) was developed outside the main git.git
repository. But at revision 0a8f4f, its entire history was merged into git.git under
the gitweb subtree. If you wanted to do something similar, you could proceed as
follows:

1. Copy the current files from the gitweb.git project into the gitweb subdirectory1.
of your project.

2. Commit them as usual.2.
3. Pull from the gitweb.git project using the ours strategy:3.

 $ git pull -s ours gitweb.git main

150 | Chapter 6: Merges

https://oreil.ly/m4Kui
https://oreil.ly/m4Kui

You use ours here because you know that you already have the latest version of
the files and you have already put them exactly where you want them (which is
not where the normal recursive strategy would have put them).

4. In the future, you can continue to pull the latest changes from the gitweb.git4.
project using the subtree strategy:
 $ git pull -s subtree gitweb.git main

Because the files already exist in your repository, Git knows automatically which
subtree you put them in and performs the updates without any conflicts.

Applying Merge Strategies
So how does Git know or determine which strategy to use? Or, if you don’t like Git’s
choice, how do you specify a different one?

Git tries to keep the algorithms it uses as simple and inexpensive as possible, so it
first tries using the already up-to-date and fast-forward strategies to eliminate trivial
scenarios, if possible.

If you specify more than one other branch to be merged into your current branch, Git
has no choice but to try the octopus strategy because that is the only one capable of
joining more than two branches in a single merge.

Failing those special cases, Git must use a default strategy that works reliably in all
other scenarios. Originally, resolve was the default merge strategy used by Git.

In criss-cross merge situations such as those described previously, where there is
more than one possible merge base, the resolve strategy works like this: pick one of
the possible merge bases (either the last merge from Bob’s branch or the last merge
from Cal’s branch) and hope for the best. This is actually not as bad as it sounds. It
often turns out that Alice, Bob, and Cal have all been working on different parts of
the code. In that case, Git detects that it’s remerging some changes that are already
in place and just skips duplicate changes, avoiding the conflict. Or, if there are slight
changes that do cause a conflict, at least the conflicts should be fairly easy for a
developer to handle.

Because resolve is no longer Git’s default, if Alice wanted to use it, she would make an
explicit request by explicitly specifying which merge strategy to use via the command:
 $ git merge -s resolve Bob

In 2005, Fredrik Kuivinen contributed the recursive merge strategy. It is more general
than resolve and has been shown to result in fewer conflicts, without fault, on the
Linux kernel. It also handles merges with renames quite well.

Merge Strategies | 151

In the previous example, where Alice wants to merge all of Bob’s work, the recursive
strategy would work like this:

1. Start with the most recent revision from Cal that both Alice and Bob have. In this1.
case, that’s Cal’s most recent revision, Q, which has been merged into both Bob’s
and Alice’s branches.

2. Calculate the diff between that revision and the most recent revision that Alice2.
merged from Bob, and patch that in.

3. Calculate the diff between that combined version and Bob’s latest version, and3.
patch that in.

This method is called recursive because there may be extra iterations, depending on
how many levels of criss-crossing and merge bases Git encounters. And it works. Not
only does the recursive method make intuitive sense, but it has also been proven to
result in fewer conflicts in real-life situations than the simpler resolve strategy. That’s
why recursive is currently the default strategy for git merge.

Of course, no matter which strategy Alice chooses to use, the final history looks the
same (Figure 6-16).

Figure 6-16. Final criss-cross merge history

With recent internal improvements introduced via the new merge-ort strategy,
merge-ort is the default strategy in the latest version of Git.

Merge Drivers
Each of the merge strategies described in this chapter uses an underlying merge
driver to resolve and merge each individual file. A merge driver accepts the names of
three temporary files that represent the common ancestor, the target branch version,
and the other branch version of a file. The driver modifies the target branch version
to have the merged result.

The text merge driver leaves the usual three-way merge markers (<<<<<<<<,
========, and >>>>>>>).

152 | Chapter 6: Merges

The binary merge driver keeps the target branch version of the file and leaves the file
marked as a conflict in the index. Effectively, that forces you to handle binary files by
hand.

The final built-in merge driver, union, simply leaves all the lines from both versions
in the merged file.

Through Git’s attribute mechanism, Git can tie specific files or file patterns to specific
merge drivers. Most text files are handled by the text driver and most binary files
by the binary driver. Yet, for special needs that warrant an application-specific merge
operation, you can create and specify your own custom merge driver and tie it to
your specific files.

If you think you need custom merge drivers, you may want to
investigate custom diff drivers as well!

How Git Thinks About Merges
At first, Git’s automatic merging support seems nothing short of magical, especially
compared to the more complicated and error-prone merging steps needed in other
version control systems.

Let’s take a look at what’s going on behind the scenes to make it all possible.

Merges and Git’s Object Model
In most version control systems, each commit has only one parent. On such a
system, when you merge some_branch into my_branch, you create a new commit on
my_branch with the changes from some_branch. Conversely, if you merge my_branch
into some_branch, this creates a new commit on some_branch containing the changes
from my_branch. Merging branch A into branch B and merging branch B into branch
A are two different operations.

However, the Git designers noticed that each of these two operations results in the
same set of files when you’re done. The natural way to express either operation is
simply to say, “Merge all the changes from some_branch and another_branch into a
single branch.”

In Git, the merge yields a new tree object with the merged files, but it also introduces
a new commit object on only the target branch. After these commands:
 $ git checkout my_branch
 $ git merge some_branch

How Git Thinks About Merges | 153

3 And, by extension, so are all complete repository clones.

the object model looks like Figure 6-17.

Figure 6-17. Object model after a merge

In Figure 6-17, each Cx is a commit object, and each Tx represents the correspond‐
ing tree object. Notice how there is one common merged commit (CZC) that has
both CC and CZ as commit parents, but it has only one resulting set of files repre‐
sented in the TZC tree. The merged tree object symmetrically represents both source
branches equally. But because my_branch was the checked-out branch into which the
merge happened, only my_branch has been updated to show the new commit on it;
some_branch remains where it was.

This is not just a matter of semantics. It reflects Git’s underlying philosophy that all
branches are created equal.3

Squash Merges
Suppose some_branch had contained not just one new commit but 5 or 10 or even
hundreds of commits. In most systems, merging some_branch into my_branch would
involve producing a single diff, applying it as a single patch onto my_branch, and
creating one new element in the history. This is called a squash commit because it
“squashes” all the individual commits into one big change. As far as the history of
my_branch is concerned, the history of some_branch would be lost.

In Git, the two branches are treated as equal, so it’s improper to squash one side or
the other. Instead, the entire history of commits on both sides is retained. As users,

154 | Chapter 6: Merges

you can see from Figure 6-17 that you pay for this complexity. If Git had made a
squash commit, you wouldn’t have to see (or think about) a diagram that diverges
and then rejoins again. The history of my_branch could have been just a straight line.

Git can make squash commits if desired. Just give the --squash
option to git merge or git pull. Beware, however! Squashing
commits will upset Git’s history, and that will complicate future
merges because the squashed comments alter the history of com‐
mits (see Chapter 9).

The added complexity might appear unfortunate, but it is actually quite worthwhile.
For example, this feature means that the git blame and git bisect commands,
discussed in Chapter 9, are much more powerful than equivalents in other systems.
And as you saw with the recursive merge strategy, Git is able to automate very
complicated merges as a result of this added complexity and the resulting detailed
history.

Although the merge operation itself treats both parents as equal,
you can choose to treat the first parent as special when you go
back through the history later. Some commands (e.g., git log and
gitk) support the --first-parent option, which follows only the
first parent of every merge. The resulting history looks much the
same as if you had used --squash on all your merges.

Why Not Just Merge Each Change One by One?
You might be wondering if it would be possible to have it both ways: a simple, linear
history with every individual commit represented. Git could just take all the commits
from some_branch and apply them, one by one, onto my_branch. But that wouldn’t be
the same thing at all.

An important observation about Git’s commit histories is that each revision in the
history is real. (You can read more about treating alternate histories as equal realities
in Chapter 12.)

If you apply a sequence of someone else’s patches on top of your version, you will
create a series of entirely new versions with the union of their changes and yours.
Presumably, you will test the final version as you always would. But what about all
those new, intermediate versions? In reality, those versions never existed: nobody
actually produced those commits, so nobody can say for sure whether they ever
worked.

Git keeps a detailed history so that you can later revisit what your files were like at a
particular moment in the past. If some of your merged commits reflect file versions

How Git Thinks About Merges | 155

that never really existed, then you’ve lost the reason for having a detailed history in
the first place!

This is why Git merges don’t work that way. If you were to ask, “What was it like five
minutes before I did the merge?” the answer would be ambiguous. Instead, you must
ask about either my_branch or some_branch specifically, because both were different
five minutes ago, and Git can give the true answer for each one.

Even though you almost always want the standard history merging behavior, Git can
also apply a sequence of patches (see Chapter 13). This process is called rebasing
and is discussed in Chapter 9. The implications of changing commit histories are
discussed in “Changing Public History” on page 295.

Summary
In this chapter, we began to discuss merges at a very high level. We kept it lightweight
at first by explaining how a merge between two branches takes place, using guided
examples of code snippets before introducing merge conflicts. Resolving a merge
conflict can be straightforward and does not require deep proficiency in Git. All it
requires on your part is a good understanding of how to locate conflicted files and
inspect the conflicts in them—specifically, how you read and understand the conflict
resolution markers and supplement the use of the git diff command (discussed in
the next chapter) to further investigate the conflicting files before providing a resolu‐
tion. These skills are the bare minimum you need to be able to successfully resolve
any conflict in your merge operations. In later parts of the chapter, we discussed the
inner mechanics of how Git keeps track of conflicts and various merge strategies
that Git can apply when combining one or more branches in your repository. That
discussion may have felt a little heavy, but we encourage you to revisit it after you’ve
been exposed to a few merging and conflict resolving use cases in your projects.

156 | Chapter 6: Merges

CHAPTER 7

Diffs

Before we cover the prowess of Git’s diff command, it will be beneficial to quickly
cover the concept of the Unix and Linux diff utilities since the command git diff
can compare files much akin to its Unix and Linux counterparts. A diff is a compact
summary of the differences (hence the name “diff ”) between two items. For example,
given two files, the Unix and Linux diff commands compare the files line by line and
summarize the deviations in a diff, as shown in the following example snippet. More
specifically, the deviations list the required changes to convert one file into the other.
In the example, initial is one version of some prose and rewrite is a subsequent
revision. The -u option produces a unified diff, a standardized format used widely to
share modifications:
 $ cat initial
 Now is the time
 For all good men
 To come to the aid
 Of their country.

 $ cat rewrite
 Today is the time
 For all good men
 And women
 To come to the aid
 Of their country.

 $ diff -u initial rewrite
 --- initial 1867-01-02 11:22:33.000000000 -0500
 +++ rewrite 2000-01-02 11:23:45.000000000 -0500
 @@ -1,4 +1,5 @@
 -Now is the time
 +Today is the time
 For all good men
 +And women
 To come to the aid
 Of their country.

157

Let’s look at the diff in detail. In the header, the original file is denoted by - - - and
the new file by + + +. The @@ line provides line number context for both file versions.
A line prefixed with a minus sign (–) must be removed from the original file to
produce the new file. Conversely, a line with a leading plus sign (+) must be added to
the original file to produce the new file. A line that begins with a space is the same in
both files and is provided by the -u option as context.

By itself, a diff offers no reason or rationale for a change, nor does it justify the
initial or final state. However, a diff offers more than just a digest of how files
differ. It provides a formal description of how to transform one file to the other.
(You’ll find such instructions useful when applying or reverting changes.) In addition,
diff can be extended to show differences among multiple files and entire directory
hierarchies.

The Unix and Linux diff commands can compute the differences between all pairs
of files found in two directory hierarchies. The command diff -r traverses each
hierarchy in tandem, twins files by pathname (say, original/src/main.c and new/src/
main.c), and summarizes the differences between each pair. Using diff -r -u pro‐
duces a set of unified diffs comparing two hierarchies.

Git has its own diff utility and can likewise produce a digest of differences. Moreover,
like Unix’s diff -r, Git can traverse two tree objects and generate a representation of
the variances. But git diff also has its own nuances and powerful features tailored
to the particular needs of Git users. Git uses the Myers diff algorithm developed by
Eugene W. Myers as its comparison algorithm by default.

In this chapter, we’ll cover some of the basics of git diff and some of its special
capabilities. You will learn how to use Git to show editorial changes in your working
directory as well as arbitrary changes between any two commits within your project
history. You will see how Git’s diff can help you make well-structured commits during
your normal development process, and you will learn how to produce Git patches,
which are described in detail in Chapter 13.

Technically, a tree object represents only one directory level in the
repository. It contains information about the directory’s immediate
files and immediate subdirectories, but it does not catalog the com‐
plete contents of all subdirectories. However, because a tree object
references the tree objects for each subdirectory, the tree object at
the root of the project effectively represents the entire project at
a moment in time. Hence, we can paraphrase and say git diff
traverses “two” trees.

158 | Chapter 7: Diffs

https://oreil.ly/6rq3x

Forms of the git diff Command
If you pick two different root-level tree objects for comparison, git diff yields all
the deviations between the two project states. That’s powerful. You could use such a
diff to convert wholesale from one project state to another. For example, if you and a
coworker are developing code for the same project, a root-level diff could effectively
sync the repositories at any time.

There are three basic sources for tree or treelike objects to use with git diff:

• Any tree object anywhere within the entire commit graph•
• Your working directory, also commonly referred to as the working tree when•

discussing Git diffs
• The index or staging directory•

Typically, the trees compared in a git diff command are named via commits,
branch names, or tags, but any commit name discussed in “Identifying Commits”
on page 81 suffices. Also, both the file and directory hierarchies of your working
directory, as well as the complete hierarchy of files staged in the index, can be treated
as trees.

The git diff command along with some options can perform fundamental compar‐
isons. Following are some common examples:

git diff

git diff shows the difference between your working directory and the index.
It exposes what is dirty in your working directory and is thus a candidate to
stage for your next commit. This command does not reveal differences between
what’s in your index and what’s permanently stored in the repository (not to
mention remote repositories you might be working with, which we will cover in
Chapter 11).

git diff --cached commit

This command shows the differences between the staged changes in the index
and the given commit. A common commit for the comparison—and the default if
no commit is specified—is HEAD. With HEAD, this command shows you how your
next commit will alter the current branch. The command git diff --staged
is a synonym for git diff --cached. This command does reveal differences
between what’s in your index and what’s permanently stored in the repository.

Forms of the git diff Command | 159

git diff commit

This form summarizes the differences between your working directory and the
given commit. Common variants of this command name HEAD or a particular
branch name as the commit.

git diff commit1 commit2

If you specify two arbitrary commits, this command displays the differences
between the two. The command ignores the index and working directory, and it
is the workhorse for arbitrary comparisons between two trees that are already in
your repository’s Git object store.

The number of parameters on the command line determines what fundamental form
is used and what is compared. You can compare any two commits or trees. What’s
being compared need not have a direct or even an indirect parent–child relationship.
If you don’t supply a tree object or two, then git diff compares implied sources,
such as your index or working directory.

If you need to compare raw content between blob objects in your
repository’s Git object store, you can do so by executing the com‐
mand git diff blob1 blob2.

Let’s examine how these different forms apply to Git’s object model. The example in
Figure 7-1 shows a project directory with two files. The file file1 has been modified
in the working directory, changing its content from “foo” to “quux.” That change has
been staged in the index using git add file1, but it is not yet committed.

Versions of the file file1 from the working directory, the index, and the HEAD have
been identified. Even though the version of file1 that is in the index, bd71363, is
actually stored as a blob object in the object store, it is indirectly referenced through
the virtual tree object that is the index. Similarly, the HEAD version of the file, a23bf, is
also indirectly referenced through several steps.

This example nominally demonstrates the changes within file1. The solid arrows in
the figure point to the tree or virtual tree objects to remind you that the comparison
is actually based on complete trees and not just on individual files. For motivated
readers, we cover how to reproduce this scenario with code examples in “Simple git
diff Example” on page 163.

160 | Chapter 7: Diffs

Figure 7-1. Various file versions that can be compared

From Figure 7-1, you can see how using git diff without arguments is a good
technique for verifying the readiness of your next commit. As long as that command
emits output, you have edits or changes in your working directory that are not yet
staged. Using a simple git status helps you check pending changes on each file.
If you are satisfied with your work, use git add to stage the file. Once you stage a
changed file, the next git diff no longer yields diff output for that file. In this way,
you can step progressively through each dirty file in your working directory until
the differences disappear, meaning that all files and their changes are staged in your
index. Don’t forget to check for new or deleted files too.

Forms of the git diff Command | 161

At any time during the staging process, the command git diff --cached shows the
complementary changes, or those changes that are already staged in the index that
will be present in your next commit. When you’re finished, git commit captures all
the changes in your index into a new commit. You are not required to stage all the
changes from your working directory for a single commit. In fact, if you find you
have conceptually different changes in your working directory that should be made
in different commits, you can stage one set at a time, leaving the other edits in your
working directory. A commit captures only your staged changes. Repeat the process,
staging the next set of files appropriate for a subsequent commit.

The astute reader might have noticed that, although we discussed four fundamental
forms of the git diff command, only three are highlighted with solid arrows in
Figure 7-1. So, what is the fourth? There is only one tree object represented by your
working directory, and there is only one tree object represented by the index. In the
example, there is one commit in the object store along with its tree. However, the
object store is likely to have many commits named by different branches and tags, all
of which have trees that can be compared with git diff. Thus the fourth form of
git diff simply compares any two arbitrary commits (trees) already stored within
the object store.

In addition to the basic forms of git diff, there are myriad options as well. Here are
a few of the more useful ones:

-M

The -M option detects renames and generates a simplified output that records
the file rename rather than the complete removal and subsequent addition of
the source file. If the rename is not a pure rename but also has some additional
content changes, Git calls those out.

-w and --ignore-all-space
Both -w and --ignore-all-space compare lines without considering changes in
whitespace as significant.

--stat

The --stat option adds statistics about the difference between any two tree
states. It reports in a compact syntax how many lines changed, how many were
added, and how many were elided.

--color

The --color option colorizes the output; a unique color represents each of the
different types of changes present in the diff.

--word-diff=[=mode]

The --word-diff=[=mode] option delineates changed words. If you choose the
mode to be color, the diff output will show changed words using colors for

162 | Chapter 7: Diffs

removal and addition. The default mode is plain, and it shows words as [-
removed words-] and {+ added words +} in the diff output. Additional modes
are described in detail in the git diff manual pages.

--name-only

The --name-only option is useful for quickly reviewing only names of files that
have changed.

--name-status

The --name-status option gives a quick summary of the names and the statuses
of files that have changed. The status is displayed as M for modified, A for added, C
for copied, and D for deleted. These and additional statuses are described in detail
in the git diff manual pages.

--output=file

The --output=file option redirects the output to a specified file instead of to
stdout.

Finally, git diff may be limited to show diffs for a specific set of files or directories.
This is achieved using the path... option. A typical use case for three-dot diffs (…) is
when you are looking at changes made on a feature branch and you need to compare
that branch with the main branch, from which it was created, but the main branch has
already progressed with new changes introduced to it. We will elaborate further on
path limiting in “git diff with Path Limiting” on page 171.

The -a option for git diff does nothing even remotely like the -a
option for git commit. To get both staged and unstaged changes,
use git diff HEAD.

Simple git diff Example
Here we construct the scenario presented in Figure 7-1, run through the scenario,
and watch the various forms of git diff in action. First, let’s set up a simple
repository with two files in it:
 $ mkdir /tmp/diff_example
 $ cd /tmp/diff_example

 $ git init -b main
 Initialized empty Git repository in /tmp/diff_example/.git/

 $ echo "foo" > file1
 $ echo "bar" > file2

 $ git add file1 file2

 $ git commit -m "Add file1 and file2"

Simple git diff Example | 163

 [main (root-commit) 7915072] Add file1 and file2
 2 files changed, 2 insertions(+)
 create mode 100644 file1
 create mode 100644 file2

Next, let’s edit file1 by replacing foo with quux:
 $ echo "quux" > file1

The file1 file has been modified in the working directory but has not been staged.
This state is not the situation depicted in Figure 7-1, but you can still make a
comparison. You should expect output if you compare the working directory with the
index version or the existing HEAD version. However, there should be no difference
between the index and the HEAD because nothing has been staged (in other words, the
current HEAD tree is still staged):
 # diff between working directory versus index
 $ git diff
 diff --git a/file1 b/file1
 index 257cc56..d90bda0 100644
 --- a/file1
 +++ b/file1
 @@ -1 +1 @@
 -foo
 +quux

 # diff between working directory versus HEAD
 $ git diff HEAD
 diff --git a/file1 b/file1
 index 257cc56..d90bda0 100644
 --- a/file1
 +++ b/file1
 @@ -1 +1 @@
 -foo
 +quux

 # diff between the index versus HEAD,
 # produces no output since it is still identical
 $ git diff --cached
 $

Applying the maxim just given, git diff produced output and so file1 has some
dirty changes that could be staged. Let’s do this now:
 $ git add file1

 $ git status
 On branch main
 Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: file1

Here you have exactly duplicated the situation depicted in Figure 7-1. Because file1
is now staged, the working directory and the index are synchronized and should not

164 | Chapter 7: Diffs

show any differences. However, there are now differences between the HEAD version
and both the working directory and the staged version in the index:
 # diff between working directory versus index
 $ git diff

 # diff between working directory versus HEAD
 $ git diff HEAD
 diff --git a/file1 b/file1
 index 257cc56..d90bda0 100644
 --- a/file1
 +++ b/file1
 @@ -1 +1 @@
 -foo
 +quux

 # diff between the index versus HEAD
 $ git diff --cached
 diff --git a/file1 b/file1
 index 257cc56..d90bda0 100644
 --- a/file1
 +++ b/file1
 @@ -1 +1 @@
 -foo
 +quux

If you were to run git commit now, the new commit would capture the staged
changes shown by the last command, git diff --cached (which, as mentioned
before, has the new synonym git diff --staged).

Now let’s add a new scenario because simple diffs are boring. Let’s see what would
happen if you edited file1 before making a commit:
 $ echo "baz" > file1

 # diff between working directory versus index
 $ git diff
 diff --git a/file1 b/file1
 index d90bda0..7601807 100644
 --- a/file1
 +++ b/file1
 @@ -1 +1 @@
 -quux
 +baz

 # diff between working directory versus HEAD
 $ git diff HEAD
 diff --git a/file1 b/file1
 index 257cc56..7601807 100644
 --- a/file1
 +++ b/file1
 @@ -1 +1 @@
 -foo
 +baz

 # diff between the index versus HEAD
 $ git diff --cached
 diff --git a/file1 b/file1
 index 257cc56..d90bda0 100644
 --- a/file1

Simple git diff Example | 165

 +++ b/file1
 @@ -1 +1 @@
 -foo
 +quux

All three diff operations show some form of difference now! But which version will
be committed? Remember, git commit captures the state present in the index. And
what’s in the index? It’s the content revealed by the git diff --cached or git diff
--staged command, or the version of file1 that contains the word quux! Let’s proceed
to commit file1:
 $ git commit -m "quux for the win"
 [main 27f006d] quux for the win
 1 file changed, 1 insertion(+), 1 deletion(-)

Now that the object store has two commits in it, let’s try the general form of the git
diff command:
 # diff between previous HEAD version versus current HEAD version
 $ git diff HEAD^ HEAD
 diff --git a/file1 b/file1
 index 257cc56..d90bda0 100644
 --- a/file1
 +++ b/file1
 @@ -1 +1 @@
 -foo
 +quux

This diff confirms that the previous commit changed file1 by replacing foo with quux.

So is everything synchronized now? No. The working directory copy of file1 contains
baz:
 $ git diff
 diff --git a/file1 b/file1
 index d90bda0..7601807 100644
 --- a/file1
 +++ b/file1
 @@ -1 +1 @@
 -quux
 +baz

Understanding the git diff Output
While we explored the various forms of git diff in action, one thing we did not
talk about yet is how to make sense of the output produced by the command. Let’s
continue from the earlier example to create and edit a new file, file3:
 # add new file3 with five lines
 $ echo -e "Line1 \nLine2 \nLine3 \nLine4 \nLine5" >> file3
 $ cat file3
 Line1
 Line2
 Line3
 Line4

166 | Chapter 7: Diffs

 Line5

 # add file3 to the index
 $ git add file3
 ...

 # edit file3, remove Line3 and add new Line6 and Line7
 ...

 $ cat file3
 Line1
 Line2
 Line4
 Line5
 Line6
 Line7

Figure 7-2 shows the git diff output.

Figure 7-2. git diff output

Following is an explanation of each section of the output:

Source of diff comparison
This block displays the input files the diff is comparing. It is similar to the unified
diff format of the Unix diff tool.

Internal Git object ID of source of diff comparison
This block displays the Git object IDs that are being compared. If you run the
command git ls-files -s, you will notice that the 7e7096e is the abbreviated

Understanding the git diff Output | 167

SHA1 ID of file3’s content in the index. The 56d6bcd is the abbreviated SHA1
ID of the version of file3’s content in your working directory. If you run the
command git hash-object file3, the output will produce the full SHA1 ID,
which you can verify.

Source markers
This block denotes that the original version of the file is marked with - - - and
the modified version of the file is marked with + + +. This will be used to mark
the changes that will be displayed in the diff hunk blocks. Keep in mind that diff
output displays sections of a file that have changes, so these markers are useful to
identify those changes.

Diff hunk headers
Hunk header blocks are enclosed within @@ characters. They follow this format:
@@ oldfile-change-range newfile-change-range @@

The change range follows a format that displays the source marker and start line,
followed by lines of changes:
[-/+]<start-line>,<lines of change>

In our example block, -1,5 +1,6 is interpreted as:
(-)oldfile<starting from line 1>,<5 lines of change>
(+)newfile<starting from line 1>,<6 lines of change>

Diff hunks
Comparison diffs for sections of a file with changes are displayed in this block.
Since our example file is very small, we have only one diff hunk (the diff hunk
includes the hunk header as well). Note that these diff hunks are dynamically
generated as needed and are not stored in the repository. Lines of changes that
are in the old and new files are displayed with a preceding source marker, and
lines without any changes are displayed with a preceding space. In our example,
you can see that the old version of file3 (the version in the index) contains Line1
to Line5 (a total of five lines, starting from the first line at the top, -1,5), and
the new version of file3 (the version in the working directory) contains Line1 to
Line7, excluding Line3 (a total of six lines, starting from the first line at the top,
+1,6).

git diff and Commit Ranges
There are two additional forms of git diff that warrant some explanation, especially
in contrast to git log.

The git diff command supports a double-dot syntax to represent the difference
between two commits. Thus the following two commands are equivalent:

168 | Chapter 7: Diffs

 $ git diff main bug/pr-1
 $ git diff main..bug/pr-1

Unfortunately, the double-dot syntax in git diff means something quite different
from the same syntax in git log, which you learned about in Chapter 4. It’s worth
comparing git diff and git log in this regard because doing so highlights the
relationship of these two commands to changes made in repositories.

Here are some points to keep in mind for the following example:

• git diff doesn’t care about the history of the files it compares, or anything•
about branches.

• git log is extremely conscious of how one file changed to become another—for•
example, when two branches diverged and what happened on each branch.

The log and diff commands perform two fundamentally different operations.
Whereas log operates on a set of commits, diff operates on two different end points.

Imagine the following sequence of events:

1. Someone creates a new branch off the main branch to fix bug pr-1, calling the1.
new branch bug/pr-1.

2. The same developer adds the line “Fix Problem Report 1” to a file in the bug/2.
pr-1 branch.

3. Meanwhile, another developer fixes bug pr-3 in the main branch, adding the line3.
“Fix Problem Report 3” to the same file in the main branch.

In short, one line was added to a file in each branch. If you look at the changes to
the branches at a high level, you can see when the bug/pr-1 branch was launched and
when each change was made:
 $ git show-branch main bug/pr-1
 * [main] Added a bug fix for pr-3.
 ! [bug/pr-1] Fix Problem Report 1
 --
 * [main] Added a bug fix for pr-3.
 + [bug/pr-1] Fix Problem Report 1
 *+ [main^] Added Bob's fixes.

If you type git log -p main..bug/pr-1, you will see one commit because the syntax
main..bug/pr-1 represents all those commits in bug/pr-1 that are not also in main.
The command traces back to the point where bug/pr-1 diverged from main, but it
does not look at anything that happened to main since that point:

git diff and Commit Ranges | 169

 $ git log -p main..bug/pr-1
 commit 8f4cf5757a3a83b0b3dbecd26244593c5fc820ea
 Author: Jon Loeliger <jdl@example.com>
 Date: Wed May 14 17:53:54 2008 -0500

 Fix Problem Report 1

 diff --git a/ready b/ready
 index f3b6f0e..abbf9c5 100644
 --- a/ready
 +++ b/ready
 @@ -1,3 +1,4 @@
 stup
 znill
 frot-less
 +Fix Problem Report 1

In contrast, git diff main..bug/pr-1 shows the total set of differences between
the two trees represented by the heads of the main and bug/pr-1 branches. History
doesn’t matter; only the current state of the files does:
 $ git diff main..bug/pr-1
 diff --git a/ready b/ready
 index f3b6f0e..abbf9c5 100644
 --- a/ready
 +++ b/ready
 @@ -1,4 +1,4 @@
 stup
 znill
 frot-less
 -Fix Problem Report 3
 +Fix Problem Report 1

To paraphrase the git diff output, you can change the file in the main branch to
the version in the bug/pr-1 branch by removing the line “Fix Problem Report 3” and
then adding the line “Fix Problem Report 1” to the file.

As you can see, this diff includes commits from both branches. This may not seem
crucial with this small example, but consider the example in Figure 7-3 with more
expansive lines of development on two branches.

Figure 7-3. git diff larger history

In this case, git log main..maint represents the five individual commits V, W, …, Z.
On the other hand, git diff main..maint represents the differences in the trees at H
and Z, an accumulated 11 commits: C, D, …, H and V, …, Z.

170 | Chapter 7: Diffs

1 d2b3691b61d516a0ad2bf700a2a5d9113ceff0b1

Similarly, both git log and git diff accept the form commit1…commit2 to produce
a symmetrical difference. As before, however, git log commit1…commit2 and git
diff commit1…commit2 yield different results.

As discussed in “Commit Ranges” on page 96, the command git log commit1…
commit2 displays the commits reachable from either commit but not both. Thus git
log main…maint in the previous example would yield C, D, …, H and V, …, Z.

The symmetric difference in git diff shows the differences between a commit that
is a common ancestor (or merge base) of commit1 and commit2. Given the same
genealogy in Figure 7-3, git diff main…maint combines the changes in the commits
V, W, …, Z.

git diff with Path Limiting
By default, the command git diff operates on the entire directory structure rooted
at a given tree object. However, you can leverage the same path-limiting technique
employed by git log to limit the output of git diff to a subset of the repository.

For example, at one point1 in the development of Git’s own repository, git diff
--stat displayed this:
 $ git diff --stat main~5 main
 Documentation/git-add.txt | 2 +-
 Documentation/git-cherry.txt | 6 +++++
 Documentation/git-commit-tree.txt | 2 +-
 Documentation/git-format-patch.txt | 2 +-
 Documentation/git-gc.txt | 2 +-
 Documentation/git-gui.txt | 4 +-
 Documentation/git-ls-files.txt | 2 +-
 Documentation/git-pack-objects.txt | 2 +-
 Documentation/git-pack-redundant.txt | 2 +-
 Documentation/git-prune-packed.txt | 2 +-
 Documentation/git-prune.txt | 2 +-
 Documentation/git-read-tree.txt | 2 +-
 Documentation/git-remote.txt | 2 +-
 Documentation/git-repack.txt | 2 +-
 Documentation/git-rm.txt | 2 +-
 Documentation/git-status.txt | 2 +-
 Documentation/git-update-index.txt | 2 +-
 Documentation/git-var.txt | 2 +-
 Documentation/gitk.txt | 2 +-
 builtin-checkout.c | 7 ++++-
 builtin-fetch.c | 6 ++--
 git-bisect.sh | 29 ++++++++++++--------------
 t/t5518-fetch-exit-status.sh | 37 ++++++++++++++++++++++++++++++++++
 23 files changed, 83 insertions(+), 40 deletions(-)

git diff with Path Limiting | 171

To limit the output to just documentation changes, you could instead use git diff
--stat main~5 main Documentation:
 $ git diff --stat main~5 main Documentation
 Documentation/git-add.txt | 2 +-
 Documentation/git-cherry.txt | 6 ++++++
 Documentation/git-commit-tree.txt | 2 +-
 Documentation/git-format-patch.txt | 2 +-
 Documentation/git-gc.txt | 2 +-
 Documentation/git-gui.txt | 4 ++--
 Documentation/git-ls-files.txt | 2 +-
 Documentation/git-pack-objects.txt | 2 +-
 Documentation/git-pack-redundant.txt | 2 +-
 Documentation/git-prune-packed.txt | 2 +-
 Documentation/git-prune.txt | 2 +-
 Documentation/git-read-tree.txt | 2 +-
 Documentation/git-remote.txt | 2 +-
 Documentation/git-repack.txt | 2 +-
 Documentation/git-rm.txt | 2 +-
 Documentation/git-status.txt | 2 +-
 Documentation/git-update-index.txt | 2 +-
 Documentation/git-var.txt | 2 +-
 Documentation/gitk.txt | 2 +-
 19 files changed, 25 insertions(+), 19 deletions(-)

Of course, you can view the diffs for a single file too:
 $ git diff main~5 main Documentation/git-add.txt
 diff --git a/Documentation/git-add.txt b/Documentation/git-add.txt
 index bb4abe2..1afd0c6 100644
 --- a/Documentation/git-add.txt
 +++ b/Documentation/git-add.txt
 @@ -246,7 +246,7 @@ characters that need C-quoting. `core.quotepath` configuration can be
 used to work this limitation around to some degree, but backslash,
 double-quote and control characters will still have problems.

 -See Also
 +SEE ALSO

 linkgit:git-status[1]
 linkgit:git-rm[1]

In the following example, also taken from Git’s own repository, the -S"string"
searches the past 50 commits of the main branch for changes containing string:
 $ git diff -S"octopus" main~50
 diff --git a/Documentation/RelNotes-1.5.5.3.txt b/Documentation/RelNotes-1.5.5.3.txt
 new file mode 100644
 index 0000000..f22f98b
 --- /dev/null
 +++ b/Documentation/RelNotes-1.5.5.3.txt
 @@ -0,0 +1,12 @@
 +GIT v1.5.5.3 Release Notes
 +==========================
 +
 +Fixes since v1.5.5.2
 +--------------------
 +
 + * "git send-email --compose" did not notice that non-ascii contents
 + needed some MIME magic.

172 | Chapter 7: Diffs

 +
 + * "git fast-export" did not export octopus merges correctly.
 +
 +Also comes with various documentation updates.

Used with -S, often called the pickaxe, Git lists the diffs that contain a change in the
number of times the given string is used in the diff. Conceptually, you can think of
this as “Where is the given string either introduced or removed?” You can find an
example of the pickaxe used with git log in “Using Pickaxe” on page 184.

How Git Derives diffs
Most version control systems, including CVS and SVN, track a series of revisions
and store just the changes between each pair of files. This technique is meant to save
storage space and overhead.

Internally, such systems spend a lot of time thinking about things like “the series of
changes between A and B.” When you update your files from the central repository,
for example, SVN remembers that the last time you updated the file you were at
revision r1095, but now the repository is at revision r1123. Thus the server must
send you the diff between r1095 and r1123. Once your SVN client has these diffs, it
can incorporate them into your working copy and produce r1123. (That’s how SVN
avoids sending you all the contents of all files every time you update.)

To save disk space, SVN also stores its own repository as a series of diffs on the server.
When you ask for the diffs between r1095 and r1123, it looks up all the individual
diffs for each version between those two versions, merges them together into one
large diff, and sends you the result. But Git doesn’t work like that.

In Git, as you’ve seen, each commit contains a tree, which is a list of files contained
by that commit. Each tree is independent of all other trees. Git users still talk about
diffs and patches, of course, because these are still extremely useful. Yet, in Git, a diff
and a patch are derived data, not the fundamental data they are in CVS and SVN.
If you look in the .git directory, you won’t find a single diff; if you look in an SVN
repository, it consists mostly of diffs.

Just as SVN is able to derive the complete set of differences between r1095 and r1123,
Git can retrieve and derive the differences between any two arbitrary states. But SVN
must look at each version between r1095 and r1123, whereas Git doesn’t care about
the intermediate steps.

Each revision has its own tree, but Git doesn’t require those to generate the diff; Git
can operate directly on snapshots of the complete state at each of the two versions.
This simple difference in storage systems is one of the most important reasons why
Git is so much faster than other version control systems.

How Git Derives diffs | 173

Summary
In this chapter, we explained how the git diff command can be a very powerful
and useful tool for comparing changes and the state of files within your repositories
throughout the development phases of your project. If you are familiar with the Unix
and Linux diff utilities, then leveraging Git’s diff command will be much easier. If
this is your first encounter, then we urge you to focus on “Simple git diff Example” on
page 163 followed by “Understanding the git diff Output” on page 166 so that you are
fully acquainted with this tool.

174 | Chapter 7: Diffs

PART III

Intermediate Skills

In Part III, we prepare you with the intermediate skills that are necessary when
working with Git repositories. We begin this part of the book with a discussion about
commits and conclude by introducing you to the concept of remote repositories
before sharing some good practices for managing your repositories.

The history of your repository consists of commits, and at times, you might need to
modify the commit history for valid reasons. Before you can alter commits, you will
need to know how to find them. In Chapter 8, we’ll teach you how to find specific
commits and their metadata. Then, in Chapter 9, we’ll share various techniques for
altering commits, some of them destructive and others nondestructive to your reposi‐
tory’s history. Bear in mind that the skills you learn in this chapter are not limited to
operations that are strictly scoped to altering commits; they can also help you in your
quest to debug or understand how changes came to be in your repositories. Moving
on, in Chapter 10 we’ll discuss how you can stash and unstash temporary changes to
your work, and we’ll discuss the reflog, which keeps a record of supported operations
on every ref or commit you introduce.

Finally, in Chapter 11, we will help you understand how best to collaborate and share
changes when working with multiple people who need access to your repository. We
will also provide some guidance on how to publish your repository and set up a good
structure for it for distributed development.

CHAPTER 8

Finding Commits

Part of a good version control system is the support it provides for “archaeology”
and investigating a repository. Git provides several mechanisms to help you locate
commits that meet certain criteria within your repository.

In this chapter we’ll teach you techniques you can use to find specific commits and
their metadata. We’ll focus on three methods you can leverage to search through
your repository’s commit history. The first method is very robust and is helpful in
locating a single commit satisfying your search criteria. The second method provides
information about commits that introduced changes to a file, and the third method
uses a specific search variation with the regular git log command.

Besides arming you with search skills in Git when working with commits, this
chapter also provides a segue to Chapter 9, where we’ll delve into the topic of altering
the commits you found.

Using git bisect
The git bisect command is a powerful tool for isolating a particular commit based
on essentially arbitrary search criteria. It is well suited to those times when you
discover that something “wrong” or “bad” is affecting your repository and you know
the code had been fine. For example, let’s say you are working on the Linux kernel
and a test boot fails, but you’re positive the boot worked sometime earlier, perhaps
the previous week or at a previous release tag. In this case, your repository has
transitioned from a known “good” state to a known “bad” state.

But when did that transition occur? Which commit caused it to break? That is
precisely the question git bisect is designed to help you answer.

177

The only real search requirement is that, given a checked-out state of your repository,
you are able to determine whether it does or does not meet your search requirement.
In this case, you have to be able to answer the question, “Does the version of the
checked-out kernel build and boot?” You also have to know a good and a bad version
of the commit before starting so that the search will be bounded. In short, you should
not be providing an incorrect range of commits in your search requirement.

The git bisect command internally applies a binary search algorithm when exe‐
cuted; the command systematically chooses a new commit in an ever-decreasing
range bounded by good behavior at one end and bad behavior at the other end.
Eventually, this narrowing range will pinpoint the one commit that introduced the
faulty behavior. Figure 8-1 provides an overarching view of this concept.

Figure 8-1. Git bisect range revision concept

When in bisect mode, there is no need for you to do anything more than provide
an initial good and bad commit and then repeatedly answer the question, “Does this
version work?”

To start, you first need to identify a good commit and a bad commit. In practice, the
bad version is often your current HEAD because that’s where you were working when
you suddenly noticed something was wrong or were assigned a bug to fix.

178 | Chapter 8: Finding Commits

Finding an initial good version can be a bit difficult because it’s usually buried in
your history somewhere. You can probably name or guess some version back in the
history of the repository that you know works correctly. This may be a tagged release,
like v2.6.25, or some commit 100 revisions ago, like main~100, on your main branch.
Ideally, it is close to your bad commit (main~25 is better than main~100) and not
buried too far in the past. In any event, you need to know or be able to verify that it is,
in fact, a good commit.

It is essential that you start the git bisect process from a clean working directory
and that your working directory points at the top-level directory of your project.
The process necessarily adjusts your working directory to contain various versions of
your repository. Starting with a dirty work space is asking for trouble; your working
directory could easily be lost. If you have any working changes, you can stash those
temporarily. We will discuss stashing in Chapter 10.

Using a clone of the Linux kernel in our example, let’s tell Git to begin a search:
 $ cd linux-2.6
 $ git bisect start

After initiating a bisection search, Git enters bisect mode, setting up some state infor‐
mation for itself. Git employs a detached HEAD to manage the currently checked-out
version of the repository. This detached HEAD is essentially an anonymous branch that
can be used to bounce around within the repository and point to different revisions
as needed.

We’ve decided to leverage an already well-crafted example of git
bisect using an antiquated version of the Linux kernel. For the
curious reader who would like to duplicate this example, HEAD is
commit 49fdf6785fd660e18a1eb4588928f47e9fa29a9a here.

Once the search has begun, tell Git which commit is bad. Because this is typically
your current version, you can simply default the revision to your current HEAD.
 # Tell git the HEAD version is broken
 $ git bisect bad

Similarly, tell Git which version works:
 $ git bisect good v2.6.27
 Bisecting: 3857 revisions left to test after this
 [cf2fa66055d718ae13e62451bb546505f63906a2] Merge branch 'for_linus'
 of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-2.6

Identifying a good and bad version delineates a range of commits over which a
good-to-bad transition occurs. At each step along the way, Git will tell you how many

Using git bisect | 179

revisions are in that range. Git also modifies your working directory by checking out
a revision that is roughly midway between the good and bad end points. It is now up
to you to answer the question, “Is this version good or bad?” Each time you answer
this question, Git narrows the search space in half, identifies a new revision, checks it
out, and repeats the “good or bad?” question.

Suppose this version is good:
 $ git bisect good
 Bisecting: 1939 revisions left to test after this
 [2be508d847392e431759e370d21cea9412848758] Merge git://git.infradead.org/mtd-2.6

Notice that 3,857 revisions have been narrowed down to 1,939. Let’s do a few more:
 $ git bisect good
 Bisecting: 939 revisions left to test after this
 [b80de369aa5c7c8ce7ff7a691e86e1dcc89accc6] 8250: Add more OxSemi devices

 $ git bisect bad
 Bisecting: 508 revisions left to test after this
 [9301975ec251bab1ad7cfcb84a688b26187e4e4a] Merge branch 'genirq-v28-for-linus'
 of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

In a perfect bisection run, it takes log2 of the original number of revision steps to
narrow down to just one commit.

Here’s what we get after another good and bad answer:
 $ git bisect good
 Bisecting: 220 revisions left to test after this
 [7cf5244ce4a0ab3f043f2e9593e07516b0df5715] mfd: check for
 platform_get_irq() return value in sm501

 $ git bisect bad
 Bisecting: 104 revisions left to test after this
 [e4c2ce82ca2710e17cb4df8eb2b249fa2eb5af30] ring_buffer: allocate
 buffer page pointer

Throughout the bisection process, Git maintains a log of your answers along with
their commit IDs:
 $ git bisect log
 git bisect start
 # bad: [49fdf6785fd660e18a1eb4588928f47e9fa29a9a] Merge branch
 'for-linus' of git://git.kernel.dk/linux-2.6-block
 git bisect bad 49fdf6785fd660e18a1eb4588928f47e9fa29a9a
 # good: [3fa8749e584b55f1180411ab1b51117190bac1e5] Linux 2.6.27
 git bisect good 3fa8749e584b55f1180411ab1b51117190bac1e5
 # good: [cf2fa66055d718ae13e62451bb546505f63906a2] Merge branch 'for_linus'
 of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-2.6
 git bisect good cf2fa66055d718ae13e62451bb546505f63906a2
 # good: [2be508d847392e431759e370d21cea9412848758] Merge
 git://git.infradead.org/mtd-2.6
 git bisect good 2be508d847392e431759e370d21cea9412848758
 # bad: [b80de369aa5c7c8ce7ff7a691e86e1dcc89accc6] 8250: Add more
 OxSemi devices
 git bisect bad b80de369aa5c7c8ce7ff7a691e86e1dcc89accc6

180 | Chapter 8: Finding Commits

1 You can generate a logfile by supplying the git bisect log command.

 # good: [9301975ec251bab1ad7cfcb84a688b26187e4e4a] Merge branch
 'genirq-v28-for-linus' of
 git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
 git bisect good 9301975ec251bab1ad7cfcb84a688b26187e4e4a
 # bad: [7cf5244ce4a0ab3f043f2e9593e07516b0df5715] mfd: check for
 platform_get_irq() return value in sm501
 git bisect bad 7cf5244ce4a0ab3f043f2e9593e07516b0df5715

If you get lost during the process, or if you just want to start over for any reason,
type git bisect replay using the logfile1 as input. If needed, this is an excellent
mechanism to back up one step in the process and explore a different path.

Let’s narrow down the defect with five more “bad” answers:
 $ git bisect bad
 Bisecting: 51 revisions left to test after this
 [d3ee6d992821f471193a7ee7a00af9ebb4bf5d01] ftrace: make it
 depend on DEBUG_KERNEL

 $ git bisect bad
 Bisecting: 25 revisions left to test after this
 [3f5a54e371ca20b119b73704f6c01b71295c1714] ftrace: dump out
 ftrace buffers to console on panic

 $ git bisect bad
 Bisecting: 12 revisions left to test after this
 [8da3821ba5634497da63d58a69e24a97697c4a2b] ftrace: create
 _mcount_loc section

 $ git bisect bad
 Bisecting: 6 revisions left to test after this
 [fa340d9c050e78fb21a142b617304214ae5e0c2d] tracing: disable
 tracepoints by default

 $ git bisect bad
 Bisecting: 2 revisions left to test after this
 [4a0897526bbc5c6ac0df80b16b8c60339e717ae2] tracing: tracepoints, samples

You can use the git bisect visualize command to visually inspect the set of
commits still within the range of consideration. Git uses the graphical tool gitk if the
DISPLAY environment variable is set. If not, then Git will use git log instead. In that
case, --pretty=oneline might be useful too:
$ git bisect visualize --pretty=oneline

 fa340d9c050e78fb21a142b617304214ae5e0c2d tracing: disable tracepoints
 by default
 b07c3f193a8074aa4afe43cfa8ae38ec4c7ccfa9 ftrace: port to tracepoints
 0a16b6075843325dc402edf80c1662838b929aff tracing, sched: LTTng
 instrumentation - scheduler
 4a0897526bbc5c6ac0df80b16b8c60339e717ae2 tracing: tracepoints, samples
 24b8d831d56aac7907752d22d2aba5d8127db6f6 tracing: tracepoints,
 documentation
 97e1c18e8d17bd87e1e383b2e9d9fc740332c8e2 tracing: Kernel Tracepoints

Using git bisect | 181

2 No, this commit did not necessarily introduce a problem. The “good” and “bad” answers were fabricated and
landed here.

The current revision under consideration is roughly in the middle of the range:
 $ git bisect good
 Bisecting: 1 revisions left to test after this
 [b07c3f193a8074aa4afe43cfa8ae38ec4c7ccfa9] ftrace: port to tracepoints

When you finally test the last revision and Git has isolated the one revision that
introduced the problem,2 it’s displayed:
 $ git bisect good
 fa340d9c050e78fb21a142b617304214ae5e0c2d is first bad commit
 commit fa340d9c050e78fb21a142b617304214ae5e0c2d
 Author: Ingo Molnar <mingo@elte.hu>
 Date: Wed Jul 23 13:38:00 2008 +0200

 tracing: disable tracepoints by default

 while it's arguably low overhead, we don't enable new features by default.

 Signed-off-by: Ingo Molnar <mingo@elte.hu>

 :040000 040000 4bf5c05869a67e184670315c181d76605c973931
 fd15e1c4adbd37b819299a9f0d4a6ff589721f6c M init

The method we discussed is a little tedious and can be painful to iterate over a range
of revisions to pinpoint the commit that actually borked your repository. Thankfully,
Git is able to execute the same operation with a script or command as a shortcut to
save us some time when dealing with large revisions to hunt for the culprit commit.
Here is how you can achieve the same:
 # git bisect start <bad-commit-SHA> <good-commit-SHA>
 $ git bisect start HEAD v2.6.27

 $ git bisect run <command>
 ...
 ...
 ...
 fa340d9c050e78fb21a142b617304214ae5e0c2d is first bad commit
 commit fa340d9c050e78fb21a142b617304214ae5e0c2d
 Author: Ingo Molnar <mingo@elte.hu>
 Date: Wed Jul 23 13:38:00 2008 +0200

 tracing: disable tracepoints by default

 while it's arguably low overhead, we don't enable new features by default.

 Signed-off-by: Ingo Molnar <mingo@elte.hu>

 :040000 040000 4bf5c05869a67e184670315c181d76605c973931
 fd15e1c4adbd37b819299a9f0d4a6ff589721f6c M init

182 | Chapter 8: Finding Commits

In the preceding example, command can be a script you can execute to tell you whether
the currently checked-out version of the code is in a good state or a bad state.
Specifically following our example, the script should evaluate if we can boot without
failure.

The script needs to exit with code 0 if the current state of the source code is good and
should exit with a code between 1 and 127, except for 125, if the current state of the
code is bad.

Finally, when your bisection run is complete and you are finished with the bisection
log and the saved state, it is vital that you tell Git that you have finished. As you may
recall, the whole bisection process is performed on a detached HEAD:
 $ git branch
 * (no branch, bisect started on main)
 main

 $ git bisect reset
 Previous HEAD position was <COMMIT-SHA1> ...
 Switched to branch "main"

 $ git branch
 * main

Running git bisect reset places you back on your original branch.

You can replace the keywords bad and good with terms that better
reflect your search criteria (e.g., if you were performing perfor‐
mance regressions). For this you will need to supply the options --
term-new and --term-old with the git bisect start command
as follows:
git bisect start --term-old fast --term-new slow
git bisect fast
git bisect slow

Using git blame
Another tool you can use to help identify a particular commit is git blame. This
command tells you who last modified each line of a file and which commit made the
change:
$ git blame -L 35, init/version.c

4865ecf1 (Serge E. Hallyn 2006-10-02 02:18:14 -0700 35) },
^1da177e (Linus Torvalds 2005-04-16 15:20:36 -0700 36) };
4865ecf1 (Serge E. Hallyn 2006-10-02 02:18:14 -0700 37) EXPORT_SYMBOL_GPL(init_uts_ns);
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 38)
c71551ad (Linus Torvalds 2007-01-11 18:18:04 -0800 39) /* FIXED STRINGS!
 Don't touch! */
c71551ad (Linus Torvalds 2007-01-11 18:18:04 -0800 40) const char linux_banner[] =
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 41) "Linux version "
 UTS_RELEASE "

Using git blame | 183

3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 42) (" LINUX_COMPILE_BY "@"
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 43) LINUX_COMPILE_HOST ")
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 44) (" LINUX_COMPILER ")
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 45) " UTS_VERSION "\n";
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 46)
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 47) const char linux_proc_banner[] =
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 48) "%s version %s"
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 49) " (" LINUX_COMPILE_BY
 "@"
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 50) LINUX_COMPILE_HOST ")"
3eb3c740 (Roman Zippel 2007-01-10 14:45:28 +0100 51) " (" LINUX_COMPILER ")
 %s\n";

The -L option allows you to specify ranges when used with the git
blame command. Here’s an example of how to execute the option:
git blame -L start-line-no,end-line-no.

Most Git clients today have extensions built in that display the git blame output for
each line of a file by default, when open in a text editor window. This helps you to
understand who made the last change to the file.

If you are interested in knowing who modified a specific file within a recent time
frame, you can limit the range via the <revisions range> option of the git blame
command as follows:
 $ git blame --since=1.weeks -- file

Using Pickaxe
The -S option to git log is called pickaxe. That’s brute-force archeology for you.

Whereas git blame tells you about the current state of a file, git log -Sstring
searches back through the history of a file’s diffs for the given string. By searching
the actual diffs between revisions, this command can find commits that perform a
change in both additions and deletions:
 $ git log -Sinclude --pretty=oneline --abbrev-commit init/version.c
 cd354f1... [PATCH] remove many unneeded #includes of sched.h
 4865ecf... [PATCH] namespaces: utsname: implement utsname namespaces
 63104ee... kbuild: introduce utsrelease.h
 1da177e... Linux-2.6.12-rc2

In the preceding code, each commit listed on the left (cd354f1, etc.) will either add
or delete lines that contain the word include. Be careful, though. If a commit both
adds and subtracts exactly the same number of instances of lines with your key word,
that won’t be shown. The commit must have a change in the number of additions and
deletions in order to count.

184 | Chapter 8: Finding Commits

Using the option -G with the git log command will also show
commits that match a specified regular expression, regardless of
whether the number of additions or removals is balanced or not.

Summary
This chapter was very concise and discussed three specific methods you can use to
find the commits that led to certain outcomes in your project. Whether the outcome
is a bug, a performance regression, or even a compilation error, a natural next step
will be for you to figure out how to fix the situation. The learnings you take from here
are often used in combination with skills needed to alter commits, something we will
discuss in the next chapter.

Summary | 185

1 If you have not pushed your commit to a remote repository, then that sensitive data is present only in your
local repository. You still have the option to alter the commit and purge unreferenced commits from your
local repository.

CHAPTER 9

Altering Commits

A commit records the history of your work and keeps your changes sacrosanct. Git
provides several tools and commands specifically designed to help you modify and
improve the commit history catalogued within your repository.

There are many valid reasons why you might modify or rework a commit or your
overall commit sequence. Here are a few examples:

• You can fix a problem before it becomes a legacy issue.•
• You can decompose a large, sweeping change into a number of small, thematic•

commits. Conversely, you can combine individual changes into a larger commit.
• You can incorporate review feedback and suggestions throughout the develop‐•

ment lifecycle of your project.
• You can reorder commits into a sequence that doesn’t break a build requirement.•
• You can order commits into a more logical sequence.•
• You can remove debug code that was committed accidentally.•
• You can remove sensitive data in code that was committed “accidentally.”1•

As you’ll see in Chapter 11, which explains how to share a repository, there are many
more reasons to change commits prior to publishing your repository.

For this chapter, we will discuss the philosophy of altering commit histories, its
repercussions, and various tooling Git provides for us to be able to alter either a series
or a specific commit in our repositories’ commit history.

187

Remember, what gets committed in Git stays in Git (the commit
history)! As such, you will need to be cautious of how changes per‐
taining to sensitive data in code are to be tracked or even version-
controlled to avoid trivial alterations to your commits resulting in
repository history rewrites.

Philosophy of Altering Commit History
When it comes to manipulating the development history, there are several schools of
thought. One philosophy might be termed realistic history: every commit is retained
and nothing is altered.

One variant of this is known as a fine-grained realistic history, where you commit
every change as soon as possible, ensuring that each and every step is saved for
posterity. Another option is didactic realistic history, where you take your time and
commit only your best work at convenient and suitable moments.

Given the opportunity to adjust the history—possibly cleaning up a bad intermediate
design decision or rearranging commits into a more logical flow—you can create a
more “idealistic” history.

In reality, development moves at a fast pace. So, in this chapter, we’ll start with our
initial commit, and then we’ll progressively add commits—including feature addi‐
tions, typo fixes, and fixes from continuous integration/continuous delivery (CI/CD)
system outputs, all not necessarily done in a sequenced order. All of this leaves our
repo commit history in a messy, uncurated state. What we really want is for our
repositories to have a well-structured, curated commit history.

We like to think of this as keeping a journal versus writing a book. In a journal, you
record how things happened. The raw details narrate what actually took place from
day to day. A book, on the other hand, goes through a few rounds of editing and
reviews over time before a final version is published; it’s a structured narrative of how
things came to be. Keep this analogy in mind as you work your way through the
chapter, as it will help you decide which method is right for your projects.

As a developer, you may find value in the full, fine-grained, realistic history because
it might provide archaeological details regarding how some good or bad ideas devel‐
oped. A complete narrative may provide insight into the introduction of a bug or
explicate a meticulous bug fix. In fact, an analysis of the history may even yield
insight into how a developer or team of developers works and how the development
process can be improved.

Many of those details might be lost if a revised history removes intermediate steps.
Was a developer able to simply intuit such a good solution? Or did it take several
iterations of refinement? What is the root cause of a bug? If the intermediate steps are
not captured in the commit history, answers to those types of questions may be lost.

188 | Chapter 9: Altering Commits

https://oreil.ly/PThXB

On the other hand, having a clean history showing well-defined steps, each with
logical forward progress, can often be a joy to read and a pleasure to work with.
There is, moreover, no need to worry about the vagaries of a possibly broken or
suboptimal step in the repository history. Also, other developers reading the history
may thereby learn a better development technique and style.

So is a detailed realistic history without information loss the best approach? Or is a
clean history better? Perhaps an intermediate representation of the development is
warranted. Or, with a clever use of Git branches, perhaps you could represent both a
fine-grained realistic history and an idealized history in the same repository.

Git gives you the ability to clean up the actual history and turn it into a more ideal‐
ized or cleaner one before it is published or committed to public record. Whether you
choose to do so, to keep a detailed record without alteration, or to pick some middle
ground is entirely up to you and your project policies.

Caution About Altering History
As a general guideline, you should feel free to alter and improve your repository
commit history as long as no one has obtained a copy of your repository. Or, to be
more pedantic, you can alter a specific branch of your repository as long as no one
has a copy of that branch. The notion to keep in mind is you shouldn’t rewrite, alter,
or change any part of a branch that’s been made available and might be present in a
shared repository.

With the emergence of pull and merge requests on popular Git
hosting platforms, you are presented with a variety of options
on how specific feature branch histories can be rewritten, even if
the feature branch is published. In most situations, the owner or
author of this feature branch is a single developer, thus providing
the freedom to rewrite commit history for the published feature
branch. Of course, if another developer has checked out that spe‐
cific feature branch, they have done so at their own risk, which may
result in issues when reconciling changes.

For example, let’s say you’ve worked on your main branch and made commits A
through D available to another developer, as shown in Figure 9-1. Once you make
your development history available to another developer, that chronicle is known as a
published history.

Caution About Altering History | 189

Figure 9-1. Your published history

Let’s say you then do further development and produce new commits W through Z as
unpublished history on the same branch. This is pictured in Figure 9-2.

Figure 9-2. Your unpublished history

In this situation, you should be very careful to leave commits earlier than W alone.
However, until you republish your main branch, there is no reason you can’t modify
commits W through Z. This could include reordering, combining, and removing one
or more commits or, obviously, adding even more commits as new development.

You might end up with a new and improved commit history, as depicted in Fig‐
ure 9-3. In this example, commits X and Y have been combined into one new commit;
commit W has been slightly altered to yield a new, similar commit, W'; commit Z has
been moved earlier in the history; and a new commit, P, has been introduced.

The following sections explore techniques to help you alter and improve your com‐
mit history. It is for you to judge whether the new history is better, when the history
is good enough, and when the history is ready to be published.

190 | Chapter 9: Altering Commits

Figure 9-3. Your new history

Using git revert
When executed, the git revert commit command applies the inverse of the given
commit (where the commit represents a snapshot of your repository at a moment in
time). Generally, this command is used to introduce a new commit that reverses the
effects of a given commit.

The revert doesn’t alter the existing history within a repository. Instead, it adds
a new commit to the history. Thus this command is typically regarded as a safe
command to use when altering the commits of a shared repository.

A common application for git revert is to undo the effects of a commit that is
buried, perhaps deeply, in the history of a branch. In Figure 9-4, a history of changes
has been built up on the main branch. For some reason, perhaps through testing,
commit D has been deemed faulty.

Figure 9-4. Before simple git revert

One way to fix the situation is to make edits to undo the effects of D and then commit
the reversal directly. You might note in your commit message that the purpose of this
commit is to revert the changes that were caused by the earlier commit.

An easier approach is to simply run git revert:
 $ git revert main~3 # commit D

Using git revert | 191

The result looks like Figure 9-5, where commit D' is the inverse of commit D.

Figure 9-5. After simple git revert

Changing the HEAD Commit
One of the easiest ways to alter the most recent commit on your current branch
is by using git commit --amend. Typically, amend implies that the commit has
fundamentally the same content but some aspect requires adjustment or tidying.
The actual commit object that’s reintroduced into the object store will, of course, be
different.

A frequent use of git commit --amend is to fix typos right after a commit. However,
this is not the only use. As with any commit, this command can amend any file or
files in the repository and can add or delete a file as part of the new commit.

As with a normal git commit command, git commit --amend prompts you with an
editor session in which you may also alter the commit message.

For example, suppose we were working on a speech (yes, we do version-control our
speeches) and made the following recent commit:
 $ git show
 commit 0ba161a94e03ab1e2b27c2e65e4cbef476d04f5d
 Author: Jon Loeliger <jdl@example.com>
 Date: Thu Jun 26 15:14:03 2008 -0500

 Initial speech

 diff --git a/speech.txt b/speech.txt
 new file mode 100644
 index 0000000..310bcf9
 --- /dev/null
 +++ b/speech.txt
 @@ -0,0 +1,5 @@
 +Three score and seven years ago
 +our fathers brought forth on this continent,
 +a new nation, conceived in Liberty,
 +and dedicated to the proposition
 +that all women are created equal.

192 | Chapter 9: Altering Commits

At this point, the commit is stored in Git’s object repository, albeit with small errors
in the prose. To make corrections, you could simply edit the file again and make a
second commit. That would leave a history like this:
 $ git show-branch --more=5
 [main] Fix timeline typo
 [main^] Initial speech

However, if you wish to leave a slightly cleaner commit history in your repository,
then you can alter this commit directly and replace it. To do this, fix the file in your
working directory. Correct the typos, and add or remove files as needed. As with any
commit, update the index with your changes using commands such as git add or
git rm. Then issue the git commit --amend command:
 # edit speech.txt as needed.

 $ git diff
 diff --git a/speech.txt b/speech.txt
 index 310bcf9..7328a76 100644
 --- a/speech.txt
 +++ b/speech.txt
 @@ -1,5 +1,5 @@
 -Three score and seven years ago
 +Four score and seven years ago
 our fathers brought forth on this continent,
 a new nation, conceived in Liberty,
 and dedicated to the proposition
 -that all women are created equal.
 +that all women and men are created equal.

 $ git add speech.txt

 $ git commit --amend

 # Also edit the "Initial speech" commit message if desired
 # In this example we change it a bit...

 $ git show-branch --more=5
 [main] Initial speech that sounds familiar.

 $ git show
 commit 47d849c61919f05da1acf983746f205d2cdb0055
 Author: Jon Loeliger <jdl@example.com>
 Date: Thu Jun 26 15:14:03 2008 -0500

 Initial speech that sounds familiar.

 diff --git a/speech.txt b/speech.txt
 new file mode 100644
 index 0000000..7328a76
 --- /dev/null
 +++ b/speech.txt
 @@ -0,0 +1,5 @@
 +Four score and seven years ago
 +our fathers brought forth on this continent,
 +a new nation, conceived in Liberty,
 +and dedicated to the proposition
 +that all women and men are created equal.

Changing the HEAD Commit | 193

This command can also edit the meta-information on a commit. For example, by
specifying the --author option, you can alter the author of the commit:
 $ git commit --amend --author "Bob Miller <kbob@example.com>"
 # ...just close the editor...

 $ git log
 commit 0e2a14f933a3aaff9edd848a862e783d986f149f
 Author: Bob Miller <kbob@example.com>
 Date: Thu Jun 26 15:14:03 2008 -0500

 Initial speech that sounds familiar.

If you’ve followed closely, you will have noticed that with each git
commit --amend, a new commit SHA1 ID was generated (based on
the changed content) and reintroduced to the Git object store.

Pictorially, altering the HEAD or top commit using git commit --amend changes the
commit graph from that shown in Figure 9-6 to that shown in Figure 9-7.

Figure 9-6. Commit graph before git commit --amend

Figure 9-7. Commit graph after git commit --amend

Here, the substance of the C commit is still the same, but it has been altered to obtain
C'. The HEAD ref has been changed from the old commit, C, so that it points to the
replacement ref, C'.

Using git reset
The git reset command changes your repository and working directory to a known
state. Specifically, git reset adjusts the HEAD ref to a given commit and, by default,
updates the index to match that commit. If desired, git reset can also modify your
working directory to mirror the revision of your project represented by the given
commit. git reset can be used as part of many other operations. As such, in this
section we focus on how the git reset operation can influence and change your
repository commit history.

194 | Chapter 9: Altering Commits

You might construe git reset as “destructive” because it can overwrite and destroy
changes in your working directory. Indeed, data can be lost. Even if you have a
backup of your files, you might not be able to recover your work. However, the whole
point of this command is to establish and recover known states for the HEAD, index,
and working directory.

When you need to use the git reset command, it helps to approach the concept
by visualizing a before and after state of a repository’s commit history. To paraphrase:
this is the current state or commit history of my repository before I execute a git
reset; how do I want the commit history or state of the repository to look after
executing the reset command? Pictorially, this is best illustrated in Figure 9-8.

Figure 9-8. Before and after git reset

Another way to understand the concept of using git reset is to
think of your commit history as a timeline. Your HEAD ref is like a
play button that is pointing to a specific moment in the timeline
(usually the most recent). When you perform a git reset, you are
able to rewind or fast-forward to a moment in the timeline of your
repository’s commit history.

The git reset command has three main options: --soft, --mixed, and --hard.
These options influence how either the index or the working directory of your
repository will be updated to respect the git reset operation.

Let’s examine these options. In Figures 9-9 through 9-11, note that the git reset
command resets the HEAD ref to point to commit B in the commit history of the
repository:

Using git reset | 195

git reset --soft commit

The --soft option changes the HEAD ref to point to the given commit. The
contents of your index and working directory are left unchanged. This version
of the command has the “least” effect, changing only the state of a symbolic
reference so it points to a new commit.

Figure 9-9. Before and after git reset --soft (changes to files that are committed
from commits C and D will be reflected in the index or staging directory)

git reset --mixed commit

The --mixed option changes HEAD to point to the given commit. Your index
contents are also modified to align with the tree structure named by commit,
but your working directory contents are left unchanged. This version of the

196 | Chapter 9: Altering Commits

command leaves your index as if you had just staged all the changes represented
by commit, and it tells you what remains modified in your working directory.
Note that --mixed is the default mode for git reset.

Figure 9-10. Before and after git reset --mixed (changes to files that are committed
from commits C and D will be reflected in the working directory)

git reset --hard commit

The --hard option changes the HEAD ref to point to the given commit. The con‐
tents of your index are also modified to agree with the tree structure named by
the named commit. Furthermore, your working directory contents are changed to
reflect the state of the tree represented by the given commit.

Using git reset | 197

When changing your working directory, the complete directory structure is
altered to correspond to the given commit. Modifications are lost, and new files
added to the repository but not tracked will stay untouched. Files that are in the
given commit but no longer exist in your working directory are reinstated.

Figure 9-11. Before and after git reset --hard (changes to files that are committed
from commits C and D will be lost)

198 | Chapter 9: Altering Commits

The effects demonstrated in the previous illustrations are summarized in Table 9-1.

Table 9-1. git reset option effects

Option HEAD Index Working directory

--soft Yes Yes No

--mixed Yes No Yes

--hard Yes Yes Yes

The git reset command also saves the original HEAD value in the ref ORIG_HEAD.
This is useful, for example, if you wish to use that original HEAD’s commit log message
as the basis for some follow-up commit. To reuse the commit log message, you will
need to supply the --reuse-message=ORIG_HEAD argument.

In terms of the object model, git reset moves the current branch HEAD within
the commit graph to a specific commit. Just remember, if you specify --hard, your
working directory is transformed as well.

Next, let’s look at some examples of how git reset operates.

We’ll start by setting up a branch with several commits on it:
 $ git init -b main
 Initialized empty Git repository in /tmp/reset/.git/

 $ echo Do >> main_file

 $ git add main_file

 $ git commit -m "Do"
 [main (root-commit) d8789aa] Do
 1 file changed, 1 insertion(+)
 create mode 100644 main_file

 $ echo Fa >> file_1
 $ git add file_1
 $ git commit -m "Fa"
 [main cf6315c] Fa
 1 file changed, 1 insertion(+)
 create mode 100644 file_1

 $ ls
 file_1 main_file

 $ git log --oneline
 cf6315c (HEAD -> main) Fa
 d8789aa Do

Using git reset | 199

Suppose you now add file_2 and stage the file, then realize that you need to combine
this staged change with the previous commit of adding file_1, and you want to go
back and do it correctly.

Here you can use git reset --soft commit:
 $ echo Mi >> file_2
 $ git add file_2

 $ git status
 On branch main
 Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: file_2

 $ git reset --soft HEAD^

 $ git log --oneline
 d8789aa (HEAD -> main) Do

 # Files in the directory
 $ ls
 file_1 file_2 main_file

 # Git status after reset soft shows that both
 # file_2 and file_1 are in the index directory
 $ git status
 On branch main
 Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: file_1
 new file: file_2

 # Create new commit with both file_1 and file_2
 $ git commit -m "Fa and Mi"
 [main 0c8a4ba] Fa and Mi
 2 files changed, 2 insertions(+)
 create mode 100644 file_1
 create mode 100644 file_2

 $ git log --oneline
 0c8a4ba (HEAD -> main) Fa and Mi
 d8789aa Do

Recall (from “Identifying Commits” on page 81) that HEAD^ references the commit
parent of the current main HEAD, and it represents the state immediately prior to
completing the second commit that added file_1.

Let’s continue:
 $ echo Re >> file_3
 $ echo So >> file_4

With the addition of the content from the new files, you may need to alter the
sequence of commits to show a logical progression of work.

Here you can use git reset --mixed commit:

200 | Chapter 9: Altering Commits

 # --mixed is the default reset option,
 # thus you don’t need to explicitly supply the option
 $ git reset HEAD^

 $ git log --oneline
 d8789aa (HEAD -> main) Do

 # Files in the directory
 $ ls
 file_1 file_2 file_3 file_4 main_file

 # Git status after reset mixed shows all files are in the working directory
 $ git status
 On branch main
 Untracked files:
 (use "git add <file>..." to include in what will be committed)
 file_1
 file_2
 file_3
 file_4

 # Create new commit with all files to reflect
 # a logical sequence of commit history
 $ git add file_3
 $ git commit -m "Re - content from file_3"
 [main 61e676f] Re - content from file_3
 1 file changed, 1 insertion(+)
 create mode 100644 file_3

 # Continue to add and commit files in the
 # correct logical order based on their content
 $ git add file_2
 $ git commit -m "Mi - content from file_2"
 [main 4ecc185] Mi - content from file_2
 1 file changed, 1 insertion(+)
 create mode 100644 file_2

 $ git add file_1
 $ git commit -m "Fa - content from file_1"
 [main 4d72acb] Fa - content from file_1
 1 file changed, 1 insertion(+)
 create mode 100644 file_1

 $ git add file_4
 $ git commit -m "So - content from file_4"
 [main 3ab8f23] So - content from file_4
 1 file changed, 1 insertion(+)
 create mode 100644 file_4

 $ git log --oneline
 3ab8f23 (HEAD -> main) So - content from file_4
 4d72acb Fa - content from file_1
 4ecc185 Mi - content from file_2
 61e676f Re - content from file_3
 d8789aa Do

Because the --mixed option resets the index, you must restage any changes you want
in the new commit. This gives you the opportunity to re-edit existing files, add other
files, or perform other changes before making a new commit.

Using git reset | 201

In some cases, you may want to eliminate the series of new commits entirely because
you don’t care about its content. To do this, you can use git reset --hard commit:

 $ git log --oneline
 3ab8f23 (HEAD -> main) So - content from file_4
 4d72acb Fa - content from file_1
 4ecc185 Mi - content from file_2
 61e676f Re - content from file_3
 d8789aa Do

 $ git reset --hard HEAD~4
 HEAD is now at d8789aa Do

 $ git log --oneline
 d8789aa (HEAD -> main) Do

 # Files in the directory
 $ ls
 main_file

 # Git status after reset hard resets the index and working directory
 # to reflect the state when main_file was committed
 $ git status
 On branch main
 nothing to commit, working tree clean

 # Create new commit with new content and file name
 $ echo "Do Re Mi Fa So" >> new_file
 $ git add new_file
 $ git commit -m "Add new_file"
 [main 46623d8] Add new_file
 1 file changed, 1 insertion(+)
 create mode 100644 new_file

 $ git log --oneline
 46623d8 (HEAD -> main) Add new_file
 d8789aa Do

The --hard option has the effect of pulling the main branch back to a specified state.
In our example, it modifies the working directory to mirror the specified (HEAD~4)
state, specifically, the state when the main_file in your working directory was created.

Although the examples all use HEAD in some form, you can apply git reset to any
commit in the repository. For example, to eliminate several commits on your current
branch, you could use git reset --hard HEAD~4, git reset --hard d8789aa, or
even git reset --hard ORIG_HEAD.

But be careful. Just because you can name other commits using a branch name, this
is not the same as checking the branch out. Throughout the git reset operation,
you remain on the same branch. You can alter your working directory to look like the
head of a different branch, but you are still on your original branch.

202 | Chapter 9: Altering Commits

Using git cherry-pick
The command git cherry-pick commit applies the changes introduced by the
named commit on the current branch. It will introduce a new, distinct commit.
Strictly speaking, using git cherry-pick doesn’t alter the existing history within a
repository; instead, it adds to the history.

As with other Git operations that introduce changes via the process of applying a diff,
you may need to resolve conflicts to fully apply the changes from the given commit.

The command git cherry-pick is typically used to introduce particular commits
from one branch within a repository onto a different branch. A common use is
to forward- or back-port commits from a maintenance branch to a development
branch.

In Figure 9-12, the dev branch has normal development, whereas the rel_2.3 con‐
tains commits for the maintenance of release 2.3.

Figure 9-12. Before git cherry-pick of one commit

During the course of normal development, a bug is fixed on the development line
with commit F. If that bug turns out to also be present in the 2.3 release, the bug fix,
F, can be made to the rel_2.3 branch using git cherry-pick:
 $ git checkout rel_2.3
 $ git cherry-pick dev~2 # commit F, above

After the cherry-pick, the graph resembles Figure 9-13.

Figure 9-13. After git cherry-pick of one commit

Using git cherry-pick | 203

In Figure 9-13, commit F' is substantially similar to commit F, but it is a new commit
and will have to be adjusted—perhaps with conflict resolutions—to account for its
application to commit Z rather than commit E. None of the commits following F are
applied after F'; only the named commit is picked and applied.

Another common use for cherry-pick is to rebuild a series of commits by selectively
picking a batch from one branch and introducing them onto a new branch.

Suppose you had a series of commits on your development branch, my_dev, as shown
in Figure 9-14, and you wanted to introduce them onto the main branch but in a
substantially different order.

Figure 9-14. Before git cherry-pick shuffle

To apply them on the main branch in the order Y, W, X, Z, you could use the following
commands:
 $ git checkout main
 $ git cherry-pick my_dev~1 # Y
 $ git cherry-pick my_dev~3 # W
 $ git cherry-pick my_dev~2 # X
 $ git cherry-pick my_dev # Z

Afterward, your commit history would look something like Figure 9-15.

Figure 9-15. After git cherry-pick shuffle

In situations like this, where the order of commits undergoes fairly volatile changes,
it is quite likely that you will have to resolve conflicts. It depends entirely on the
relationship between the commits. If they are highly coupled and change overlapping
lines, then you will have conflicts that need to be resolved. If they are highly inde‐
pendent, then you will be able to move them around quite readily.

204 | Chapter 9: Altering Commits

Originally, the git cherry-pick command selected and reapplied one commit at
a time. However, in later versions of Git, git cherry-pick allowed a range of
commits to be selected and reapplied in a single command. For example, the follow‐
ing command:
 # on branch main
 $ git cherry-pick X..Z

would apply new commits X', Y', and Z' on the main branch. This is particularly
handy in porting or moving a large sequence of commits from one line of develop‐
ment to another without necessarily using the entire source branch at one time.

You can also reference a few specific commits when cherry-picking, like this:
 # on branch rel_2.3
 $ git cherry-pick dev~4 dev~2

This will apply the fifth D (dev~4) and third F (dev~2) commit from the dev branch to
the rel_2.3 branch.

reset, revert, and checkout
The three Git commands reset, revert, and checkout can be somewhat confusing
because all appear to perform similar operations. Another reason these three com‐
mands can be confusing is that other version control systems have different meanings
for the words reset, revert, and checkout.

However, there are some good guidelines and rules for when each command should
and should not be used.

If you want to change to a different branch, use git checkout or git switch. Your
current branch and HEAD ref change to match the tip of the given branch.

The git reset command does not change your branch. However, if you supply the
name of a branch, it will change the state of your current working directory to look
like the tip of the named branch. In other words, git reset is intended to reset the
current branch’s HEAD reference.

Because git reset --hard is designed to recover to a known state, it is also capable
of clearing out failed or stale merge efforts, whereas git checkout will not. Thus
if there were a pending merge commit and you attempted to recover using git
checkout instead of git reset --hard, your next commit would erroneously be a
merge commit.

reset, revert, and checkout | 205

The confusion with git checkout is due to its additional ability to extract a file from
the object store and put it into your working directory, possibly replacing a version
in your working directory in the process. Sometimes the version of that file is one
corresponding to the current HEAD version, and sometimes it is an earlier version:
 # Checkout file.c from index
 $ git checkout -- path/to/file.c

 # Checkout file.c from rev v2.3
 $ git checkout v2.3 -- path/to/file.c

Git calls this “checking out a path.”

In the former case, obtaining the current version from the object store appears to be
a form of a “reset” operation—that is, your local working directory edits of the file
are discarded because the file is reset to its current, HEAD version. That is double-plus
ungood Git thinking.

In the latter case, an earlier version of the file is pulled out of the object store and
placed into your working directory. This has the appearance of being a “revert”
operation on the file. That, too, is double-plus ungood Git thinking.

In both cases, it is improper to think of the operation as a Git reset or a revert.
In both cases, the file is “checked out” from a particular commit: HEAD and v2.3,
respectively.

The git revert command works on full commits, not on files.

If another developer has cloned your repository or fetched some of your commits,
there are implications for changing the commit history. In this case, you probably
should not use commands that alter history within your repository. Instead, use git
revert; do not use git reset or the git commit --amend command described in the
earlier sections.

Rebasing Commits
The git rebase command is used to alter where a sequence of commits is based.
This command requires at least the name of the other branch onto which your
commits will be relocated. By default, the commits from the current branch that are
not already on the other branch are rebased.

A common use for git rebase is to keep a series of commits that you are developing
up to date with respect to another branch, usually a main branch or a tracking branch
from another repository.

206 | Chapter 9: Altering Commits

In Figure 9-16, two branches have been developed. Originally, the topic branch
started on the main branch when it was at commit B. In the meantime, it has
progressed to commit E.

Figure 9-16. Before git rebase

You can keep your commit series up to date with respect to the main branch by
writing the commits so that they are based on commit E rather than B. Because the
topic branch needs to be the current branch, you can use either:
 $ git checkout topic
 $ git rebase main

or
 $ git rebase main topic

After the rebase operation is complete, the new commit graph resembles Figure 9-17.

Figure 9-17. After git rebase

Using the git rebase command in situations like the one shown in Figure 9-16
is often called forward porting. In this example, the topic branch has been forward-
ported to the main branch.

There is no magic to a rebase being a forward or a backward port; both are possible
using git rebase. The interpretation is usually left to a more fundamental under‐
standing of what functionality is considered ahead of or behind another functionality.

In the context of a repository that you have cloned from somewhere else, it is
common to forward-port your development branch or branches onto the origin/
main tracking branch like this using the git rebase operation. When working
with remote repositories, you will see how this operation is requested frequently

Rebasing Commits | 207

by a repository maintainer using a phrase such as “Please rebase your patch to the
tip-of-main.” We discuss remote repositories in Chapter 11.

The git rebase command may also be used to completely transplant a line of devel‐
opment from one branch to an entirely different branch using the --onto option.

For example, suppose you’ve developed a new feature on the feature branch with the
commits P and Q, which were based on the maint branch, as shown in Figure 9-18.
To transplant the P and Q commits on the feature branch from the maint to the main
branch, issue the following command:
 $ git rebase --onto main maint^ feature

Figure 9-18. Before git rebase transplant

The resulting commit graph looks like Figure 9-19.

Figure 9-19. After git rebase transplant

The rebase operation relocates commits one at a time from each respective original
commit location to a new commit base. As a result, each commit that is moved might
have conflicts to resolve.

If a conflict is found, the rebase operation suspends its processing temporarily so
you can resolve the conflict. Any conflict during the rebase process that needs to be
resolved should be handled as described in “A Merge with a Conflict” on page 127.

208 | Chapter 9: Altering Commits

Once all conflicts are resolved and the index has been updated with the results, the
rebase operation can be resumed using the git rebase --continue command. The
command resumes its operation by committing the resolved conflict and proceeding
to the next commit in the series being rebased.

If, while inspecting a rebase conflict, you decide that this particular commit really
isn’t necessary, then you can also instruct the git rebase command to simply skip
this commit and move to the next one by using git rebase --skip. This may not be
the correct thing to do, especially if subsequent commits in the series really depend
on the changes introduced by this one. The problems are likely to snowball in this
case, so it’s better to truly resolve the conflict.

Finally, if the rebase operation turns out to be the totally wrong thing to do, git
rebase --abort abandons the operation and restores the repository to the state prior
to issuing the original git rebase.

Using git rebase -i
Suppose you start writing a haiku (a traditional Japanese poem) and manage to
compose two full lines before checking it in:
 $ git init -b main
 Initialized empty Git repository in .git/

 $ cat haiku
 Talk about colour
 No jealous behaviour here

 $ git add haiku
 $ git commit -m "Start my haiku"
 [main (root-commit) 1cc856c] Start my haiku
 1 file changed, 2 insertions(+)
 create mode 100644 haiku

Your writing continues, but you decide you really should use the American spelling of
color instead of the British spelling. So you make a commit to change it:
 $ git diff
 diff --git a/haiku b/haiku
 index 088bea0..958aff0 100644
 --- a/haiku
 +++ b/haiku
 @@ -1,2 +1,2 @@
 -Talk about colour
 +Talk about color
 No jealous behaviour here

 $ git commit -a -m "Use color instead of colour"
 [main b2c5047] Use color instead of colour
 1 file changed, 1 insertion(+), 1 deletion(-)

Finally, you develop the final line and commit it:

Rebasing Commits | 209

 $ git diff
 diff --git a/haiku b/haiku
 index 958aff0..cdeddf9 100644
 --- a/haiku
 +++ b/haiku
 @@ -1,2 +1,3 @@
 Talk about color
 No jealous behaviour here
 +I favour red wine

 $ git commit -a -m "Finish my colour haiku"
 [main e0d8d39] Finish my colour haiku
 1 file changed, 1 insertion(+)

However, again you (really, it’s us) have a spelling quandary and decide to change all
British “ou” spellings to the American “o” spelling:
 $ git diff
 diff --git a/haiku b/haiku
 index cdeddf9..064c1b5 100644
 --- a/haiku
 +++ b/haiku
 @@ -1,3 +1,3 @@
 Talk about color
 -No jealous behaviour here
 -I favour red wine
 +No jealous behavior here
 +I favor red wine

 $ git commit -a -m "Use American spellings"
 [main 0aff702] Use American spellings
 1 file changed, 2 insertions(+), 2 deletions(-)

At this point, you’ve accumulated a history of commits that looks like this:
 $ git show-branch --more=4
 [main] Use American spellings
 [main^] Finish my colour haiku
 [main~2] Use color instead of colour
 [main~3] Start my haiku

After looking at the commit sequence or receiving review feedback, you decide that
you prefer to complete the haiku before correcting it and want the following commit
history:
 [main] Use American spellings
 [main^] Use color instead of colour
 [main~2] Finish my colour haiku
 [main~3] Start my haiku

But then you also notice that there’s no good reason to have two similar commits that
correct the spellings of different words. Thus you would also like to squash the main
and main^ into just one commit:
 [main] Use American spellings
 [main^] Finish my colour haiku
 [main~2] Start my haiku

210 | Chapter 9: Altering Commits

Reordering, editing, removing, squashing multiple commits into one, and splitting
one commit into several commits are all easily performed by the git rebase com‐
mand using the -i or --interactive option. This command allows you to modify
the commits that make up a branch and place them back onto the same branch or
onto a different branch.

A typical use, and one apropos for this example, modifies the same branch in place.
In this case there are three changesets between four commits to be modified; git
rebase -i needs to be told the name of the commit beyond that which you actually
intend to change:
 $ git rebase -i main~3

You will be placed in an editor on a file that looks like this:
 pick b2c5047 Use color instead of colour
 pick e0d8d39 Finish my colour haiku
 pick 0aff702 Use American spellings

 # Rebase 1cc856c..0aff702 onto 1cc856c (3 commands)
 #
 # Commands:
 # p, pick <commit> = use commit
 # r, reword <commit> = use commit, but edit the commit message
 # e, edit <commit> = use commit, but stop for amending
 # s, squash <commit> = use commit, but meld into previous commit
 # f, fixup [-C | -c] <commit> = like "squash" but keep only the previous
 # commit's log message, unless -C is used, in which case
 # keep only this commit's message; -c is same as -C but
 # opens the editor
 # x, exec <command> = run command (the rest of the line) using shell
 # b, break = stop here (continue rebase later with 'git rebase --continue')
 # d, drop <commit> = remove commit
 # l, label <label> = label current HEAD with a name
 # t, reset <label> = reset HEAD to a label
 # m, merge [-C <commit> | -c <commit>] <label> [# <oneline>]
 # . create a merge commit using the original merge commit's
 # . message (or the oneline, if no original merge commit was
 # . specified); use -c <commit> to reword the commit message
 #
 # These lines can be re-ordered; they are executed from top to bottom.
 #
 # If you remove a line here THAT COMMIT WILL BE LOST.
 #
 # However, if you remove everything, the rebase will be aborted.

The first three lines list the commits within the editable commit range you specified
on the command line. The commits are initially listed in order from oldest to most
recent and have the pick verb on each one. If you were to leave the editor now, each
commit would be picked (in order), applied to the target branch, and committed. The
lines preceded by a # are helpful reminders that are ignored by the program.

At this point, however, you are free to reorder the commits, squash commits together,
change a commit, or delete one entirely. You can also add a commit if you already

Rebasing Commits | 211

know the SHA ID. To follow the listed steps, simply reorder the commits in your
editor as follows and exit it:
 pick e0d8d39 Finish my colour haiku
 pick b2c5047 Use color instead of colour
 pick 0aff702 Use American spellings

Recall that the very first commit for the rebase is the “Start my haiku” commit. The
next commit will become “Finish my colour haiku,” followed by the “Use color…”
and “Use American…” commits:
 $ git rebase -i main~3

 # reorder the first two commits and exit your editor

 Successfully rebased and updated refs/heads/main.

 $ git show-branch --more=4
 [main] Use American spellings
 [main^] Use color instead of colour
 [main~2] Finish my colour haiku
 [main~3] Start my haiku

Here, the history of commits has been rewritten; the two spelling commits are
together, and the two writing commits are together.

Still following the outlined order, your next step is to squash the two spelling com‐
mits into just one commit. Again, issue the git rebase -i main~3 command. This
time, convert the commit list from:
 pick e0d8d39 Finish my colour haiku
 pick b2c5047 Use color instead of colour
 pick 0aff702 Use American spellings

to:
 pick da10180 Finish my colour haiku
 pick 3dd2279 Use color instead of colour
 squash d83e71c Use American spellings

The third commit will be squashed into the immediately preceding commit, and
the new commit log message template will be formed from the combination of the
commits being squashed together.

In this example, the two commit log messages are joined and offered in an editor:
 # This is a combination of 2 commits.
 # This is the 1st commit message:

 Use color instead of colour

 # This is the commit message #2:

 Use American spellings

These messages can be edited down to just the following:
 Use American spellings

212 | Chapter 9: Altering Commits

Again, all # lines are ignored.

Finally, the results of the rebase sequence can be seen:
 $ git rebase -i main~3

 # squash and rewrite the commit log message

 [detached HEAD 0692bda] Use American spellings
 Date: Sun Oct 3 14:36:00 2021 +0200
 1 file changed, 3 insertions(+), 3 deletions(-)
 Successfully rebased and updated refs/heads/main.

 $ git show-branch --more=4
 [main] Use American spellings
 [main^] Finish my colour haiku
 [main~2] Start my haiku

Although the reordering and squash steps demonstrated here occurred in two
separate invocations of git rebase -i main~3, the two phases could have been
performed in one. It is also perfectly valid to squash multiple sequential commits into
one commit in a single step.

rebase Versus merge
In addition to the problem of simply altering history, the rebase operation has further
ramifications of which you should be aware.

Rebasing a sequence of commits to the tip of a branch is similar to merging the two
branches; in either case, the new head of that branch will have the combined effect of
both branches represented.

You might ask yourself, “Should I use merge or rebase on my sequence of commits?”
In Chapter 11, this will become an important question—especially when multiple
developers, repositories, and branches come into play.

The process of rebasing a sequence of commits causes Git to generate entirely new
sequences of commits. They have new SHA1 commit IDs, are based on a new initial
state, and represent different diffs even though they involve changes that achieve the
same ultimate state.

When faced with a situation like that shown in Figure 9-16, rebasing it into Fig‐
ure 9-17 doesn’t present a problem because no other commit relies on the branch
being rebased. However, even within your own repository you might have additional
branches based on the one you wish to rebase. Consider the graph shown in
Figure 9-20.

Rebasing Commits | 213

Figure 9-20. Before git rebase multibranch

You might think that executing the command:
 # Move onto tip of main the dev branch
 $ git rebase main dev

would yield the graph in Figure 9-21. But it does not.

Figure 9-21. Desired git rebase multibranch

Instead, you get the following output, and you obtain the graph in Figure 9-22. This
is because, during a rebase, Git stores all changes made by commits in the current
branch to a temporary location internally and then reapplies them to the target
branch, one by one, in order:
 $ git rebase main dev
 Successfully rebased and updated refs/heads/dev.

214 | Chapter 9: Altering Commits

Figure 9-22. Actual git rebase multibranch

The commits X', Y', and Z' are the new versions of the old commits that stem from
B. The old X and Y commits both still exist in the graph because they are still reachable
from the dev2 branch. However, the original Z commit has been removed because it is
no longer reachable. The branch name that was pointing to it has been moved to the
new version of that commit.

The branch history now looks like it has duplicate commit messages in it too:
 $ git show-branch
 * [dev] Z
 ! [dev2] Q
 ! [main] D

 * [dev] Z
 * [dev^] Y
 * [dev~2] X
 * + [main] D
 * + [main^] C
 + [dev2] Q
 + [dev2^] P
 + [dev2~2] Y
 + [dev2~3] X
 *++ [main~2] B

But remember, these are different commits that do essentially the same change. If you
merge a branch with one of the new commits into another branch that has one of the
old commits, Git has no way of knowing that you’re applying the same change twice.
The result is duplicate entries in git log, most likely a merge conflict, and general
confusion. It’s a situation that you should find a way to clean up.

Rebasing Commits | 215

If this resulting graph is actually what you want, then you’re done. More likely,
moving the entire branch (including subbranches) is what you really want. To achieve
that graph, you will, in turn, need to rebase the dev2 branch on the new Y' commit
on the dev branch:
 $ git rebase dev^ dev2
 Successfully rebased and updated refs/heads/dev2.

 $ git show-branch
 ! [dev] Z
 * [dev2] Q
 ! [main] D

 * [dev2] Q
 * [dev2^] P
 + [dev] Z
 +* [dev2~2] Y
 +* [dev2~3] X
 +*+ [main] D

And this is the graph shown in Figure 9-21.

Another situation that can be extremely confusing is rebasing a branch that has a
merge on it. For example, suppose you had a branch structure like that shown in
Figure 9-23.

Figure 9-23. Before git rebase merge

If you want to move the entire dev branch structure from commit N down through to
commit X off of B and onto D, as shown in Figure 9-24, then you might expect simply
to use the command git rebase main dev.

Again, however, that command yields some surprising results:
 $ git rebase main dev
 Successfully rebased and updated refs/heads/dev.

216 | Chapter 9: Altering Commits

Figure 9-24. Desired git rebase merge

It looks like it did the right thing. After all, Git says that it applied all the (nonmerge)
commit changes. But did it really get things right?
 $ git show-branch
 * [dev] N
 ! [main] D
 --
 * [dev] N
 * [dev^] P
 * [dev~2] Z
 * [dev~3] Y
 * [dev~4] X
 *+ [main] D

All those commits are now in one long string!

What happened here?

Git needs to move the portion of the graph reachable from dev back to the merge
base at B, so it found the commits in the range main..dev. To list all those commits,
Git performs a topological sort on that portion of the graph to produce a linearized
sequence of all the commits in that range. Once that sequence has been determined,
Git applies the commits one at a time starting on the target commit, D. Thus we say
that “rebase has linearized the original branch history (with merges) onto the main
branch,” as shown in Figure 9-25.

Again, if that is what you wanted, or if you don’t care that the graph shape has been
altered, then you are done. But if, in such cases, you want to explicitly preserve the
branching and merging structure of the entire branch being rebased, then use the
--rebase-merges option. Because this option tries to preserve the merge commits,
if there were any resolved merge conflicts, you may need to resolve or reapply the
changes manually:
 $ git rebase --rebase-merges main dev
 Successfully rebased and updated refs/heads/dev.

Rebasing Commits | 217

We can see that the resulting graph structure maintains the original merge structure
using the git log command:
 $ git log --oneline --all
 * 061f9fd... N
 * f669404... Merge branch 'dev2' into dev
 |\
 | * c386cfc... Z
 * | 38ab25e... P
 |/
 * b93ad42... Y
 * 65be7f1... X
 * e3b9e22... D
 * f2b96c4... C
 * 8619681... B
 * d6fba18... A

In previous versions of Git, the option --preserve-merges was
used to achieve the same thing. This option is deprecated in favor
of the --rebase-merges, which works with interactive rebases.

Figure 9-25. git rebase merge after linearization

And this looks like the graph in Figure 9-24.

Some of the principles for answering the rebase-versus-merge question apply equally
to your own repository as they do to a distributed or multirepository scenario. In
Chapter 12, you can read about the additional implications that affect developers
using other repositories.

Depending on your development style and your ultimate intent, having the original
branch development history linearized when it is rebased may or may not be accepta‐
ble. If you have already published or provided the commits on the branch that you
wish to rebase, consider the negative ramifications on others.

If the rebase operation isn’t the right choice and you still need the branch changes,
then merging may be the correct choice.

The following concepts are important to remember:

• Rebase rewrites commits as new commits.•

218 | Chapter 9: Altering Commits

• Old commits that are no longer reachable are gone.•
• Any user of one of the old, pre-rebase commits might be stranded.•
• If you have a branch that uses a pre-rebase commit, you might need to rebase it•

in turn.
• If there is a user of a pre-rebase commit in a different repository, they still have•

a copy of that commit even though it has moved in your repository; the user will
now have to fix up their commit history too.

Summary
In general, you should feel empowered to alter a commit or a commit sequence if
your effort makes it cleaner and more understandable. This chapter provided you
with techniques for implementing the alterations you desire for your projects, and
helped you understand the consequences they will have, specifically where repository
commit histories are concerned. Of course, as with all software development, there
is a trade-off between repeated over-refinement and acceptance of something that is
satisfactory. The key here is that you should strive for a clean, well-structured, curated
Git commit history that has concise meaning for both you and your collaborators.

Summary | 219

CHAPTER 10

The Stash and the Reflog

Do you ever feel overwhelmed in your daily development cycle when the constant
interruptions, demands for bug fixes, and requests from coworkers or managers all
pile up and clutter the real work you are trying to do? If so, the stash was designed to
help you!

In this chapter you will learn how the stash works and how to view the stashed
context. Following this, you will learn about the reflog, which records the Git
repository’s local commits. These features will help you leverage the options Git
provides when you need to temporarily stash your current work in order to work on
something else.

The Stash
The stash is a mechanism for capturing your work in progress, allowing you to
save it and return to it at a more convenient time. Sure, you can already do that
using Git’s existing branch and commit mechanisms, but the stash lets you quickly
capture your entire index and working directory with one simple command, leaving
your repository clean, uncluttered, and ready for an alternate development direction.
Another single command restores the index and the working directory, allowing you
to your resume where you left off.

Let’s explore how the stash works with some example use cases.

221

Use Case: Interrupted Workflow
In this scenario, you are happily working in your Git repository and have changed
several files and maybe even staged a few in the index. Then you’re interrupted. Per‐
haps a critical bug has been discovered, and you’ve been asked to fix it immediately.
Perhaps your team lead has suddenly prioritized a new feature over everything else
and insists that you drop everything to work on it.

Whatever the circumstance, you realize that you must store your work in progress,
clean your slate and work tree, and start afresh. This is a perfect opportunity for git
stash:
 $ cd the-git-project
 # edit a lot, in the middle of something

 # High-Priority Workflow Interrupt!
 # Must drop everything and do something else now!

 $ git stash push
 Saved working directory and index state WIP on main: 1En0v80 ...

 # edit high-priority change
 # add and commit the changes

 # continue with stashed work in progress
 $ git stash pop

And resume where you were!

Since push is the default option for the git stash command, you can leave out the
option when specifying a stash. Git also supplies a default log message when saving a
stash, but you can supply your own message to better remind you of what you were
working on, for example:
 $ git stash -m "WIP: Doing real work on my stuff"

The acronym WIP is a common abbreviation for “work in progress.”

Achieving the same effect with other, more basic Git commands requires that you
manually create a new branch on which you commit all of your modifications,
reestablishing your previous branch to continue your work and then later recovering
your saved branch state on top of your new working directory. For the curious, that
process roughly follows this sequence:
 # ... normal development process interrupted ...

 # Create new branch on which current state is stored.
 $ git checkout -b saved_state

 # Store work in progress
 $ git add files
 $ git commit -m "Saved state"

 # Back to previous branch for immediate update.

222 | Chapter 10: The Stash and the Reflog

 $ git checkout main

 # edit emergency fix
 $ git add fixed-files
 $ git commit -m "Fix something."

 # Recover saved state on top of working directory.
 $ git checkout saved_state
 $ git reset --mixed HEAD^

 # ... resume working where we left off above ...

The preceding process is sensitive to completeness and attention to detail. All of your
changes have to be captured when you save your state, and you must remember to
move your HEAD back to prevent the restoration process from being disrupted.

The git stash push command will save your current index (when you supply the
--staged flag) and working directory state and will clear them out so that they again
match the head of your current branch. Although this operation gives the appearance
that your modified files and any files updated into the index using, for example,
git add or git rm have been lost, they have not. Instead, the contents of your
index and working directory are actually stored as independent, regular commits and
are accessible through the ref .git/refs/stash. Executing the following command
further validates this notion:
 $ git show-branch stash
 [stash] WIP on main: 3889def Some initial files.

As you might surmise by the use of pop to restore your state, the two basic stash
commands, git stash push and git stash pop, implement a stack of stash states.
That allows your interrupted workflow to be interrupted yet again! Each stashed
context on the stack can be managed independently of your regular commit process.

The git stash pop command restores the context saved by a previous push opera‐
tion on top of your current working directory and index (for the stash to pop the
previously stored context of an index, you will need to push the staged changes
with the option git stash push --staged). And by restore, we mean that the pop
operation takes the stash content and merges those changes into the current state,
rather than just overwriting or replacing files. Nice, huh? Keep in mind that your
working directory must match the index for this operation to complete, as stated in
the git stash manual pages.

When you use git stash pop, the command may or may not fully succeed
in re-creating the full state you originally had at the time it was saved. Because
the application of the saved context can be performed on top of a different commit,
merging may be required, complete with possible user resolution of any conflicts.

The Stash | 223

1 Technically, it’s not growing boundlessly. The stash is subject to reflog expiration and garbage collection.

After a successful pop operation, Git will automatically remove your saved state
from the stack of saved states. This means that, once applied, the stash state will
be “dropped.” However, when conflict resolution is needed, Git will not automatically
drop the state, just in case you want to try a different approach or want to restore
it onto a different commit. Once you clear the merge conflicts and want to proceed,
you should use the git stash drop command to manually remove the stash from
the stash stack. Otherwise, Git will maintain an ever-growing1 stack of contexts:
 $ git stash drop
 Dropped refs/stash@{0} (7ec158448f301a4fb4f7cb567225ddb1af135bde)

In the preceding example, if we had executed git stash drop without explicitly
referencing the stash entry stash@{0}, the most recent stash entry in the stash stack
would have been dropped.

If you just want to re-create the context you have saved in a stash state without
dropping it from the stack, use git stash apply. Thus, a git stash pop command
is a successful git stash apply followed by a git stash drop.

In fact, you can use git stash apply to apply the same saved
stashed context onto several different commits prior to dropping it
from the stack.

However, you should carefully consider whether you want to use git stash apply or
git stash pop to regain the contents of a stash. Will you ever need it again? If not,
pop it. Then clean the stashed content and reference out of your object store.

Figure 10-1 illustrates this concept. Here, the repository we are working in already
contains a stash stack. The git stash push command pushes file5 and file6 to the
top of the stack (stash@{0}). The git stash apply command applies the stored
stash of file4 back to the index directory but keeps the stash stack entry (stash@{1})
intact. The git stash pop command restores the stash of file1, file2, and file3,
respectively, to the index and working directory and will drop the stash entry from
the stack (stash@{0}), denoted by the dotted box in the stash stack (.git/refs/
stash).

224 | Chapter 10: The Stash and the Reflog

Figure 10-1. Stash concepts

Viewing the stashed context

The git stash list command lists the stack of saved contexts from most to
least recent. In the following example, we’ll work with an existing Git repository
containing two files, which we will modify and stash. Then we will add a new file to
the repository to show you how to stash new, untracked files you may have in your
working directory:
 $ mkdir my-repo
 $ cd my-repo
 $ git init -b main
 $ cd my-repo
 Initialized empty Git repository in /tmp/my-repo/.git/

 $ echo "hello" >> file1
 $ git add file1
 $ git commit -m "Add file 1"
 [main (root-commit) 9841192] add file 1
 1 file changed, 1 insertion(+)
 create mode 100644 file1

The Stash | 225

 $ echo "Git" >> file2
 $ git add file2
 $ git commit -m "Add file 2"
 [main 24d4b0a] add file 2
 1 file changed, 1 insertion(+)
 create mode 100644 file2

 $ ls
 file1 file2

 $ echo "some foo" >> file1

 $ git status
 On branch main
 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore -- <file>..." to discard changes in working directory)

 modified: file1

 no changes added to commit (use "git add" and/or "git commit -a")

 $ git stash -m "Tinkered file1"
 Saved working directory and index state On main: Tinkered file1

 $ git commit --dry-run
 On branch main
 nothing to commit, working directory clean

 $ echo "some bar" >> file2

 $ git stash -m "Messed with file2"
 Saved working directory and index state On main: Messed with file2

 $ git stash list
 stash@{0}: On main: Messed with file2
 stash@{1}: On main: Tinkered file1

 $ echo "new" >> file3

 # Stashing will fail for any new untracked file
 $ git stash -m "Add new untracked file3"
 No local changes to save

 # Add the option -u to stash new untracked file to the stash stack
 $ git stash -u -m "Add new untracked file3"
 Saved working directory and index state On main: Add new untracked file3

 $ git stash list
 stash@{0}: On main: Add new untracked file3
 stash@{1}: On main: Messed with file2
 stash@{2}: On main: Tinkered file1

Git always numbers the stash entries, with the most recent entry being zero. As
entries get older, they increase in numerical order. As such, the different stash entry
names are stash@{0} and stash@{1}, as we will explain in “The Reflog” on page
232. The git stash show command shows the index and file changes recorded for a
given stash entry, relative to its parent commit:
 $ git stash show stash@{1}
 file2 | 1 +

226 | Chapter 10: The Stash and the Reflog

 1 file changed, 1 insertion(+)

That summary may or may not be the extent of the information you sought. If not,
adding -p to the git stash show command so that you can see the diffs might be
more useful. Note that, by default, the git stash show command shows the most
recent stash entry, stash@{0}.

Because the changes that contribute to making a stash state are relative to a particular
commit, showing the state is a state-to-state comparison suitable for git diff, rather
than a sequence of commit states suitable for git log. Thus, all the options for git
diff may also be supplied to git stash show as well. As we saw previously, --stat
is the default, but other options are valid too. Here, -p is used to obtain the patch
differences for a given stash state:
 $ git stash show -p stash@{1}
 diff --git a/file2 b/file2
 index 5664e30..265404f 100644
 --- a/file2
 +++ b/file2
 @@ -1 +1,2 @@
 git
 +some bar

Use Case: Updating Local Work in Progress with Upstream Changes
Another classic use case for git stash is when you have local changes that are
not entirely complete but you want to pull in the latest changes from the upstream
repository to evaluate whether your current changes break the repository with work
from the new changes. In the Git manuals, this is referenced as the “pull into a dirty
tree” scenario. It goes something like this: you’re developing in your local repository
and have made several commits. You still have some modified files that haven’t been
committed yet, but you realize there are upstream changes that you want to make. If
you have conflicting modifications, a simple git pull will fail, refusing to overwrite
your local changes. One quick way to work around this problem is to use git stash:
 $ git pull
 # ... pull fails due to merge conflicts ...

 $ git stash
 Saved working directory and index state WIP on main: e4896bd ...

 $ git pull
 $ git stash pop
 Already up to date.
 On branch main
 ...
 ...
 Dropped refs/stash@{0} (39351f8d3bd89116df89a67119831638d6268180)

At this point, you may or may not need to resolve conflicts created by the pop.

The Stash | 227

2 A Makefile is as special file that contains shell commands used by the Make build utility tool in Unix.

If you have new, uncommitted (and hence “untracked”) files as part of your local
development, it is possible that a git pull that would also introduce a file of the
same name might fail, thus not wanting to overwrite your version of the new file.
In this case, add the --include-untracked option to your git stash so that it also
stashes your new, untracked files along with the rest of your modifications. That will
ensure a completely clean working directory for the pull.

The --all option will gather up the untracked files as well as the explicitly ignored
files from the .gitignore and exclude files.

Finally, for more complex stashing operations where you wish to selectively choose
which hunks should be stashed, use the -p or --patch option as described in the
manual pages (this is similar to using git add interactively to select the hunk of
changes to be stashed).

In a similar scenario, git stash can be used when you want to move modified work
out of the way, enabling a clean pull --rebase. This would typically happen just
prior to pushing your local commits upstream:
 # ... edit and commit ...
 # ... more editing and working...

 $ git commit --dry-run
 # On branch main
 # Your branch is ahead of 'origin/main' by 2 commits.
 #
 # Changed but not updated:
 # (use "git add <file>..." to update what will be committed)
 # (use "git restore -- <file>..." to discard changes in working directory)
 #
 # modified: file1.h
 # modified: file1.c
 #
 no changes added to commit (use "git add" and/or "git commit -a")

At this point, you may decide that the commits you have already made should
go upstream, but you also want to leave the modified files here in your working
directory. However, Git refuses to pull:
 $ git pull --rebase
 error: cannot pull with rebase: You have unstaged changes.
 error: please commit or stash them.

This scenario isn’t as contrived as it might seem at first. For example, some of us
frequently work in a repository where we want to modify a Makefile,2 perhaps to
enable debugging, or we need to modify some configuration options for a build. We

228 | Chapter 10: The Stash and the Reflog

don’t want to commit those changes, and we don’t want to lose them between updates
from a remote repository. We just want them to linger in our working directory.

Again, this is where git stash helps:
 $ git stash
 Saved working directory and index state WIP on main: 5955d14 Some commit log.

 $ git pull --rebase
 remote: Counting objects: 63, done.
 remote: Compressing objects: 100% (43/43), done.
 remote: Total 43 (delta 36), reused 0 (delta 0)
 Unpacking objects: 100% (43/43), done.
 From ssh://git/var/git/my_repo
 871746b..6687d58 main -> origin/main
 Successfully rebased and updated refs/heads/main.

After you pull in upstream commits and rebase your local commits on top of them,
your repository is in good shape to send your work upstream. If desired, you can
readily push them now:
 # Push upstream now if desired!
 $ git push

or after restoring your previous working directory state:
 $ git stash pop
 Auto-merging file1.h
 On branch main
 Your branch is ahead of 'origin/main' by 2 commits.

 Changed but not updated:
 (use "git add <file>..." to update what will be committed)
 (use "git restore -- <file>..." to discard changes in working directory)

 modified: file1.h
 modified: file1.c

 no changes added to commit (use "git add" and/or "git commit -a")
 Dropped refs/stash@{0} (7e2546f5808a95a2e6934fcffb5548651badf00d)

 $ git push

If you decide to git push after popping your stash, remember that only completed,
committed work will be pushed. There’s no need to worry about pushing your partial,
uncommitted work. There is also no need to worry about pushing your stashed
content: the stash is purely a local notion.

Figure 10-2 illustration represents a high-level mental model of this concept.

The Stash | 229

Figure 10-2. Pushing only completed, uncommitted work upstream

Use Case: Converting Stashed Changes Into a Branch
Sometimes, stashing your changes leads to a sequence of development on your
branch, and restoring your stashed state on top of those changes may not make sense.
In addition, merge conflicts might make popping difficult. Nonetheless, you may still
want to recover the work you stashed. In situations like this, Git offers the git stash
branch command to help you. This command converts the contents of a saved stash
into a new branch based on the commit that was current at the time the stash entry
was made. Let’s see how that works on a repository with a bit of history in it:
 $ git log --pretty=one --abbrev-commit
 d5ef6c9 Some commit.
 efe990c Initial commit.

Some files are modified and subsequently stashed:
 $ git stash
 Saved working directory and index state WIP on main: d5ef6c9 Some commit.

Note that the stash was made against commit d5ef6c9.

Due to other development reasons, more commits are made, and the branch drifts
away from the d5ef6c9 state:
 $ git log --pretty=one --abbrev-commit
 2c2af13 Another mod
 1d1e905 Drifting file state.
 d5ef6c9 Some commit.
 efe990c Initial commit.

 $ git show-branch -a
 [main] Another mod

230 | Chapter 10: The Stash and the Reflog

And although the stashed work is available, it doesn’t apply cleanly to the current
main branch:
 $ git stash list
 stash@{0}: WIP on main: d5ef6c9 Some commit.

 $ git stash pop
 Auto-merging foo
 CONFLICT (content): Merge conflict in foo
 Auto-merging bar
 CONFLICT (content): Merge conflict in bar
 The stash entry is kept in case you need it again.

Therefore, we need to reset some state and take a different approach, creating a new
branch called mod that contains the stashed changes:
 $ git reset --hard main
 HEAD is now at 2c2af13 Another mod

 $ git stash branch mod
 Switched to a new branch 'mod'
 On branch mod
 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore -- <file>..." to discard changes in working directory)

 modified: bar
 modified: foo

 no changes added to commit (use "git add" and/or "git commit -a")
 Dropped refs/stash@{0} (96e53da61f7e5031ef04d68bf60a34bd4f13bd9f)

There are several important points to notice here. First, notice that the branch is
based on the original commit d5ef6c9, and not on the current HEAD commit 2c2af13:
 $ git show-branch -a
 ! [main] Another mod
 * [mod] Some commit.
 --
 + [main] Another mod
 + [main^] Drifting file state.
 +* [mod] Some commit.

Second, because the stash is always reconstituted against the original commit, it will
always succeed and hence will be dropped from the stash stack.

Finally, reconstituting the stash state doesn’t automatically commit any of your
changes onto the new branch. All the stashed file modifications (and index changes, if
desired) are still left in your working directory on the newly created and checked-out
branch:
 $ git commit --dry-run
 # On branch mod
 # Changes not staged for commit:
 # (use "git add <file>..." to update what will be committed)
 # (use "git checkout -- <file>..." to discard changes in working directory)
 #

The Stash | 231

 # modified: bar
 # modified: foo
 #
 no changes added to commit (use "git add" and/or "git commit -a")

At this point, you can commit the changes onto the new branch, presumably as a
precursor to further development or merging as you deem necessary:
 $ git commit -a -m "Stuff from the stash"
 [mod 42c104f] Stuff from the stash
 2 files changed, 2 insertions(+), 0 deletions(-)

 $ git show-branch
 ! [main] Another mod
 * [mod] Stuff from the stash
 --
 * [mod] Stuff from the stash
 + [main] Another mod
 + [main^] Drifting file state.
 +* [mod^] Some commit.

Note that this isn’t a magic bullet to avoid resolving merge conflicts. If there were
merge conflicts when you tried to pop the stash directly onto the main branch earlier,
trying to merge the new branch with the main branch will yield the same effects and
the same merge conflicts:
 $ git checkout main
 Switched to branch 'main'

 $ git merge mod
 Auto-merging foo
 CONFLICT (content): Merge conflict in foo
 Auto-merging bar
 CONFLICT (content): Merge conflict in bar
 Automatic merge failed; fix conflicts and then commit the result.

The ability to create stashes might be appealing, but be careful not to overuse it and
create too many stashes. And don’t just convert them to named branches to make
them linger!

The Reflog
Sometimes Git does something either mysterious or magical and causes one to
wonder what just happened. Sometimes you simply want an answer to the question,
“Wait, where was I? What just happened?” Other times, you do some operation and
realize “Uh-oh, I shouldn’t have done that!” But it is too late, and you have already
lost the top commit with a week’s worth of awesome development.

Not to worry! Git’s reflog has you covered in either case! By using the reflog, you can
gain the assurance that operations happened as you expected on the branches you
intended and that you have the ability to recover lost commits just in case something
goes astray.

232 | Chapter 10: The Stash and the Reflog

The reflog is a record of changes to the tips of branches within nonbare repositories.
Every time an update is made to any ref, including HEAD, the reflog is updated to
record how that ref has changed. Think of the reflog as a trail of breadcrumbs show‐
ing where you and your refs have been. With that analogy, you can also use the reflog
to follow your trail of crumbs and trace back through your branch manipulations.

Some of the basic operations that record reflog updates include:

• Cloning•
• Pushing•
• Making new commits•
• Changing or creating branches•
• Rebase operations•
• Reset operations•

Fundamentally, any Git operation that modifies a ref or changes the tip of a branch is
recorded.

By default, the reflog is enabled in nonbare repositories and disabled in bare
repositories. Specifically, the reflog is controlled by the Boolean configuration
option core.logAllRefUpdates. It can be enabled using the command git

configcore.logAllRefUpdates true and disabled with false as desired on a per-
repository basis.

A bare repository is a repository that is set up on a server and
has no working directory. You can think of it as being similar
to a blueprint. When developers on a team make changes to the
blueprint, each developer’s changes are reflected in a copy of the
blueprint, but the blueprint remains unchanged.

So, what does the reflog look like?
$ git reflog show
a44d980 HEAD@{0}: reset: moving to main
79e881c HEAD@{1}: commit: last foo change
a44d980 HEAD@{2}: checkout: moving from main to fred
a44d980 HEAD@{3}: rebase -i (finish): returning to refs/heads/main
a44d980 HEAD@{4}: rebase -i (pick): Tinker bar
a777d4f HEAD@{5}: rebase -i (pick): Modify bar
e3c46b8 HEAD@{6}: rebase -i (squash): More foo and bar with additional stuff.
8a04ca4 HEAD@{7}: rebase -i (squash): updating HEAD
1a4be28 HEAD@{8}: checkout: moving from main to 1a4be28
ed6e906 HEAD@{9}: commit: Tinker bar
6195b3d HEAD@{10}: commit: Squash into 'more foo and bar'
488b893 HEAD@{11}: commit: Modify bar
1a4be28 HEAD@{12}: commit: More foo and bar
8a04ca4 HEAD@{13}: commit (initial): Initial foo and bar.

The Reflog | 233

Although the reflog records transactions for all refs, git reflog show displays the
transactions for only one ref at a time. The previous example shows the default ref,
HEAD. If you recall that branch names are also refs, you will realize that you can
also get the reflog for any branch as well. From the previous example, we can see
that there is also a branch named fred, so we can display its changes in another
command:
$ git reflog fred
a44d980 fred@{0}: reset: moving to main
79e881c fred@{1}: commit: last foo change
a44d980 fred@{2}: branch: Created from HEAD

Each line records an individual transaction from the history of the ref, starting with
the most recent change and going back in time. The leftmost column contains the
commit ID at the time the change was made. Entries such as HEAD@{7} from the
second column provide convenient names for the commit at each transaction. Thus,
HEAD@{0} is the most recent entry, HEAD@{1} records where HEAD was just prior to
that, and so on. The oldest entry, HEAD@{13}, is actually the very first commit in
this repository. The rest of each line after the colon describes the transaction that
occurred. Finally, for each transaction there is a timestamp (not shown) that records
when the event took place within your repository.

So what good is all that? Here’s the interesting aspect of the reflog: the sequentially
numbered HEAD names (e.g., HEAD@{1}) can be used as symbolic names of commits
for any Git command that takes a commit, for example:
$ git show HEAD@{10}
commit 6195b3dfd30e464ffb9238d89e3d15f2c1dc35b0
Author: Jon Loeliger <jdl@example.com>
Date: Sat Oct 29 09:57:05 2011 -0500

 Squash into 'more foo and bar'

diff --git a/foo b/foo
index 740fd05..a941931 100644
--- a/foo
+++ b/foo
@@ -1,2 +1 @@
-Foo!
-more foo
+junk

That means that as you go about your development process, recording commits,
moving to different branches, rebasing, and otherwise manipulating a branch, you
can always use the reflog to reference where the branch was. The name HEAD@{1}
always references the previous commit for the branch, HEAD@{2} names the HEAD
commit just prior to that, and so on. Keep in mind, though, that although the history
names individual commits, transactions other than git commit are present also.
Every time you move the tip of your branch to a different commit, it is logged.

234 | Chapter 10: The Stash and the Reflog

3 No, really. And yes, that is 5:00 P.M.!

Thus, HEAD@{3} doesn’t necessarily mean the third prior git commit operation. More
accurately, it means the third prior visited or referenced commit.

Git also supports more English language–like qualifiers for the part of the reference
within curly brackets. Maybe you aren’t sure exactly how many changes took place
since something happened, but you know you want what it looked like yesterday or
an hour ago:
 $ git log 'HEAD@{yesterday}'
 commit 1a4be2804f7382b2dd399891eef097eb10ddc1eb
 Author: Jon Loeliger <jdl@example.com>
 Date: Sat Oct 29 09:55:52 2011 -0500

 More foo and bar

 commit 8a04ca4207e1cb74dd3a3e261d6be72e118ace9e
 Author: Jon Loeliger <jdl@example.com>
 Date: Sat Oct 29 09:55:07 2011 -0500

 Initial foo and bar.

Git supports a fairly wide variety of date-based qualifiers for refs. These include
words like yesterday, noon, midnight, afternoon, tea,3 names of the days of the week,
names of months, A.M. and P.M. indicators, absolute times and dates, and relative
phrases like “last monday,” “1 hour ago,” “10 minutes ago,” and combinations of these
phrases such as “1 day, 2 hours ago.” And, finally, if you omit the actual ref name
and just use the @{…} form, the current branch name is assumed. Thus, while on the
bugfix branch, using just @{noon} refers to bugfix@{noon}.

The Git tool responsible for understanding references is git rev-
parse. Its manpage is extensive and details more than you would
ever care to know about how refs are interpreted.

Although these date-based qualifiers are fairly liberal, they are not perfect. Under‐
stand that Git uses a heuristic to interpret them, so exercise some caution when
referring to them. Also remember that the notion of time is local and relative to
your repository: these time-qualified refs reference the value of a ref in your local
repository only. Using the same phrase about time in a different repository will likely
yield different results due to different reflogs. Thus, main@{2.days.ago} refers to the
state of your local main branch two days ago. If you don’t have reflog history to cover
that time period, Git should warn you:

The Reflog | 235

 $ git log HEAD@{last-monday}
 warning: Log for 'HEAD' only goes back to Sat, 29 Oct 2011 09:55:07 -0500.
 commit 8a04ca4207e1cb74dd3a3e261d6be72e118ace9e
 Author: Jon Loeliger <jdl@example.com>
 Date: Sat Oct 29 09:55:07 2011 -0500

 Initial foo and bar.

One last warning: don’t let the shell trick you. There is a significant difference
between these two commands:
 # Bad!
 $ git log dev@{2 days ago}

 # Likely correct for your shell
 $ git log 'dev@{2 days ago}'

The former, without single quotes, provides multiple command-line arguments to
your shell, whereas the latter, with quotes, passes the entire ref phrase as one
command-line argument. Git needs to see the ref as one word from the shell. To
help simplify the word break issue, Git allows several variations:
 # These should all be equivalent
 $ git log 'dev@{2 days ago}'
 $ git log dev@{2.days.ago}
 $ git log dev@{2-days-ago}

One more concern to address: if Git is maintaining a transaction history of every
operation performed on every ref in the repository, doesn’t the reflog eventually
become huge?

Luckily, no. Git automatically runs a garbage collection process occasionally. During
this process, some of the older reflog entries are expired and dropped. Normally, a
commit that is otherwise not referenced or reachable from some branch or ref will
expire after a default of 30 days, and commits that are reachable expire after a default
of 90 days. Take a look at Figure 10-3.

Figure 10-3. Unreachable commits

236 | Chapter 10: The Stash and the Reflog

In Figure 10-3, commits G, H, and I are unreachable commits. Commits A through F
are reachable commits. The key here is where the HEAD is pointing to. You can see that
for commits G, H, and I, HEAD is in a detached HEAD mode, and those commits are not
associated with a branch name. This is a result of directly checking out to commit B,
followed by adding new commits from that point on.

If the default garbage collection schedule isn’t ideal, the configuration variables
gc.reflogExpireUnreachable and gc.reflogExpire can be set to alternate values in
your repository. You can use the command git reflog delete to remove individual
entries, or use the command git reflog expire to directly cause entries older than
a specified time to be immediately removed. The latter command can also be used to
forcefully expire the reflog:
 $ git reflog expire --expire=now --all
 $ git gc

One last implementation detail: reflogs are stored under the .git/logs directory.
The file .git/logs/HEAD contains the history of HEAD values, whereas the subdi‐
rectory .git/logs/refs/ contains the history of all refs, including the stash. The sub-
subdirectory .git/logs/refs/heads contains the history for branch heads.

All the information stored in the reflogs, specifically everything under the .git/logs
directory, is ultimately transitory and expendable. Throwing away the .git/logs direc‐
tory or turning the reflog off harms no Git-internal data structure; it simply means
references like main@{4} can’t be resolved.

Conversely, having the reflog enabled introduces references to commits that might
otherwise be unreachable. If you are trying to clean up and shrink your repository
size, removing the reflog may enable the removal of otherwise unreachable (i.e.,
irrelevant) commits.

Summary
In this chapter we discussed two different tools. The stash tool provides you with a
clever mechanism to store any development work in progress so that you can handle
interruptions to your workflow and then return to your dev work later. The reflog
tool gives you an audit trail of changes that modified a ref or changed the tip of any
given branch for a limited period of time in your local development environment.
Although these tools focus on commits and changes you are introducing to the
repository, you can leverage them whenever you are interrupted from your develop‐
ment workflow to tend to a task that requires your immediate attention.

Summary | 237

CHAPTER 11

Remote Repositories

So far, we’ve worked almost entirely within one local repository. Now it’s time to
explore the much-lauded distributed features of Git and learn how to collaborate with
other developers via shared repositories.

Working with multiple and remote repositories adds a few new terms to the Git
vernacular.

A clone is a copy of a repository. A clone contains all the objects from the original
repository; as a result, each clone is an independent and autonomous repository and
a true, symmetric peer of the original. A clone allows each developer to work locally
and independently without centralization, polls, or locks. Ultimately, it’s cloning that
allows Git to easily scale and permit many geographically distributed contributors.

Essentially, separate repositories are useful under the following conditions:

• When developers work autonomously.•
• When a project is expected to diverge significantly along separate development•

paths. Although the regular branching and merging mechanisms demonstrated
in previous chapters can handle any amount of separate development, the result‐
ing complexity may become more trouble than it’s worth. Instead, diverged
development paths can use separate repositories to be merged again whenever
appropriate.

Cloning a repository is just the first step in sharing code. You must also relate
one repository to another to establish paths for data exchange. Git establishes these
repository connections through what we call remotes.

239

This chapter is divided into five parts, with each part incrementally building on the
previous one to explain the concepts of working with remote repositories. In “Part I:
Repository Concepts” on page 240, we cover repository concepts and working with
a remote repository. In “Part II: Example Using Remote Repositories” on page 251,
we provide examples and techniques to share, track, and obtain data across multiple
repositories. “Part III: Remote Repository Development Cycle in Pictures” on page
265 reinforces the learning visually by elaborating on the development lifecycle for
remote repositories. In “Part IV: Remote Configuration” on page 272, we discuss
the many ways you can manage remote configurations for any given repository.
And in “Part V: Working with Tracking Branches” on page 275, we tie things up
by explaining the importance of working with remote-tracking branches in the best
recommended method.

Part I: Repository Concepts
The repository concepts discussed in this part are the building blocks to understand‐
ing and working with a Git repository in a shared and distributed environment. The
following sections will introduce key principles and important terminology to help
you transition to working in a Git repository.

Bare and Development Repositories
A Git repository is either a bare or a development (nonbare) repository.

A development repository is used for normal, daily development. It maintains the
notion of a current branch and provides a checked-out copy of the current branch in
a working directory. All of the repositories mentioned in the book so far have been
development repositories.

In contrast, a bare repository has no working directory and shouldn’t be used for
normal development. Also, a bare repository has no notion of a checked-out branch.
Think of a bare repository as simply the contents of the .git directory. In other words,
you shouldn’t make commits in a bare repository.

A bare repository might seem to be of little use, but its role is crucial: to serve as
an authoritative focal point for collaborative development. Other developers clone
and fetch from the bare repository and push updates to it. We’ll work through an
example later in this chapter that shows how all of this works together.

First, let’s examine how the --bare flag affects the directory that is initialized when
creating a development repository and a bare repository:

240 | Chapter 11: Remote Repositories

 # Development (nonbare) repo
 $ cd /tmp

 $ git init -b main fluff
 Initialized empty Git repository in /private/tmp/fluff/.git/

 $ tree fluff
 fluff

 0 directories, 0 files

 # Bare repo
 $ git init --bare -b main fluff-bare
 Initialized empty Git repository in /private/tmp/fluff-bare/
 fatal: this operation must be run in a work tree

 $ tree fluff-bare
 fluff
 ├── HEAD
 ├── config
 ├── description
 ├── hooks
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── info
 │ └── exclude
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 8 directories, 17 files

If you issue a git clone command with the --bare option, Git creates a bare
repository; otherwise, a development repository is created.

Notice that we did not say that git clone --bare creates a new
or empty repository. We said it creates a bare repository. And
that newly cloned repository will contain a copy of the content
from the upstream repository. The command git init creates a
new and empty repository, and that repository can come in both
development and bare variants. You can compare the earlier created
repositories using this diff trick:
execute from the root directory of both the repos

$ diff -y <(tree fluff/.git/) <(tree fluff-bare)

Part I: Repository Concepts | 241

By default, Git enables a reflog (as explained in “The Reflog” on page 232) on
development repositories but not on bare repositories. This again anticipates that
development will take place in the former and not in the latter. By the same reason‐
ing, no remotes are created in a bare repository.

If you set up a repository into which developers push changes, it should be bare.
In effect, this is a special case of the more general best practice that a published
repository should be bare.

Repository Clones
The git clone command creates a new Git repository based on the original reposi‐
tory that you specify via a filesystem or network address. Git doesn’t have to copy
all the information from the original to the clone repository. Instead, Git ignores
information that is pertinent only to the original repository, such as remote-tracking
branches.

In normal git clone use, the local development branches of
the original repository, stored within .git/refs/heads/, become
remote-tracking branches in the new clone under .git/refs/remotes/.
Remote-tracking branches within .git/refs/remotes/ in the original
repository are not cloned. (The clone doesn’t need to know what, if
anything, the upstream repository is in turn tracking.)

Tags from the original repository are copied into the clone, as are all objects that
are reachable from the copied refs. However, repository-specific information such as
hooks (see Chapter 14), configuration files, the reflog, and the stash of the original
repository are not reproduced in the clone.

In “Making a local copy of the repository” on page 19, we showed how git clone can
be used to create a copy of your my_website repository:
 $ git clone my_website new_website

Here, my_website is considered the original, “remote” repository. The new, resulting
clone is new_website.

Similarly, git clone can be used to clone a copy of a repository from network sites:
 $ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

242 | Chapter 11: Remote Repositories

1 Of course, a bidirectional remote relationship can be set up later using the git remote command.

By default, each new clone maintains a link back to its parent repository via a remote
called origin. However, the original repository has no knowledge of nor does it
maintain a link to any clone. It is purely a one-way relationship.1

The name origin isn’t special in any way. If you don’t want to use it, simply specify an
alternative name with the --origin name option during the clone operation.
 $ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git \
 > --origin somename

Git also configures the default origin remote with a default fetch refspec (refspecs
transfer data to and from a remote repository and are discussed later).

Establishing the fetch refspec anticipates that you want to continue updating your
local repository by fetching changes from the originating repository. In this case, the
remote repository’s branches are available in the clone on branch names prefixed
with origin/, such as origin/main, origin/dev, or origin/maint.

An example refspec looks like the following in your repo configuration file:
 fetch = +refs/heads/*:refs/remotes/origin/*

Remotes
The repository you’re currently working in is called the local or current repository,
and the repository with which you exchange files is called the remote repository. But
the latter term is a bit of a misnomer because the repository may or may not be on
a physically remote or even different machine; it could conceivably be just another
repository on a local filesystem. In Chapter 12, we discuss how the term upstream
repository is usually used to identify the remote repository from which your local
repository is derived via a clone operation.

Git uses both the remote and the remote-tracking branch to reference and facilitate
the connection to another repository. The remote provides a friendly name for the
repository and can be used in place of the actual repository URL. A remote also
forms part of the name basis for the remote-tracking branches for that repository.

Use the git remote command to create, remove, manipulate, and view a remote. All
the remotes you introduce are recorded in the .git/config file and can be manipulated
using git config.

Figure 11-1 illustrates this concept.

Part I: Repository Concepts | 243

Figure 11-1. Remote git command

Note that for git clone and git pull operations in Figure 11-1, the update to the
local history is represented as a dot.

In addition to git clone, other common Git commands that refer to remote reposi‐
tories include the following:

git fetch

Retrieves objects and their related metadata from a remote repository.

git pull

Like git fetch but also merges changes into a corresponding local branch.

git push

Transfers objects and their related metadata to a remote repository.

git ls-remote

Shows a list of references along with their associated commit SHA1s, held by
a given remote (on an upstream server). This command indirectly answers the
question “Is an update available?”

Tracking Branches
Once you clone a repository, you can keep up with changes in the original source
repository even as you make local commits and create local branches.

244 | Chapter 11: Remote Repositories

As Git itself has evolved, some terminology around branch names has also evolved
and become more standard. To help clarify the purposes of the various branches, dif‐
ferent namespaces have been created. Although any branch in your local repository
is still considered a local branch, the branches can be further divided into different
categories:

• Remote-tracking branches are associated with a remote and have the specific•
purpose of following the changes of each branch in the remote repository.

• A local-tracking branch is paired with a remote-tracking branch. It is a type of•
integration branch that collects both the changes from your local development
branch and the changes from the remote-tracking branch.

• Any local, nontracking branch is usually generically called a topic or development•
branch.

• Finally, to complete the namespaces, a remote branch is a branch located in a•
nonlocal, remote repository. It is likely an upstream source for a remote-tracking
branch.

During a clone operation, Git creates a remote-tracking branch in the clone for
each topic branch in the upstream repository. The set of remote-tracking branches is
introduced in a new, separate namespace within the local repository that is specific
to the remote being cloned. The local repository uses its remote-tracking branches to
follow or track changes made in the remote repository:
 # Clone Repository and create a new local branch
 $ cd git-repo

 $ git branch -a
 main <-- # local-tracking branch
 * mylocal-branch <-- # local, nontracking branch (topic or development)
 remotes/origin/main <-- # remote-tracking branches

In the preceding code snippet, a “remote branch” was not listed. This scenario could
occur when a new branch was created on the remote repository after you performed a
clone operation at that moment in time.

You may recall from “Refs and Symrefs” on page 83 that a
local topic branch that you call dev is really named refs/heads/
dev. Similarly, remote-tracking branches are retained in the refs/
remotes/ namespace. Thus the remote-tracking branch origin/
main is actually refs/remotes/origin/main.

Because remote-tracking branches are lumped into their own namespace, there is
a clear separation between branches made in a repository by you (topic branches)
and those branches that are actually based on another, remote repository (remote-

Part I: Repository Concepts | 245

tracking branches). In the early Git days, separate namespaces were just a best
practice designed to help prevent you from making accidental conflicts. Today, sepa‐
rate namespaces are considered to be much more than a best practice. They are an
integral part of how you are expected to use your branches to interact with your
upstream repositories.

All the operations that you can perform on a regular topic branch can also be
performed on a tracking branch. However, there are some restrictions and guidelines
to observe.

Because remote-tracking branches are used exclusively to follow the changes from
another repository, you should effectively treat them as read only. You shouldn’t
merge or make commits onto a remote-tracking branch. Doing so would cause your
remote-tracking branch to become out of sync with the remote repository. Worse,
each future update from the remote repository would likely require merging, making
your clone increasingly difficult to manage. Proper management of tracking branches
is covered in more detail later in this chapter.

Referencing Other Repositories
To coordinate your repository with another repository, you define a remote, which
here means a named entity stored in the config file of a repository. It consists of two
different parts. The first part states the name of the other repository in the form of a
URL. The second part, called a refspec, specifies how a ref (which usually represents a
branch) should be mapped from the namespace of one repository into the namespace
of the other repository.

Let’s look at each of these components in turn.

Referring to Remote Repositories
Git supports several types of Uniform Resource Locators (URLs) that can be used
to name remote repositories. These URLs specify both an access protocol and the
location or address of the data.

Technically, Git’s URLs are neither true URLs nor Uniform Resource Identifiers
(URIs) because none entirely conform to RFC 1738 or RFC 2396, respectively. How‐
ever, because of their versatile utility in naming the location of Git repositories, Git’s
variants are usually referred to as Git URLs. Furthermore, the .git/config file uses the
name url as well.

As you have seen, the simplest form of Git URL refers to a repository on a local
filesystem, be it a true physical filesystem or a virtual filesystem mounted locally via
the Network File System (NFS). There are two permutations:

246 | Chapter 11: Remote Repositories

 /path/to/repo.git
 file:///path/to/repo

Although these two formats are essentially identical, there is a subtle but important
distinction between the two. The former uses hard links within the filesystem to
directly share exactly the same objects between the current and remote repositories;
the latter copies the objects instead of sharing them directly. To avoid issues associ‐
ated with shared repositories, the file:// form is recommended.

The other forms of the Git URL referring to repositories on remote systems follow.

When you have a truly remote repository whose data must be retrieved across a
network, the most efficient form of data transfer is often called the Git native protocol,
which refers to the custom protocol used internally by Git to transfer data. Examples
of a native protocol URL include the following:
 git://example.com/path/to/repo.git
 git://example.com/~user/path/to/repo.git

These forms are used by git-daemon to publish repositories for anonymous read. You
can both clone and fetch using these URL forms.

For secure, authenticated connections, the Git native protocol can be tunneled over a
Secure Shell (SSH) connection using the following URL templates:
 ssh://[user@]example.com[:port]/path/to/repo.git
 ssh://[user@]example.com/path/to/repo.git
 ssh://[user@]example.com/~user2/path/to/repo.git
 ssh://[user@]example.com/~/path/to/repo.git

The third form allows for the possibility of two different usernames. The first is the
user under whom the session is authenticated, and the second is the user whose home
directory is accessed.

Git also supports a URL form with scp-like syntax. It’s identical to the SSH forms, but
there is no way to specify a port parameter:
 [user@]example.com:/path/to/repo.git
 [user@]example.com:~user/path/to/repo.git
 [user@]example.com:path/to/repo.git

Although the HTTP and HTTPS URL variants have been fully supported since the
early days of Git, they have undergone some important changes since version 1.6.6:
 http://example.com/path/to/repo.git
 https://example.com/path/to/repo.git

Prior to Git version 1.6.6, neither the HTTP nor the HTTPS protocol was as efficient
as the Git native protocol. In version 1.6.6, the HTTP protocol was improved dramat‐
ically and has become essentially as efficient as the Git native protocol. Git literature

Part I: Repository Concepts | 247

refers to this implementation as “smart” in contrast to the prior, so-called “dumb”
implementation.

With the HTTP efficiency benefit realized now, the utility of the http:// and
https:// URL forms will likely become more important and popular. Notably, most
corporate firewalls allow HTTP port 80 and HTTPS port 443 to remain open, while
the default Git port 9418 is typically blocked. Furthermore, these URL forms are
being favored by popular Git hosting sites like GitHub.

Finally, the Rsync protocol can be specified:
 rsync://example.com/path/to/repo.git

The use of Rsync is discouraged because it is inferior to the other options. If abso‐
lutely necessary, it should be used only for an initial clone, at which point the remote
repository reference should be changed to one of the other mechanisms. Continuing
to use the Rsync protocol for later updates may lead to the loss of locally created data.

These protocols, as mentioned earlier, are a way to reference the remote repositories,
but in actual essence they also dictate the method in which data from the remote
repositories is to be transferred. Each transfer protocol has its own advantages and
disadvantages. Generally the concerns are around security (encryption and the need
for authenticated access of the repository data which is being transferred), simplicity
of configuring the protocols within your network servers, and developer experience
in working with remote repositories.

You may be wondering which protocol is better when cloning a
repository: SSH or HTTPS.
Both protocols are secure. But when you need to access a remote
repository from multiple machines, with the SSH protocol you will
have to generate the SSH key for each machine and configure it on
the server before you are able to clone. With the HTTPS protocol,
you can skip this step since you can be authenticated via a prompt
when you perform a clone operation.“)))

The refspec
In “Refs and Symrefs” on page 83, we explained how the ref, or reference, names a
particular commit within the history of the repository. Usually a ref is the name of
a branch. A refspec maps branch names in the remote repository to branch names
within your local repository.

Because a refspec must simultaneously name branches from the local repository and
the remote repository, complete branch names are common in a refspec and are
often required. In a refspec, you typically see the names of development branches

248 | Chapter 11: Remote Repositories

with the refs/heads/ prefix and the names of remote-tracking branches with the
refs/remotes/ prefix. (For brevity, we’ve omitted the .git/ when referencing the ref
paths.)

Refspecs are added to your repository’s .git/config when you clone a repository and
when you add or update remotes to your repository (we cover how to add remotes
later in this chapter). The following snippet is an example:
 $ cd git-repo
 $ cat .git/config
 ...
 ...
 [remote "origin"]
 url = https://github.com/ppremk/git.git

 # The Refspec
 fetch = +refs/heads/*:refs/remotes/origin/*
 ...
 ...

The syntax of a refspec is as follows:
 [+]source:destination

It consists primarily of a source ref, a colon (:), and a destination ref. It can be
prefixed with a plus sign (+) to indicate that the normal fast-forward safety check will
not be performed during the transfer. It can also be prefixed with an asterisk (*) to
allow a limited form of wildcard matching on branch names.

In some uses, the source ref is optional; in others, the colon and destination ref are
optional.

Refspecs are used by both the git fetch and git push commands. The trick to
using a refspec is to understand the data flow it specifies. The refspec itself is always
source:destination, but the roles of source and destination depend on the Git
operation being performed. This relationship is summarized in Table 11-1.

Table 11-1. Refspec data flow

Operation Source Destination

push Local ref being pushed Remote ref being updated

fetch Remote ref being fetched Local ref being updated

A typical git fetch command uses a refspec such as this:
 +refs/heads/*:refs/remotes/remote/*

This refspec might be paraphrased as follows:

Part I: Repository Concepts | 249

All the source branches from a remote repository in namespace refs/heads/ are 1)
mapped into your local repository using a name constructed from the remote name
and 2) placed under the refs/remotes/remote namespace.

Because of the asterisks, this refspec applies to multiple branches as found in the
remote’s refs/heads/ namespace. It is exactly this specification that causes the
remote’s topic branches to be mapped into your repository’s namespace as remote-
tracking branches and separates them into subnames based on the remote name.

Although not mandatory, it is a convention and a common best practice to place
the branches for a given remote under refs/remotes/remote/* (e.g., refs/remotes/
origin/*).

Use git show-ref to list the references within your current repos‐
itory. Use git ls-remote repository to list the references in a
remote repository.

Because git pull’s first step is fetch, the fetch refspecs apply equally to git pull.

You should not make commits or merges onto a remote-tracking
branch identified on the righthand side of a pull or fetch refspec.
Those refs will be used as remote-tracking branches.

During a git push operation, you typically want to provide and publish the changes
you made on your local topic branches. To allow others to find your changes in
the remote repository after you upload them, your changes must appear in that
repository as topic branches. Thus, during a typical git push command, the source
branches from your repository are sent to the remote repository using a refspec such
as this:
 +refs/heads/*:refs/heads/*

This refspec can be paraphrased as follows:

From the local repository, take each branch name found under the source namespace
refs/heads/ and place it in a similarly named, matching branch under the destination
namespace refs/heads/ in the remote repository.

The first refs/heads/ refers to your local repository (because you’re executing a
push), and the second one refers to the remote repository. The asterisks ensure that
all branches are replicated.

250 | Chapter 11: Remote Repositories

Multiple refspecs can be given on the git fetch and git push command lines.
Within a remote definition, multiple fetch refspecs, multiple push refspecs, or a
combination of both may be specified.

What if you don’t specify a refspec at all on a git push command? How does Git
know what to do or where to send data?

First, without an explicit remote given to the command, Git assumes you want to
use origin. Without a refspec, git push will send your commits to the remote for
all branches that are common between your repository and the upstream repository.
Any local branch that is not already present in the upstream repository will not be
sent upstream; branches must already exist and match names. Thus new branches
must be explicitly pushed by name. Later they can be defaulted with a simple git
push. As such, the default refspec makes the following two commands equivalent:
 $ git push origin branch
 $ git push origin branch:refs/heads/branch

For examples, see “Adding and Deleting Remote Branches” on page 280.

Part II: Example Using Remote Repositories
Now you have the basis for some sophisticated sharing via Git. Without a loss of
generality and to make examples easy to run on your own system, this section shows
multiple repositories on one physical machine. In real life, they’d probably be located
on different hosts across the internet. Other forms of remote URL specification may
be used because the same mechanisms apply to repositories on physically disparate
machines as well.

Let’s explore a common use case for Git. For the sake of illustration, let’s set up
a repository that all developers consider authoritative, although technically it’s no
different from other repositories. In other words, authority lies in how everyone
agrees to treat the repository, not in some technical or security measure.

This agreed-on authoritative copy is often placed in a special directory known as
a depot. There are often good reasons for setting up a depot. For instance, your
organization could reliably and professionally back up the filesystems of some large
server. You want to encourage your coworkers to check everything into the main
copy within the depot in order to avoid catastrophic losses. The depot will be the
remote origin for all developers.

The following sections show how to place an initial repository in the depot, clone
development repositories out of the depot, do development work within them, and
then sync them with the depot.

Part II: Example Using Remote Repositories | 251

To illustrate parallel development on this repository, a second developer will clone it,
work with their repository, and then push their changes back into the depot for all to
use.

Creating an Authoritative Repository
You can place your authoritative depot anywhere on your filesystem; for this exam‐
ple, let’s use /tmp/Depot. No actual development work should be done directly in
the /tmp/Depot directory or in any of its repositories. Instead, individual work should
be performed in a local clone.

In practice, this authoritative upstream repository would likely already be hosted on
some server, perhaps git.kernel.org, GitHub, or one of your private machines.

These steps, however, outline what is necessary to transform a repository into
another bare clone repository capable of being the authoritative upstream source
repository.

The first step is to populate /tmp/Depot with an initial repository. Assuming you
want to work on website content that is already established as a Git repository in ~/
my_website, make a copy of the ~/my_website repository and place it in /tmp/Depot/
my_website.git:
 # Assume that ~/my_website is already a Git repository
 $ cd /tmp/Depot/
 $ git clone --bare ~/my_website my_website.git
 Cloning into bare repository 'my_website.git'...
 done.

This clone command copies the Git remote repository from ~/my_website into the
current working directory, /tmp/Depot. The last argument gives the repository a new
name, my_website.git. By convention, bare repositories are named with a .git suffix.
This is not a requirement, but it is considered a best practice.

The original development repository has a full set of project files checked out at the
top level, and the object store and all of the configuration files are located in the .git
subdirectory:
 $ cd ~/my_website/
 $ ls -aF
 ./ fuzzy.txt index.html techinfo.txt
 ../ .git/ poem.html

 # Note: The output in your terminal may vary
 $ ls -aF .git
 ./ HEAD hooks/ logs/
 ../ config index objects/
 COMMIT_EDITMSG description info/ refs/

Because a bare repository has no working directory, its files have a simpler layout:

252 | Chapter 11: Remote Repositories

 $ cd /tmp/Depot/

 $ ls -aF my_website.git
 ./ HEAD description info/ packed-refs
 ../ config hooks/ objects/ refs/

To view the configuration in the new, bare repository, we can do the following:
 # In /tmp/Depot/my_website.git

 $ cat config
 [core]
 repositoryformatversion = 0
 filemode = true
 bare = true
 ignorecase = true
 precomposeunicode = true
 [remote "origin"]
 url = ~/users/my_website

Because we used the --bare option during this clone operation, Git sets the bare
option to true. However, due to the clone operation, a remote named origin is
already present in the config file. Since we want this copy of the bare repository to
be an authoritative source, for this purpose we will remove the origin remote by
supplying the following command:
 $ git remote remove origin
 $ cat config
 [core]
 repositoryformatversion = 0
 filemode = true
 bare = true
 ignorecase = true
 precomposeunicode = true

You can now treat this bare /tmp/Depot/my_website.git repository as the authoritative
version.

Make Your Own Origin Remote
Right now, you have two repositories that are virtually identical, except the initial
repository has a working directory and the bare clone repository does not.

Moreover, because the ~/my_website repository in your home directory was created
using git init and not via a clone, it lacks an origin. In fact, it has no remote
configured at all:
 $ cd ~/my_website
 $ cat .git/config
 [core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true

Part II: Example Using Remote Repositories | 253

It is easy enough to add one, though. And it’s needed if the goal is to perform more
development in your initial repository and then push that development to the newly
established, authoritative repository in the depot. In a sense, you must manually
convert your initial repository into a derived clone.

A developer who clones from the depot will have an origin remote created automati‐
cally. In fact, if you were to turn around now and clone off the depot, you would see it
set up for you automatically too.

The command for manipulating remotes is git remote. This operation introduces a
few new settings in the .git/config file:
 $ cd ~/my_website
 $ git remote add origin /tmp/Depot/my_website

 $ cat .git/config
 [core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
 [remote "origin"]
 url = /tmp/Depot/my_website
 fetch = +refs/heads/*:refs/remotes/origin/*

Here, git remote added to our configuration a new remote section called origin.
The name origin isn’t magical or special. You could have used any other name, but
the remote that points back to the original repository is named origin by convention.

The remote establishes a link from your current repository to the remote repository
found, in this case, at /tmp/Depot/my_website.git as recorded in the url value. As
a convenience, the .git suffix is not required; both /tmp/Depot/my_html and /tmp/
Depot/my_website.git will work.

Now, within this repository, the name origin can be used as a shorthand reference
for the remote repository found in the depot. Note that a default fetch refspec that
follows branch name mapping conventions has also been added.

The relationship between a repository that contains a remote reference (the referrer)
and that remote repository (the referee) is asymmetric. A remote always points in one
direction from referrer to referee. The referee has no idea that some other repository
points to it. Another way to say this is that a clone knows where its upstream
repository is, but the upstream repository doesn’t know where its clones are.

Let’s complete the process of setting up the origin remote by establishing new
remote-tracking branches in the original repository to represent the branches from
the remote repository. First, you can see that there is only one branch, as expected,
called main:

254 | Chapter 11: Remote Repositories

 # List all branches

 $ git branch -a
 * main

Now, use git remote update:
 $ git remote update
 Fetching origin
 From /tmp/Depot/my_website
 * [new branch] main -> origin/main

 $ git branch -a
 * main
 remotes/origin/main

Git introduced into the repository a new branch called remotes/origin/main. It is a
remote-tracking branch within the origin remote. Nobody does development in this
branch. Instead, its purpose is to hold and track the commits made in the remote
origin repository’s main branch. You could consider it your local repository’s proxy
for commits made in the remote; eventually you can use it to bring those commits
into your repository.

The phrase Fetching origin, produced by the git remote update command,
means that the local repository’s notion of the origin has been updated based on
information brought in from the remote repository.

The generic git remote update command caused every remote
within this repository to be updated by checking for and then
fetching any new commits from each repository named in a
remote.
Rather than generically updating all remotes, you can restrict the
operation to fetch updates from a single remote by supplying the
desired remote name on the git remote update command:
 $ git remote update remote_name

Also, using the -f option when the remote is initially added causes
an immediate fetch from that remote repository:
 $ git remote add -f origin repository

Now you’re done linking your repository to the remote repository in your depot.

Part II: Example Using Remote Repositories | 255

Developing in Your Repository
Let’s do some development work in the repository and add another poem, fuzzy.txt:
 $ cd ~/my_website

 $ git show-branch -a
 * [main] add new file
 ! [origin/main] add new file
 --
 *+ [main] add new file

 $ cat fuzzy.txt
 Fuzzy Wuzzy was a bear
 Fuzzy Wuzzy had no hair
 Fuzzy Wuzzy wasn't very fuzzy,
 Was he?

 $ git add fuzzy.txt
 $ git commit -m "Add a new poem"
 [main 2daf640] Add new poem
 1 files changed, 4 insertions(+)
 create mode 100644 fuzzy.txt

 $ git show-branch -a
 * [main] Add new poem
 ! [origin/main] add new file
 --
 * [main] Add new poem
 *+ [origin/main] add new file

At this point, your repository has one more commit than the repository in /tmp/
Depot. Perhaps more interesting is that your repository has two branches, one (main)
with the new commit on it and the other (origin/main) that is tracking the remote
repository.

Pushing Your Changes
Any change that you commit is completely local to your repository; it is not yet
present in the remote repository. A convenient way to get your commits from your
main branch into the origin remote repository is to use the git push command.
Depending on your version of Git, the main parameter on this command was
assumed:
 $ git push origin main
 Enumerating objects: 4, done.
 Counting objects: 100% (4/4), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (3/3), done.
 Writing objects: 100% (3/3), 343 bytes | 343.00 KiB/s, done.
 Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
 To /tmp/Depot/my_website
 7e876fd..2daf640 main -> main

256 | Chapter 11: Remote Repositories

All that output means that Git has taken your main branch changes, bundled them
up, and sent them to the remote repository named origin. Git has also performed
one more step here: it has taken those same changes and added them to the origin/
main branch in your repository as well. Git doesn’t actually round-trip the changes.
After all, the commits are already in your repository. Git is smart enough to instead
simply fast-forward the remote-tracking branch.

Now both local branches, main and origin/main, reflect the same commit within
your repository:
 $ git show-branch -a
 * [main] Add a new poem
 ! [origin/main] Add a new poem
 --
 *+ [main] Add a new poem

You can also probe the remote repository and verify that it, too, has been updated. If
your remote repository is on a local filesystem, as it is here, then you can easily check
by going to the depot directory:
 $ cd /tmp/Depot/my_website.git
 $ git show-branch
 [main] Add a new poem

When the remote repository is on a physically different machine, a plumbing com‐
mand can be used to determine the branch information of the remote repository:
 $ cd ~/my_website

 $ git ls-remote
 From /tmp/Depot/my_website
 2daf64034a769ee02f8cedd9fcb2e43b04fe7c17 HEAD
 2daf64034a769ee02f8cedd9fcb2e43b04fe7c17 refs/heads/main

In our example, the From path outputs the local Depot directory.
Generally, this will be a URL of the remote Git repository if it was
on a different server where the repository is hosted.

You can then show that those commit IDs match your current, local branches using
something like git rev-parse HEAD or git show commit-id:

 $ git rev-parse HEAD
 2daf64034a769ee02f8cedd9fcb2e43b04fe7c17

Part II: Example Using Remote Repositories | 257

Adding a New Developer
Once you have established an authoritative repository, it’s easy to add a new devel‐
oper to a project simply by letting them clone the repository and begin working.

Let’s introduce Lisa to the project by giving them their own cloned repository in
which to work:
 $ cd /tmp/lisa
 $ git clone /tmp/Depot/my_website.git
 Cloning into 'my_website'...
 done.

 $ ls
 my_website
 $ cd my_website

 $ ls
 fuzzy.txt index.html poem.html techinfo.txt

 $ git branch
 * main

 $ git log -1
 commit 6f168803f6f1b987dffd5fff77531dcadf7f4b68
 Author: Jon Loeliger <jdl@example.com>
 Date: Sat Nov 6 18:57:37 2021 +0100

 Add a new poem

Immediately, you can see from ls that the clone has a working directory populated
with all the files under version control. That is, Lisa’s clone is a development reposi‐
tory, and not a bare repository. Good. Lisa will be doing some development too.

From the git log output, you can see that the most recent commit is available in
Lisa’s repository. Additionally, because Lisa’s repository was cloned from a parent
repository, it has a default remote called origin. Lisa can find out more information
about the origin remote within their repository:
 $ git remote show origin
 * remote origin
 Fetch URL: /tmp/Depot/my_website.git
 Push URL: /tmp/Depot/my_website.git
 HEAD branch: main
 Remote branch:
 main tracked
 Local branch configured for 'git pull':
 main merges with remote main
 Local ref configured for 'git push':
 main pushes to main (up to date)

The complete contents of the configuration file after a default clone show how it
contains the origin remote:

258 | Chapter 11: Remote Repositories

 $ cat .git/config
 [core]

 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
 ignorecase = true
 precomposeunicode = true

 [remote "origin"]
 url = /tmp/Depot/my_website.git
 fetch = +refs/heads/*:refs/remotes/origin/*
 [branch "main"]
 remote = origin
 merge = refs/heads/main

In addition to having the origin remote in their repository, Lisa has a few branches.
They can list all branches in their repository by using git branch -a:
 $ git branch -a
 * main
 remotes/origin/HEAD -> origin/main
 remotes/origin/main

The main branch is Lisa’s main development branch. It is the normal, local topic
branch. It is also a local-tracking branch associated with the correspondingly named
main remote-tracking branch. The origin/main branch is a remote-tracking branch
to follow the commits from the main branch of the origin repository. The origin/
HEAD ref indicates which branch the remote considers the active branch, through a
symbolic name. Finally, the asterisk next to the main branch name indicates that it is
the current, checked-out branch in this repository.

We can confirm this by running the git branch command with option -vv to
provide verbose output that shows the relationship of the local and linked remote-
tracking branch as explained:
 $ git branch -vv
 * main 2daf640 [origin/main] Add a new poem

Let’s have Lisa make a commit that alters the new poem and then push that to the
main depot repository. Lisa thinks the last line of the poem should be “Wuzzy?”,
makes this change, and commits it:
 $ git diff

 diff --git a/fuzzy.txt b/fuzzy.txt
 index 0d601fa..608ab5b 100644
 --- a/fuzzy.txt
 +++ b/fuzzy.txt
 @@ -1,4 +1,4 @@
 Fuzzy Wuzzy was a bear
 Fuzzy Wuzzy had no hair
 Fuzzy Wuzzy wasn't very fuzzy,
 -Was he?
 +Wuzzy?

Part II: Example Using Remote Repositories | 259

 $ git commit fuzzy.txt
 [main c426244] Make the name pun complete!
 1 file changed, 1 insertion(+), 1 deletion(-)

Lisa completes their development cycle by pushing their changes to the depot, using
git push as before:
 $ git push
 Enumerating objects: 5, done.
 Counting objects: 100% (5/5), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (3/3), done.
 Writing objects: 100% (3/3), 330 bytes | 330.00 KiB/s, done.
 Total 3 (delta 1), reused 0 (delta 0), pack-reused 0
 To /tmp/Depot/my_website.git
 2daf640..a5f8133 main -> main

Getting Repository Updates
Let’s suppose that Lisa goes on vacation, and, in the meantime, you make further
changes and push them to the depot repository. Let’s assume you did this after getting
Lisa’s latest changes.

Your commit looks like this:
 $ cd ~/my_website
 $ git diff
 diff --git a/index.html b/index.html
 index 40b00ff..063ac92 100644
 --- a/index.html
 +++ b/index.html
 @@ -1,5 +1,7 @@
 <html>
 <body>
 My web site is awesome!
 +

 +Read a new poem!
 </body>
 <html>

 $ git commit -m "Add a new poem link." index.html
 [main 89cfd9f] Add a new poem link.
 1 file changed, 2 insertions(+)

Using the default push refspec, push your commit upstream (the depot):
 $ git push
 Enumerating objects: 5, done.
 Counting objects: 100% (5/5), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (3/3), done.
 Writing objects: 100% (3/3), 333 bytes | 333.00 KiB/s, done.
 Total 3 (delta 1), reused 0 (delta 0), pack-reused 0
 To /tmp/Depot/my_website.git
 e023cd1..c4e45f7 main -> main

260 | Chapter 11: Remote Repositories

Now, when Lisa returns they’ll want to refresh their clone of the repository. The
primary command for doing this is git pull:
 $ git pull
 remote: Enumerating objects: 5, done.
 remote: Counting objects: 100% (3/3), done.
 remote: Compressing objects: 100% (3/3), done.
 remote: Total 3 (delta 1), reused 0 (delta 0), pack-reused 0
 Unpacking objects: 100% (3/3), 943 bytes | 235.00 KiB/s, done.
 From /tmp/Depot/my_website
 a5f8133..c4e45f7 main -> origin/main
 Updating a5f8133..c4e45f7
 Fast-forward
 index.html | 2 ++
 1 file changed, 2 insertions(+)

The fully specified git pull command allows both the repository and multiple
refspecs to be specified: git pull options repository refspecs.

If the repository is not specified on the command line, either as a Git URL or
indirectly through a remote name, then the default remote origin is used. If you
don’t specify a refspec on the command line, the fetch refspec of the remote is used.
If you specify a repository (directly or using a remote) but no refspec, Git fetches the
HEAD ref of the remote.

The git pull operation is fundamentally two steps, each implemented by a separate
Git command. Namely, git pull implies git fetch followed by either git merge
or git rebase. By default, the second step is merge because this is almost always the
desired behavior.

Because pull also performs the second merge or rebase step, git push and git pull
are not considered opposites. Instead, git push and git fetch are considered oppo‐
sites. Both push and fetch are responsible for transferring data between repositories
but in opposite directions.

Sometimes you may want to execute the git fetch and git merge as two separate
operations. For example, you may want to fetch updates into your repository to
inspect them but not necessarily merge immediately. In this case, you can simply
perform the fetch, and then perform other operations on the remote-tracking branch
such as git log, git diff, or even gitk. Later, when you are ready, you can perform
the merge at your convenience.

Even if you never separate the fetch and merge, you can do complex operations that
require you to know what’s happening at each step. So let’s look at each one in detail.

Part II: Example Using Remote Repositories | 261

The fetch step

In the first fetch step, Git locates the remote repository. Since the command line
didn’t specify a direct repository URL or a direct remote name, it assumes the default
remote name, origin. The information for that remote is in the configuration file:
 [remote "origin"]
 url = /tmp/Depot/my_website.git
 fetch = +refs/heads/*:refs/remotes/origin/*

Git now knows to use the URL /tmp/Depot/my_website as the source repository.
Furthermore, because the command line didn’t specify a refspec, Git will use all of
the fetch = lines from the remote entry. Thus every refs/heads/* branch from the
remote will be fetched.

Next, Git performs a negotiation protocol with the source repository to determine
what new commits are in the remote repository and are absent from your repository,
based on the desire to fetch all of the refs/heads/* refs as given in the fetch refspec.

The pull output prefixed by remote: reflects the negotiation, compression, and trans‐
fer protocol, and it lets you know that new commits are coming into your repository:
 remote: Counting objects: 5, done.
 remote: Compressing objects: 100% (3/3), done.
 remote: Total 3 (delta 1), reused 0 (delta 0)

Git places the new commits in your repository on an appropriate remote-tracking
branch and then tells you what mapping it uses to determine where the new commits
belong:
 From /tmp/Depot/my_website
 a5f8133..c4e45f7 main -> origin/main

Those lines indicate that Git looked at the remote repository /tmp/Depot/my_website,
took its main branch, brought its contents back to your repository, and placed them
on your origin/main branch. This process is the heart of branch tracking. The corre‐
sponding commit IDs are also listed, just in case you want to inspect the changes
directly. With that, the fetch step is finished.

A more recent version of Git (2.29) introduced support for negative refspecs. This
means you are able to explicitly call out refspecs you chose to exclude, which takes
effect during a push or fetch operation. To exclude a refspec, you will need to prefix
it with ^; however, this will apply only to the source side of the refspec (+[source]:
[destination]).

Here is an example:
 # Fetching with a negative refspec

 $ git fetch newdev refs/heads/*:refs/remotes/newdev/* ^refs/heads/skip-me
 ...
 ...

262 | Chapter 11: Remote Repositories

The preceding code will locally fetch all branches in the repository into remotes/
origin but will exclude fetching the branch with the matching name skip-me.

An alternative to this is to edit the config file directly to include the negative refspec:
 [remote "newdev"]
 url = /tmp/Depot/my_website.git
 fetch = +refs/heads/dev:refs/remotes/origin/dev
 fetch = +refs/heads/stable:refs/remotes/origin/stable
 fetch = ^refs/heads/skip-me

You don’t have to fetch all of the topic branches from the remote
repository using the refs/heads/* wildcard form. If you want only
a particular branch or two, list them explicitly:
[remote "newdev"]
 url = /tmp/Depot/my_website.git
 fetch = +refs/heads/dev:refs/remotes/origin/dev
 fetch = +refs/heads/stable:refs/remotes/origin/stable

The merge or rebase step

In the second step of the pull operation, Git performs a merge (the default) or a
rebase operation. In this example, Git merges the contents of the remote-tracking
branch, origin/main, into your local-tracking branch, main, using a special type of
merge called a fast-forward.

But how did Git know to merge those particular branches? The answer comes from
the configuration file:
 [branch "main"]
 remote = origin
 merge = refs/heads/main

Paraphrased, this gives Git two key pieces of information:

When main is the current, checked-out branch, use origin as the default remote from
which to fetch updates during a fetch (or pull). Further, during the merge step of git
pull, use refs/heads/main from the remote as the default branch to merge into this,
the main branch.

For readers paying close attention to detail, the first part of that paraphrase is the
actual mechanism by which Git determines that origin should be the remote used
during this parameterless git pull command.

The value of the merge field in the branch section of the configuration file (refs/
heads/main) is treated like the remote part of a refspec, and it must match one of
the source refs just fetched during the git pull command. It’s a little convoluted,
but think of this as a hint conveyed from the fetch step to the merge step of a pull
command.

Part II: Example Using Remote Repositories | 263

Because the merge configuration value applies only during git pull, if you perform
a manual application of git merge at this point, you must name the merge source
branch on the command line. The branch is likely a remote-tracking branch name,
such as this:
 # Or, fully specified: refs/remotes/origin/main

 $ git merge origin/main
 Updating a5f8133..c4e45f7
 Fast forward
 index.html | 2 ++
 1 files changed, 2 insertions(+), 0 deletions(-)

There are slight semantic differences between the merging behavior
of branches when multiple refspecs are given on the command line
and when they are found in a remote entry. The former causes an
octopus merge, wherein all branches are merged simultaneously in
an n-way operation, whereas the latter does not. Read the git pull
manual page carefully!

If you choose to rebase rather than merge, Git will instead forward port the changes
on your local-tracking branch to the newly fetched HEAD of the corresponding
remote-tracking branch. The operation is the same as that shown in Figure 9-16
and Figure 9-17 in Chapter 9.

The command git pull --rebase will cause Git to rebase (rather than merge) your
local-tracking branch onto the remote-tracking branch during only this pull. To
make rebase the normal operation for a branch, set the branch.branch_name.rebase
configuration variable to true:
 [branch "mydev"]
 remote = origin
 merge = refs/heads/main
 rebase = true

And with that, the merge (or rebase) step is also done.

Should you merge or rebase?

So, should you merge or rebase your changes during a pull operation? The short
answer is “Do either as you wish.” But why would you choose to do one over the
other? Here are some issues to consider.

By using merge, you will potentially incur an additional merge commit at each pull
to record the updated changes simultaneously present in each branch. In a sense, it is
a true reflection of the two paths of development that took place independently and
were then, well, merged together. Conflicts will have to be resolved during the merge.
Each sequence of commits on each branch will be based on exactly the commit on

264 | Chapter 11: Remote Repositories

which it was originally written. When pushed upstream, any merge commits will
continue to be present. Some consider these superfluous merges and would rather
not see them cluttering up the history. Others consider these merges a more accurate
portrayal of the development history and want to see them retained.

As a rebase fundamentally changes the notion of when and where a sequence of
commits was developed, some aspects of the development history will be lost. Specif‐
ically, the original commit on which your development was originally based will be
changed to be the newly pulled HEAD of the remote-tracking branch. That will make
the development appear to happen later (in commit sequence) than it actually did.
If that’s OK with you, it’s OK with us. It’ll just be different and simpler than if the
history was merged. Naturally, you will still have to resolve conflicts during the rebase
operation as needed. As the changes that are being rebased are still strictly local
within your repository and haven’t been published yet, there’s really no reason to fear
the “don’t change history” mantra with this rebase.

With both merge and rebase, you should consider that the new, final content is differ‐
ent from what was present on either development branch independently. As such, it
might warrant some form of validation in its new form: perhaps a compilation and
test cycle prior to being pushed to an upstream repository.

We tend to like to see simpler, linear histories. During most of our personal develop‐
ment, we are usually not too concerned by a slight reordering of our changes with
respect to those of our coworkers that came in on a remote-tracking branch fetch, so
we are fond of using the rebase option.

If you really want to set up one consistent approach, consider setting the config
option branch.autosetupmerge or branch.autosetuprebase to true, false, or
always as desired. There are also a few other options to handle behavior between
purely local branches and not just between a local and a remote branch.

Part III: Remote Repository Development Cycle in Pictures
Integrating your local development with changes from an upstream repository is
at the very core of the distributed development cycle in Git. Let’s take a moment
to visualize what happens to both your local repository and an upstream origin
repository during clone and pull operations. A few pictures should also clarify the
often confusing uses of the same name in different contexts.

Let’s start with the simple repository shown in Figure 11-2 as the basis for discussion.

As with all of our commit graphs, the sequence of commits flows from left to right,
and the main label points to the HEAD of the branch. The two most recent commits
are labeled A and B. Let’s follow these two commits, introduce a few more, and watch
what occurs.

Part III: Remote Repository Development Cycle in Pictures | 265

Figure 11-2. Simple repository with commits

Cloning a Repository
A git clone command results in two separate repositories, as shown in Figure 11-3.

Figure 11-3. Cloned repository

Figure 11-3 illustrates some important results of the clone operation:

• All the commits from the original repository are copied to your clone; you could•
now easily retrieve earlier stages of the project from your own repository.

• The branch named main from the original repository is introduced into your•
clone on a new remote-tracking branch named origin/main.

• Within the new clone repository, the new origin/main branch is initialized to•
point to the main HEAD commit, which is B in the figure.

• A new local-tracking branch called main is created in your clone.•
• The new main branch is initialized to point to origin/HEAD, the original reposi‐•

tory’s active branch HEAD. That happens to be origin/main, so it also points to
the exact same commit, B.

266 | Chapter 11: Remote Repositories

After cloning, Git selects the new main branch as the current branch and checks it out
for you. Thus, unless you change branches, any changes you make after a clone will
affect your main branch.

In all of these figures, development branches in both the original repository and the
derived clone repository are distinguished by a dark shaded background, and remote-
tracking branches by a lighter shaded background. It is important to understand
that both the local-tracking development branches and remote-tracking branches are
private and local to their respective repositories. In terms of Git’s implementation,
however, the dark shaded branch labels belong to the refs/heads/ namespace,
whereas the lighter ones belong to refs/remotes/.

Alternate Histories
Once you have cloned and obtained your development repository, two distinct paths
of development may result. First, you may do development in your repository and
make new commits on your main branch, as shown in Figure 11-4. In this figure,
your development extends the main branch with two new commits, X and Y, which
are based on B.

Figure 11-4. Commits in your repository

In the meantime, any other developer who has access to the original repository might
have done further development and pushed their changes into that repository. Those
changes are represented in Figure 11-5 by the addition of commits C and D.

Part III: Remote Repository Development Cycle in Pictures | 267

Figure 11-5. Commits in original repository

In this situation, we say that the histories of the repositories have diverged or forked
at commit B. In much the same way that local branching within one repository causes
alternate histories to diverge at a commit, a repository and its clone can diverge into
alternate histories as a result of separate actions by possibly different people. It is
important to realize that this is perfectly fine and that neither history is more correct
than the other.

In fact, the whole point of the merge operation is that these different histories may be
brought back together and resolved again. Let’s see how Git implements that!

Non-Fast-Forward Pushes
If you are developing in a repository model in which you have the ability to git
push your changes into the origin repository, then you might attempt to push
your changes at any time. This could create problems if some other developer has
previously pushed commits.

This hazard is particularly common when you are using a shared repository develop‐
ment model in which all developers can push their own commits and updates into a
common repository at any time.

Let’s look again at Figure 11-4, in which you have made new commits, X and Y, based
on B.

If you wanted to push your X and Y commits upstream at this point, you could do
so easily. Git would transfer your commits to the origin repository and add them
to the history at B. Git would then perform a fast-forward merge operation on the

268 | Chapter 11: Remote Repositories

main branch, putting in your edits and updating the ref to point to Y. A fast-forward
is essentially a simple linear history advancement operation; it was introduced in
“Degenerate Merges” on page 145.

On the other hand, suppose another developer had already pushed some commits to
the origin repository, and the result looked more like Figure 11-5 when you attemp‐
ted to push your history up to the origin repository. In effect, you are attempting to
cause your history to be sent to the shared repository when there is already a different
history there. The origin history does not simply fast-forward from B. This situation
is called the non-fast-forward push problem.

When you attempt your push, Git rejects it and tells you about the conflict with a
message like this:
 $ git push
 To /tmp/Depot/my_website
 ! [rejected] main -> main (non-fast forward)
 error: failed to push some refs to '/tmp/Depot/my_website'

So what are you really trying to do? Do you want to overwrite the other developer’s
work, or do you want to incorporate both sets of histories?

If you want to overwrite all other changes, you can! Simply use the
-f option on your git push. We just hope you won’t need that
alternate history!

More often, you are not trying to wipe out the existing origin history but just want
your own changes to be added. In this case, you must perform a merge of the two
histories in your repository before pushing.

Fetching the Alternate History
For Git to perform a merge between two alternate histories, both must be present
within one repository on two different branches. Branches that are purely local
development branches are a special (degenerate) case of their already being in the
same repository.

However, if the alternate histories are in different repositories because of cloning,
then the remote branch must be brought into your repository via a fetch operation.
You can carry out the operation through a direct git fetch command or as part
of a git pull command; it doesn’t matter which. In either case, the fetch brings
the remote’s commits—here, C and D—into your repository. The results are shown in
Figure 11-6.

Part III: Remote Repository Development Cycle in Pictures | 269

Figure 11-6. Fetching the alternate history

In no way does the introduction of the alternate history with commits C and D
change the history represented by X and Y; the two alternate histories both now exist
simultaneously in your repository and form a more complex graph. Your history
is represented by your main branch, and the remote history is represented by the
origin/main remote-tracking branch.

Merging Histories
Now that both histories are present in one repository, all that is needed to unify them
is a merge of the origin/main branch into the main branch.

The merge operation can be initiated either with a direct git merge origin/main
command or as the second step in a git pull request. In both cases, the techniques
for the merge operation are exactly the same as those described in Chapter 6.

Figure 11-7 shows the commit graph in your repository after the merge has success‐
fully assimilated the two histories from commits D and Y into a new merge commit, M.
The ref for origin/main remains pointing at D because it hasn’t changed, but main is
updated to the merge commit, M, to indicate that the merge was into the main branch;
this is where the new commit was made.

270 | Chapter 11: Remote Repositories

Figure 11-7. Merging histories

Merge Conflicts
Occasionally there will be merge conflicts between the alternate histories. Regardless
of the outcome of the merge, the fetch still occurred. All the commits from the
remote repository are still present in your repository on the tracking branch.

You can choose to resolve the merge normally, as described in Chapter 6, or you can
choose to abort the merge and reset your main branch to its prior ORIG_HEAD state
using the command git reset --hard ORIG_HEAD. Doing so in this example would
move main to the prior HEAD value, Y, and change your working directory to match. It
would also leave origin/main at commit D.

You can brush up on the meaning of ORIG_HEAD by reviewing “Refs
and Symrefs” on page 83; also see its use in “Aborting or Restarting
a Merge” on page 141.

Pushing a Merged History
If you’ve performed all the steps shown, your repository has been updated to contain
the latest changes from both the origin repository and your repository. But the
converse is not true: the origin repository still doesn’t have your changes.

Part III: Remote Repository Development Cycle in Pictures | 271

If your objective is only to incorporate the latest updates from origin into your
repository, then you are finished when your merge is resolved. On the other hand, a
simple git push can return the unified and merged history from your main branch
back to the origin repository. Figure 11-8 shows the results after the git push.

Figure 11-8. Merged histories after push

Finally, observe that the origin repository has been updated with your development
even if it has undergone other changes that had to be merged first. Both your reposi‐
tory and the origin repository have been fully updated and are again synchronized.

Part IV: Remote Configuration
Keeping track of all the information about a remote repository reference by hand can
become tedious and difficult: you have to remember the full URL for the repository,
you must type and retype remote references and refspecs on the command line each
time you want to fetch updates, you have to reconstruct the branch mappings, and so
on. Repeating the information is also likely to be quite error-prone.

272 | Chapter 11: Remote Repositories

You might also wonder how Git remembers the URL for the remote from the initial
clone for use in subsequent fetch or push operations using origin.

Git provides three mechanisms for setting up and maintaining information about
remotes: using the git remote command, using the git config command, and edit‐
ing the .git/config file directly. All three mechanisms ultimately result in configuration
information being recorded in the .git/config file.

Using git remote
The git remote command is a more specialized interface, specific to remotes, that
manipulates the configuration file data and remote refs. It has several subcommands
with fairly intuitive names. Typing git remote --help displays a message with
subcommand names:
 $ git remote --help
 NAME
 git-remote - Manage set of tracked repositories

 SYNOPSIS
 git remote [-v | --verbose]
 git remote add [-t <branch>] [-m <main>] [-f] [--[no-]tags]
 [--mirror=(fetch|push)] <name> <url>
 git remote rename <old> <new>
 git remote remove <name>
 git remote set-head <name> (-a | --auto | -d | --delete | <branch>)
 git remote set-branches [--add] <name> <branch>...
 git remote get-url [--push] [--all] <name>
 git remote set-url [--push] <name> <newurl> [<oldurl>]
 git remote set-url --add [--push] <name> <newurl>
 git remote set-url --delete [--push] <name> <url>
 git remote [-v | --verbose] show [-n] <name>...
 git remote prune [-n | --dry-run] <name>...
 git remote [-v | --verbose] update [-p | --prune] [(<group> | <remote>)...]

We shared the git remote add and update commands in “Make Your Own Ori‐
gin Remote” on page 253 and the git remote show command in “Adding a New
Developer” on page 258. We used git remote add origin to add a new remote
named origin to the newly created parent repository in the depot, and we ran the
git remote show origin command to extract all the information about the origin
remote. Finally, we used the git remote update command to fetch all the updates
available in the remote repository into our local repository.

The command git remote rm removes the given remote and all of its associated
remote-tracking branches from our local repository. To remove just one remote-
tracking branch from your local repository, you can use a command like this:
 $ git branch -r -d origin/dev

Part IV: Remote Configuration | 273

But you shouldn’t really do that unless the corresponding remote branch really has
been removed from the upstream repository. Otherwise, your next fetch from the
upstream repository is likely to re-create the branch again.

The remote repository may have branches deleted from it by the actions of other
developers, even though your copies of those branches may linger in your repository.
The git remote prune command may be used to remove the names of those stale
(with respect to the actual remote repository) remote-tracking branches from your
local repository.

To keep even more in sync with an upstream remote, use the command git remote
update --prune remote to first get updates from the remote and then prune stale
tracking branches, all in one step.

To rename a remote and all of its refs, use git remote rename old new:
 $ git remote rename jon jdl

After this command, a ref like jon/bugfixes will be renamed jdl/bugfixes.

In addition to manipulating the remote name and its refs, you can also update or
change the URL of the remote:
 $ git remote set-url origin git://repos.example.com/stuff.git

Using git config
The git config command can be used to manipulate the entries in your configura‐
tion file directly. This includes several config variables for remotes.

For example, to add a new remote named publish with a push refspec for all the
branches you would like to publish, you might do something like this:
 $ git config remote.publish.url 'ssh://git.example.org/pub/repo.git'
 $ git config remote.publish.push '+refs/heads/*:refs/heads/*'

Each of the preceding commands adds a line to the .git/config file. If no publish
remote section exists yet, then the first command you issue that refers to that remote
creates a section in the file for it. As a result, your .git/config contains, in part, the
following remote definition:
 [remote "publish"]
 url = ssh://git.example.org/pub/repo.git
 push = +refs/heads/*:refs/heads/*

274 | Chapter 11: Remote Repositories

Use the -l (lowercase L) option à la git config -l to list the
contents of the configuration file with complete variable names:
From a clone of git.git sources

$ git config -l
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
remote.origin.url=git://git.kernel.org/pub/scm/git/git.git
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
branch.main.remote=origin
branch.main.merge=refs/heads/main

Using Manual Editing
Rather than wrestling with either the git remote or git config command, directly
editing the file with your favorite text editor may be easier or faster in some situa‐
tions. There is nothing wrong with doing so, but it can be error- prone and is
usually done only by developers who are very familiar with Git’s behavior and the
configuration file. Yet having seen the parts of the file that influence various Git
behaviors and the changes resulting from commands, you should know enough at
this point to understand and manipulate the configuration file.

Multiple Remote Repositories
Operations such as git remote add remote repository-URL can be executed multi‐
ple times to add several new remotes to your repository. With multiple remotes, you
can subsequently fetch commits from multiple sources and combine them in your
repository. This feature also allows you to establish several push destinations that
might receive part or all of your repository.

In Chapter 12, we’ll show you how to use multiple repositories in different scenarios
during your development.

Part V: Working with Tracking Branches
Because the creation and manipulation of tracking branches is such a vital part of
the Git development methodology, it is important to understand how and why Git
creates the different tracking branches and how Git expects you to use them in
development.

Part V: Working with Tracking Branches | 275

Creating Tracking Branches
In the same way that your main branch can be thought of as extending the develop‐
ment brought in on the origin/main branch, you can create a new branch based on
any remote-tracking branch and use it to extend that line of development.

We’ve already seen that remote-tracking branches are introduced during a clone
operation or when remotes are added to a repository. Git makes it very easy to create
a local- and remote-tracking branch pair using a consistent ref name for them. A
simple checkout request using the name of a remote-tracking branch causes a new
local-tracking branch to be created and associated with the remote-tracking branch.
However, Git does this only if your branch name matches just one remote branch
name from all of the repository remotes. And by the phrase “branch name matches,”
Git means the full branch name after the name of the remote in a refspec.

Let’s use Git’s source repository for some examples. By pulling from both GitHub and
git.kernel.org, we’ll create a repository that has a collection of branch names from two
remotes, most of which are duplicates:
 # Grab Git source code repository
 $ git clone https://github.com/git/git.git
 Cloning into 'git'...
 ...

 $ cd git

 # add a second remote for the same repo from a different server
 $ git remote add korg git://git.kernel.org/pub/scm/git/git.git

 $ git remote update
 Fetching origin
 remote: Enumerating objects: 931, done.
 remote: Counting objects: 100% (759/759), done.
 remote: Compressing objects: 100% (130/130), done.
 remote: Total 931 (delta 650), reused 726 (delta 629), pack-reused 172
 Receiving objects: 100% (931/931), 918.29 KiB | 6.47 MiB/s, done.
 Resolving deltas: 100% (676/676), completed with 142 local objects.
 From https://github.com/git/git
 ...
 ...
 Fetching korg
 From git://git.kernel.org/pub/scm/git/git
 * [new branch] main -> korg/main
 * [new branch] maint -> korg/maint
 * [new branch] master -> korg/master
 * [new branch] next -> korg/next
 * [new branch] seen -> korg/seen
 * [new branch] todo -> korg/todo

276 | Chapter 11: Remote Repositories

For this next section of the code example, we will assume that there is a hypothetical
branch that exists only in the korg remote. We will explore how you can work with
this specific branch from the newly added korg remote. If you are following along,
this section will not work since the branch will not exist for you:

 # Find a uniquely named branch and check it out.
 $ git branch -a | grep split-blob
 remotes/origin/jc/split-blob

 $ git branch
 * main

 $ git checkout jc/split-blob
 branch 'jc/split-blob' set up to track 'jc/split-blob'
 Switched to a new branch 'jc/split-blob'

 $ git branch
 * jc/split-blob
 main

Notice that we had to use the full branch name jc/split-blob and not simply
split-blob.

In cases when the branch name is ambiguous, you can directly establish and set up
the branch yourself:
 $ git branch -a | egrep 'maint$'
 remotes/korg/maint
 remotes/origin/maint

 $ git checkout maint
 hint: If you meant to check out a remote tracking branch on, e.g. 'origin',
 ...
 ...
 ...
 fatal: 'maint' matched multiple (2) remote tracking branches

 # Just select one of the maint branches.
 $ git checkout --track korg/maint
 branch 'maint' set up to track 'korg/maint'.
 Switched to a new branch 'maint'

It is likely that the two branches represent the same commit as found in two different
repositories, and you can simply choose one on which to base your local-tracking
branch.

If for some reason you wish to use a different name for your local-tracking branch,
use the following:
 $ git branch --track mynext korg/next
 branch 'mynext' set up to track 'korg/next'.

Part V: Working with Tracking Branches | 277

Under the hood, Git automatically adds a branch entry to the .git/config to indicate
that the remote-tracking branch should be merged into your new local-tracking
branch. The collected changes from the previous series of commands yield the fol‐
lowing config file:
 $ cat .git/config
 [core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
 ignorecase = true
 precomposeunicode = true
 [remote "origin"]
 url = https://github.com/git/git.git
 fetch = +refs/heads/*:refs/remotes/origin/*
 [branch "main"]
 remote = origin
 merge = refs/heads/main
 [remote "korg"]
 url = git://git.kernel.org/pub/scm/git/git.git
 fetch = +refs/heads/*:refs/remotes/korg/*
 [branch "jc/split-blob"]
 remote = origin
 merge = refs/heads/jc/split-blob
 [branch "maint"]
 remote = korg
 merge = refs/heads/maint
 [branch "mynext"]
 remote = korg
 merge = refs/heads/next

As usual, you can also use git config or a text editor to manipulate the branch
entries in the configuration file.

When you get lost in the tracking branch mire, use the command
git remote show remote to help sort out all the remotes and
branches.

At this point, it should be pretty clear that the default clone behavior introduces
the local-tracking branch main for the remote-tracking branch origin/main as a
simplifying convenience just as if you had explicitly checked out the main branch
yourself.

To reinforce the idea that making commits directly on a remote-tracking branch isn’t
good form, checking out a remote-tracking branch using early versions of Git (prior
to about 1.6.6 or so) caused a detached HEAD. As mentioned in “Detached HEAD” on
page 74, a detached HEAD is essentially an anonymous branch name. Making commits
on the detached HEAD is possible, but you shouldn’t then update your remote-tracking
branch HEAD with any local commits lest you suffer grief later when fetching new

278 | Chapter 11: Remote Repositories

updates from that remote. (If you find you need to keep any such commits on a
detached HEAD, use git checkout -b my_branch to create a new, local branch on
which to further develop your changes.) Collectively, it isn’t really a good, intuitive
approach.

If you already have a topic branch that you decide should be associated with an
upstream repository’s remote-tracking branch, you can establish the relationship
using the --set-upstream-to option. Typically, this is done after adding a new
remote, like this:
 # From in the existing repository root directory run the following
 $ git remote add upstreamrepo git://git.example.org/upstreamrepo.git

 # Existing branch with a different remote: origin/dev.
 # Leave it alone, but associate it with upstreamrepo/dev.
 $ git branch --set-upstream-to upstreamrepo/dev
 branch dev set up to track 'upstreamrepo/dev'.

Ahead and Behind
With the establishment of a local- and remote-tracking branch pair, relative compari‐
sons between the two branches can be made. In addition to the normal diff, log,
and other content-based comparisons, Git offers a quick summary of the number of
commits on each of the branches and states which branch it judges to be “ahead of ”
or “behind” the other branch.

If your local development introduces new commits on a local-tracking branch, it is
considered to be ahead of the corresponding remote-tracking branch. Conversely, if
you fetch new commits onto remote-tracking branches and they are not present on
your local-tracking branch, Git considers your local-tracking branch to be behind the
corresponding remote-tracking branch.

The git status command usually reports this status:
 $ git fetch
 remote: Enumerating objects: 5, done.
 remote: Counting objects: 100% (5/5), done.
 remote: Compressing objects: 100% (3/3), done.
 remote: Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
 Unpacking objects: 100% (3/3), 660 bytes | 220.00 KiB/s, done.
 From https://github.com/ppremk/somerepo
 78625f3..cf1abb0 main -> origin/main

 $ git status
 On branch main
 Your branch is behind 'origin/main' by 1 commit, and can be fast-forwarded.
 (use "git pull" to update your local branch)

 nothing to commit, working tree clean

Part V: Working with Tracking Branches | 279

To see which commits you have in main that are not in origin/main, use a command
like this:
 $ git log main..origin/main
 commit cf1abb04818c5ee5304c3cdece481442596e34da (origin/main, origin/HEAD)
 Author: Prem Kumar Ponuthorai <ppremk@gmail.com>
 Date: Thu Jul 14 20:40:17 2022 +0200

 Update README.md

The following code shows how it is possible to be both ahead and behind
simultaneously!
 # Make one local commit on top of previous example
 $ git commit -m "Something" README.md
 [main 7d28dc3] Something
 1 file changed, 2 insertions(+), 1 deletion(-)

 $ git status
 On branch main
 Your branch and 'origin/main' have diverged,
 and have 1 and 1 different commits each, respectively.
 (use "git pull" to merge the remote branch into yours)

 nothing to commit, working tree clean

In this case, you probably want to use the symmetric difference to see the changes:
 $ git log origin/main...main
 commit 7d28dc31ca6be516a648e434fcfc04a4b14dc1b0 (HEAD -> main)
 Author: Prem Kumar Ponuthorai <ppremk@gmail.com>
 Date: Thu Jul 14 20:50:01 2022 +0200

 Something

Adding and Deleting Remote Branches
Any new development work you do on branches in your local clone is not visible in
the parent repository until you make a direct request to propagate it there. Similarly,
a branch deletion in your repository remains a local change and is not removed from
the parent repository until you request that it be removed from the remote as well.

In Chapter 3, you learned how to add new branches to and delete existing branches
from your repository using the git branch command. But git branch operates only
on a local repository.

To perform similar branch add and delete operations on a remote repository, you
need to specify different forms of refspecs in a git push command. Recall that the
syntax of a refspec is as follows:
 [+]source:destination

280 | Chapter 11: Remote Repositories

Pushes that use a refspec with just a source ref (i.e., with no destination ref) create
a new branch in the remote repository:
 $ cd ~/my_website

 $ git checkout -b foo
 Switched to a new branch "foo"

 $ git push origin foo
 Total 0 (delta 0), reused 0 (delta 0), pack-reused 0
 To /tmp/Depot/my_website
 * [new branch] foo -> foo

A push that names only a source is just shorthand for using the same name for
both the source and destination ref names. A push that names both a source and
a destination ref that are different can be used to create a new destination named
branch or extend an existing destination remote branch with the content from the
local source branch. That is, git push origin mystuff:dev will push the local
branch mystuff to the upstream repository and either create or extend a branch
named dev. Thus, due to a series of default behaviors, the following commands have
the same effect:
 $ git push upstream new_dev
 $ git push upstream new_dev:new_dev
 $ git push upstream new_dev:refs/heads/new_dev

Naturally, upstream would be a reference to an appropriate upstream repository,
which would typically be origin.

Pushes that use a refspec with just a destination ref (i.e., no source ref) cause the
destination ref to be deleted from the remote repository. To denote the ref as the
destination, the colon separator must be specified:
 $ git push origin :foo
 To /tmp/Depot/my_website
 - [deleted] foo

If that :branch form causes you heartache, you can use a syntactically equivalent
form:
 $ git push origin --delete foo

So, what about renaming a remote branch? Unfortunately, there is not a simple
solution for this. The short answer is to create a new upstream branch with the new
name and then delete the old branch. That’s easy enough to do using the git push
commands, as shown previously:

Adding and Deleting Remote Branches | 281

 # Create new name at exiting old commit
 $ git branch new origin/old
 $ git push origin new

 # Remove the old name
 $ git push origin :old

But that’s the easy and obvious part. Now, what are the distributed implications? Do
you know who has a clone of the upstream repository that was just modified out
from underneath them? If you do, they could all just fetch and remote prune to get
their repositories updated. But if you don’t, then all those other clones will suddenly
have dangling tracking branches. And there’s no real way to get them renamed in a
distributed way.

The bottom line here is that this is just a variant of the “Be careful how you rewrite
history” theme.

Bare Repositories and git push
As a consequence of the peer-to-peer semantics of Git repositories, all repositories are
of equal stature. You can push to and fetch from development and bare repositories
equally, because there is no fundamental implementation distinction between them.
This symmetric design is critically important to Git, but it also leads to some unex‐
pected behavior if you try to treat bare and development repositories as exact equals.

Recall that the git push command does not check out files in the receiving reposi‐
tory. It simply transfers objects from the source repository to the receiving repository
and then updates the corresponding refs on the receiving end.

In a bare repository, this behavior is all that can be expected because there is no
working directory that might be updated by checked-out files. That’s good. However,
in a development repository that is the recipient of a push operation, it can later cause
confusion to anyone using the development repository.

The push operation can update the repository state, including the HEAD commit. That
is, even though the developer at the remote end has done nothing, the branch refs
and HEAD might change, becoming out of sync with the checked-out files and index.

A developer who is actively working in a repository into which an asynchronous
push happens will not see the push. But a subsequent commit by that developer will
occur on an unexpected HEAD, creating an odd history. A forced push will lose pushed
commits from the other developer. The developer at that repository also may find
themselves unable to reconcile their history with either an upstream repository or a
downstream clone because they are no longer simple fast-forwards as they should be.
And they won’t know why: the repository has silently changed out from underneath
them.

282 | Chapter 11: Remote Repositories

As a result, you are encouraged to push only into a bare repository. This is not a
hard-and-fast rule, but it’s a good guide for the average developer and is considered a
best practice. There are a few instances and use cases where you might want to push
into a development repository, but you should fully understand the implications of
doing so. When you do want to push into a development repository, you may want to
follow one of two basic approaches.

In the first scenario, you really do want to have a working directory with a branch
checked out in the receiving repository. You may know, for example, that no other
developer will ever be doing active development there, and therefore there is no one
who might be blindsided by silent changes being pushed into their repository.

In this case, you may want to enable a hook in the receiving repository to perform
a checkout of some branch, perhaps the one just pushed, into the working directory
as well. To verify that the receiving repository is in a sane state prior to having an
automatic checkout, the hook should ensure that the nonbare repository’s working
directory contains no edits or modified files and that its index has no files in the
staged but uncommitted state when the push happens. When these conditions are
not met, you run the risk of losing those edits or changes as the checkout overwrites
them.

There is another scenario where pushing into a nonbare repository can work rea‐
sonably well. By agreement, each developer who pushes changes must push to a
non-checked-out branch that is considered simply a receiving branch. A developer
never pushes to a branch that is expected to be checked out. It is up to some
developer in particular to manage what branch is checked out and when. Perhaps that
person is responsible for handling the receiving branches and merging them into a
main branch before it is checked out.

Summary
By now it is apparent that a remote is a reference, or handle, to another repository
through a filesystem or network path. As we discussed in this chapter, you use a
remote as a shorthand name for an otherwise lengthy and complicated Git URL. You
can define any number of remotes in a repository, thus creating terraced networks of
repository sharing.

Once a remote is established, Git can transfer data from one repository to another
using either a push or a pull model. For example, it’s a common practice to occasion‐
ally transfer commit data from an original repository to its clone in order to keep the
clone in sync. You can also create a remote to transfer data from the clone repository
to its original or configure the two to exchange information bidirectionally.

We also discussed that, to keep track of data from other repositories, Git uses remote-
tracking branches. Each remote-tracking branch in your repository is a branch that

Summary | 283

serves as a proxy for a specific branch in a remote repository. You can set up a
local-tracking branch that forms the basis for integrating your local changes with the
remote changes from a corresponding remote-tracking branch.

Finally, we shared techniques for making your repository available to others. Git
generally refers to this as “publishing a repository” and provides several techniques
for doing so. The parts in this chapter were designed to iteratively build the skill
and conceptual understanding you need to effectively leverage working with remote
repositories across all your projects.

284 | Chapter 11: Remote Repositories

CHAPTER 12

Repository Management

This chapter describes how to publish Git repositories and presents approaches for
managing and publishing repositories for cooperative development. It is very discus‐
sion oriented and draws together possible schools of thoughts one could adopt when
managing Git repositories.

We start by explaining how you can set up and configure your own Git server and
expose access for published repositories via available protocols. Next, we discuss
possible ways you can structure your repository for either central or distributed
access according to your development needs. Following this, we then share some
rules of thumb for you to consider in your development journey with Git reposi‐
tories. Building on this, we cover the importance of understanding the possible
roles of developers, mainly the presence of role duality in a developer–maintainer
relationship. We also discuss techniques you can leverage when you need to work
with multiple distributed repositories, and we conclude the chapter by sharing some
context around the concept of forking a repository.

A Word About Servers
The word server is used liberally and loosely to mean a variety of different things.
Neither Git nor this book is an exception, so let’s clarify what a server may or may not
be, what it might or might not do, and how Git might use one.

Technically, Git doesn’t need a server. In contrast to other version control systems,
where a centralized server is often required, there is no need to hang on to the
mindset that one is required to host Git repositories.

Having a server in the context of a Git repository often requires little more than
establishing a convenient, fixed, or known location from which repositories are

285

obtained or updates are exchanged. The Git server might also provide some form of
authentication or access control.

Git is happy to exchange files directly with a peer repository on the same machine
without the need for some server to broker the deal, or with different machines via a
variety of protocols, neiither of which enforces the need for a superior server to exist.

Publishing Repositories
Whether you are setting up an open source development environment in which many
people across the internet might develop a project, or you are establishing a project
for internal development within a private group, the mechanics of collaboration are
essentially the same. The main difference between the two scenarios is the location of
the repository and who has access to it.

The term commit rights is sort of a misnomer in Git. Git doesn’t try
to manage access rights; instead, it leaves it to other tools, such as
SSH, which are better suited to the task. You can always commit in
any repository to which you have (Unix) access via SSH and cding
to that repository, or to which you have direct rwx-mode access.
The concept might better be paraphrased as “Can I update the pub‐
lished repository?” In that expression, you can see the issue is really
the question “Can I push changes to the published repository?”

In “Referring to Remote Repositories” on page 246, we cautioned you about using
the remote repository URL form /path/to/repo.git because it might exhibit problems
characteristic of repositories that use shared files. However, if you were setting up
a common depot containing several similar repositories, you would want to use
a shared, underlying object store. In this case, you expect the repositories to be
monotonically increasing in size without objects and refs being removed from them.
This situation can benefit from large-scale sharing of the object store by many
repositories, thus saving tremendous volumes of disk space. To achieve this space
savings, consider using the --reference repository option, the --local option,
or the --shared option during the initial bare repository clone setup step for your
published repositories.

For any situation in which you publish a repository, we strongly advise that you
publish a bare one.

286 | Chapter 12: Repository Management

1 NFS stands for “Network File System.”

Repositories with Controlled Access
It might be sufficient for your project to publish a bare repository in a known location
on a filesystem in your organization that everyone can access.

Naturally, access in this context means that all developers can see the filesystem on
their machines and have traditional Unix (or Unix-like system) ownership and read/
write permissions. In these scenarios, using a filename URL such as /path/to/Depot/
project.git or file://path/to/Depot/project.git might suffice. Although the performance
might be less than ideal, an NFS-mounted1 filesystem can provide such sharing
support.

Slightly more complex access is called for if multiple development machines are used.
Within a corporation, for example, the IT department might provide a central server
for the repository depot and keep it backed up. Each developer might then have
a desktop machine for development. If direct filesystem access such as NFS is not
available, you could use repositories named with SSH URLs, but this still requires
each developer to have an account on the central server.

In the following example, the same repository published in /tmp/Depot/my_web‐
site.git earlier in this chapter is accessed by a developer who has SSH access to the
hosting machine:
 desktop$ cd /tmp
 desktop$ git clone ssh://example.com/tmp/Depot/my_website.git
 Initialize my_website/.git
 Initialized empty Git repository in /tmp/my_website/.git/
 jdl@example.com's password:
 remote: Counting objects: 27, done.
 Receiving objects: 100% (27/27), done.objects: 3% (1/27)
 Resolving deltas: 100% (7/7), done.
 remote: Compressing objects: 100% (23/23), done.
 remote: Total 27 (delremote: ta 7), reused 0 (delta 0)

When that clone is made, it records the source repository using the following URL:
ssh://example.com/tmp/Depot/my_website.git.

Similarly, other commands such as git fetch and git push can now be used across
the network:
 desktop$ git push
 jdl@example.com's password:
 Counting objects: 5, done.
 Compressing objects: 100% (3/3), done.
 Writing objects: 100% (3/3), 385 bytes, done.
 Total 3 (delta 1), reused 0 (delta 0)
 To ssh://example.com/tmp/Depot/my_website.git
 55c15c8..451e41c main -> main

Publishing Repositories | 287

In both of these examples, the password requested is the normal Unix login password
for the remote hosting machine.

If you need to provide network access with authenticated develop‐
ers but are not willing to provide login access to the hosting server,
check out the Gitolite project. It is an access control layer on top of
Git. Start here:
 $ git clone https://github.com/sitaramc/gitolite.git

If you do not need the overhead of setting up your own servers,
there are many alternative Git hosting solutions available, with
different pricing tiers from free to pro and enterprise.

Again, depending on the desired scope of access, such SSH access to machines may
be within a group or corporate setting or may be available across the internet.

Repositories with Anonymous Read Access
If you want to share code, you’ll probably want to set up a hosting server to publish
repositories and allow others to clone them. Anonymous, read-only access is often all
that developers need to clone or fetch from these repositories. A common and easy
solution is to export them using git-daemon and also perhaps an HTTP daemon.

Again, the actual realm across which you can publish your repository is as limited
or as broad as access to your HTTP pages or your git-daemon. That is, if you host
these commands on a public-facing machine, anyone can clone and fetch from your
repositories. If you put them behind a corporate firewall, only those people inside the
corporation will have access (in the absence of security breaches).

Publishing repositories using git-daemon

Setting up git-daemon allows you to export your repositories using the Git-native
protocol.

You must mark repositories as “OK to be exported” in some way. Typically, this is
done by creating the file git-daemon-export-ok in the top-level directory of the bare
repository. This mechanism gives you fine-grained control over which repositories
the daemon can export.

Instead of marking each repository individually, you can run git-daemon with the
--export-all option to publish all identifiable (by having both an objects and a
refs subdirectory) repositories found in its list of directories. There are many
git-daemon options that limit and configure which repositories will be exported.

288 | Chapter 12: Repository Management

https://oreil.ly/YxLNI

One common way to set up git-daemon on a server is to enable it as an inetd service.
This involves ensuring that your /etc/services has an entry for Git. The default port is
9418, though you may use any port you like. A typical entry might be as follows:
 git 9418/tcp # Git version control system

Once you add that line to /etc/services, you must set up an entry in your /etc/
inetd.conf to specify how git-daemon should be invoked.

A typical entry might look like this:
 # Place on one long line in /etc/inetd.conf

 git stream tcp nowait nobody /usr/bin/git-daemon
 git-daemon --inetd --verbose --export-all
 --base-path=/pub/git

Using xinetd instead of inetd, place a similar configuration in the file /etc/xinetd.d/
git-daemon:
 # description: The git server offers access to git repositories
 service git
 {
 disable = no
 type = UNLISTED
 port = 9418
 socket_type = stream
 wait = no
 user = nobody
 server = /usr/bin/git-daemon
 server_args = --inetd --export-all --base-path=/pub/git
 log_on_failure += USERID
 }

You can make it look as if repositories are located on separate hosts, even though
they’re just in separate directories on a single host, through a trick supported by git-
daemon. The following example entry allows a server to provide multiple, virtually
hosted Git daemons:
 # Place on one long line in /etc/inetd.conf

 git stream tcp nowait nobody /usr/bin/git-daemon
 git-daemon --inetd --verbose --export-all
 --interpolated-path=/pub/%H%D

In the preceding command, git-daemon will fill in the %H with a fully qualified
hostname and the %D with the repository’s directory path. Because %H can be a logical
hostname, different sets of repositories can be offered by one physical server.

Typically, an additional level of directory structure, such as /software or /scm, is used
to organize the advertised repositories. If you combine --interpolated-path=/pub/
%H%D with a /software repository directory path, the bare repositories to be published
will be physically present on the server, in directories such as these:
 /pub/git.example.com/software/
 /pub/www.example.org/software/

Publishing Repositories | 289

You would then advertise the availability of your repositories at URLs such as these:
 git://git.example.com/software/repository.git
 git://www.example.org/software/repository.git

Here, the %H is replaced by the host git.example.com or www.example.org, and the
%D is replaced by the full repository name, such as /software/repository.git.

The important point of this example is that it shows how a single git-daemon can
be used to maintain and publish multiple, separate collections of Git repositories
that are physically hosted on one server but are presented as logically separate hosts.
The repositories available from one host might be different from those offered by a
different host.

Publishing repositories using an HTTP daemon
Sometimes an easier way to publish repositories with anonymous read access is to
simply make them available through an HTTP daemon. If you also set up gitweb,
visitors can load a URL into their web browsers, see an index listing of your reposi‐
tory, and negotiate using familiar clicks and the browser Back button. Visitors do not
need to run Git in order to download files.

You will need to make one configuration adjustment to your bare Git repository
before it can be properly served by an HTTP daemon—enable the hooks/post-
update option as follows:
 $ cd /path/to/bare/repo.git
 $ mv hooks/post-update.sample hooks/post-update

Verify that the post-update script is executable, or use chmod 755 on it just to be sure.
Finally, copy that bare Git repository into a directory served by your HTTP daemon.
You can now advertise that your project is available using a URL such as:
 http://www.example.org/software/repository.git

If you see an error message such as:
...not found: did you run git update-server-info
 on the server?

or
Perhaps git-update-server-info needs to be run there?

then chances are good that you aren’t running the hooks/post-
update command properly on the server.

290 | Chapter 12: Repository Management

Publishing repositories using Smart HTTP
Publishing a repository via the newer, so-called Smart HTTP mechanism is pretty
simple in principle, but you may want to consult the full online documentation for
the process as found in the manual page of the git-http-backend command. What
follows here is a simplified extraction of some of that material, which should get you
started:

• First, this setup is really geared for use with Apache. Thus the examples that•
follow show how to modify Apache configuration files. On an Ubuntu system,
these are found in /etc/apache2.

• Second, some mapping, from your advertised repository names to the repository•
layout on the disk as made available to Apache, needs to be defined. As with
the git-http-backend documentation, the mapping here makes http://$host
name/git/foo/bar.git correspond to /var/www/git/foo/bar.git under Apache’s
file view.

• Third, three Apache modules are required and must be enabled: mod_cgi,•
mod_alias, and mod_env.

Define some variables and a script alias that points to the git-http-backend com‐
mand, like this:
 SetEnv GIT_PROJECT_ROOT /var/www/git
 SetEnv GIT_HTTP_EXPORT_ALL
 ScriptAlias /git/ /usr/libexec/git-core/git-http-backend/

The location of your git-http-backend may be different. For example, Ubuntu
places it in /usr/lib/git-core/git-http-backend.

Now you have a choice: you can allow anonymous read access but require authentica‐
ted write access to your repository, or you can require authentication for read and
write.

For anonymous read access, set up a LocationMatch directive:
 <LocationMatch "^/git/.*/git-receive-pack$">
 AuthType Basic
 AuthName "Git Access"
 Require group committers
 ...
 </LocationMatch>

For authenticated read access, set up a Location directive for the repository or a
parent directory of the repository:
 <Location /git/private>
 AuthType Basic
 AuthName "Private Git Access"
 Require group committers
 ...
 </Location>

Publishing Repositories | 291

Further recipes exist within the manual page to set up coordinated gitweb access, and
show how to serve multiple repository namespaces as well as configure accelerated
access to static pages.

Publishing repositories via Git and HTTP daemons
Although using a web server and browser is certainly convenient, think carefully
about how much traffic you plan to handle on your server. Development projects can
become large, and HTTP is less efficient than the native Git protocol.

You can provide both HTTP and Git daemon access, but it might take some adjusting
and coordination between your Git daemon and your HTTP daemon. Specifically, it
may require a mapping with the --interpolated-path option to git-daemon and an
Alias option to Apache to provide seamless integration of the two views of the same
data. Further details on the --interpolated-path option are available in the git
daemon manual page, whereas details about the Apache Alias option can be found
in the Apache documentation or its configuration file, /etc/apache2/mods-available/
alias.conf.

Repositories with Anonymous Write Access
Technically, you may use the Git native protocol URL forms to allow anonymous
write access into repositories served by git-daemon. Doing so requires that you
enable the receivepack option in the published repositories config file:
 [daemon]
 receivepack = true

You might do this on a private LAN where every developer is trusted, but it is not
considered a best practice. Instead, you should consider tunneling your Git push
needs over an SSH connection.

Repository Publishing Advice
Before you go wildly setting up server machines and hosting services just to host
Git repositories, consider what your needs really are and why you want to offer Git
repositories. Perhaps your needs are already satisfied by existing companies, websites,
or services.

For private code, or even for public code, where you place a premium on the value of
service, you might consider using a commercial Git hosting service. If you are offer‐
ing an open source repository and have minimal service needs or expectations, there
are a multitude of Git hosting services available. Some offer upgrades to supported
services as well. Platforms such as GitHub, GitLab, and Bitbucket are some popular
examples available in the mainstream.

292 | Chapter 12: Repository Management

The more complicated situations arise when you have private code that you want
to keep in-house, and therefore you must set up and maintain your own main
depot for repository hosting. Oh, and don’t forget your own backups! Even then,
there are enterprise-ready versions of Git hosting platforms that provide all of that
functionality, available as subscription- or license-based models.

If you need to set up your own servers, the usual approach is to use the Git-over-SSH
protocol and require all users of the repository to have SSH access to the hosting
server. On the server itself, a semigeneric user account and group (e.g., git or
gituser) are usually created. All repositories are group-owned by this user and typi‐
cally live in some file space (e.g., /git, /opt/git, or /var/git) set aside for this purpose.
Here’s the key: that directory must be owned by your gituser group, be writable by
that group, and have the sticky group bit set.

Now, when you want to create a new, hosted repository called newrepo.git on your
server, just ssh into the server and do this:
 $ ssh git.my-host.example.com

 $ cd /git
 $ mkdir newrepo.git
 $ cd newrepo.git
 $ git init --shared --bare

Those last four commands can be simplified as follows:
 $ git --git-dir /git/newrepo.git init --shared

At this point, the bare repository structure exists, but it remains empty. The impor‐
tant aspect of this repository, though, is that it is now receptive to a push of initial
content from any user authorized to connect with the server:
 # from some client
 $ cd /path/to/existing/initial/repo.git
 $ git push git+ssh://git.my-host.example.com/git/newrepo.git main

The whole process of executing that git init on the server in such a way that
subsequent pushes will work is at the heart of the Git web hosting services.

Repository Structure
Although Git is a distributed system, you are still able to realize a central working
model, where one version of the repository can be the source of truth for everyone
who works on the repository. The following section elaborates on this concept.

Repository Structure | 293

Shared Repository Structure
Some version control systems use a centralized server to maintain a repository. In
this model, every developer is a client of the server, which maintains the authoritative
version of the repository. Given the server’s jurisdiction, almost every versioning
operation must contact the server to obtain or update repository information. Thus,
for two developers to share data, all information must pass through the centralized
server; no direct sharing of data between developers is possible.

With Git, in contrast, a shared, authoritative, and centralized repository is merely a
convention. Each developer still has a clone of the depot’s repository, so there’s no
need for every request or query to go to a centralized server. For instance, simple log
history queries can be made privately and offline by each developer.

One of the reasons that some operations can be performed locally is that a checkout
retrieves not just the particular version you ask for, the way most centralized version
control systems operate, but the entire history. Hence, you can reconstruct any
version of a file from the local repository.

Furthermore, nothing prevents a developer from either establishing an alternate
repository and making it available on a peer-to-peer basis with other developers or
sharing content in the form of patches and branches.

In summary, Git’s notion of a shared, centralized repository model is purely one of
social convention and agreement.

Distributed Repository Structure
Large projects often have a highly distributed development model consisting of a
single central yet logically segmented repository. Although the repository still exists
as one physical unit, logical portions are relegated to different people or teams that
work largely or wholly independently.

When it’s said that Git supports a distributed repository model, this
doesn’t mean that a single repository is broken up into separate
pieces and spread around many hosts. Instead, the distributed
repository is just a consequence of Git’s distributed development
model. Each developer has their own repository that is complete
and self-contained. Each developer and their respective repository
might be spread out and distributed around the network.

How the repository is partitioned or allocated to different maintainers is largely
immaterial to Git. The repositories might have a deeply nested directory structure or
they might be more broadly structured. For example, different development teams
might be responsible for certain portions of a codebase along submodule, library, or

294 | Chapter 12: Repository Management

functional lines. Each team might raise a champion to be the maintainer, or steward,
of its portion of the codebase and agree as a team to route all changes through this
appointed maintainer.

The structure may even evolve over time as different people or groups become
involved in the project. Furthermore, a team could likely form intermediate repo‐
sitories that contain combinations of other repositories, with or without further
development. There may be specific stable or release repositories, for instance, each
with an attendant development team and a maintainer.

It may be a good idea to allow the large-scale repository iteration and dataflow to
grow naturally and according to peer review and suggestion rather than impose a
possibly artificial layout in advance. Git is flexible, so if development in one layout or
flow doesn’t seem to work, it is quite easy to change it to a better one.

How the repositories of a large project are organized, or how they coalesce and
combine, is again largely immaterial to the workings of Git; Git supports any number
of organizational models. Remember that the repository structure is not absolute.
Moreover, the connection between any two repositories is not prescribed. Git reposi‐
tories are peers.

So how is a repository structure maintained over time if no technical measures
enforce the structure? In effect, the structure is a web of trust for the acceptance
of changes. Repository organization and dataflow between repositories is guided
by social or political agreements. Out-of-the-box features from many Git hosting
platforms allow for such agreements to be enforced according to your development
needs; this is another reason to consider taking advantage of such platforms.

The question is “Will the maintainer of a target repository allow your changes to be
accepted?” Conversely, do you have enough trust in the source repository’s data to
fetch it into your own repository?

Living with Distributed Development
The following sections will describe common best practices, guidelines, and rules of
thumb when you are working with one or more shared Git repositories.

Changing Public History
Once you have published a repository from which others might make a clone,
you should consider it static and refrain from rewriting the history of any branch.
Although this is not an absolute guideline, avoiding rewinds and alterations of pub‐
lished history simplifies the life of anyone who cloned your repository.

Living with Distributed Development | 295

Let’s say you publish a repository that has a branch with commits A, B, C, and D.
Anyone who cloned your repository gets those commits. Suppose Alice clones your
repository and heads off to do some development based on your branch.

In the meantime, you decide, for whatever reason, to fix something in commit C.
Commits A and B remain the same, but starting with commit C, the branch’s notion of
commit history changes. You could slightly alter C or make some totally new commit,
X. In either case, republishing the repository leaves commits A and B as they were, but
will now offer, say, X and then Y instead of C and D.

Alice’s work is now greatly affected. Alice cannot send you patches, make a pull
request, or push her changes to your repository because her development is based on
commit D.

Furthermore, because patches are based on commit D, they won’t apply. Suppose Alice
issues a pull request and you attempt to pull her changes; you may be able to fetch
them into your repository (depending on your tracking branches for Alice’s remote
repository), but the merges will almost certainly have conflicts. The failure of this
push is due to a non-fast-forward push problem.

In short, the basis for Alice’s development has been altered. You have pulled the
commit rug out from underneath her development feet.

The situation is not irrecoverable, though. Git can help Alice, especially if she uses the
git rebase --onto command to relocate her changes onto your new branch after
fetching the new branch into her repository. The --onto <newbase> option allows
you to set a starting point, where you can create the new commit.

Also, there are times when it is appropriate to have a branch with a dynamic history.
For example, within the Git repository itself there is a so-called proposed updates
branch, pu, which is specifically labeled and advertised as being rewound, rebased, or
rewritten frequently. You, as a cloner, are welcome to use that branch as the basis for
your development, but you must remain conscious of the branch’s purpose and take
special effort to use it effectively.

So why would anyone publish a branch with a dynamic commit history? One com‐
mon reason is specifically to alert other developers about possible and fast-changing
directions some other branch might take. You can also create such a branch for the
sole purpose of making available, even temporarily, a published changeset that other
developers can use.

Separate Commit and Publish Steps
One of the clear advantages of a distributed version control system is the separation
of commit and publish. A commit just saves a state in your private repository;
publishing through patches or push/pull makes the change public, which effectively

296 | Chapter 12: Repository Management

freezes the repository history. Other version control systems, such as CVS or SVN,
have no such conceptual separation. To make a commit, you must publish it
simultaneously.

By making commit and publish separate steps, a developer is much more likely to
make precise, mindful, small, and logical steps with patches. Indeed, any number of
small changes can be made without affecting any other repository or developer. The
commit operation is offline in the sense that it requires no network access to record
positive, forward steps within your own repository.

Git also provides mechanisms for refining and improving commits (as discussed
in Chapter 9), transforming them into nice, clean sequences prior to making them
public. Once you are ready, the commits can be made public in a separate operation.

No One True History
Development projects within a distributed environment have a few quirks that might
not be obvious at first. And although these quirks might initially be confusing and
their treatment often differs from other nondistributed version control systems, Git
handles them in a clear and logical manner.

As development takes place in parallel among different developers of a project, each
has created what they believe to be the correct history of commits. As a result, there is
my repository and my commit history, your repository and your commit history, and
possibly several others being developed, simultaneously or otherwise.

Each developer has a unique notion of history, and each history is correct. There is
no one true history. You cannot point to one and say, “This is the real history.”

Presumably, the different development histories have formed for a reason, and ulti‐
mately the various repositories and different commit histories will be merged into
one common repository. After all, the intent is likely to be advancement toward a
common goal.

When various branches from the different repositories are merged, all of the varia‐
tions are present. The merged result states, effectively, “The merged history is better
than any one independently.”

Git expresses this history ambivalence toward branch variations when it traverses the
commit directed acyclic graph (DAG). So if Git, when trying to linearize the commit
sequence, reaches a merge commit, it must select one branch or the other first. What
criterion would it use to favor or select one branch over another? The spelling of the
author’s last name? Perhaps the timestamp of a commit? That might be useful.

Even if you decide to use timestamps and agree to use Coordinated Universal Time
(UTC) and extremely precise values, it doesn’t help. Even that recipe turns out to be

Living with Distributed Development | 297

completely unreliable! (The clocks on a developer’s computer can be wrong either
intentionally or accidentally.)

Fundamentally, Git doesn’t care what came first. The only real, reliable relationship
that can be established between commits is the direct parent relationship recorded in
the commit objects. At best, the timestamps offer a secondary clue, usually accompa‐
nied by various heuristics to allow for errors such as unset clocks.

In short, neither time nor space operates in well-defined ways, so Git must allow for
the effects of quantum physics.

Git as Peer-to-Peer Backup
The process of uploading files to the internet and letting individuals make a copy was
how the source code for the Linux kernel was “backed up” for years. And it worked!

In some ways, Git is just an extension of the same concept. Nowadays, when you
download the source code to the Linux kernel using Git, you’re downloading not just
the latest version but the entire history leading up to that version.

This concept has been leveraged by projects that allow system administrators to
manage their /etc configuration directories with Git, and even allow users to manage
and back up their home directories. Remember, just because you use Git doesn’t
mean you are required to share your repositories; it does, however, make it easy to
version-control your repositories right onto your Network Attached Storage (NAS)
box for a backup copy.

Knowing Your Place
When participating in a distributed development project, it is important to know
how you, your repository, and your development efforts fit into the larger picture.
Besides the obvious potential for development efforts in different directions and
the requirement for basic coordination, the mechanics of how you use Git and its
features can greatly affect how smoothly your efforts align with other developers
working on the project.

These issues can be especially problematic in a large-scale distributed development
effort, as is often found in open source projects. By identifying your role in the overall
effort and understanding who the consumers and producers of changes are, many of
the issues can be easily managed.

298 | Chapter 12: Repository Management

Upstream and Downstream Flows
There isn’t a strict relationship between two repositories that have been cloned one
from the other. However, it’s common to refer to the parent repository as being
upstream from the new, cloned repository. Reflexively, the new, cloned repository is
often described as being downstream from the original parent repository.

Furthermore, the upstream relationship extends “up” from the parent repository to
any repository from which it might have been cloned. It also extends “down” past
your repository to any that might be cloned from yours.

However, it is important to recognize that this notion of upstream and downstream
is not directly related to the clone operation. Git supports a fully arbitrary network
between repositories. New remote connections can be added, and your original clone
remote can be removed to create arbitrary new relationships between repositories.

If there is any established hierarchy, it is purely one of convention. Bob agrees to send
their changes to you; in turn, you agree to send your changes on to someone further
upstream; and so forth.

The important aspect of the repository relationship is how data is exchanged between
them. That is, any repository to which you send changes is usually considered
upstream of you. Similarly, any repository that relies on yours for its basis is usually
considered downstream of yours.

It’s purely subjective but conventional. Git itself doesn’t care and doesn’t track the
stream notion in any way. Upstream and downstream simply help us visualize where
patches are going.

Of course, it’s possible for repositories to be true peers. If two developers exchange
patches or push and fetch from each other’s repositories, then neither is really
upstream or downstream from the other.

The Maintainer and Developer Roles
Two common roles are the maintainer and the developer. The maintainer serves pri‐
marily as an integrator or moderator, and the developer primarily generates changes.
The maintainer gathers and coordinates the changes from multiple developers and
ensures that all are acceptable with respect to some standard. In turn, the maintainer
makes the whole set of updates available again. That is, the maintainer is also the
publisher.

Knowing Your Place | 299

The maintainer’s goal should be to collect, moderate, accept, or reject changes and
then ultimately publish branches that project developers can use. To ensure a smooth
development model, maintainers should not alter a branch once it has been pub‐
lished. In turn, a maintainer expects to receive changes from developers that are
relevant and that apply to published branches.

A developer’s goal, beyond improving the project, is to get their changes accepted
by the maintainer. After all, changes kept in a private repository do no one else
any good. The changes need to be accepted by the maintainer and made available
for others to use and exploit. Developers need to base their work on the published
branches in the repositories that the maintainer offers.

In the context of a derived clone repository, the maintainer is usually considered to be
upstream from developers.

Because Git is fully symmetric, there is nothing to prevent a developer from consid‐
ering themselves to be a maintainer for other developers further downstream. But
they must now understand that they are in the middle of both an upstream and a
downstream dataflow and must adhere to the maintainer and developer contract (see
the next section) in this dual role.

Because this dual or mixed-mode role is possible, upstream and downstream is not
strictly correlated to being a producer or consumer. You can produce changes with
the intent of them going either upstream or downstream.

Maintainer–Developer Interaction
The relationship between a maintainer and a developer is often loose and ill-defined,
but there is an implied contract between them. The maintainer publishes branches
for the developer to use as their basis. Once the branches are published, though, the
maintainer has an unspoken obligation not to change the published branches because
this would disturb the basis upon which development takes place.

In the opposite direction, the developer, by using the published branches as their
basis, ensures that when their changes are sent to the maintainer for integration, they
apply cleanly without problems, issues, or conflicts and per contribution guidelines
established by the maintainers.

It may seem as if this makes for an exclusive, lockstep process. Once published, the
maintainer can’t do anything until the developer sends in changes. And then, after
the maintainer applies updates from one developer, the branch will necessarily have
changed and thus will have violated the “won’t change the branch” contract for some
other developers. If this were true, then truly distributed, parallel, and independent
work could never really take place.

300 | Chapter 12: Repository Management

Thankfully, it is not that grim at all! Instead, Git is able to look back through the
commit history on the affected branches, determine the merge basis that was used
as the starting point for a developer’s changes, and apply them even though other
changes from other developers may have been incorporated by the maintainer in the
meantime.

With multiple developers making independent changes and with all of them being
brought together and merged into a common repository, conflicts are still possible.
It is up to both the maintainer and developer to identify and resolve such problems.
The maintainer can either resolve these conflicts directly or reject changes from a
developer if they would create conflicts. These days, most modern Git hosting plat‐
forms have features that allow both the maintainer and developer to systematically
track and resolve such changes when presented with them.

Role Duality
There are two basic mechanisms for transferring commits between an upstream and
a downstream repository.

The first uses git push or git pull to directly transfer commits, whereas the
second uses git format-patch and git am to send and receive representations of
commits, respectively. The method you use is primarily dictated by agreement within
your development team and, to some extent, direct access rights, as discussed in
Chapter 11.

Using git format-patch and git am to apply patches achieves the exact same blob
and tree object content as if the changes had been delivered via a git push or
incorporated with a git pull. However, the actual commit object will be different
because the metadata information for the commit will be different between a push or
pull and a corresponding application of a patch.

In other words, using push or pull to propagate a change from one repository
to another copies that commit exactly, whereas patching copies only the file and
directory data exactly. Furthermore, push and pull can propagate merge commits
between repositories. Merge commits cannot be sent as patches.

Because it compares and operates on the tree and blob objects, Git is able to under‐
stand that two different commits for the same underlying change in two different
repositories, or even on different branches within the same repository, really repre‐
sent the same change. Thus it is no problem for two different developers to apply
the same patch sent via email to two different repositories. As long as the resulting
content is the same, Git treats the repositories as having the same content.

Knowing Your Place | 301

Let’s see how these roles and dataflows combine to form a duality between upstream
and downstream producers and consumers:

Upstream consumer
An upstream consumer is a developer upstream from you, who accepts your
changes either as patch sets or as pull requests. Your patches should be rebased to
the consumer’s current branch HEAD. Your pull requests should either be directly
mergeable or already merged by you in your repository. Merging prior to the
pull ensures that conflicts are resolved correctly by you, relieving the upstream
consumer of that burden. This upstream consumer role could be a maintainer
who turns around and publishes what they have just consumed.

Downstream consumer
A downstream consumer is a developer downstream from you, who relies on
your repository as the basis for work. A downstream consumer wants solid,
published topic branches. You shouldn’t rebase, modify, or rewrite the history of
any published branch.

Upstream producer/publisher
An upstream publisher is a person upstream from you, who publishes reposito‐
ries that are the basis for your work. This is likely to be a maintainer with the
tacit expectation that they will accept your changes. The upstream publisher’s
role is to collect changes and publish branches. Again, those published branches
should not have their histories altered, given that they are the basis for further
downstream development. A maintainer in this role expects developer patches to
apply and expects pull requests to merge cleanly.

Downstream producer/publisher
A downstream producer is a developer downstream from you, who has pub‐
lished changes either as a patch set or as a pull request. The goal of a downstream
producer is to have changes accepted into your repository. A downstream pro‐
ducer consumes topic branches from you and wants those branches to remain
stable, with no history rewrites or rebases. Downstream producers should regu‐
larly fetch updates from upstream and should also regularly merge or rebase
development topic branches to ensure they apply to the local upstream branch
HEADs. A downstream producer can rebase their own local topic branches at any
time because it doesn’t matter to an upstream consumer that it took several itera‐
tions for this developer to make a good patch set that has a clean, uncomplicated
history.

Figure 12-1 captures this role duality. Note that the relationship between the actors is
represented as a bidirectional flow for each persona.

302 | Chapter 12: Repository Management

Figure 12-1. Role duality visualized

Working with Multiple Repositories
In this section, we discuss techniques you can leverage when you need to work with
multiple distributed repositories.

Your Own Workspace
As the developer of content for a project using Git, you should create your own
private copy, or clone, of a repository to do your development. This development
repository should serve as your own work area where you can make changes without
fear of colliding with, interrupting, or otherwise interfering with another developer.

Furthermore, because each Git repository contains a complete copy of the entire
project, as well as the entire history of the project, you can feel free to treat your
repository as if it is completely and solely yours. In effect, it actually is!

One benefit of this paradigm is that it allows each developer complete control within
their working directory area to make changes to any part, or even to the whole
system, without worrying about interaction with other development efforts. If you
need to change a part, you have the part and can change it in your repository without
affecting other developers. Likewise, if you later realize that your work is not useful or
relevant, you can throw it away without affecting anyone else or any other repository.

Working with Multiple Repositories | 303

As with any software development, this is not an endorsement to conduct wild exper‐
imentation. Always consider the ramifications of your changes, because ultimately,
you may need to merge your changes into the main repository. It will then be time to
pay the piper, and any arbitrary changes may come back to haunt you.

Where to Start Your Repository
Faced with a wealth of repositories that ultimately contribute to one project, it may
seem difficult to determine where you should begin your development. Should your
contributions be based on the main repository directly, or perhaps on the repository
where other people are focused on some particular feature? Or maybe a stable branch
of a release repository somewhere?

Without a clear sense of how Git can access, use, and alter repositories, you may be
caught in some form of the “can’t get started for fear of picking the wrong starting
point” dilemma. Or perhaps you have already started your development in a clone
based on some repository you picked but now realize that it isn’t the right one. Sure,
it’s related to the project and may even be a good starting point, but maybe there is
some missing feature found in a different repository. It may even be hard to tell until
well into your development cycle.

Another frequent starting point dilemma comes from a need for project features that
are being actively developed in two different repositories. Neither of them is, by itself,
the correct clone basis for your work.

You could just forge ahead with the expectation that your work and the work in the
various repositories will all be unified and merged into one main repository. You are
certainly welcome to do so, of course. But remember that part of the gain from a
distributed development environment is the ability to do concurrent development.
Take advantage of the fact that the other published repositories with early versions of
their work are available.

Another pitfall comes if you start with a repository that is at the cutting edge of
development and find that it is too unstable to support your work, or that it is
abandoned in the middle of your work.

Fortunately, Git supports a model in which you can essentially pick any arbitrary
repository from a project as your starting point, even if it is not the perfect one, and
then convert, mutate, or augment that repository until it does contain all the right
features.

If you later wanted to separate your changes back out to different respective upstream
repositories, you may have to make judicious and meticulous use of separate topic
branches and merges to keep it all in check.

304 | Chapter 12: Repository Management

On the one hand, you can fetch branches from multiple remote repositories and
combine them into your own, yielding the right mix of features that are available
elsewhere in existing repositories. On the other hand, you can reset the starting point
in your repository back to a known stable point earlier in the history of the project’s
development.

Converting to a Different Upstream Repository
The first and simplest kind of repository mixing and matching is to switch the basis
(usually called the clone origin) repository, the one you regard as your origin and with
which you synchronize regularly.

For example, suppose you need to work on feature F, and you decide to clone your
repository from the mainline, M, as shown in Figure 12-2.

Figure 12-2. Simple clone to develop feature F

You work for a while before learning that there is a better starting point closer to
what you would really like, but it is in repository P. One reason you might want to
make this sort of change is to gain functionality or feature support that is already in
repository P.

Another reason stems from longer-term planning. Eventually, the time will come
when you need to contribute the development that you have done in repository F
back to some upstream repository. Will the maintainer of repository M accept your
changes directly? Perhaps not. If you are confident that the maintainer of repository P
will accept them, then you should arrange for your patches to be readily applicable to
that repository instead.

Presumably, P was once cloned from M, or vice versa, as shown in Figure 12-3.
Ultimately, P and M are based on the same repository for the same project at some
point in the past.

Working with Multiple Repositories | 305

Figure 12-3. Two clones of one repository

The question often asked is whether repository F, originally based on M, can now be
converted so that it is based on repository P, as shown in Figure 12-4. This is easy to
do using Git because it supports a peer-to-peer relationship between repositories and
provides the ability to readily rebase branches.

Figure 12-4. Feature F restructured for repository P

In a sense, Git knows how to make up the difference from one repository to the
next. Part of the peer-to-peer protocol to fetch branches from another repository is
an exchange of information stating what changes each repository has or is missing.
As a result, Git is able to fetch just the missing or new changes and bring them into
your repository.

Git is also able to review the history of the branches and determine where the
common ancestors from the different branches are, even if they are brought in from
different repositories. If they have a common commit ancestor, then Git can find
it and construct a large, unified view of the commit history with all the repository
changes represented.

Using Multiple Upstream Repositories
As another example, suppose that the general repository structure looks like Fig‐
ure 12-5. Here, some mainline repository, M, will ultimately collect all the develop‐
ment for two different features from repositories F1 and F2.

306 | Chapter 12: Repository Management

Figure 12-5. Two feature repositories

However, you need to develop some super feature, S, that involves using aspects of
features found in only F1 and F2. You could wait until F1 is merged into M and then
wait for F2 to also be merged into M. That way, you will then have a repository with
the correct, total basis for your work. But unless the project strictly enforces some
project lifecycle that requires merges at known intervals, there is no telling how long
this process might take.

You might start your repository, S, based off of the features found in F1 or, alterna‐
tively, off of F2 (see Figure 12-6).

Figure 12-6. Possible starting repositories for S

However, with Git it is possible to instead construct a repository, S, that has both F1
and F2 in it; this is shown in Figure 12-7.

Working with Multiple Repositories | 307

Figure 12-7. Combined starting repository for S

In Figure 12-7, it is unclear whether repository S is composed of the entirety of
F1 and F2 or just some part of each. In fact, Git supports both scenarios. Suppose
repository F2 has branches F2A and F2B with features A and B, respectively, as shown
in Figure 12-8. If your development needs feature A but not B, then you can selectively
fetch just that F2A branch into your repository S along with whatever part of F1 is also
needed.

Figure 12-8. Two feature branches in F2

Forking Projects
Anytime you clone a repository, the action can be viewed as forking the project. Fork‐
ing is functionally equivalent to branching in some other version control systems, but
Git has a separate concept called branching, so don’t call it that. Unlike a branch, a
Git fork doesn’t exactly have a name. Instead, you simply refer to it by the filesystem
directory (or remote server, or URL) into which you cloned.

308 | Chapter 12: Repository Management

The term fork comes from the idea that when you create a fork, you create two
simultaneous paths that the development will follow. It’s like a fork in the road of
development. As you might imagine, the term branch is based on a similar analogy
involving trees. There’s no inherent difference between the “branching” and “forking”
metaphors—the terms simply capture two intents. Conceptually, the difference is that
branching usually occurs within a single repository, whereas forking usually occurs at
the whole repository level.

Although you can fork a project readily with Git, doing so may be more of a social
or political choice than a technical one. For public or open source projects, having
access to a copy or clone of the entire repository, complete with its history, is both an
enabler of and a deterrent to forking.

To fork or not?
Historically, forking a project was often motivated by perceptions of a power grab,
a reluctance to cooperate, or the abandonment of a project. A difficult person at
the hub of a centralized project can effectively grind things to a halt. A schism may
develop between those who are “in charge” of a project and those who are not. Often,
the only perceived solution is to effectively fork a new project. In such a scenario, it
may be difficult to obtain a copy of the history of the project and start over.

Forking is the traditional term for what happens when one developer of an open
source project becomes unhappy with the main development effort, takes a copy of
the source code, and starts maintaining their own version.

Forking, in this sense, has traditionally been considered a negative thing; it means
the unhappy developer couldn’t find a way to get what they wanted from the main
project. So they go off and try to do it better themselves, but now there are two
projects that are almost the same. Obviously, neither one is good enough for every‐
body, or one of them would be abandoned. So most open source projects make heroic
efforts to avoid forking.

Forking may or may not be bad. On the one hand, perhaps an alternate view and new
leadership is exactly what is needed to revitalize a project. On the other hand, it may
simply contribute to strife and confusion on a development effort.

Reconciling forks
In contrast, Git tries to remove the stigma of forking. The real problem with forking
a project is not the creation of an alternate development path. Every time a developer
downloads or clones a copy of a project and starts hacking on it, they have created an
alternative development path, if only temporarily.

In his work on the Linux kernel, Linus Torvalds eventually realized that forking is a
problem only if the forks don’t eventually merge back together. Thus he designed Git

Working with Multiple Repositories | 309

to look at forking totally differently: Git encourages forking. But Git also makes it easy
for anyone to merge two forks whenever they want.

Technically, reconciling a forked project with Git is facilitated by its support for
large-scale fetching and importing of one repository into another and for extremely
easy branch merging.

Although many social issues may remain, fully distributed repositories seem to
reduce tensions by lessening the perceived importance of the person at the center of a
project. Because an ambitious developer can easily inherit a project and its complete
history, they may feel it is enough to know that, if needed, the person at the center
could be replaced and development could still continue!

Today, where open source is becoming a way of life for developers, forking is adopted
to implement a structured and well-implemented method on popular Git hosting
platforms such as GitHub, for the community to consume and actively contribute
back to popular projects. In this light, forking enables the core maintainers to work
cleanly and establish secure access to their projects, all while keeping a stable produc‐
tion codebase for their repositories.

Forking projects at GitHub
Many people in the software community dislike the term forking. But this is because it
usually results in infinitely diverging copies of the software. Our focus should not be
on the dislike for the concept of forks but rather on the quantity of divergence before
bringing the two lines of code back together again.

Forking at GitHub typically has a far more positive connotation. Much of the site
is built around the premise of short-lived forks. Any drive-by developer can make a
copy (fork) of a public repository, make code changes they think are appropriate, and
then offer them back to the core project owner. Repository maintainers are able to
view all forked copies of their repository in a centralized view.

The forks offered back to the core project are called pull requests. Pull requests afford
visibility to forks and facilitate smart management of these diverging branches. A
conversation can be attached to a pull request, thus providing context as to why a
request was accepted or returned to the sender for additional polish.

Well-maintained projects have the attribute of a frequently maintained pull request
queue. Project contributors should process through the pull request queue, either
accepting, commenting on, or rejecting all pull requests. This signals a level of care
about and active maintenance of the codebase and the greater community surround‐
ing the project.

Although GitHub has been intentionally designed to facilitate good use of forks,
the negative form of forking—hostile wrangling of the codebase in an isolationist
direction—is still possible on GitHub. However, there is a notably low volume of this

310 | Chapter 12: Repository Management

misbehavior. Misbehavior can be attributed in large part to the visibility of forks and
their potential divergence from the primary codebase in the network commit graph.

Summary
In this chapter, each solution discussed has its place. Deciding which solution is right
for you and your project will depend on your own requirements and philosophy.
However, no matter which approach you adopt, Git implements a distributed devel‐
opment model. For example, even if your team centralizes the repository, each devel‐
oper has a complete, private copy of that repository and can work independently.
The work is distributed, yet it is coordinated through a central, shared repository.
The repository model and the development model are independent of each other’s
orthogonal characteristics. In reality, you will probably already be working with repo‐
sitories on a Git hosting platform. As such, sections in this chapter discussing reposi‐
tory structure, repository publishing advice, living with distributed development, and
knowing your place will prove beneficial and give you enough knowledge to lead you
in using the right solution for your project and team.

Summary | 311

PART IV

Advanced Skills

In the following chapters, we discuss topics that help you understand alternative
methods in which you are able to propagate changes between repositories that are
shared and developed among distributed collaborators. We discuss a simple yet effec‐
tive mechanism to share those changes via patches, which you can send via email.

We also start exposing you to the possibility of extending the standard execution
flow for a handful of Git operations. This is something you can benefit from in the
event you need to implement a custom execution workflow beyond the standard
Git operations in your daily routine. Although popular Git hosting platforms now
support modern development workflow features, knowing this technique adds an
extra trick up your sleeve when you need a workflow feature that is not readily
available out of the box.

Chapter 15 is going to help you when you need to modularize your projects and
manage them in separate Git repositories. We discuss two commonly used methods
to achieve this with some examples demonstrating technical implementation to refer‐
ence dependent Git repositories. In Chapter 16 we push the skills you learned in
the intermediate section a little further. We share some elegant techniques to help
you craft or group related hunks of changes as an atomic commit, teach you how to
find lost commits and demonstrate the usage of the git rev-list command. The
showcase of this chapter is the git-filter-repo tool. It is the Swiss Army knife you
need for all your repository commit and history fixing and manipulation. We firmly
advise you to spend a good amount of time in this section.

CHAPTER 13

Patches

Git allows development work to be transferred directly and immediately from one
repository to another using both a push model and a pull model. It does so via the
various supported protocols we discussed in “Referring to Remote Repositories” on
page 246.

As a quick recap, recall that Git implements its own transfer protocol to exchange
data between repositories. To save time and space, Git’s transfer protocol performs
a small handshake, determines what commits in the source repository are missing
from the target, and finally transfers a binary, compressed form of the commits. The
receiving repository incorporates the new commits into its local history, augments its
commit graph, and updates its branches and tags as needed.

HTTP can also be used to exchange development between repositories. Although
HTTP is not nearly as efficient as Git’s native protocol, it is just as capable of
moving commits to and fro. Both protocols ensure that a transferred commit remains
identical in both the source and destination repositories.

In modern Git hosting platforms, the operation to systematically incorporate changes
from multiple working copies of repositories into a centralized source of truth is
almost the same as it is with HTTP. New workflows and features are introduced
above the underlying base layers of the push-and-pull model. In fact, you may already
know of these as pull requests or merge requests, depending on your Git hosting
platform of choice. We will cover pull requests in detail in Chapter 18.

However, these features and protocols aren’t the only mechanisms for exchanging
commits and keeping distributed repositories synchronized. In fact, there are times
when using these protocols is infeasible. Drawing on tried-and-true methods from an
earlier Unix development era, Git also supports a “patch and apply” operation, where
the data exchange typically occurs via email.

315

Git implements three specific commands to facilitate the exchange of a patch:

• git format-patch generates a patch in email form.•
• git send-email sends a Git patch through a Simple Mail Transfer Protocol•

(SMTP) feed.
• git am applies a patch found in an email message.•

The typical use case is fairly simple. You and one or more developers start with a
clone of a common repository and begin collaborative development. You do some
work, make a few commits to your copy of the repository, and eventually decide it’s
time to convey your changes to your partners. You choose the commits you would
like to share and choose with whom to share the work. Because the patches are sent
via email, each intended recipient can elect to apply none, some, or all of the patches.

In this chapter, we start by explaining when you might want to use patches and then
provides some examples on how to generate, send, and (if you’re a recipient) apply a
patch. Since patching is basically combining changes from one repository to another,
we also discuss the concept of how patching differs from merging.

Why Use Patches?
Although the Git protocol is much more efficient than HTTP, there are at least two
compelling reasons to undertake the extra effort required by patches: one is technical
and the other is sociological:

• In some situations, neither the Git native protocol nor HTTP can be used to•
exchange data between repositories in either a push or a pull direction or both.
For example, a corporate firewall may forbid opening a connection to an external
server using Git’s protocol or port. Additionally, SSH may not be an option.
Moreover, even if HTTP is permitted, which is common, you could download
repositories and fetch updates, but you may not be able to push changes back
out. In situations like this, email is the perfect medium for communicating
patches.

• One of the great advantages of a peer-to-peer development model such as Git is•
collaboration. Patches, especially those sent to a public mailing list, are a means
of openly distributing proposed changes for peer review.
Prior to permanently applying the patches to a repository, other developers can
discuss, critique, rework, test, and either approve or veto posted patches. Because
the patches represent precise changes, acceptable patches can be directly applied
to a repository.

316 | Chapter 13: Patches

Even if your development environment allows you the convenience of a direct
push or pull exchange, you may still want to employ a “patch, email, review, and
apply” paradigm to gain the benefits of peer review.
You might even consider a project development policy whereby each developer’s
changes must be peer reviewed as patches on a mailing list prior to directly
merging them via git pull or git push. This would give you all the benefits of
peer review with the ease of pulling changes directly!

And there are still other reasons to use patches.

In much the same way that you might cherry-pick a commit from one of your own
branches and apply it to another branch, using patches allows you to selectively
choose commits from another developer’s repository without having to fully fetch
and merge everything from that repository.

Of course, you could ask the other developer to place the desired commits on a
separate branch and then fetch and merge that branch alone, or you could fetch
their whole repository and then cherry-pick the desired commits out of the tracking
branches. But you might have some reason for not wanting to fetch the repository.

If you want an occasional or explicit commit—say, an individual bug fix or a particu‐
lar feature—then applying the attendant patch may be the most direct way to get that
specific improvement.

Git’s very own source code is in fact maintained using this patching
model. It is constantly updated via the Git mailing list, where main‐
tainers and contributors are active. If you are interested in partici‐
pating in the mailing list without subscribing to it, you may post a
question or comment to the mailing list at git@vger.kernal.org.
Although you may find the source code for Git on GitHub, it is just
a mirror copy hosted on the platform.

Generating Patches
The git format-patch command generates a patch in the form of an email message.
It creates one piece of email for each commit you specify. You can specify the
commits using any technique discussed in “Identifying Commits” on page 81.

Common use cases include the following:

• A specified number of commits, such as -2•
• A commit range, such as main~4..main~2•
• A single commit, often the name of a branch, such as origin/main•

Generating Patches | 317

mailto:git@vger.kernal.org

Although the Git diff machinery is at the heart of the git format-patch command, it
differs from git diff in two key ways:

• Whereas git diff generates one patch with the combined differences of all•
the selected commits, git format-patch generates one email message for each
selected commit.

• git diff doesn’t generate email headers. In addition to the actual diff content,•
git format-patch generates an email message complete with headers that list
the commit author, the commit date, and the commit log message associated
with the change.

git format-patch and git log should seem very similar. As
an interesting experiment, compare the output of the following
two commands: git format-patch -1 and git log -p -1

--pretty=email.

Let’s start with a fairly simple example. Suppose you have a repository with just
one file in it, named file. Furthermore, the content of that file is a series of single
capitalized letters, A through D. Each letter was introduced into the file one line at a
time and was committed using a log message corresponding to that letter:
 $ mkdir patch-demo ; cd patch-demo
 $ git init -b main
 $ echo A > file
 $ git add file
 $ git commit -m "Add A"
 [main (root-commit) 11200ff] Add A
 1 file changed, 1 insertion(+)
 create mode 100644 file
 $ echo B >> file ; git commit -m "Add B" file
 [main ace6f32] Add B
 1 file changed, 1 insertion(+)
 $ echo C >> file ; git commit -m "Add C" file
 [main b621372] Add C
 1 file changed, 1 insertion(+)
 $ echo D >> file ; git commit -m "Add D" file
 [main d578a1c] Add D
 1 file changed, 1 insertion(+)

Thus, the commit history now has four commits:
 $ git show-branch --more=4 main
 [main] Add D
 [main^] Add C
 [main~2] Add B
 [main~3] Add A

The easiest way to generate patches for the most recent n commits is to use a -n
option, like this:

318 | Chapter 13: Patches

 $ git format-patch -1
 0001-Add-D.patch

 $ git format-patch -2
 0001-Add-C.patch
 0002-Add-D.patch

 $ git format-patch -3
 0001-Add-B.patch
 0002-Add-C.patch
 0003-Add-D.patch

By default, Git generates each patch in its own file with a sequentially numbered
name derived from the commit log message. The command outputs the filenames as
it executes.

You can also specify which commits to format as patches by using a commit range.
Suppose you expect other developers to have repositories based on commit B of your
repository, and suppose you want to patch their repositories with all the changes you
made between B and D.

Based on the previous output of git show-branch, you can see that B has the version
name main~2 and that D has the version name main. So you would specify these
names as a commit range in the git format-patch command.

Although you’re including three commits in the range (B, C, and D), you end up with
two email messages representing two commits: the first contains the diffs between B
and C, and the second contains the diffs between C and D. See Figure 13-1.

Figure 13-1. git format-patch with a commit range

Here is the output of the command:
 $ git format-patch main~2..main
 0001-Add-C.patch
 0002-Add-D.patch

Generating Patches | 319

Each file is a single email, conveniently numbered in the order that it should be
subsequently applied. Here is the first patch:
 $ cat 0001-Add-C.patch
 From b621372d83c034eb8b962574d5ad01449b93f6b7 Mon Sep 17 00:00:00 2001
 From: Prem Kumar Ponuthorai <ppremk@gmail.com>
 Date: Wed, 5 Jan 2022 12:48:32 +0100
 Subject: [PATCH 1/2] Add C

 file | 1 +
 1 file changed, 1 insertion(+)

 diff --git a/file b/file
 index 35d242b..b1e6722 100644
 --- a/file
 +++ b/file
 @@ -1,2 +1,3 @@
 A
 B
 +C
 --
 2.37.0

And here is the second:
 $ cat 0002-Add-D.patch
 From d578a1c3031e995f5234d1a25f36e470842484eb Mon Sep 17 00:00:00 2001
 From: Prem Kumar Ponuthorai <ppremk@gmail.com>
 Date: Wed, 5 Jan 2022 12:48:46 +0100
 Subject: [PATCH] Add D

 file | 1 +
 1 file changed, 1 insertion(+)

 diff --git a/file b/file
 index b1e6722..8422d40 100644
 --- a/file
 +++ b/file
 @@ -1,3 +1,4 @@
 A
 B
 C
 +D
 --
 2.37.0

Let’s continue the example and make it more complex by adding another branch,
named alt, based on commit B.

While the main developer added individual commits with the lines C and D to the
main branch, the alt developer added the commits (and lines) X, Y, and Z to their
branch:
 # Create branch alt at commit B
 (retrieve commit B SHA by running git log --oneline command, your SHA ID may differ from ours)
 $ git checkout -b alt ace6f32
 Switched to a new branch 'alt'

320 | Chapter 13: Patches

 $ echo X >> file ; git commit -m "Add X" file
 [alt 43250ac] Add X
 1 file changed, 1 insertion(+)
 $ echo Y >> file ; git commit -m "Add Y" file
 [alt fd1ca23] Add Y
 1 file changed, 1 insertion(+)
 $ echo Z >> file ; git commit -m "Add Z" file
 [alt cc9993c] Add Z
 1 file changed, 1 insertion(+)

The commit graph looks like Figure 13-2.

Figure 13-2. Patch graph with alt branch

You can draw an ASCII graph with all your refs using the option
--all, like this:
 $ git log --graph --pretty=oneline --abbrev-commit --all
 * cc9993c (HEAD -> alt) Add Z
 * fd1ca23 Add Y
 * 43250ac Add X
 | * d578a1c (main) Add D
 | * b621372 Add C
 |/
 * ace6f32 Add B
 * 11200ff Add A

Suppose further that the main developer merged the alt branch at commit Z into
main at commit D to form merge commit E. Finally, they made one more change that
added F to the main branch:
 $ git checkout main
 $ git merge alt

 # Resolve the conflicts however you'd like
 # We used the sequence: A, B, C, D, X, Y, Z

 $ git add file
 $ git commit -m "Add all lines"
 [main 5727615] Add all lines

 $ echo F >> file ; git commit -m “Add F” file
 [main 9ab717f] Add F
 1 file changed, 1 insertion(+)

The commit graph now looks like Figure 13-3.

Generating Patches | 321

Figure 13-3. History of two branches

A display of the commit branch history looks like this:
 $ git show-branch --more=10
 ! [alt] Add Z
 * [main] Add F
 --
 * [main] Add F
 +* [alt] Add Z
 +* [alt^] Add Y
 +* [alt~2] Add X
 * [main~2] Add D
 * [main~3] Add C
 +* [main~4] Add B
 +* [main~5] Add A

Patching can be surprisingly flexible when you have a complicated revision tree. Let’s
take a look.

You must be careful when specifying a commit range, especially when it covers a
merge. In the current example, you might expect that the range D..F would cover the
two commits for E and F, and it does. But commit E contains all the content merged
into it from all its merged branches:
 # Format patches D..F
 $ git format-patch main~2..main
 0001-Add-X.patch
 0002-Add-Y.patch
 0003-Add-Z.patch
 0004-Add-F.patch

Remember, a commit range is defined as including all commits leading up to the
range end point but excluding all commits leading up to and including the range
starting point state. In the case of D..F, this means that all the commits contributing
to F (every commit in the example graph) are included, but all the commits leading
up to and including D (A, B, C, and D) are eliminated. The merge commit itself won’t
generate a patch.

Detailed Range Resolution Explained
To figure out a range, follow these steps. Start at the end point commit and include it.
Work backward along every parent commit that contributes to it and include those.
Recursively include the parent of every commit that you have included so far. When

322 | Chapter 13: Patches

.

you are done including all the commits that contribute to the end point, go back
and start with the start point. Remove the start point. Work back over every parent
commit that contributes to the start point and remove those too. Recursively remove
every parent commit that you have removed so far.

Referring to Figure 13-3, with the case of our D..F range, start with F and include
it. Back up to the parent commit, E, and include it. Then look at E and include its
parents, D and Z. Now recursively include the parents of D, giving C and then B and
A. Down the Z line, recursively include Y and X and then B again, and finally A again.
(Technically, B and A aren’t included again; the recursion can stop when it sees an
already-included node.) Effectively, all commits are now included. Now go back and
start with the start point, D, and remove it. Remove its parent, C, and recursively its
parent, B, and its parent, A.

You should be left with the set F E Z Y X. But E is a merge; so remove it, leaving F Z
Y X, which is exactly the reverse of the generated set.

Issue git rev-list --no-merges -v since..until to verify the set
of commits for which patches will be generated before you actually
create your patches.

You can also reference a single commit as a variation of the git format-patch com‐
mit range. However, Git’s interpretation of such a command is slightly nonintuitive.

Git normally interprets a single commit argument as “all commits that lead up to
and contribute to the given commit.” In contrast, git format-patch treats a single
commit parameter as if you had specified the range commit..HEAD. It uses your
commit as the starting point and takes HEAD as the end point. Thus, the generated
patch series is implicitly in the context of the currently checked-out branch.

In our ongoing example, when the main branch is checked out and a patch is made
specifying commit A, all seven patches are produced:
 $ git branch
 alt
 * main

 # From commit A
 $ git format-patch main~5
 0001-Add-B.patch
 0002-Add-C.patch
 0003-Add-D.patch
 0004-Add-X.patch
 0005-Add-Y.patch
 0006-Add-Z.patch
 0007-Add-F.patch

Generating Patches | 323

But when the alt branch is checked out and the command specifies the same A
commit, only those patches contributing to the tip of the alt branch are used:
 $ git checkout alt
 Switched to branch "alt"

 $ git branch
 * alt
 main

 $ git format-patch main~5
 0001-Add-B.patch
 0002-Add-X.patch
 0003-Add-Y.patch
 0004-Add-Z.patch

Even though commit A is specified, you don’t actually get a patch for it. The root
commit is somewhat special in that there isn’t a previously committed state against
which a diff can be computed. Instead, a patch for it is effectively a pure addition of
all the initial content.

If you really want to generate patches for every commit up to a named end-commit,
including the initial root commit, then use the --root option, like this:
 $ git format-patch --root <end-commit-SHA>

The initial commit generates a patch as if each file in it was added based on /dev/null
(this convention denotes an added or removed file):
 $ git format-patch --root main~5
 $ cat 0001-Add-A.patch
 From 11200ff80b78bd777d8832b112eaddcdd8b899db Mon Sep 17 00:00:00 2001
 From: Prem Kumar Ponuthorai
 <ppremk@gmail.com>
 Date: Wed, 5 Jan 2022 12:47:17 +0100
 Subject: [PATCH] add file A

 file | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 file

 diff --git a/file b/file
 new file mode 100644
 index 0000000..f70f10e
 --- /dev/null
 +++ b/file
 @@ -0,0 +1 @@
 +A
 --
 2.37.0

Treating a single commit as if you had specified commit..HEAD may seem unusual,
but this approach has a valuable use in one particular situation. When you specify a
commit on a branch that’s different from the branch you currently have checked out,

324 | Chapter 13: Patches

the command emits patches that are in your current branch but not in the named
branch. In other words, it generates a set of patches that can bring the other branch in
sync with your current branch.

To illustrate this feature, assume you’ve checked out the main branch:
 $ git branch
 alt
 * main

Now you specify the alt branch as the commit parameter:
 $ git format-patch alt
 0001-Add-C.patch
 0002-Add-D.patch
 0003-Add-F.patch

The patches for commits C, D, and F are exactly the same set of patches in the main
branch but not in the alt branch.

The power of this command, coupled with a single commit parameter, becomes
apparent when the named commit is the HEAD ref of a tracking branch from someone
else’s repository.

For example, if you clone Alice’s repository and your main development is based on
Alice’s main, then you would have a tracking branch named something like alice/
main.

After you have made some commits on your main branch, the command git
format-patch alice/main generates the set of patches that you must send them
to ensure that their repository has at least all of your main content. They may have
more changes from other sources in their repository already, but that is not important
here. You have isolated the set from your repository (the main branch) that is known
not to be in theirs.

Thus, git format-patch is specifically designed to create patches for commits that
are in your repository in a development branch but are not already present in the
upstream repository.

Patches and Topological Sorts
Patches generated by git format-patch are emitted in topological order. For a given
commit, the patches for all parent commits are generated and emitted before the
patch for this commit is emitted. This ensures that a correct ordering of patches is
always created, but a correct ordering is not necessarily unique: there may be multiple
correct orders for a given commit graph.

Patches and Topological Sorts | 325

Let’s see what this means by looking at some of the possible generation orders for
patches that could ensure a correct repository if the recipient applies them in order.
Example 13-1 shows a few of the possible topological sort orders for the commits of
our example graph.

Example 13-1. Some topological sort orders

 A B C D X Y Z E F

 A B X Y Z C D E F

 A B C X Y Z D E F

 A B X C Y Z D E F

 A B X C Y D Z E F

Remember, even though patch creation is driven by a topological sort of the selected
nodes in the commit graph, only some of those nodes will actually produce patches.

The first ordering in Example 13-1 is the ordering that Git picked for git format-
patch main~5. Because A is the first commit in the range and no --root option was
used, there isn’t a patch for it. Commit E represents a merge, so no patch is generated
for it, either. Thus, the patches are generated in the order B C D X Y Z F.

Whatever patch sequence Git chooses, it is important to realize that Git has produced
a linearization of all the selected commits, no matter how complicated or branched
the original graph was.

Mailing Patches
Once you have generated a patch or a series of patches, the next logical step is to send
them to another developer or to a development list for review, with the ultimate goal
of it being picked up by a developer or upstream maintainer and applied to another
repository.

The formatted patches are generally intended to be sent via email by directly import‐
ing them into your Mail User Agent (MUA), or by using Git’s git send-email
command. You are not obliged to use git send-email; it is merely a convenience.
As you will see in the next section, there are also other tools that use the patch file
directly.

If you want to send a generated patch file to another developer, there are several
ways to do it: you can run git send-email, you can point your mailer directly to the
patches, or you can include the patches in an email.

Using git send-email is straightforward. In this example, the patch 0001-Add-
A.patch is sent to a mail list called devlist@example.org:

326 | Chapter 13: Patches

 $ git send-email --to devlist@example.org 0001-Add-A.patch
 0001-Add-A.patch
 (mbox) Adding cc: Prem Kumar Ponuthorai <ppremk@gmail.com> from line 'From: Prem Kumar Ponuthorai
 <ppremk@gmail.com>'

 From: Prem Kumar Ponuthorai <ppremk@gmail.com>
 To: devlist@example.org
 Cc: Prem Kumar Ponuthorai <ppremk@gmail.com>
 Subject: [PATCH] Add A
 Date: Wed, 5 Jan 2022 15:13:38 +0100
 Message-Id: <20220105141338.79674-1-ppremk@gmail.com>
 X-Mailer: git-send-email 2.33.0
 MIME-Version: 1.0
 Content-Transfer-Encoding: 8bit

 The Cc list above has been expanded by additional
 addresses found in the patch commit message. By default
 send-email prompts before sending whenever this occurs.
 This behavior is controlled by the sendemail.confirm
 configuration setting.

 For additional information, run 'git send-email --help'.
 To retain the current behavior, but squelch this message,
 run 'git config --global sendemail.confirm auto'.

 Send this email? ([y]es|[n]o|[e]dit|[q]uit|[a]ll): y

 OK. Log says:
 Sendmail: /usr/sbin/sendmail -i devlist@example.org ppremk@gmail.com
 From: Prem Kumar Ponuthorai <ppremk@gmail.com>
 To: devlist@example.org
 Cc: Prem Kumar Ponuthorai <ppremk@gmail.com>
 Subject: [PATCH] add file A
 Date: Wed, 5 Jan 2022 15:13:38 +0100
 Message-Id: <20220105141338.79674-1-ppremk@gmail.com>
 X-Mailer: git-send-email 2.33.0
 MIME-Version: 1.0
 Content-Transfer-Encoding: 8bit

 Result: OK

There are many options for either utilizing or working around a myriad of SMTP
issues or features. What’s critical is ensuring that you know your SMTP server and
port. Likely, it is the traditional sendmail program or a valid outbound SMTP host,
such as smtp.my-isp.com.

Don’t set up SMTP open relay servers just to send your Git email.
Doing so will contribute to spam mail problems.

The git send-email command has many configuration options, which are docu‐
mented in its manual page.

Mailing Patches | 327

You may find it convenient to record your special SMTP information in your global
configuration file by setting, for example, the value sendemail.smtpserver and
sendemail.smtpserverport using commands similar to these:
 $ git config --global sendemail.smtpserver smtp.my-isp.com
 $ git config --global sendemail.smtpserverport 465

Depending on your MUA, you may be able to directly import an entire file or
directory of patches into a mail folder. If so, this can greatly simplify sending a large
or complicated patch series.

Here is an example in which a traditional mbox-style mail folder is created using
format-patch and is then directly imported into mutt, where the message can be
addressed and sent (mbox is the format for mail message storage on Unix systems, and
mutt is a text-based mail client for Unix systems):
 $ git format-patch --stdout main~2..main > mbox

 $ mutt -f mbox

 q:Quit d:Del u:Undel s:Save m:Mail r:Reply g:Group ?:Help
 1 N Dec 29 Jon Loeliger (15) [PATCH] X
 2 N Dec 29 Jon Loeliger (16) [PATCH] Y
 3 N Dec 29 Jon Loeliger (16) [PATCH] Z
 4 N Dec 29 Jon Loeliger (15) [PATCH] F

The latter two mechanisms, using send-email and directly importing a mail folder,
are the preferred techniques for sending email because both are reliable and not
prone to messing with the carefully formatted patch contents. You are less likely, for
example, to hear a developer complain about a wrapped line if you use one of these
techniques.

On the other hand, you may find that you need to directly include a generated patch
file in a newly composed email in popular MUAs such as Gmail, Thunderbird, and
Microsoft Outlook, to name a few. In these cases, the risk of disturbing the patch is
much greater. Care should be taken to turn off any form of HTML formatting and to
send plain ASCII text that has not been allowed to flow or word-wrap in any way.

Depending on your recipient’s ability to handle mail or contingent on your develop‐
ment list policies, you may or may not want to use an attachment for the patch. In
general, inlining attachment of patches is the simpler, more correct approach. It also
facilitates an easier patch review. However, if the patch is inlined, then some of the
headers generated by git format-patch might need to be trimmed, leaving just the
From: and Subject: headers in the email body.

328 | Chapter 13: Patches

If you find yourself frequently including your patches as text files
in newly composed emails and are annoyed at having to delete
the superfluous headers, you might want to try the following com‐
mand: git format-patch --pretty=format:%s%n%n%b commit.
You might also configure that as a Git global alias, as described in
“Configuration Files” on page 20.

Regardless of how the patch mail is sent, it should look essentially identical to the
original patch file when received, albeit with more and different mail headers.

The similarity of the patch file format before and after transport through the mail
system is not an accident. The key to this operating successfully is to use plain text
and to prevent any MUAs from altering the patch format through such operations
as line wrapping. If you can preclude such interdictions, a patch will remain usable
irrespective of how many Mail Transfer Agents (MTAs) carry the data.

Use git send-email if your MUA is prone to wrap lines on out‐
bound mail.

There are a host of options and configuration settings to control the generation of
email headers for patches. Your project probably has some conventions that you
should follow. For example, if you are consistently adding headers to the patch email
as generated, then you might investigate the configuration option format.headers.

If you have a series of patches, you might want to funnel them all to a common
directory with the -o directory option to git format-patch. Afterward, you can
use git send-email directory to send them all at once. In this case, use either git
format-patch --cover-letter or git send-email --compose to write a guiding,
introductory cover letter for the entire series.

There are also options to accommodate various social aspects of most development
lists. For example, use --cc to add alternate recipients, to add or omit each Signed-
off-by: address as a Cc: recipient, or to select how a patch series should be threaded
on a list.

You can read more about these options in the git send-email manual pages.

Mailing Patches | 329

1 By the time you adhere to the guidelines detailed in the manual page for git am (a “From:”, a “Subject:”, a
“Date:”, and a patch content delineation), you might as well call it an email message anyway.

Applying Patches
Git has two basic commands that apply patches. The higher-level porcelain com‐
mand, git am, is partially implemented in terms of the plumbing command git
apply.

The command git apply is the workhorse of the patch application procedure. It
accepts git diff- or diff-style outputs and applies them to the files in your current
working directory. Though different in some key respects, it performs essentially the
same role as Larry Wall’s patch command (the patch program for Unix systems).

Because a diff contains only line-by-line edits and no other information (such as
author, date, or log messages), it cannot perform a commit and log the change in your
repository. Thus, when git apply is finished, the files in your working directory are
left modified. (In special cases, it can use or modify the index as well.)

In contrast, the patches formatted by git format-patch, either before or after they
have been mailed, contain the extra information necessary to make and record a
proper commit in your repository. Although git am is configured to accept patches
generated by git format-patch, it is also able to handle other patches if they follow
some basic formatting guidelines.1 Note that git am creates commits on the current
branch.

Let’s complete the patching process example we’ve been working on using the same
repository from “Generating Patches” on page 317 (patch, email, review, and apply).
We will use the following use case in which one developer has constructed a complete
patch set, 0001-Add-B.patch through 0007-Add-F.patch, and has sent it or otherwise
made it available to another developer. The other developer has an early version of
the repository and wants to now apply the patch set.

First we’ll look at a naïve approach that exhibits common problems that are ulti‐
mately impossible to resolve. Then we’ll examine a second approach that proves
successful.

Here are the patches from the original repository:
 $ git format-patch -o /tmp/patches main~5
 /tmp/patches/0001-Add-B.patch
 /tmp/patches/0002-Add-C.patch
 /tmp/patches/0003-Add-D.patch
 /tmp/patches/0004-Add-X.patch
 /tmp/patches/0005-Add-Y.patch
 /tmp/patches/0006-Add-Z.patch
 /tmp/patches/0007-Add-F.patch

330 | Chapter 13: Patches

These patches could have been received by the second developer via email and stored
on disk, or they may have been placed directly in a shared filesystem.

Let’s construct an initial repository as the target for this series of patches. (How this
initial repository is constructed is not really important—it may well have been cloned
from the initial repository.) The key to long-term success is a moment in time when
both repositories are known to have the exact same file content.

Let’s reproduce that moment by cloning the earlier repository and resetting it to
contain the same file, file, with the initial contents, A. This ensures we have exactly
the same repository content as was present at the very beginning of the original
repository:
 $ cd /tmp
 $ git clone ~/patch-demo am
 Cloning into 'am'...
 done.
 $ cd am

 # Get initial commit SHA via git log --oneline command
 # then reset to that SHA
 $ git reset --hard 11200ff

 # Disconnect from upstream, to
 demonstrate patching (not necessary but why not?)
 $ git remote remove origin
 $ git log --oneline
 11200ff (HEAD -> main) Add A

A direct application of git am shows some problems:
 $ git am /tmp/patches/*
 Applying: Add B
 Applying: Add C
 Applying: Add D
 Applying: Add X
 error: patch failed: file:1
 error: file: patch does not apply
 Patch failed at 0004 Add X
 hint: Use 'git am --show-current-patch=diff' to see the failed patch
 When you have resolved this problem, run "git am --continue".
 If you prefer to skip this patch, run "git am --skip" instead.
 To restore the original branch and stop patching, run "git am --abort".

This is a tough failure mode, and it might leave you in a bit of a quandary about how
to proceed. A good approach in this situation is to look around a bit:
 $ git show-branch --more=10
 [main] Add D
 [main^] Add C
 [main~2] Add B
 [main~3] Add A

That’s pretty much as expected. No file was left dirty in your working directory, and
Git successfully applied patches up to and including D.

Applying Patches | 331

Often, looking at the patch itself and the files that are affected by the patch helps clear
up the problem. Let’s use the hint provided by Git:
 $ git am --show-current-patch=diff

 file | 1 +
 1 file changed, 1 insertion(+)

 diff --git a/file b/file
 index 35d242b..7f9826a 100644
 --- a/file
 +++ b/file
 @@ -1,2 +1,3 @@
 A
 B
 +X
 --
 2.37.0

 $ cat file
 A
 B
 C
 D

When the git am command is executed, the directory .git/rebase-
apply is created. It contains various contextual information for
the entire series of patches and the individual parts (author, log
message, etc.) of each patch.

This is a difficult spot. The file has four lines in it, but the patch applies to a version
of that same file with just two lines. As the git am command output indicated, this
patch doesn’t actually apply:
 error: patch failed: file:1
 error: file: patch does not apply
 Patch failed at 0004 Add X.

You may know that the ultimate goal is to create a file in which all the letters are
in order, but Git is not able to figure that out automatically. There just isn’t enough
context to determine the right conflict resolution yet.

As with other actual file conflicts, git am offers a few suggestions:
 When you have resolved this problem run "git am --continue".
 If you would prefer to skip this patch, run "git am --skip" instead.
 To restore the original branch and stop patching run "git am --abort".

Unfortunately, there isn’t even a file content conflict that can be resolved and resumed
in this case.

332 | Chapter 13: Patches

You might think you could just skip the X patch, as suggested:
 $ git am --skip
 Applying: Add Y
 error: patch failed: file:1
 error: file: patch does not apply
 Patch failed at 0005 Add Y
 hint: Use 'git am --show-current-patch=diff' to see the failed patch
 When you have resolved this problem, run "git am --continue".
 If you prefer to skip this patch, run "git am --skip" instead.
 To restore the original branch and stop patching, run "git am --abort".

But as with this Y patch, all subsequent patches fail now too. It’s clear that the patch
series isn’t going to apply cleanly with this approach.

You can try to recover from here, but that will be tough to do without knowing
the original branching characteristics that led to the patch series being presented to
git am. Recall that the X commit was applied to a new branch that originated at
commit B. That means the X patch would apply correctly if it were applied again
to that commit state. You can verify this: reset the repository back to just the A
commit, clean out the rebase-apply directory, apply the B commit using git am /tmp/
patches/0001-B.patch, and see that the X commit will apply too!
 # Reset back to commit A
 $ git reset --hard main~3
 HEAD is now at 11200ff Add A

 # remove .git/rebase-apply directory
 $ rm -rf .git/rebase-apply/

 $ git am /tmp/patches/0001-Add-B.patch
 Applying: Add B

 $ git am /tmp/patches/0004-Add-X.patch
 Applying: Add X

Cleaning up a failed, botched, or hopeless git am and restoring the
original branch can be simplified to just git am --abort.

The success of applying 0004-Add-X.patch to commit B provides a hint about how
to proceed. However, you can’t really apply patches X, Y, and Z because then the later
patches C, D, and F would not apply. And you don’t really want to bother re-creating
the exact original branch structure, even temporarily. Even if you were willing to
re-create it, how would you know what the original branch structure was?

Applying Patches | 333

Knowing the basis file to which a diff can be applied is a difficult problem for which
Git provides an easy technical solution. If you look closely at a patch or diff file
generated by Git, you will see new, extra information that isn’t part of a traditional
Unix diff summary. The extra information that Git provides for the patch file
0004-Add-X.patch is shown in Example 13-2.

Example 13-2. New patch context in 0004-Add-X.patch

 diff --git a/file b/file
 index 35d242b..7f9826a 100644
 --- a/file
 +++ b/file

Just after the diff --git a/file b/file line, Git adds the new line index
35d242b..7f9826a 100644. This information is designed to answer with certainty
the following question: “What is the original state to which this patch applies?”

The first number on the index line, 35d242b, is the SHA1 hash of the blob within the
Git object store to which this portion of the patch applies. That is, 35d242b is the file
as it exists with just the two lines:
 $ git show 35d242b
 A
 B

And that is exactly the version of file to which this portion of the X patch applies. If
that version of the file is in the repository, then Git can apply the patch to it.

This mechanism—having a current version of a file; having an alternate version; and
locating the original, base version of a file to which the patch applies—is called a
three-way merge. Git is able to reconstruct this scenario using the -3 or --3way option
to git am.

Let’s clean up the failed effort; reset back to the first commit state, A; and try to
reapply the patch series:
 # Get rid of temporary "git am" context, if needed.
 $ rm -rf .git/rebase-apply/

 # Use "git log" to locate commit A, it was SHA1 573956b
 # Reset back to commit A. The SHA1 will be different for you.
 $ git reset --hard 11200ff
 HEAD is now at 11200ff Add A

 $ git show-branch --more=10
 [main] Add A

Now, using the -3 option, apply the patch series:
 $ git am -3 /tmp/patches/*
 Applying: Add B
 Applying: Add C

334 | Chapter 13: Patches

 Applying: Add D
 Applying: Add X
 Using index info to reconstruct a base tree...
 M file
 Falling back to patching base and 3-way merge...
 Auto-merging file
 CONFLICT (content): Merge conflict in file
 error: Failed to merge in the changes.
 Patch failed at 0004 Add X
 hint: Use 'git am --show-current-patch=diff' to see the failed patch
 When you have resolved this problem, run "git am --continue".
 If you prefer to skip this patch, run "git am --skip" instead.
 To restore the original branch and stop patching, run "git am --abort".

That’s much better!

Just as before, the simple attempt to patch the file failed, but instead of quitting, Git
has changed to the three-way merge. This time, Git recognizes it is able to perform
the merge, but a conflict remains because overlapping lines were changed in two
different ways.

Because Git is not able to correctly resolve this conflict, the git am -3 command is
temporarily suspended. It is now up to you to resolve the conflict before resuming the
command.

Again, the strategy of looking around can help determine what to do next and how to
proceed:
 $ git status
 On branch main
 You are in the middle of an am session.
 (fix conflicts and then run "git am --continue")
 (use "git am --skip" to skip this patch)
 (use "git am --abort" to restore the original branch)

 Unmerged paths:
 (use "git restore --staged <file>..." to unstage)
 (use "git add <file>..." to mark resolution)
 both modified: file

 no changes added to commit (use "git add" and/or "git commit -a")

As indicated previously, the file file still needs to have a merge conflict resolved.

The contents of file show the traditional conflict merge markers, which must be
resolved via an editor:
 $ cat file
 A
 B
 <<<<<<< HEAD
 C
 D
 =======
 X
 >>>>>>> Add X

Applying Patches | 335

 # Fix conflicts in "file"
 $ vi file

 $ cat file
 A
 B
 C
 D
 X

After resolving the conflict and cleaning up, resume the git am -3 command:
 $ git am -3 --continue
 Applying: Add X
 You still have unmerged paths in your index.
 You should 'git add' each file with resolved conflicts to mark them as such.
 You might run `git rm` on a file to accept "deleted by them" for it.
 When you have resolved this problem, run "git am --continue".
 If you prefer to skip this patch, run "git am --skip" instead.
 To restore the original branch and stop patching, run "git am --abort".

Did you forget to use git add? We sure did!
 $ git add file
 $ git am -3 --continue
 Applying: Add X
 Applying: Add Y
 Using index info to reconstruct a base tree...
 M file
 Falling back to patching base and 3-way merge...
 Auto-merging file
 Applying: Add Z
 Using index info to reconstruct a base tree...
 M file
 Falling back to patching base and 3-way merge...
 Auto-merging file
 Applying: Add F

Finally, success!
 $ cat file
 A
 B
 C
 D
 X
 Y
 Z
 F

 $ git show-branch --more=10
 [main] F
 [main^] Z
 [main~2] Y
 [main~3] X
 [main~4] D
 [main~5] C
 [main~6] B
 [main~7] A

336 | Chapter 13: Patches

Applying these patches didn’t construct a replica of the branch structure from the
original repository. All patches were applied in a linear sequence, and this is reflected
in the main branch commit history. You can verify this by running the git log
--graph --oneline command:
 $ git log --graph --oneline
 * 37e3f43 (HEAD -> main) Add F
 * 3a2d1df Add Z
 * 3484b10 Add Y
 * f18328e Add X
 * 68cf338 Add D
 * a9e1a1b Add C
 * 06d2fad Add B
 * 11200ff Add A

Another interesting thing to keep in mind is that the patch Author and AuthorDate
will follow per the original commit and patch, whereas the data for the committer
reflects the actions of applying the patch and committing it to this branch and
repository:
 # The patch demo was applied the following day
 after the inital example was set up
 $ git log --pretty=fuller -1 a9e1a1b
 commit a9e1a1bad95082f597b781bb4b22694eaacd9698
 Author: Prem Kumar Ponuthorai <ppremk@gmail.com>
 AuthorDate: Wed Jan 5 12:48:32 2022 +0100
 Commit: Prem Kumar Ponuthorai <ppremk@gmail.com>
 CommitDate: Thu Jan 6 16:30:03 2022 +0100

 Add C

Bad Patches
The obligation to create robust, identical content in multiple distributed repositories
around the world is an onerous task. It is no wonder that a perfectly good patch
can be trashed by any number of mail-related failures. Ultimately, the onus is on
Git to ensure that the complete patch email, review, and apply cycle can faithfully
reconstruct identical content through an unreliable transport mechanism.

Patch failures stem from many areas, many mismatched tools, and many different
philosophies. But perhaps the most common failure is simply not maintaining the
exact line-handling characteristics of the original content. This usually manifests
itself as line wrappings due to text being reflowed by either the sender or receiver
MUA or by any of the intermediate MTAs. Luckily, the patch format has internal
consistency checks that prevent this type of failure from corrupting a repository.

This should not be a challenge when you work with modern Git hosting platforms,
which provide rich feature sets enabling systematic and seamless integration of merge
changes across distributed development repositories and between development teams
into a centralized, single source of truth, the upstream repository, for a given project.

Bad Patches | 337

Patching Versus Merging
Git can handle situations in which patches have been applied and the changes have
been pulled in the same repository. Even though the commit in the receiving reposi‐
tory ultimately differs from the commit in the original repository from which the
patch was made, Git can use its ability to compare and match content to sort matters
out.

Later, for example, subsequent diffs will show no content changes. The log message
and author information will also be the same as they were conveyed in the patch mail,
but information such as the date and SHA1 will be different.

Directly fetching and merging a branch with a complex history will yield a different
history in the receiving repository than the history that results from a patching
sequence. Remember, one of the effects of creating a patch sequence on a complex
branch is to topologically sort the graph into a linearized history. Hence, applying it
to another repository yields a linearized history that wasn’t in the original. Another
point worth noting is that, when creating patches, merge commits are not generated as
part of the patching operation.

Depending on your development style and your ultimate intent, having the original
development history linearized within the receiving repository may or may not be
a problem for you and your project. At the very least, you have lost the complete
branch history that led to the patch sequence. At best, you simply don’t care how you
arrived at the patch sequence.

Summary
We began this chapter by discussing the rationale for using patches. Patching can
be very impactful when you want to share changes with collaborators who may not
have direct access to popular Git hosting platforms but share a common codebase
of a shared version of your project repository. Using the techniques we shared for
generating and applying patches, you will be able to start sharing commits between
repositories using the patch method. When resorting to patching instead of merging
commits, we strongly advise you to understand how this will affect your team overall,
because this decision could influence how repository histories are recorded.

338 | Chapter 13: Patches

CHAPTER 14

Hooks

Git hooks allow you to tweak standard Git operations. You can use a Git hook to
run one or more arbitrary scripts whenever a particular event, such as a commit or
a patch, occurs in your repository. Typically, an event is broken down into several
prescribed steps, and you can tie a custom script to each step. When the Git event
occurs, the appropriate script is called at the outset of each step.

Hooks belong to and affect a specific repository and are not copied during a clone
operation. In other words, hooks you set up in your private repository are not
propagated to and do not alter the behavior of the new clone. If, for some reason,
your development process mandates hooks in each developer’s personal development
repository, arrange to copy the directory .git/hooks through some other (non-clone)
method.

Do not confuse this with initializing a new repository. When the git init command
is specified, Git copies available hooks to the new repository; these can include the
default sample hooks Git provides or some custom hooks you specify in a configura‐
ble path defined via the template directory mechanism.

In this chapter, we start by discussing the available types of Git hooks and how to
install them, then guide you through the process of creating a simple Git hook. We
also explain how and when Git hooks can be used to alter standard Git operations.

Types of Hooks
A hook runs either in the context of your current, local repository or in the context of
the remote repository. For example, fetching data into your repository from a remote
repository and making a local commit can cause local hooks to run; pushing changes
to a remote repository may cause hooks in the remote repository to run. Such hooks
are also known as client-side and server-side hooks (with client referring to the local

339

1 As it happens, running a hook at commit time is such a common requirement that a precommit hook exists
for that, even though it isn’t strictly necessary.

repository and server referring to the remote repository). Typically, server-side or
remote hooks refer to the hooks enabled in the centralized or upstream copy of the
repository.

Most Git hooks fall into one of two categories:

• A “pre” hook runs before an action completes and can be used to approve, reject,•
or adjust a change before it’s applied.

• A “post” hook runs after an action completes and can be used to trigger notifica‐•
tions (such as email) or launch additional processing, such as running a build or
closing a bug.

As a general rule, if a pre-action hook exits with a nonzero status (the convention to
indicate failure), the Git action is aborted. In contrast, the exit status of a post-action
hook is generally ignored because the hook can no longer affect the outcome or
completion of the action.

A Note on Using Hooks
In general, Git developers advocate using hooks with caution. A hook, they say,
should be a method of last resort, to be used only when you can’t accomplish the
same result in some other way. For example, if you want to specify a particular
option each time you make a commit, check out a file, or create a branch, a hook
is unnecessary. You can accomplish these tasks with a Git alias (see “Configuration
Files” on page 20) or with shell scripts to augment git commit, git checkout, and
git branch, respectively.1

At first blush, a hook may seem to be an appealing and straightforward solution.
However, its use has several implications:

• A hook changes the behavior of Git. If a hook performs an unusual operation,•
other developers familiar with Git may run into surprises when using your
repository.

• A hook can slow down operations that are otherwise fast. For example, devel‐•
opers are often enticed to hook Git to run unit tests before anyone makes a
commit, but this makes committing slow. In Git, a commit is supposed to be a
fast operation, thus encouraging frequent commits to prevent the loss of data.
Making a commit run slowly makes Git less enjoyable.

340 | Chapter 14: Hooks

• A hook script that is buggy can interfere with your work and productivity. The•
only way to work around a hook is to disable it. In contrast, if you use an alias
or shell script instead of a hook, then you can always fall back on the normal Git
command wherever that makes sense.

• A repository’s collection of hooks is not automatically replicated. Hence, if•
you install a commit hook in your repository, it won’t reliably affect another
developer’s commits. This is partly for security reasons—a malicious script could
easily be smuggled into an otherwise innocuous-looking repository—and partly
because Git simply has no mechanism to replicate anything other than blobs,
trees, and commits.

Junio’s Overview of Hooks
Junio Hamano wrote the following about Git hooks on the Git mailing list. Their
ideas can be paraphrased as follows.

There are five valid reasons to hook a Git command/operation:

1. To countermand the decision made by the underlying command. The update1.
hook and the pre-commit hook are two hooks used for this purpose.

2. To manipulate data generated after a command starts to run. Modifying the2.
commit log message in the commit-msg hook is an example.

3. To operate on the remote end of a connection that you access only via the Git3.
protocol. A post-update hook that runs git update-server-info does this
very task.

4. To acquire a lock for mutual exclusion. This is rarely a requirement, but suffi‐4.
cient hooks are available to achieve it.

5. To run one of several possible operations, depending on the outcome of the5.
command. The post-checkout hook is a notable example.

Each of these five requirements requires at least one hook. You cannot realize a
similar result from outside the Git command.
On the other hand, if you always want some action to occur before or after running
a Git operation locally, you don’t need a hook. For instance, if your postprocessing
depends on the effects of a command (item 5 in the list), but the results of the
command are plainly observable, then you don’t need a hook.

With those “warnings” behind us, we can state that hooks exist for very good reasons
and that their use can be incredibly advantageous.

A Note on Using Hooks | 341

Installing Hooks
Each hook is a script, and the collection of hooks for a particular repository can be
found in the .git/hooks directory. As already mentioned, Git doesn’t replicate hooks
between repositories; if you git clone or git fetch from another repository, you
won’t inherit that repository’s hooks. You have to copy the hook scripts by hand.

Each hook script is named after the event with which it is associated. For example,
the hook that runs immediately before a git commit operation is named .git/hooks/
pre-commit.

A hook script must follow the normal rules for Unix scripts: it must be executable
(chmod a+x .git/hooks/pre-commit) and must start with a line indicating the lan‐
guage in which the script is written (e.g., !/bin/bash or !/usr/bin/perl).

If a particular hook script exists and has the correct name and file permissions, Git
uses it automatically.

Example Hooks
Depending on your exact version of Git, you may find some hooks in your repository
at the time it’s created. Hooks are copied automatically from your Git template
directory when you create a new repository. On Debian and Ubuntu, for example, the
hooks are copied from /usr/share/git-core/templates/hooks. Most Git versions include
some example hooks that you can use, and these are preinstalled for you in the
templates directory.

Let’s examine these preinstalled hooks by initializing a new repository:
 $ mkdir hooks-sample && cd hooks-sample
 $ git init -b main
 $ tree .git
 .git
 ├── HEAD
 ├── config
 ├── description
 ├── hooks
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── info
 │ └── exclude

342 | Chapter 14: Hooks

 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 8 directories, 17 files

Here’s what you need to know about the example hooks:

• The template hooks probably don’t do exactly what you want. You can read them,•
edit them, and learn from them, but you rarely want to use them as is.

• Even though the hooks are created by default, all the hooks are initially disabled.•
Depending on your version of Git and your operating system, the hooks are
disabled either by removing the execute bit or by appending .sample to the hook
filename. The latest versions of Git have executable hooks named with a .sample
suffix.

• To enable an example hook, you must remove the .sample suffix from its filename•
(mv .git/hooks/pre-commit.sample .git/hooks/pre-commit).

Originally, each example hook was simply copied into the .git/hooks/ directory from
the template directory with its execute permission removed. You could then enable
the hook by setting its execute bit.

That worked fine on systems like Unix and Linux, but it didn’t work well on Win‐
dows. In Windows, file permissions work differently, and, unfortunately, files are
executable by default. This meant the example hooks were executable by default,
causing great confusion among new Git users because all the hooks ran when none
should have.

Because of this problem with Windows, newer versions of Git suffix each hook file‐
name with .sample so that it won’t run even if it’s executable. To enable the example
hooks you need, you’ll have to rename the appropriate scripts yourself.

If you aren’t interested in the example hooks, it is perfectly safe to remove them from
your repository using rm .git/hooks/*. You can always get them back by copying
them from their home in the templates directory.

In addition to the template examples, there are more example
hooks in Git’s contrib directory, a portion of the Git source code.
The supplemental files may also be installed along with Git on
your system. On Debian and Ubuntu, for example, the contrib‐
uted hooks are installed in /usr/share/doc/git-core/contrib/hooks. On
Fedora, they are in /usr/share/git-core/contrib/$$hooks.

Installing Hooks | 343

Creating Your First Hook
To explore how a hook works, let’s create a new repository and install a simple hook.
First we’ll create the repository and populate it with a few files:
 $ mkdir hooktest && cd hooktest
 $ git init -b main
 Initialized empty Git repository in /somepath/.git/

 $ touch a b c

 $ git add a b c

 $ git commit -m 'Added a, b, c'
 [main (root-commit) 10f32fe] Added a, b, c
 3 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 a
 create mode 100644 b
 create mode 100644 c

Next, let’s create a pre-commit hook to prevent checking in changes that contain the
word broken. We will create a new hook with the following name (for this example,
we will assume that there is no preinstalled sample hook file of the same name):
 # Create the hook
 $ touch .git/hooks/pre-commit

Using your favorite text editor, put the following code block in the newly created file
called .git/hooks/pre-commit:
 #!/bin/bash
 echo "Hello, I'm a pre-commit script!" >&2
 if git diff --cached | grep '^\+' | grep -q 'broken'; then
 echo "ERROR: Can't commit the word 'broken'" >&2
 exit 1 # reject
 fi
 exit 0 # accept

The script generates a list of all the differences about to be checked in, extracts the
lines to be added (i.e., those lines that begin with a + character), and scans those lines
for the word broken.

There are many ways to test for the word broken, but most of the obvious ones result
in subtle problems. We’re not talking about how to “test” for the word broken but
rather about how to find the text to be scanned for the word broken.

For example, you might have tried the following test:
 if git ls-files | xargs grep -q 'broken'; then

or, in other words, searched for the word broken in all files in the repository. But this
approach has two problems. If someone else had already committed a file containing
the word broken, then this script would prevent all future commits (until you fix it),
even if those commits are totally unrelated. Moreover, the Unix grep command has

344 | Chapter 14: Hooks

no way of knowing which files will actually be committed; if you add broken to file b,
make an unrelated change to a, and then run git commit a, there’s nothing wrong
with your commit because you’re not trying to commit b. However, a script with this
test would reject it anyway.

If you write a pre-commit script that restricts what you’re allowed
to check in, it’s almost certain that you’ll need to bypass it some‐
day. You can bypass the pre-commit hook either by using the
--no-verify option to git commit or by temporarily disabling
your hook.

Now that we’ve created the pre-commit hook, let’s make sure it’s executable:
 # Set execute bit
 $ chmod a+x .git/hooks/pre-commit

And now we can test that it works as expected:
 $ echo "perfectly fine" >a

 $ echo "broken" >b

 # Try to commit all files, even a 'broken' one.
 $ git commit -m "test commit -a" -a
 Hello, I'm a pre-commit script!
 ERROR: Can't commit the word 'broken'

 # Selectively committing un-broken files works.
 $ git commit -m "test only file a" a
 Hello, I'm a pre-commit script!
 [main 5468656] test only file a
 1 file changed, 1 insertion(+)

 # And committing 'broken' files won't work.
 $ git commit -m "test only file b" b
 Hello, I'm a pre-commit script!
 ERROR: Can't commit the word 'broken'

Observe that even when a commit works, the pre-commit script still emits "Hello".
This would be annoying in a real script, so you should use such messages only while
debugging the script. Notice also that, when the commit is rejected, git commit
doesn’t print an error message; the only message is the one produced by the script. To
avoid confusing the user, always print an error message from a “pre” script if it’s going
to return a nonzero (“reject”) exit code.

Given those basics, let’s talk about the different hooks you can create.

Installing Hooks | 345

Available Hooks
To discover what hooks are available in your version of Git, run git help hooks.
Also refer to the Git documentation to find all the command-line parameters as well
as the input and output of each hook.

Commit-Related Hooks
When you run git commit, Git executes a process like that shown in Figure 14-1.

Figure 14-1. Commit hook processing

None of the commit hooks run for anything other than git com
mit. For example, git rebase, git merge, and git am don’t run
your commit hooks by default. (Those commands may run other
hooks, though.) However, git commit --amend does run your
commit hooks.

Each hook has its own purpose, as follows:

• The pre-commit hook gives you the chance to immediately abort a commit if•
something is wrong with the content being committed. The pre-commit hook
runs before the user is allowed to edit the commit message, so the user won’t
enter a commit message only to discover the changes are rejected. You can also
use this hook to automatically modify the content of the commit.

346 | Chapter 14: Hooks

• prepare-commit-msg lets you modify Git’s default message before it is shown to•
the user. For example, you can use this to change the default commit message
template.

• The commit-msg hook can validate or modify the commit message after the user•
edits it. For example, you can leverage this hook to check for spelling mistakes or
reject messages with lines that exceed a certain maximum length.

• post-commit runs after the commit operation has finished. At this point, you•
can update a log file, send email, or trigger an autobuilder, for instance. Some
people use this hook to automatically mark bugs as fixed if, say, the bug number
is mentioned in the commit message. In real life, however, the post-commit hook
is rarely useful, because the repository that you git commit in is rarely the one
that you share with other people. (The update hook is likely more suitable.)

Patch-Related Hooks
When you run git am, Git executes a process as follows (see Figure 14-2):

• applypatch-msg examines the commit message attached to the patch and deter‐•
mines whether or not it’s acceptable. For example, you can choose to reject a
patch if it has no Signed-off-by: header. You can also modify the commit
message at this point if desired.

• The pre-applypatch hook is somewhat misnamed, because this script actually•
runs after the patch is applied but before committing the result. This makes
it exactly analogous to the pre-commit script when doing git commit, even
though its name implies otherwise. In fact, many people choose to create a
pre-applypatch script that runs pre-commit.

• post-applypatch is analogous to the post-commit script.•

Figure 14-2. Patch hook processing

Available Hooks | 347

Despite what you might expect from the names of the hooks shown
in Figure 14-2, git apply does not run the applypatch hooks,
only git am does. This is because git apply doesn’t actually com‐
mit anything, so there’s no reason to run any hooks.

Push-Related Hooks
When you run git push, the receiving end of Git executes a process like the one
shown in Figure 14-3.

Figure 14-3. Receive hook processing

All push-related hooks run on the receiver, not the sender. Thus,
the hook scripts that run are in the .git/hooks directory of the
receiving repository, not the sending one. Output produced by
remote hooks is still shown to the user doing the git push.

As you can see in the diagram, the very first step of git push is to transfer all the
missing objects (blobs, trees, and commits) from your local repository to the remote
one. There is no need for a hook during this process because all Git objects are
identified by their unique SHA1 hash; your hook cannot modify an object because
it would change the hash. Furthermore, there’s no reason to reject an object, because
git gc cleans up anyway if the object turns out to be unneeded.

Instead of manipulating the objects themselves, push-related hooks are called when
it’s time to update the refs (branches and tags):

348 | Chapter 14: Hooks

• pre-receive receives a list of all the refs that are to be updated, including their•
new and old object pointers. The only thing the prereceive hook can do is accept
or reject all the changes at once, which is of limited use. You might consider it
a feature, though, because it enforces transactional integrity across branches. Yet,
it’s not clear why you’d need such a thing; if you don’t like that behavior, use the
update hook instead.

• The update hook is called exactly once for each ref being updated. The update•
hook can choose to accept or reject updates to individual branches, without
affecting whether other branches are updated or not. Also, for each update you
can trigger an action such as closing a bug or sending an email acknowledgment.
It’s usually better to handle such notifications here than in a post-commit hook,
because a commit is not really considered “final” until it’s been pushed to a
shared repository.

• Like the prereceive hook, post-receive receives a list of all the refs that have•
just been updated. Anything that post-receive can do could also be done by the
update hook, but sometimes post-receive is more convenient. For example, if
you want to send an update notification email message, post-receive can send
just a single notification about all updates instead of a separate email for each
update. The post-receive hook supersedes the post-update hook since it will
receive the old and new values for all changed refs.

• The post-update hook is meant for notifications only and does not change the•
outcome of a git push operation.

Other Local Repository Hooks
Finally, there are a few miscellaneous hooks, and by the time you read this there
may be even more. (Again, you can find the list of available hooks quickly with the
command git help hooks.)

• The pre-rebase hook runs when you attempt to rebase a branch. This is useful•
because it can stop you from accidentally running git rebase on a branch that
shouldn’t be rebased because it’s already been published.

• post-checkout runs after you check out a branch or an individual file. For•
example, you can use this to automatically create empty directories (Git doesn’t
know how to track empty directories) or to set file permissions or Access Control
Lists (ACLs) on checked-out files (Git doesn’t track ACLs). You might think of
using this to modify files after checking them out—for example, to do RCS-style
variable substitution—but it’s not such a good idea because Git will think the files
have been locally modified.

Available Hooks | 349

https://oreil.ly/44zID

• post-merge runs after you perform a merge operation. This is rarely used. If your•
pre-commit hook does some sort of change to the repository, you might need to
use a post-merge script to do something similar.

• pre-auto-gc helps git gc --auto decide whether or not it’s time to clean up.•
You can make git gc --auto skip its git gc task by returning nonzero from
this script. This will rarely be needed, however.

To Hook or Not
By extending the standard Git operations, Git hooks open up the possibilities for us
to extend our development workflows. For reasons cautioned in section “A Note on
Using Hooks” on page 340, we reiterate that you should consider using hooks only as
a last resort. If and when you resort to using hooks, you need to ensure a good mech‐
anism to ensure that the hooks are updated and consistent for all developers who will
be depending on them (recall that hooks are not propagated during a clone). This at
times requires efforts that outweigh the benefits of developing and maintaining hooks
for the purposes of easing or enforcing consistency in your workflows.

Modern Git hosting platforms provide you with features and functionalities that
you could leverage to achieve the same without the added complexity or extraneous
efforts in maintaining custom hooks you will be writing. Git hosting platforms such
as GitHub or GitLab provide you with built-in features that enable you to extend the
core functionalities of their platform, which promotes a robust collaborative develop‐
ment for your team. This could be anything from satisfying set standards of code
review, successfully compiling of automated test suite runs, and even code linting,
for that matter. With well-defined requirements, you should be able to practically
judge whether or not a Git hook is necessary or whether you should use features
of Git hosting platforms to get the result you need (assuming you are hosting your
repositories in any of the modern Git hosting platforms).

Summary
This chapter elaborated on a concise overview of Git hooks. We started by discussing
the various types of hooks before learning how to install and create your own Git
hook with a simple use case. Later we explored the available hooks, ranging from
hooks that deal with commits and patches to hooks that get triggered before regular
Git operations. As attractive as using hooks may seem, it does come with added
overheads, and you will need to decide for yourself whether it’s worth the trade-off or
not.

350 | Chapter 14: Hooks

CHAPTER 15

Submodules

It’s common to have a lot of applications that rely on one utility library or set of
libraries. In such situations, you want each of your applications to be developed,
shared, branched, and merged in its own Git repository, either because that’s the
logical unit of separation or perhaps because of code ownership issues.

But dividing your applications in this way creates a problem. Each application relies
on a particular version of the shared library, and you need to keep track of exactly
which version. If someone upgrades the library by accident to a version that hasn’t
been tested, they might end up breaking your application. Furthermore, the utility
library isn’t developed all by itself; usually people are tweaking it to add new features
that they need in their own applications. Eventually, they want to share those new
features with everybody else writing other applications; that’s what a utility library
is for.

Several strategies are commonly used in an attempt to address this issue, including
conducting partial checkouts, importing dependent code directly into the project, or
even copying the dependent project as a subfolder in the project. But these are not
elegant solutions; in fact, some people view them as “hacks.”

Git addresses this issue with submodules. A submodule is simply a project that is
part of your Git repository but also exists independently in its own source control
repository. Git’s mechanism for indicating a direct reference to another Git repository
is through a gitlink. In this chapter, we start by explaining how to use gitlinks, and
then we provide several techniques for working with submodules. We round out the
chapter with a discussion of the subtree command as an alternative to submodules.

351

Gitlinks
A gitlink is a link from a tree object to a commit object. Recall from Chapter 2
that each commit object points to a tree object and that each tree object points to
a set of blobs and trees, which correspond (respectively) to files and subdirectories.
A commit’s tree object uniquely identifies the exact set of files, filenames, and per‐
missions attached to that commit. Also recall from “Commit Graphs” on page 90
that the commits themselves are connected to each other in a directed acyclic graph
(DAG). Each commit object points to zero or more parent commits, and together
they describe the history of your project.

What we haven’t discussed yet is how tree objects can point to commit objects
through gitlinks. Let’s do that now.

We’ll start by creating a superproject repository to import the Git source code into:
 $ cd /tmp
 $ mkdir myapp
 $ cd myapp

 # Start the new superproject
 $ git init -b main
 Initialized empty Git repository in /tmp/myapp/.git/

 $ echo hello >hello.txt

 $ git add hello.txt

 $ git commit -m 'first commit'
 [main (root-commit) 2f8e120] first commit
 1 file changed, 1 insertion(+)
 create mode 100644 hello.txt

Next, we will import the git project directly:
 $ ls
 hello.txt

 # clone in a repository as a submodule
 $ git submodule add https://github.com/git/git.git git
 Cloning into 'git'...
 remote: Enumerating objects: 329719, done.
 remote: Counting objects: 100% (338/338), done.
 remote: Compressing objects: 100% (156/156), done.
 remote: Total 329719 (delta 214), reused 271 (delta 182), pack-reused 329381
 Receiving objects: 100% (329719/329719), 194.04 MiB | 27.39 MiB/s, done.
 Resolving deltas: 100% (246495/246495), done.
 Updating files: 100% (4167/4167), done.

 $ ls
 git hello.txt

 $ git add git

 $ git commit -m 'import git'
 [main 62079a5] import git

352 | Chapter 15: Submodules

 2 files changed, 4 insertions(+)
 create mode 100644 .gitmodules
 create mode 160000 git

Normally, git add git and git add git/ (with the POSIX-
compliant trailing slash indicating that git must be a directory)
would be equivalent. But that’s not true if you want to create a
gitlink! In the sequence we just showed, adding a slash to make
the command git add git/ won’t create a gitlink at all; it will just
add all the files in the git directory, which is probably not what you
want.

Observe the resulting tree of the superproject:
 $ git ls-tree HEAD
 100644 blob fc7f9429d5ca844b0a71bd9cc9062318eaea08bd .gitmodules
 160000 commit 4e2a4d1dd44367d7783f33b169698f2930ff13c0 git
 100644 blob ce013625030ba8dba906f756967f9e9ca394464a hello.txt

The git subdirectory is of type commit and has mode 160000. That makes it a gitlink.

Git usually treats gitlinks as simple pointer values or references to other repositories.
Most Git operations, such as clone, do not dereference the gitlinks and then act on
the subproject’s repository.

For example, if you push your project into another repository, it won’t push in
the subproject’s commit, tree, and blob objects. If you clone your superproject’s
repository, the directories in your subproject’s repository will be empty.

For example, in the following code, the git subproject directory remains empty after
the clone command:
 $ cd /tmp

 $ git clone myapp app2
 Cloning into 'app2'...
 done.

 $ cd app2

 $ ls
 git/ hello.txt

 $ ls git

 $ du git
 0 git

An important feature of gitlinks is that they link to objects that are allowed to be
missing from your repository. After all, they’re supposed to be part of some other
repository.

Gitlinks | 353

Because gitlinks can link to missing objects, this implementation allows for partial
checkouts. You don’t have to check out every subproject; you can check out just the
ones you need.

Submodules
Submodules are a powerful piece of the Git toolchain, but sometimes they are
perceived as being complex. Submodules are, at the highest level, a facility for the
composition of Git repositories (Figure 15-1).

Figure 15-1. Nested repos

Submodules offer great precision, pointing not only to the network address of the
nested repository but also to the commit hash of the nested repository (Figure 15-2).

Figure 15-2. Nested repos pointing to precise revision

354 | Chapter 15: Submodules

Because each commit ref has, within a repo, a unique identifier to a specific point in
the graph and all parent states that led up to that point, pointing to the ref of another
repo records that precise state in the commit history of the parent project.

Why Submodules?
The most common driving factor behind the use of submodules is modularization.
Submodules provide a componentization of a source codebase in the absence of
such a modularization at the binary level (DLL, JAR, SO). Solutions such as Maven
Multimodule Projects and Gradle Multiproject Builds are well-known Java solutions
for componentized binary or semibinary dependency management that don’t require
the entire source base to be checked out to a monolithic folder. Likewise, the .NET
space has assemblies that allow for binary consumption of subcomponents and plug-
ins. Driving the use of submodules in the Objective-C ecosystem is the contrasting
sparseness of options for modularity and the inclusion of compiled binaries.

Git submodules leave the existing directory structure of a subcomponent intact,
provided the separation of components falls along directory fault lines, while ena‐
bling precise labeling and version control of each component that contributes to an
aggregate project.

Working with Submodules
The git submodule command is actually just a 755-line Unix shell script called
git-submodule.sh. Its job is simple: to follow gitlinks and check out the corresponding
repositories for you.

The git submodule command needs to know one important bit of information
before it can do anything: where can it find the repository for your submodule? It
retrieves that information from a file called .gitmodules, which looks like this:
 # git is the name of the submodule repository
 [submodule "git"]
 path = git
 url = https://github.com/git/git.git

Let’s initialize a new repository with a file, followed by some Git operations working
with a submodule repository:
 # Create in a temporary directory
 $ mkdir superproject && cd superproject
 $ git init -b main
 Initialized empty Git repository in /tmp/superproject/.git/

 $ echo "hello from super project" > sp-readme.md
 $ git add sp-readme.md
 $ git commit -m "Initial commit"
 [main (root-commit) 3689ee7] Initial commit
 1 file changed, 1 insertion(+)
 create mode 100644 sp-readme.md

Submodules | 355

https://oreil.ly/yLgCm
https://oreil.ly/yLgCm
https://oreil.ly/woFw3
https://oreil.ly/irYSR
https://oreil.ly/A1uH4

 $ git status
 On branch main
 nothing to commit, working tree clean

In the subsections that follow, we highlight some Git operations for working with a
submodule repository.

Adding a submodule

When adding a submodule to an existing repository via the git submodule add
command, Git creates the .gitmodules file along with a subdirectory containing all the
files for the submodule you added. These files are automatically staged in your index
directory:
 # To follow along, create a new repository in your GitHub personal account
 # from this template repo https://github.com/ppremk/example-submodule-template
 # Click on the green “Use this template” button to create a copy of the repo

 # Add an existing submodule from the clone URL of your repo on GitHub

 $ git submodule add https://github.com/ppremk/example-submodule.git
 Cloning into '/tmp/superproject/example-submodule'...
 remote: Enumerating objects: 4, done.
 remote: Counting objects: 100% (4/4), done.
 remote: Compressing objects: 100% (4/4), done.
 remote: Total 4 (delta 0), reused 0 (delta 0), pack-reused 0
 Receiving objects: 100% (4/4), done.

 $ ls
 example-submodule sp-readme.md

 $ git status
 On branch main
 Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: .gitmodules
 new file: example-submodule

 # Proceed to commit the submodule

 $ git commit -m "Add submodule"
 [main ecc6142] Add submodule
 2 files changed, 4 insertions(+)
 create mode 100644 .gitmodules
 create mode 160000 example-submodule

The newly added submodule’s project git history will remain as a
standalone history and will not be part of the superproject’s history.
Also, take note of the file mode 160000 for the example-submodule
directory, which makes it a gitlink.

356 | Chapter 15: Submodules

Cloning a repository
When you clone a repository that already has a submodule, there are a few caveats
you need to keep in mind. Take a look at the following example, which attempts to
clone a repository with submodules:
 # Create a bare repository version of the earlier repo
 # This will allow for pushing changes from a clone copy of the repository
 $ cd ..
 $ git clone --bare /tmp/superproject /tmp/superproject-upstream
 Cloning into bare repository '/tmp/superproject-upstream'...
 done.

 # Clone the new upstream repository with the example submodule
 $ git clone /tmp/superproject-upstream superproject-clone-1
 Cloning into 'superproject-clone -1'...
 done.

 # Create another new clone for later demo
 $ git clone /tmp/superproject-upstream superproject-clone-2
 Cloning into 'superproject-clone -2'...
 Done.

 $ cd superproject-clone-1
 $ ls
 example-submodule sp-readme.md

 $ cd example-submodule && ls
 $

The subdirectory for the submodules will be empty because the submodules are
not initialized during the superproject’s clone operation. In order to initialize the
submodule, you can do the following:
 $ cd ..
 $ git submodule update --init
 Submodule 'example-submodule' (https://github.com/ppremk/example-submodule.git) registered for path
 'example-submodule'
 Cloning into '/tmp/superproject-clone/example-submodule'...
 Submodule path 'example-submodule': checked out '3b294591ab02a849bdc29f545658cd74f6832bcb'

 $ cd example-submodule && ls
 LICENSE README.md

If the submodules of your superproject contain even more submodules, you can add
the --recursive option to the command to initialize all of them together:
 $ git submodule update --init --recursive

However, a better way to initialize the submodule directory and files when cloning
a superproject is to use the --recurse-submodules option with the clone URL, like
this:
 $ git clone --recurse-submodules /tmp/superproject superproject-clone

Submodules | 357

submodule add versus submodule init

The git submodule add command will add an entry to the .gitmodules file and
populate a new Git repository with a clone of the added repository, whereas the
git submodule init command will copy the settings from the .gitmodules file into
your .git/config file:
 $ pwd
 /tmp/app2

 $ git submodule init
 Submodule 'git' (https://github.com/git/git.git) registered for path 'git'

 $ cat .git/config
 [core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
 [remote "origin"]
 url = /tmp/myapp
 fetch = +refs/heads/*:refs/remotes/origin/*
 [branch "main"]
 remote = origin
 merge = refs/heads/main
 [submodule "git"]
 active = true
 url = https://github.com/git/git.git

The git submodule init command adds only the last two lines.

The git submodule init step allows you to reconfigure your local submodules to
point at a different repository from the one in the official .gitmodules file.

Consider the following scenario.

If you make a clone of someone’s project that uses submodules, you might want to
keep your own copy of the submodules and point your local clone at that. In this
case, you wouldn’t want to change the module’s official location in .gitmodules, but
you would want git submodule to look at your preferred location. So git submodule
init copies any missing submodule information from .gitmodules into .git/config,
where you can safely edit it. Just find the [submodule] section referring to the
submodule you’re changing, and edit the URL.

Finally, run git submodule update to update the files from your copy of the
submodule, or, if needed, to force a complete new clone of the initial subproject
repository by deleting the existing files:
 # Force a complete new clone by removing what’s there
 # if required when pointing to your own clone version of submodule
 $ pwd
 /tmp/app2

 $ rm -rf git

358 | Chapter 15: Submodules

 $ git submodule update
 Cloning into '/tmp/app2/git'...
 Submodule path 'git': checked out '4e2a4d1dd44367d7783f33b169698f2930ff13c0'

Changing submodules from within a superproject
While working on the main superproject, you may need to make simultaneous
changes to the dependent submodule files. You make changes in submodules the
same way you would make changes in any Git repository.

There is one important thing you need to bear in mind, though! When cloning a
superproject with --recurse-submodules or fetching updates using the git submod
ule update command, the files in the submodule directory are updated and will be
in a detached HEAD state.

This means any changes you need to introduce will need to be done on a local
tracking branch for the submodule files.

By way of example, take a look at the following:

 $ pwd
 /tmp/superproject-clone-1

 $ cd example-submodule
 $ git status
 HEAD detached at 3b29459
 nothing to commit, working tree clean

 $ git branch -a
 * (HEAD detached at 3b29459)
 main
 remotes/origin/HEAD -> origin/main
 remotes/origin/main

For the purpose of learning and not adding complexity to an
already complex subject, we will be directly updating the main
branch in this example. In reality, you will need to adhere to the
development workflow of your project, in which case a new feature
branch will need to be introduced prior to merging new changes
into the main stable branch of the submodule!

Next, we’ll introduce changes directly to the submodule by checking out to the main
local tracking branch:
 $ pwd
 /tmp/superproject-clone-1/example-submodule

 $ git checkout main
 Switched to branch 'main'
 Your branch is up to date with 'origin/main'.

Submodules | 359

 $ echo "Add new submodule file" > new-submodule-file.md
 $ git add new-submodule-file.md
 $ git commit -m "Add new submodule file"
 [main 03c93dc] Add new submodule file
 1 file changed, 1 insertion(+)
 create mode 100644 new-submodule-file.md

 $ git status
 On branch main
 Your branch is ahead of 'origin/main' by 1 commit.
 (use "git push" to publish your local commits)

 nothing to commit, working tree clean

Now we’ll continue to push the changes to the submodule’s remote upstream URL:

 $ git push
 Enumerating objects: 4, done.
 Counting objects: 100% (4/4), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (2/2), done.
 Writing objects: 100% (3/3), 355 bytes | 355.00 KiB/s, done.
 Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
 To https://github.com/ppremk/example-submodule.git
 3b29459..03c93dc main -> main

If you prefer to push changes committed in the submodule project
from the superproject directory, you can do so by supplying the
command git push --recurse-submodules=on-demand.

In the preceding example, we pushed the changes of the submodule directly to the
remote upstream URL from within the subdirectory. While this cleanly updated the
submodule’s remote URL, it left the superproject in an outdated state; the superpro‐
ject is still pointing to the old commit SHA when the submodule was initially added:

 $ cd ..
 $ git status
 On branch main
 Your branch is up to date with 'origin/main'.

 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: example-submodule (new commits)

 no changes added to commit (use "git add" and/or "git commit -a")

360 | Chapter 15: Submodules

Running git status in the superproject’s directory gives a brief update stating there
are new commits in the submodule directory. If you would like to get a detailed
status of what has changed, you can set status.submoduleSummary to true in the Git
configuration:

 $ git config --local status.submoduleSummary true
 $ git status
 On branch main
 Your branch is up to date with 'origin/main'.

 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: example-submodule (new commits)

 Submodules changed but not updated:

 * example-submodule 3b29459...03c93dc (1):
 > Add new submodule file

 no changes added to commit (use "git add" and/or "git commit -a")

 $ git add example-submodule
 $ git commit -m "Add new submodule changes"
 [main e044d76] Add new submodule changes
 1 file changed, 1 insertion(+), 1 deletion(-)

 $ git push
 Enumerating objects: 3, done.
 Counting objects: 100% (3/3), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (2/2), done.
 Writing objects: 100% (2/2), 330 bytes | 330.00 KiB/s, done.
 Total 2 (delta 0), reused 0 (delta 0), pack-reused 0
 To /tmp/superproject-upstream
 ecc6142..e044d76 main -> main

Ensuring that the superproject records the latest commit SHA of
the submodule is an important step. Failing to do so will leave your
superproject referencing an outdated commit of the referenced
submodule when a new clone or submodule update operation is
done for the superproject.

Pulling submodule updates
There are two methods for updating the submodule project for your superproject.
One method is through a standard Git fetch operation followed by a merge operation.
You will need to do this from the subdirectory of your submodule (just as you would
with any standard Git repository). This enables you to selectively choose which
branch of your submodule you want to update.

Submodules | 361

The other method is to use the git submodule update --remote command. By
default, this operation will update the latest changes from the main branch of the
submodule in your local submodule:
 $ pwd
 /tmp/superproject

 $ git submodule update --remote
 remote: Enumerating objects: 4, done.
 remote: Counting objects: 100% (4/4), done.
 remote: Compressing objects: 100% (2/2), done.
 remote: Total 3 (delta 0), reused 3 (delta 0), pack-reused 0
 Unpacking objects: 100% (3/3), 335 bytes | 111.00 KiB/s, done.
 From https://github.com/ppremk/example-submodule
 3b29459..03c93dc main -> origin/main
 Submodule path 'example-submodule': checked out '03c93dc48b60829baed35f8f78959a41b89dd832'

 $ cd example-submodule && ls
 LICENSE README.md new-submodule-file.md

When working with submodules, a recommended workflow
for collaborative development is to point your reference to a
production-ready or stable version of the submodule. Commonly,
the maintainers of the submodule can include a named stable
branch to achieve this. To configure your submodule to track a
specific branch, you can set the configuration as follows:
git config -f .gitmodules submodule.example-submodule.branch
 <stable-branch-name>

The -f .gitmodules option will ensure that the .gitmodules file is
updated for consistency for every collaborator to track the specific
branch.

Pulling updates of a superproject that uses a submodule

When getting updates for the superproject via the git pull command, Git fetches
the referenced submodule repository changes, but it does not update them.

To complete the update for the superproject, you will need to run the git submodule
update command:

 # Let us now switch the second cloned repository for this example
 $ pwd
 /tmp/superproject-clone-2

 $ git pull
 remote: Enumerating objects: 3, done.
 remote: Counting objects: 100% (3/3), done.
 remote: Compressing objects: 100% (2/2), done.
 remote: Total 2 (delta 0), reused 0 (delta 0), pack-reused 0
 Unpacking objects: 100% (2/2), 310 bytes | 310.00 KiB/s, done.
 From /tmp/superproject-upstream
 ecc6142..e044d76 main -> origin/main

362 | Chapter 15: Submodules

 Updating ecc6142..e044d76
 Fast-forward
 example-submodule | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

 $ cd example-submodule && ls
 $

 $ cd ..
 $ git submodule update --init --recursive
 Submodule 'example-submodule' (https://github.com/ppremk/example-submodule.git) registered for...
 Cloning into '/tmp/superproject-clone-2/example-submodule'...
 Submodule path 'example-submodule': checked out '03c93dc48b60829baed35f8f78959a41b89dd832'

 $ cd example-submodule && ls
 LICENSE README.md new-submodule-file.md

When you are updating the superproject, keep in mind that some new submodules
may have been added to the project, or the submodule’s remote upstream URL might
have changed for valid reasons. To be cautious, we recommend that you run the
git submodule update --init command to ensure that every new submodule is
initialized when pulling in changes for the superproject.

To combine the git pull and git submodule update --init
steps, use the command git pull --recurse-submodules.

When there are changes to a submodule’s remote upstream URL, running the git
submodule sync command followed by the git submodule update --init com‐
mand will ensure that your superproject gets the latest updated changes:
 # First update your local git config file with the new upstream URL for the submodule
 $ git submodule sync --recursive
 $ git submodule update --init --recursive

Switching branches when working with superprojects that have submodules
Working with multiple branches in your superprojects that reference submodules can
get confusing. This is because the submodule’s working tree is not updated to match
the commit captured in the superproject when switching branches.

We recommend that you use the git checkout or git switch command with the
--recurse-submodules option every time you work with a superproject that contains
submodules. The --recurse-submodules option will ensure that the correct state of
the submodules is in sync with the branch you are checked out to at any given time:
 $ git checkout --recurse-submodules <branch-name>

The preceding command’s output is the same as the following:

Submodules | 363

 $ git checkout <branch-name>
 $ git submodule update --recursive

Submodules and Credential Reuse
A traditional git clone user@hostname:pathtorepo is acceptable for a standalone
Git repository. However, this is a less desirable address for a git submodule add
URL command because the username will be saved in the submodule metadata at the
superproject repository level. This username will be preserved and unintentionally
used by all other repository cloning developers.

In a business where access control to repositories is decided on a per-user basis, it
would be undesirable to store a specific username as part of the .gitmodules recorded
address for a submodule. It would be nice if the superproject’s username used during
cloning was passed along to the submodule’s cloning operation.

The Git submodule commands are known to take the credentials given during the
superproject cloning operation and pass them down (Figure 15-3) to any actions
invoked by --recurse-submodules. This leaves the .gitmodules address free of any
usernames and usable by any developer authorized to clone the project.

Figure 15-3. Reuse of credentials in submodules

Git Subtrees
Git subtrees are commonly considered alternatives to Git submodules. With subtrees,
you are able to add the subproject as a subdirectory of your project with the option
of including the entire history of the subproject or squashing the commits as a single
commit. Unlike submodules, subtrees do not require the .gitmodules file and gitlinks
as extra configurations. git subtree is installed automatically when you install Git
for most modern package managers. If you need to install this extension manually,
the steps are explained in the Git repository’s contribution documentation.

364 | Chapter 15: Submodules

https://oreil.ly/4viZZ

Subtrees are not to be confused with the subtree merge strategy! Git
also allows you to extract the history for a given subdirectory from
your project via the git submodule split command.

In the following example, we’ll once again initialize a new repository with a file.
Then, in the subsections that follow, we’ll provide some Git operations for working
with Git subtrees:
 # Create in a temporary directory
 $ mkdir superproject && cd superproject
 $ git init -b main
 Initialized empty Git repository in /tmp/superproject/.git/

 $ echo "hello from super project" > sp-readme.md
 $ git add sp-readme.md
 $ git commit -m "Initial commit"
 [main (root-commit) a5b6866] Initial commit
 1 file changed, 1 insertion(+)
 create mode 100644 sp-readme.md

 $ git status
 On branch main
 nothing to commit, working tree clean

Adding a Subproject
When you add a subproject using the subtree method, the git subtree add com‐
mand will also add a new subdirectory in your superproject with all of the subpro‐
ject’s relevant files. However, with the subtree command, you will be combining the
subproject’s Git history with your superproject’s Git history:
 # To follow along, create a new repository in your GitHub personal account
 # from this template repo https://github.com/ppremk/example-subtree-template
 # Click on the green “Use this template” button to create a copy of the repo

 # Create some dummy commits on your copy of the example-subtree repo
 # directly from the GitHub WebUI

 $ ls
 sp-readme.md

 $ git log --oneline --graph
 * a5b6866 (HEAD -> main) Initial commit

 # Add an existing subtree from the clone URL of your repo on GitHub
 # Specify which branch of the subproject you want to reference via
 # the subtree add command
 # Ensure that you have the git subtree extension installed (just in case)

 $ git subtree add --prefix=example-subtree https://github.com/ppremk/example-subtree.git main
 git fetch https://github.com/ppremk/example-subtree.git main
 remote: Enumerating objects: 15, done.
 remote: Counting objects: 100% (15/15), done.
 remote: Compressing objects: 100% (13/13), done.

Git Subtrees | 365

 remote: Total 15 (delta 5), reused 4 (delta 0), pack-reused 0
 Unpacking objects: 100% (15/15), 2.87 KiB | 367.00 KiB/s, done.
 From https://github.com/ppremk/example-subtree
 * branch main -> FETCH_HEAD
 Added dir 'example-subtree'

 $ ls
 example-subtree sp-readme.md

 # Note the commit history of the subproject has been combined
 # with the superproject’s git history

 $ git log --oneline --graph
 * 78d0604 (HEAD -> main) Add 'example-subtree/' from commit '08d39b...'
 |\
 | * 08d39b1 Final update to README.md
 | * 87c0990 One more update to README.md
 | * 473e4f9 Update README.md
 | * e5d123a Initial commit
 * a5b6866 Initial commit

In the preceding example, the subtree command has essentially grafted the working
tree of the subproject into the existing tree of the superproject. If the history of the
subproject is irrelevant and you can do without it, you can specify the --squash
option to keep a clean combined history:

 $ git reset --hard a5b6866
 HEAD is now at a5b6866 Initial commit

 $ git log --oneline --graph
 * a5b6866 (HEAD -> main) Initial commit

 # Squash the commit history of the subproject

 $ git subtree add --prefix=example-subtree \
 > https://github.com/ppremk/example-subtree.git main --squash
 git fetch https://github.com/ppremk/example-subtree.git main
 From https://github.com/ppremk/example-subtree
 * branch main -> FETCH_HEAD
 Added dir 'example-subtree'

 $ ls
 example-subtree sp-README.md

 $ git log --oneline --graph
 * 525f638 (HEAD -> main) Merge commit '5d3ce7...' as 'example-subtree'
 |\
 | * 5d3ce7a Squashed 'example-subtree/' content from commit 08d39b1
 * a5b6866 Initial commit

Shortening the subtree URL helps when executing the related
commands:
$ git remote add subremote-origin
 https://github.com/ppremk/example-subtree.git

366 | Chapter 15: Submodules

Pulling Subproject Updates
Where there is a new update to the subproject, you can pull the latest changes into
your referenced subproject from the superproject as follows:
 $ cd example-subtree && ls
 LICENSE README.md another-new-file.md new-file.md

 # Add a new file directly on the GitHub WebUI for your example-subtree repo

 $ cd ..

 $ git subtree pull --prefix=example-subtree subremote-origin main --squash
 remote: Enumerating objects: 18, done.
 remote: Counting objects: 100% (18/18), done.
 remote: Compressing objects: 100% (15/15), done.
 remote: Total 18 (delta 6), reused 4 (delta 0), pack-reused 0
 Unpacking objects: 100% (18/18), 3.50 KiB | 511.00 KiB/s, done.
 From https://github.com/ppremk/example-subtree
 * branch main -> FETCH_HEAD
 * [new branch] main -> subremote-origin/main
 Merge made by the 'ort' strategy.
 example-subtree/sparkling-file.md | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 example-subtree/sparkling-file.md

 # Note squashed updates of subprojects are added as a merge commit in the superproject
 $ git log --oneline --graph
 * c468ae8 (HEAD -> main) Merge commit '8bc211...'
 |\
 | * 8bc211a Squashed 'example-subtree/' changes from 08d39b1..ff9255a
 * | 525f638 Merge commit '5d3ce7a...' as 'example-subtree'
 |\|
 | * 5d3ce7a Squashed 'example-subtree/' content from commit 08d39b1
 * a5b6866 Initial commit

 $ cd example-subtree && ls
 LICENSE README.md another-new-file.md new-file.md parkling-file.md

Changing the Subproject from Within the Superproject
When making changes to the subproject, bear in mind that the commits that record
the changes to the subproject will be part of the superproject’s commit history (on the
branch on which it is currently active). This makes it much more direct in compari‐
son to submodules when you need to contribute some changes to the upstream URL
of the subproject via the subtree method.

Git Subtrees | 367

You can push changes to a subproject like so:
 # Makes changes in the subproject directory
 $ cd example-subtree

 $ touch just-file.md

 $ git add just-file.md
 $ git commit -m "Add just file from superproject"
 [main 0408fed] Add just file from superproject
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 example-subtree/just-file.md

 $ git log --oneline --graph
 * 0408fed (HEAD -> main) Add just file from superproject
 * c468ae8 (HEAD -> main) Merge commit '8bc211...'
 |\
 | * 8bc211a Squashed 'example-subtree/' changes from 08d39b1..ff9255a
 * | 525f638 Merge commit '5d3ce7a...' as 'example-subtree'
 |\|
 | * 5d3ce7a Squashed 'example-subtree/' content from commit 08d39b1
 * a5b6866 Initial commit

 # The command will need to be run from the superproject’s directory
 $ cd ..

 $ git subtree push --prefix=example-subtree subremote-origin main
 git push using: subremote-origin main
 Enumerating objects: 3, done.
 Counting objects: 100% (3/3), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (2/2), done.
 Writing objects: 100% (2/2), 251 bytes | 251.00 KiB/s, done.
 Total 2 (delta 1), reused 0 (delta 0), pack-reused 0
 remote: Resolving deltas: 100% (1/1), completed with 1 local object.
 To https://github.com/ppremk/example-subtree.git
 ff9255a..3b0c49a 3b0c49a978fe67f811943b778aaa5b3f867a0cf1 -> main

Other Git operations, such as cloning a repository, pulling updates of the superpro‐
ject, and switching branches when working with superprojects that have subprojects
added with git subtree, require no special Git commands. You can make changes as
required using the standard Git commands.

Git Submodule and Subtree Visual Comparison
In the earlier sections, we provided technical examples of how Git submodules and
Git subtrees can be included in your projects. Figures 15-4 and 15-5 are rough
representations of the conceptual differences between these two tools.

368 | Chapter 15: Submodules

Figure 15-4. Submodules commit history concept

In Figure 15-4, the commit history (HEAD) for the superproject records an explicit
reference to the commit SHA of the example-submodule’s repository commit history.
The commit history for both repos remains separate.

Figure 15-5. Subtree commit history concept

In Figure 15-5, the commit history (HEAD) for the superproject records a new commit
SHA in its own repo, combining the example-subtree’s repository commit history.
The commit history from the example-subtree’s repo is ported over as part of the
superproject’s commit history.

Git Submodule and Subtree Visual Comparison | 369

Summary
In this chapter, we demonstrated at a high level the concept of using gitlinks, sub‐
modules, and subtrees to combine repositories or projects. The submodule examples
were simplified to help teach you the principles that are important when it comes to
regular Git operations. As you saw, the use of submodules can be very complex when
compared to subtrees. Our advice is to consider carefully whether the complexity
is worth it. If your project allows it, there are alternatives, such as dependency
management tools, that can help you achieve the same goal without the overhead of
maintaining submodules or subtrees. The git-scm manual is another great resource
on this topic for extra reference should you need it.

370 | Chapter 15: Submodules

https://oreil.ly/vwnzl

CHAPTER 16

Advanced Manipulations

In this chapter, we discuss some advanced commands for manipulating Git reposito‐
ries. These commands range from manipulating files to searching for commits and
even support for analyzing and changing a repository to specific requirements. As
you already know, manipulating Git repositories does have its consequences, specifi‐
cally when executing operations that change the repository’s Git commit history. As
always, proceed with caution when executing such commands.

Interactive Hunk Staging
It’s a bit of an ominous moniker; however, interactive hunk staging is an incredibly
powerful tool that’s used to simplify and organize your development into concise and
easily understood commits. If anyone has ever asked you to split your patch up or
make single-concept patches, chances are good that this section is for you!

Unless you are a super coder and you both think and develop in concise patches,
your day-to-day development process probably resembles that of other developers
(including us): a little scattered, perhaps overextended, and likely containing several
intertwining ideas. One coding thought leads to another, and pretty soon you’ve fixed
the original bug, stumbled onto another one (but fixed it!), and then added an easy,
new feature while you were there. Oh, and you fixed those two typos as well.

And, if you, like us, appreciate having someone review your changes to important
code before you ask for it to be accepted upstream, chances are good that having
all of those different, unrelated changes will not make for a logical presentation of a
single patch. Indeed, some open source projects insist that submitted patches contain
separate self-contained fixes. That is, a patch shouldn’t serve multiple purposes in
one shot. Instead, each idea should stand alone and should be presentable as a
well-defined, simple patch that is just large enough to do the job and nothing more.

371

If more than one idea needs to be upstreamed, more than one patch, perhaps in a
sequence, will be needed. Common wisdom suggests that these sorts of patches and
patch sequences lead to very solid reviews, quick turnaround, and easy acceptance
into mainline upstream development.

So how do these perfect patch sequences come about? Although we strive for a devel‐
opment style that facilitates simple patches, we’re not always successful. Nevertheless,
Git provides some tools to help formulate good patches. One of those tools enables
us to interactively select and commit pieces, or “hunks,” of a patch, leaving the rest to
be committed in a later patch. Ultimately, you will want to create a new sequence of
smaller commits that still sum up to your original work.

What Git won’t do for you is decide which conceptual pieces of a patch belong
together and which do not. You have to be able to discern the meaning and grouping
of hunks that make logical sense together. Sometimes those hunks are all in one file,
but other times they are in multiple files. Collectively, all the conceptually related
hunks must be selected and staged together as part of one commit.

Furthermore, you must ensure that your selection of hunks still meets any external
requirements. For example, if you are writing source code that must be compiled,
you will likely want to ensure that the codebase continues to be compilable after
each commit. Thus, you must ensure that your patch breakup, when reassembled in
smaller parts, still compiles at each commit within the new sequence. Git can’t do that
for you; that’s the part where you have to think.

Staging hunks interactively is easy—just add the -p option to the git add command!
 $ git add -p file.c

Interactive hunk staging looks pretty easy, and it is. But we should probably still
have a mental model in mind of what Git is doing with our patches. Remember
way back in Chapter 5, we explained how Git maintains the index as a staging area
that accumulates your changes prior to committing them. That’s still happening. But
instead of gathering the changes an entire file at a time, Git is picking apart the
changes you have made in your working copy of a file and allowing you to select
which individual part or parts to stage in the index, waiting to be committed.

Let’s suppose we’re developing a program to print out a histogram of whitespace-
separated words found in a file. The very first version of this program is the “Hello,
World!” program that proves things are starting out on the right compilation track.
Here’s main.c:
 #include <stdio.h>

 int main(int argc, char **argv)
 {
 /*
 * Print a histogram of words found in a file.

372 | Chapter 16: Advanced Manipulations

 * "Words" are any whitespace-separated characters.
 * Words are listed in no particular order.
 * FIXME: Implementation needed still!
 */
 printf("Histogram of words\n");
 }

Add a Makefile and .gitignore, and put it all in a new repository:
 $ mkdir /tmp/histogram
 # cd /tmp/histogram
 $ git init -b main
 Initialized empty Git repository in /tmp/histogram/.git/
 $ git add main.c Makefile .gitignore

 $ git commit -m "Initial histogram program."
 [main (root-commit) 42300e7] Initial histogram program.
 3 files changed, 18 insertions(+), 0 deletions(-)
 create mode 100644 .gitignore
 create mode 100644 Makefile
 create mode 100644 main.c

Let’s do some miscellaneous development until main.c looks like this:
 #include <stdio.h>
 #include <stdlib.h>

 struct htentry {
 char *item;
 int count;
 struct htentry *next;
 };

 struct htentry ht_table[256];

 void ht_init(void)
 {
 /* FIXME: details */
 }

 int main(int argc, char **argv)
 {
 FILE *f;

 f = fopen(argv[1], "r");
 if (f == 0)
 exit(-1);

 /*
 * Print a histogram of words found in a file.
 * "Words" are any whitespace separated characters.
 * Words are listed in no particular order.
 * FIXME: Implementation needed still!
 */
 printf("Histogram of words\n");

 ht_init();
 }

Interactive Hunk Staging | 373

Notice that this development effort has introduced two conceptually different
changes: the hash table structure and storage and the beginnings of the file-reading
operation. In a perfect world, these two concepts would be introduced into the
program with two separate patches. It will take us a couple of steps to get there, but
Git will help us split these changes properly.

Git, along with most of the free world, considers a hunk to be any series of lines from
a diff command that are delineated by a line that looks something like this:
 @@ -1,7 +1,27 @@

or this:
 @@ -9,4 +29,6 @@ int main(int argc, char **argv)

In this case, git diff shows two hunks:
 $ git diff
 diff --git a/main.c b/main.c
 index 9243ccf..b07f5dd 100644
 --- a/main.c
 +++ b/main.c
 @@ -1,7 +1,27 @@
 #include <stdio.h>
 +#include <stdlib.h>
 +
 +struct htentry {
 + char *item;
 + int count;
 + struct htentry *next;
 +};
 +
 +struct htentry ht_table[256];
 +
 +void ht_init(void)
 +{
 + /* FIXME: details */
 +}

 int main(int argc, char **argv)
 {
 + FILE *f;
 +
 + f = fopen(argv[1], "r");
 + if (f == 0)
 + exit(-1);
 +
 /*
 * Print a histogram of words found in a file.
 * "Words" are any whitespace separated characters.
 @@ -9,4 +29,6 @@ int main(int argc, char **argv)
 * FIXME: Implementation needed still!
 */
 printf("Histogram of words\n");
 +
 + ht_init();
 }

374 | Chapter 16: Advanced Manipulations

The first hunk starts with the line @@ -1,7 +1,27 @@ and finishes at the start of the
second hunk: @@ -9,4 +29,6 @@ int main(int argc, char **argv).

When interactively staging hunks with git add -p, Git offers a choice for each hunk
in turn: do you want to stage it?

But let’s look at our patch a bit more closely and consider the need to break up the
pieces so that conceptually related parts are all gathered up and staged at the same
time. That means we’d like to stage all the hash table parts together in one patch and
then stage all the file operations in a second patch. Unfortunately, it looks like the first
hunk has both hash table and file operation pieces in one hunk! That means, for the
purposes of the first commit (i.e., the hash table pieces), we want to both stage it and
not stage it. Or more precisely, we want to stage part of the hunk. If Git asks us only
about the first and second hunks, we are in trouble.

But, not to worry! Hunk staging will allow us to split a hunk. Anywhere a contiguous
sequence of added and deleted lines identified by a plus sign or minus sign in the first
column is broken up by original-context text, a split operation may be performed.

Let’s see how this works by starting with a git add -p main.c command:
 $ git add -p
 diff --git a/main.c b/main.c
 index 4809266..c60b800 100644
 --- a/main.c
 +++ b/main.c
 @@ -1,7 +1,27 @@
 #include <stdio.h>
 +#include <stdlib.h>
 +
 +struct htentry {
 + char *item;
 + int count;
 + struct htentry *next;
 +};
 +
 +struct htentry ht_table[256];
 +
 +void ht_init(void)
 +{
 + /* FIXME: details */
 +}

 int main(int argc, char **argv)
 {
 + FILE *f;
 +
 + f = fopen(argv[1], "r");
 + if (f == 0)
 + exit(-1);
 +
 /*
 * Print a histogram of words found in a file.
 * "Words" are any whitespace separated characters.
 Stage this hunk [y,n,q,a,d,/,j,J,g,s,e,?]?

Interactive Hunk Staging | 375

After reviewing this hunk and seeing the changes related to the hash table and file
operation, you realize you need to both stage and not stage this hunk. So you enter s
to split the hunk into two subhunks:
 Stage this hunk [y,n,q,a,d,/,j,J,g,s,e,?]? s
 Split into 2 hunks.
 @@ -1,4 +1,18 @@
 #include <stdio.h>
 +#include <stdlib.h>
 +
 +struct htentry {
 + char *item;
 + int count;
 + struct htentry *next;
 +};
 +
 +struct htentry ht_table[256];
 +
 +void ht_init(void)
 +{
 + /* FIXME: details */
 +}

 int main(int argc, char **argv)
 {
 Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]?

Next, you enter y to indicate that you want the first subhunk staged:
 Stage this hunk [y,n,q,a,d,/,j,J,g,s,e,?]? y

This results in the following code, which asks if you want the second subhunk staged:
 @@ -2,6 +16,12 @@

 int main(int argc, char **argv)
 {
 + FILE *f;
 +
 + f = fopen(argv[1], "r");
 + if (f == 0)
 + exit(-1);
 +
 /*
 * Print a histogram of words found in a file.
 * "Words" are any whitespace separated characters.
 Stage this hunk [y,n,q,a,d,/,K,j,J,g,e,?]?

You don’t want the second subhunk to be staged, so you enter n:
 Stage this hunk [y,n,q,a,d,/,j,J,g,s,e,?]? n

376 | Chapter 16: Advanced Manipulations

Finally, Git offers to stage the second hunk. You want it staged, so you enter y:
 @@ -9,4 +29,6 @@ int main(int argc, char **argv)
 * FIXME: Implementation needed still!
 */
 printf("Histogram of words\n");
 +
 + ht_init();
 }
 Stage this hunk [y,n,q,a,d,/,j,J,g,s,e,?]? y

Let’s review. Originally, there were two hunks. But you wanted only part of the first
hunk and all of the second hunk staged. So when Git offered you the first hunk,
you had to split it into two subhunks. You then staged the first subhunk but not the
second subhunk. Then you staged the entire original second hunk.

Verifying that the staged pieces look correct is easy:
 $ git diff --staged
 diff --git a/main.c b/main.c
 index 4809266..8a95bb0 100644
 --- a/main.c
 +++ b/main.c
 @@ -1,4 +1,18 @@
 #include <stdio.h>
 +#include <stdlib.h>
 +
 +struct htentry {
 + char *item;
 + int count;
 + struct htentry *next;
 +};
 +
 +struct htentry ht_table[256];
 +
 +void ht_init(void)
 +{
 + /* FIXME: details */
 +}

 int main(int argc, char **argv)
 {
 @@ -9,4 +23,6 @@ int main(int argc, char **argv)
 * FIXME: Implementation needed still!
 */
 printf("Histogram of words\n");
 +
 + ht_init();
 }

Interactive Hunk Staging | 377

That looks good, so you can go ahead and commit it. Don’t worry that there are
lingering differences remaining in the file main.c. That’s by design because it is the
next patch! Oh, and don’t use the filename with this next git commit command
because that would use the entire file and not the just the staged parts:
 $ git commit -m "Introduce a Hash Table."
 [main 66a212c] Introduce a Hash Table.
 1 files changed, 16 insertions(+), 0 deletions(-)

 $ git diff
 diff --git a/main.c b/main.c
 index 8a95bb0..c60b800 100644
 --- a/main.c
 +++ b/main.c
 @@ -16,6 +16,12 @@ void ht_init(void)

 int main(int argc, char **argv)
 {
 + FILE *f;
 +
 + f = fopen(argv[1], "r");
 + if (f == 0)
 + exit(-1);
 +
 /*
 * Print a histogram of words found in a file.
 * "Words" are any whitespace separated characters.

And with that, just add and commit the remaining change because it is the total
material for the file operations patch:
 $ git add main.c
 $ git commit -m "Open the word source file."
 [main e649d27] Open the word source file.
 1 files changed, 6 insertions(+), 0 deletions(-)

A glance at the commit history shows two new commits:
 $ git log --graph --oneline
 * e649d27 Open the word source file.
 * 66a212c Introduce a Hash Table.
 * 3ba81f7 Initial histogram program.

And that is a happy patch sequence!

As usual, there are a few caveats and extenuating circumstances for us to point out.
For instance, what about that sneaky line:
 #include <stdlib.h>

Doesn’t it really belong with the file operation patch and not the hash table patch?
Yep. You got us. It does.

378 | Chapter 16: Advanced Manipulations

That’s a bit trickier to handle. But let’s do it anyway. We’ll have to use the e option.
First, reset to the first commit and leave all those changes in your working tree so that
you can do it all over again:
 $ git reset 3ba81f7
 Unstaged changes after reset:
 M main.c

Do the git add -p again, and split the first patch just like before. But this time,
instead of answering y to the first subhunk staging request, answer e and request to
edit the patch:
 $ git add -p
 diff --git a/main.c b/main.c
 index 4809266..c60b800 100644
 --- a/main.c
 +++ b/main.c
 @@ -1,7 +1,27 @@
 #include <stdio.h>
 +#include <stdlib.h>
 +
 +struct htentry {
 + char *item;
 + int count;
 + struct htentry *next;
 +};
 +
 +struct htentry ht_table[256];
 +
 +void ht_init(void)
 +{
 + /* FIXME: details */
 +}

 int main(int argc, char **argv)
 {
 + FILE *f;
 +
 + f = fopen(argv[1], "r");
 + if (f == 0)
 + exit(-1);
 +
 /*
 * Print a histogram of words found in a file.
 * "Words" are any whitespace separated characters.
 Stage this hunk [y,n,q,a,d,/,j,J,g,s,e,?]? s
 Split into 2 hunks.
 @@ -1,4 +1,18 @@
 #include <stdio.h>
 +#include <stdlib.h>
 +
 +struct htentry {
 + char *item;
 + int count;
 + struct htentry *next;
 +};
 +
 +struct htentry ht_table[256];
 +
 +void ht_init(void)

Interactive Hunk Staging | 379

1 emacs, right?

 +{
 + /* FIXME: details */
 +}

 int main(int argc, char **argv)
 {
 Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? e

You’ll be placed in your favorite editor1 and allowed to manually edit the patch. Read
the comment at the bottom of the editor buffer. Carefully delete the line #include
<stdlib.h>. Don’t disturb the context lines or the line counts. Git, and most any
patch program, will lose its mind if you mess with the context lines.

In this case, because the #include line was removed, it will be swept up in the
remainder of the patches that get formed. This effectively introduces it at the correct
time in the patch with the other file operation changes.

It is kind of tricky here, but Git now assumes that when you exit your editor, the
patch that is left in your editor should be applied and its effects staged. So it offers
you the following hunk and lets you choose its disposition. Be careful.

Because Git has moved on to the file operation changes, don’t stage those changes yet,
but do pick up the last hash table change:
 @@ -2,6 +16,12 @@

 int main(int argc, char **argv)
 {
 + FILE *f;
 +
 + f = fopen(argv[1], "r");
 + if (f == 0)
 + exit(-1);
 +
 /*
 * Print a histogram of words found in a file.
 * "Words" are any whitespace separated characters.
 Stage this hunk [y,n,q,a,d,/,K,j,J,g,e,?]? n
 @@ -9,4 +29,6 @@ int main(int argc, char **argv)
 * FIXME: Implementation needed still!
 */
 printf("Histogram of words\n");
 +
 + ht_init();
 }
 Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y

The separation can be verified, noting that the #include <stdlib.h> line has been
correctly associated with the file operations now:
 $ git diff
 diff --git a/main.c b/main.c
 index 3e77315..c60b800 100644

380 | Chapter 16: Advanced Manipulations

 --- a/main.c
 +++ b/main.c
 @@ -1,4 +1,5 @@
 #include <stdio.h>
 +#include <stdlib.h>

 struct htentry {
 char *item;
 @@ -15,6 +16,12 @@ void ht_init(void)

 int main(int argc, char **argv)
 {
 + FILE *f;
 +
 + f = fopen(argv[1], "r");
 + if (f == 0)
 + exit(-1);
 +
 /*
 * Print a histogram of words found in a file.
 * "Words" are any whitespace separated characters.

As before, wrap up with a git commit for the hash table patch, then stage and
commit the remaining file operation pieces.

We’ve only touched on the essential responses to the “Stage this hunk?” question. In
fact, even more options than those listed in its prompt (i.e., [y,n,q,a,d,/,K,g,e,?])
are available. For example, there are also options to delay the fate of a hunk and then
revisit it when prompted again later.

Furthermore, although this example had only two hunks in one file, the staging
operation generalizes too many hunks, possibly split, in many files. Pulling together
changes across multiple files can be a simple process of applying git add -p to each
file that has a hunk needing to be staged.

However, there is another, outer level to the whole interactive hunk staging process
that can be invoked using the git add -i command. It can be a bit cryptic, but its
purpose is to allow you to select which paths (i.e., files) to stage in the index. As a
suboption, you may then select the patch option for your chosen paths. This enters
the previously described per-file staging mechanism.

Loving git rev-list
One day, Jon received this piece of email:

Jon,
I’m trying to figure out how to do a date-based checkout from a Git repository into
an empty working directory. Unfortunately, winding my way through the Git manual
pages makes me feel like I’m playing “Adventure.”
Eric

Loving git rev-list | 381

Indeed. Let’s see if we can navigate some of those twisty passages.

Date-Based Checkout
It might seem that a command like git checkout main@{Jan 1, 2011} should
work. However, that command is really using the reflog (see “The Stash” on page
221) to resolve the date-based reference for the main ref. There are lots of ways
this innocent-looking construct might fail: your repository may not have the reflog
enabled, you may not have manipulated the main ref during that time period, or the
reflog may have already-expired refs from that time period. Even more subtly, that
construct may not give you your expected answer. It requests the reflog to resolve
where your main was at the given time that you manipulated the branch, and not
according to the branch’s commit timeline. They may be related, especially if you
developed and committed that history in this repository, but they don’t have to be.

Ultimately, this approach can be a misleading dead end. Using the reflog might get
you what you want. But it can also fail, and it isn’t a reliable method.

Instead, use the git rev-list command. It is the general-purpose workhorse whose
job is to combine a multitude of options, sort through a complex commit history of
many branches, intuit potentially vague user specifications, limit search spaces, and
ultimately locate selected commits from within the repository history. It then emits
one or more SHA1 IDs for use by other tools. Think of git rev-list and its myriad
options as a commit database frontend query tool for your repository.

In this case, the goal is fairly simple: find the one commit in a repository that existed
immediately before a given date on a given branch, and then check it out.

Let’s use the actual Git source repository because it has a fairly extensive and explora‐
ble history. First, we’ll use rev-list to find that SHA1. The -n 1 option limits the
output from the command to just one commit ID.

Let’s try to locate just the last main commit of 2011 from the Git source repository:
 $ https://github.com/git/git.git
 Cloning into 'git'...
 remote: Counting objects: 126850, done.
 remote: Compressing objects: 100% (41033/41033), done.
 remote: Total 126850 (delta 93115), reused 117003 (delta 84141)
 Receiving objects: 100% (126850/126850), 27.56 MiB | 1.03 MiB/s, done.
 Resolving deltas: 100% (93115/93115), done.

 $ cd git
 $ git rev-list -n 1 --before="Jan 1, 2012 00:00:00" main
 0eddcbf1612ed044de586777b233caf8016c6e70

Having identified the commit, you may use it, tag it, reference it, or even check it out.
But as the checkout note reminds you, you are on a detached HEAD:

382 | Chapter 16: Advanced Manipulations

 $ git checkout 0eddcb
 Note: switching to '0eddcb'.

 You are in 'detached HEAD' state. You can look around, make experimental
 changes and commit them, and you can discard any commits you make in this
 state without impacting any branches by switching back to a branch.

 If you want to create a new branch to retain commits you create, you may
 do so (now or later) by using -c with the switch command. Example:

 git switch -c <new-branch-name>

 Or undo this operation with:

 git switch -

 Turn off this advice by setting config variable advice.detachedHead to false

 HEAD is now at 0eddcbf161 Add MYMETA.json to perl/.gitignore

But is that really the right commit?
 $ git log -1 --pretty=fuller
 commit 0eddcbf1612ed044de586777b233caf8016c6e70
 Author: Jack Nagel <jacknagel@gmail.com>
 AuthorDate: Wed Dec 28 22:42:05 2011 -0600
 Commit: Junio C Hamano <gitster@pobox.com>
 CommitDate: Thu Dec 29 13:08:47 2011 -0800

 Add MYMETA.json to perl/.gitignore
 ...

The rev-list date selection uses the CommitDate field, not the AuthorDate field. So
it looks like the last commit of 2011 in the Git repository happened on December 29,
2011.

Date-based checkout cautions
A few words of caution are in order, though. Git’s date handling is implemented using
a function called approxidate(), meaning not that dates are inherently approximate
but rather that Git’s interpretation of what you meant is approximated, usually due to
insufficient details or precision:
 $ git rev-list -n 1 --before="Jan 1, 2012 00:00:00" main
 0eddcbf1612ed044de586777b233caf8016c6e70

 $ git rev-list -n 1 --before="Jan 1, 2012" main
 5c951ef47bf2e34dbde58bda88d430937657d2aa

We typed those two commands at 11:05 A.M. local time. For lack of a specified
time in the second command, Git assumed we meant “at this time on Jan 1, 2012.”
Subsequently, 11 more hours of leeway were available in which to match commits:
 $ git log -1 --pretty=fuller 5c951ef
 commit 5c951ef47bf2e34dbde58bda88d430937657d2aa
 Author: Clemens Buchacher <drizzd@aon.at>
 AuthorDate: Sat Dec 31 12:50:56 2011 +0100

Loving git rev-list | 383

 Commit: Junio C Hamano <gitster@pobox.com>
 CommitDate: Sun Jan 1 01:18:53 2012 -0800

 Documentation: read-tree --prefix works with existing subtrees
 ...

This commit happened an hour and 18 minutes into the new year—well within the 11
hours past midnight that we accidentally specified in our second command.

Git’s Date Parsing
So does Git’s date parsing behavior even make sense? Probably.

Git is trying to intuit the intended meaning behind vaguely specified time requests.
For example, how should yesterday be interpreted? As the previous 24-hour period?
As the absolute time period from midnight to midnight of the previous calendar
date? As some vague notion of yesterday’s business hours? Git happens to use the
first interpretation: the 24 hours prior to the current time. Generalizing now, any
date used as a starting or ending point in Git uses the current time, and if a date is
specified without a time, the current time is used as the demarcation, which is where
the notion of “the current time” comes in. If you wanted to be more precise about just
exactly when yesterday, you could have said something like noon yesterday or 5pm
yesterday.

One more caution about date-based checkout: although you may get a valid answer
to your query for a specific commit, that same question at some later date may yield
a different answer. For example, consider a repository with several lines of develop‐
ment happening on different branches. As previously, when you request the commit
--before date on a given branch, you get an answer for the branch as it exists just
then. At some later point in time, however, new commits from other branches might
be merged into your branch, altering the notion of which commit might satisfy your
search conditions. In the previous January 1, 2012, example, someone might merge in
a commit from another branch that is closer to midnight on December 31, 2011, than
to December 29, 2011, at 13:08:47.

Retrieve an Old Version of a File
Sometimes in the course of software archeology, you simply want to retrieve an
old version of a file from the repository history. It seems like overkill to use the
techniques of a date-based checkout as described in “Date-Based Checkout” on page
382 because that causes a complete change in your working directory state for every
directory and file just to get one file. In fact, it is even likely that you want to keep
your current working directory state but replace the current version of just one file by
reverting it to an earlier version.

384 | Chapter 16: Advanced Manipulations

The first step is to identify a commit that contains the desired version of the file.
The direct approach is to use an explicit branch, tag, or ref already known to have
the correct version. In the absence of that information, some searching has to be
done. And when searching the commit history, you should think about using some
rev-list techniques to identify commits that have the desired file. As previously
seen, dates can be used to select interesting commits. Git also allows the search to
be restricted to a particular file or set of files. Git calls this approach path limiting. It
provides the ultimate guide to possible previous commits that might contain different
versions of a file, or as Git calls them, paths.

Again, let’s explore Git’s source repository itself to see what previous versions of, say,
date.c are available:
 $ https://github.com/git/git.git
 Cloning into 'git'...
 remote: Counting objects: 126850, done.
 remote: Compressing objects: 100% (41033/41033), done.
 remote: Total 126850 (delta 93115), reused 117003 (delta 84141)
 Receiving objects: 100% (126850/126850), 27.56 MiB | 1.03 MiB/s, done.
 Resolving deltas: 100% (93115/93115), done.

 # In our example we have replaced the default branch name to main
 # using the git branch -M command
 $ git rev-list main -- date.c
 974c919d36d944e9005def346fb363d8a83399f7
 f1e9c548ce45005521892af0299696204ece286b
 ...
 89967023da94c0d874713284869e1924797d30bb
 ecee9d9e793c7573cf3730fb9746527a0a7e94e7

Uh, yeah, something like 120-odd lines of SHA1 commit IDs. Fun! But what does it
all mean? And how do you use it?

Because we didn’t specify the -n 1 option, all matching commit IDs have been
generated and printed. The default is to emit them in reverse chronological order. So
this means commit ee646e contains the most recent version of the file date.c, and
ecee9d9 contains the oldest version. In fact, looking at commit ecee9d9 shows the file
being introduced into the repository for the first time:
 $ git show --stat ecee9d9 --pretty=short
 commit ecee9d9e793c7573cf3730fb9746527a0a7e94e7
 Author: Edgar Toernig <froese@gmx.de>

 [PATCH] Do date parsing by hand...

 Makefile | 4 +-
 cache.h | 3 +
 commit-tree.c | 27 +--------
 date.c | 184 +++
 4 files changed, 191 insertions(+), 27 deletions(-)

Where you go from here to find your desired commit is kind of sketchy. You could
do git log operations on randomly selected SHA1 values from that rev-list list

Loving git rev-list | 385

output. Or you could binary-search the timestamps on commits from that list. Ear‐
lier, we used the -n 1 option to select the most recent commit. It’s really hard to say
what trick might work in your selection process to identify the precise commit that
contains the version of a file that is interesting to you.

But once you have identified one of those commits, how do you use it? What does
that version of date.c look like? What if we wanted to retrieve it in place?

There are three slightly different approaches you can use to get that version of a
file. The first form directly checks out the named version and overwrites the existing
version in your working directory:
 $ git checkout ecee9d9 date.c
 Updated 1 path from 0cd8a2506a

In two other very similar commands, Git accepts the form commit:path to name the
desired file (i.e., path) as it existed at the time the commit happened, and writes the
specified version of the file to be written to stdout. What you do with that output is
up to you, though. You could pipe the output to other commands, or create files:
 $ git show ecee9d9:date.c > date.c-oldest

or:
 $ git cat-file -p 89967023:date.c > date.c-first-change

The difference between these two forms is a bit esoteric. The former filters the
output file through any applicable text conversion filters, whereas the latter is a more
basic plumbing command and does not do any filtering. Differences might show up
between these two commands when manipulating binaries, when textconv filters are
set up, or possibly during some newline-handling transformations. If you want the
raw data, use the cat -p form. If you want the transformed version as it would be
when checked out or added to the repository, use the show form.

Recovering a Lost Commit
Occasionally, an ill-timed git reset command or an accidental branch deletion
leaves you wishing you hadn’t lost the development it represented and that you could
recover it somehow. The usual approach to recovering such work is to inspect your
reflog as shown in Chapter 10. Sometimes the reflog isn’t available, perhaps because
it has been turned off (e.g., core.logAllRefUpdates = false), because you are
manipulating a bare repository directly, or because the reflog has simply expired. For
whatever reason, sometimes the reflog cannot help you recover a lost commit.

386 | Chapter 16: Advanced Manipulations

The git fsck Command
Although not foolproof, Git provides the command git fsck to help locate lost data.
The word fsck is an old abbreviation for “file system check.” Although this command
does not check your filesystem, it does have many characteristics and algorithms that
are quite similar to a traditional filesystem check and results in some of the same
output data as well.

Understanding how git fsck works is predicated on a good understanding of Git’s
data structures as described in Chapter 2. Normally, every object in the Git repository,
whether it is a blob, tree, commit, or tag, is connected to another object and anchored
to a branch name, tag name, or some other symbolic ref, such as a reflog name.

However, various commands and manipulations can leave objects in the object store
that are not linked into the complete data structure somehow. These objects are called
unreachable or dangling. They are unreachable because a traversal of the full data
structure that starts from every named ref and follows every tag, commit, commit
parent, and tree object reference will never encounter the lost object. In a sense, it is
out there dangling on its own.

But traversing the ref-based commit graph isn’t the only way to walk every object in
the database! You can simply list the objects in your object store using ls:
 $ cd path/to/some/repo
 $ ls -R .git/objects/
 .git/objects/:
 25 3b 73 82 info pack

 .git/objects/25:
 7cc5642cb1a054f08cc83f2d943e56fd3ebe99

 .git/objects/3b:
 d1f0e29744a1f32b08d5650e62e2e62afb177c

 .git/objects/73:
 8d05ac5663972e2dcf4b473e04b3d1f19ba674

 .git/objects/82:
 b5fee28277349b6d46beff5fdf6a7152347ba0

 .git/objects/info:

 .git/objects/pack:

In this simple example, the set of objects in the repository has been listed without
doing a traversal of the refs and commits.

By carefully comparing the total set of objects with those reachable via a traversal of
the ref-based commit graph, you can determine all of the unreferenced objects. From
the previous example, the second object listed turns out to be an unreferenced blob
(i.e., file):

Recovering a Lost Commit | 387

 $ git fsck
 Checking object directories: 100% (256/256), done.
 dangling blob 3bd1f0e29744a1f32b08d5650e62e2e62afb177c

Let’s follow an example to see how a lost commit can occur and how git fsck can
recover it. First, construct a simple, new repository with a single simple file in it:
 $ mkdir /tmp/lost
 $ cd /tmp/lost
 $ git init -b main
 Initialized empty Git repository in /tmp/lost/.git/
 $ echo "foo" >> file
 $ git add file
 $ git commit -m "Add some foo"
 [main (root-commit) 1adf46e] Add some foo
 1 files changed, 1 insertions(+), 0 deletions(-)
 create mode 100644 file

 $ git fsck
 Checking object directories: 100% (256/256), done.

 $ ls -R .git/objects
 .git/objects/:
 25 2d 4a info pack

 .git/objects/25:
 7cc5642cb1a054f08cc83f2d943e56fd3ebe99

 .git/objects/2d:
 491f5bbeed7c7e28290e93b5695ce4dd7401f1

 .git/objects/4a:
 1c03029e7407c0afe9fc0320b3258e188b115e

 .git/objects/info:

 .git/objects/pack:

Notice that there are only three objects, and none of them are dangling. In fact,
starting from the main ref, which is the 2d491f5 commit object, the traversal points to
the tree object 4a1c0302 and then the blob 257cc564.

The command git cat-file -t SHA1 ID can be used to deter‐
mine an object’s type.

Now let’s make a second commit and then hard-reset back to the first commit:
 $ echo bar >> file
 $ git add file
 $ git commit -m "Add some bar"
 [main 66919fa] Add some bar
 1 files changed, 1 insertions(+), 0 deletions(-)

388 | Chapter 16: Advanced Manipulations

And now the “accident” that causes us to lose a commit:
 $ git reset --hard HEAD‸
 HEAD is now at 2d491f5 Add some foo

 $ git fsck
 Checking object directories: 100% (256/256), done.

But wait! git fsck doesn’t report any dangling object. It doesn’t seem to be lost after
all. This is exactly what the reflog is designed to do: prevent you from accidentally
losing commits. (See “The Reflog” on page 232.) So let’s try again after brutally
eliminating the reflog:
 # Not recommended; this is for purposes of exposition only!
 $ rm -rf .git/logs
 $ git fsck
 Checking object directories: 100% (256/256), done.
 dangling commit 66919fae5a5f62afc0a349cc216bb0c59ffe37d0

 $ ls -R .git/objects
 .git/objects/:
 25 2d 3b 41 4a 66 info pack

 .git/objects/25:
 7cc5642cb1a054f08cc83f2d943e56fd3ebe99

 .git/objects/2d:
 491f5bbeed7c7e28290e93b5695ce4dd7401f1

 .git/objects/3b:
 d1f0e29744a1f32b08d5650e62e2e62afb177c

 .git/objects/41:
 31fe4d33cd85da805ac9a6697c2251c913881c

 .git/objects/4a:
 1c03029e7407c0afe9fc0320b3258e188b115e

 .git/objects/66:
 919fae5a5f62afc0a349cc216bb0c59ffe37d0

 .git/objects/info:

 .git/objects/pack:

You can use the git fsck --no-reflog command to find dangling
objects as if the reflog were not available to reference commits.
That is, objects that are reachable only from the reflog will be
considered unreachable.

Now we can see that only the reflog was referencing the second commit 66919fae in
which the “bar” content was added.

But how would we even know what that dangling commit is?

Recovering a Lost Commit | 389

 $ git show 66919fae
 commit 66919fae5a5f62afc0a349cc216bb0c59ffe37d0
 Author: Jon Loeliger <jdl@example.com>
 Date: Sun Jul 10 17:16:28 2022 +0200

 Add some bar

 diff --git a/file b/file
 index 257cc56..3bd1f0e 100644
 --- a/file
 +++ b/file
 @@ -1 +1,2 @@
 foo
 +bar

 # The "index" line above named blob 3bd1f0e

 $ git show 3bd1f0e
 foo
 bar

Note that the blob 3bd1f0e is not considered dangling because it is actually refer‐
enced by the commit 66919fae, even though the commit itself is unreferenced.

Sometimes, though, git fsck will find blobs that are unreferenced. Remember, every
time you git add a file to the index, its blob is added to the object store. If you
subsequently change that content and re-add it, no commit will have captured the
intermediate blob that was added to the object store. Thus, it will be unreferenced:
 $ echo baz >> file
 $ git add file
 $ git fsck
 Checking object directories: 100% (256/256), done.
 dangling commit 66919fae5a5f62afc0a349cc216bb0c59ffe37d0

 $ echo quux >> file
 $ git add file
 $ git fsck
 Checking object directories: 100% (256/256), done.
 dangling blob 0c071e1d07528f124e31f1b6c71348ec13f21a7a
 dangling commit 66919fae5a5f62afc0a349cc216bb0c59ffe37d0

The reason the first git fsck didn’t show a dangling blob was because that blob
was still referenced directly by the index. Only after the content associated with the
pathname file was changed again and re-added did that blob become dangling:
 $ git show 0c071e1d
 foo
 baz

If you find you have a very cluttered git fsck report consisting entirely of unneces‐
sary blobs and commits and want to clean it up, consider running garbage collection
as described in “Garbage Collection” on page 404.

390 | Chapter 16: Advanced Manipulations

Reconnecting a Lost Commit
Although using git fsck is a handy way to discover the SHA1 of lost commits and
blobs, we mentioned the reflog earlier as another mechanism. In fact, you could cut
and paste it from some lingering line of output found by scrolling back over your
terminal output log. Ultimately, it doesn’t matter how you discover the SHA1 of a lost
blob or commit. The question remains: once you know it, how do you reconnect it or
otherwise incorporate it into your project?

By definition, blobs are nameless file content. All you really have to do to reestablish
a blob is place that content into a file and git add it again. As we showed in the
previous section, git show can be used on the blob SHA1 to obtain the full object
content. Just redirect that to your desired file:
 $ git show 0c071e1d > file2

On the other hand, reconnecting a commit might depend on what you want to do
with it. The simple example from the previous section is only one commit. But it
could just as well have been the first commit in an entire sequence of commits that
was lost. Maybe even an entire branch was accidentally lost! Consequently, a usual
practice would reintroduce a lost commit as a branch.

Here, the previously lost commit that introduced the bar content, 11e0dc9c, is re-
introduced on the new branch called recovered:
 $ git branch recovered 66919fae
 $ git show-branch
 * [main] Add some foo
 ! [recovered] Add some bar
 --
 + [recovered] Add some bar
 *+ [main] Add some foo

From there it can be manipulated (kept as is, merged, etc.) as you wish.

Using git filter-repo
The command git filter-repo was designed and developed by Elijah Newren.
Its source code is hosted in a public repository on GitHub. The git-filter-repo
command facilitates the rewrite of an entire repository commit history using a wide
range of available filter options. Some of these filters work on commits, and some
work on tree or blob objects and directory structures, and other advanced filters
allow for a function to be defined as generic callbacks.

Prior to the git filter-repo command, the command git filter-branch was the
generic branch processing command allowing you to arbitrarily rewrite the commits
of a branch using custom commands that operate on different objects within the

Using git filter-repo | 391

https://oreil.ly/tW4qJ

2 François-Marie Arouet, of course!

repository. However, in the manual pages of git filter-branch, the warning section
calls out the command as having a plethora of pitfalls that can lead to nonobvious
muddling of an explicit repo history rewrite. It also recommends that you use git
filter-repo as an alternative history filtering tool.

If you still need to use the git filter-branch command, you are
able to do so, but you need to be aware of its performance issues,
and we highly advise that you read the safety section of the manual
pages for the command.

The git filter-repo command is both useful and dangerous!

As you might have guessed, with great power comes great responsibility.2 The power
and purpose of git filter-repo is also the source of our warning: since it rewrites
the entire repository’s commit history, executing this command on a repository that
has already been published for others to clone and use will likely cause them endless
grief later. As with all rebasing operations, commit history will change. After this
command, you should consider any repositories cloned from it earlier as obsolete.

With that warning about rewriting repository history behind us, let’s find out what
the command can do, when and why it might be useful, and how to use it responsibly.

Examples Using git filter-repo
Now that we know what git filter-repo can do, let’s look at a few cases where it
can be used productively. One of the most useful situations occurs when you have a
private repository and want to clean it up or do a large-scale alteration on it prior to
making it available for cloning and general use by others.

We built these explanations from the examples listed in the manual pages for the
command. The manual describes the intent and how to use the code very clearly, so
we decided to build a use case walking you through the following scenarios.

These use case examples are published with the permission of the
tool’s author, Elijah Newren.

Before we start, you can clone the following repository to help you follow along in the
exercises:

392 | Chapter 16: Advanced Manipulations

https://oreil.ly/H7vGj

 $ git clone https://github.com/ppremk/analyze-this.git
 Cloning into 'analyze-this'...
 remote: Enumerating objects: 22, done.
 remote: Counting objects: 100% (22/22), done.
 remote: Compressing objects: 100% (9/9), done.
 remote: Total 22 (delta 7), reused 22 (delta 7), pack-reused 0
 Receiving objects: 100% (22/22), 36.25 KiB | 337.00 KiB/s, done.
 Resolving deltas: 100% (7/7), done.

 $ cd analyze-this

Installing git-filter-repo
Since git-filter-repo is a single-file Python script, the simplest method to install it is via
a package manager of choice based on your operating system:

 $ [PACKAGE_MANAGER] install git-filter-repo

Instructions on manual installation as well as other options for
installing the git-filter-repo script are online.

Analyzing a repository

The --analyze option when passed to the git filter-repo command will run
an analysis on your repository commit history and produce a report that you can
reference before deciding on what possible steps you can take to alter the repository.
It can also be used post alteration to verify the intended outcome. Running this
command will not update the repository:
 $ git filter-repo --analyze
 Processed 9 blob sizes
 Processed 5 commits
 Writing reports to .git/filter-repo/analysis...done.

 $ tree .git/filter-repo/analysis
 .git/filter-repo/analysis
 ├── README
 ├── blob-shas-and-paths.txt
 ├── directories-all-sizes.txt
 ├── directories-deleted-sizes.txt
 ├── extensions-all-sizes.txt
 ├── extensions-deleted-sizes.txt
 ├── path-all-sizes.txt
 ├── path-deleted-sizes.txt
 └── renames.txt

The README file explains how to understand the contents of these files. For our
use case, we will be altering this newly cloned repository to remove some huge files,

Using git filter-repo | 393

https://oreil.ly/ey8Jd

rename some directories, and remove some unwanted files. We will start by looking
at the various files and their sizes first:
 $ cat .git/filter-repo/analysis/blob-shas-and-paths.txt
 === Files by sha and associated pathnames in reverse size ===
 Format: sha, unpacked size, packed size, filename(s) object stored as
 04b334ff842a8ce96abd1d16b7904eacb649839f 35000000 34042 bigfile3.exe
 6f2bb1c9e846f0546416e8ec33bc007f353aeeff 30000000 797 bigfile2.exe
 d38148a863256f6af5aee0edb6020c4e87c2c24b 25000000 667 bigfile1.exe
 31204afb3d72e8c0f95fde7add90e3893421f422 2000000 77 file6.md
 7c2624a6b9687e88178638cd95b609c329177ade 1000000 50 [file4.md, file5.md]
 08869d950c7543382974f936596e462c1dcc0eaa 24 34 README-v0.md
 861761f28976d55103acf61e8423cd32779d7174 20 30 README.md
 99cf872931885fa266f3dc4d998092f087dc120a 14 23 scripts/env.config
 e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 0 9 [logs/client.log, logs/server....

We can verify that there are some big files that clearly should not be tracked in this
Git repository. There are also a few other nitpicks that stand out that we will clean up
in the subsections that follow.

Path-based filtering
In this example, we will be removing a file and a directory and renaming two folders.
Before we start altering this repository, let’s take note of the commit history of the
repository and its content first:
 $ git log --oneline
 * e2a20a2 (HEAD -> main, origin/main, origin/HEAD) add folders
 * 19263cb add remaining files
 * 9ea727a add bigfiles
 * 1d07224 add udated readme
 * cd654e0 intial commit

 $ ls -al
 total 7896
 drwxr-xr-x 14 ppremk stax 448 Mar 19 22:10 .
 drwxr-xr-x 5 ppremk stax 160 Mar 19 22:10 ..
 drwxr-xr-x 13 ppremk stax 416 Mar 19 22:19 .git
 -rw-r--r-- 1 ppremk stax 24 Mar 19 22:10 README-v0.md
 -rw-r--r-- 1 ppremk stax 20 Mar 19 22:10 README.md
 -rw-r--r-- 1 ppremk stax 25000000 Mar 19 22:10 bigfile1.exe
 -rw-r--r-- 1 ppremk stax 30000000 Mar 19 22:10 bigfile2.exe
 -rw-r--r-- 1 ppremk stax 35000000 Mar 19 22:10 bigfile3.exe
 -rw-r--r-- 1 ppremk stax 1000000 Mar 19 22:10 file4.md
 -rw-r--r-- 1 ppremk stax 1000000 Mar 19 22:10 file5.md
 -rw-r--r-- 1 ppremk stax 2000000 Mar 19 22:10 file6.md
 drwxr-xr-x 4 ppremk stax 128 Mar 19 22:10 logs
 drwxr-xr-x 3 ppremk stax 96 Mar 19 22:10 scripts
 drwxr-xr-x 4 ppremk stax 128 Mar 19 22:10 toolkit

Now let’s remove the unwanted README-v0.md file:
 $ git filter-repo --path README-v0.md --invert-paths
 Parsed 5 commits
 New history written in 0.20 seconds; now repacking/cleaning...
 Repacking your repo and cleaning out old unneeded objects
 HEAD is now at afd2aa7 add folders
 Enumerating objects: 19, done.

394 | Chapter 16: Advanced Manipulations

 Counting objects: 100% (19/19), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (10/10), done.
 Writing objects: 100% (19/19), done.
 Total 19 (delta 6), reused 11 (delta 4), pack-reused 0
 Completely finished after 0.40 seconds.

 # Note the new commit history after the file is removed

 $ git log --oneline
 * afd2aa7 (HEAD -> main) add folders
 * bb4ce63 add remaining files
 * 2f3721a add bigfiles
 * 3f9bd4a add udated readme

When using the --path filter, you are able to remove one or more files or directories.
It is important to note that when you do not specify the --invert-paths option when
specifying the --path filter, the git filter-repo command will remove all files and
directories except for the specified file or directory name.

Also, if you look closely at the git log output, the remote tracking information for
the repository post alteration is removed. This is to prevent you from accidentally
pushing the new changes of the repository to the upstream and causing unwanted
consequences when force-overriding the old version of the repository with the new
version of the commit history.

Next, let’s remove the unwanted logs directory:
 $ git filter-repo --path logs/ --invert-paths
 Parsed 4 commits
 New history written in 0.08 seconds; now repacking/cleaning...
 Repacking your repo and cleaning out old unneeded objects
 HEAD is now at ceacc4b add folders
 Enumerating objects: 18, done.
 Counting objects: 100% (18/18), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (9/9), done.
 Writing objects: 100% (18/18), done.
 Total 18 (delta 6), reused 14 (delta 4), pack-reused 0
 Completely finished after 0.31 seconds.

 # Note the new commit history after the directory is removed

 $ git log --oneline
 * ceacc4b (HEAD -> main) add folders
 * bb4ce63 add remaining files
 * 2f3721a add bigfiles
 * 3f9bd4a add udated readme

Now we will rename the scripts folder to configs to better reflect its purpose; we
will also rename the toolkit folder to scripts. To achieve this, we will use the --path-
rename filter:
 $ git filter-repo --path-rename scripts:configs --path-rename toolkit:scripts
 Parsed 4 commits
 New history written in 0.08 seconds; now repacking/cleaning...

Using git filter-repo | 395

 Repacking your repo and cleaning out old unneeded objects
 HEAD is now at ba656b4 add folders
 Enumerating objects: 18, done.
 Counting objects: 100% (18/18), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (9/9), done.
 Writing objects: 100% (18/18), done.
 Total 18 (delta 6), reused 14 (delta 4), pack-reused 0
 Completely finished after 0.27 seconds.

 # Note the new commit history after the directories are renamed

 $ git log --oneline
 * ba656b4 (HEAD -> main) add folders
 * bb4ce63 add remaining files
 * 2f3721a add bigfiles
 * 3f9bd4a add udated readme

 $ ls -l
 total 7888
 -rw-r--r-- 1 ppremk stax 20B Mar 19 22:10 README.md
 -rw-r--r-- 1 ppremk stax 24M Mar 19 22:10 bigfile1.exe
 -rw-r--r-- 1 ppremk stax 29M Mar 19 22:10 bigfile2.exe
 -rw-r--r-- 1 ppremk stax 33M Mar 19 22:10 bigfile3.exe
 drwxr-xr-x 3 ppremk stax 96B Mar 19 22:30 configs
 -rw-r--r-- 1 ppremk stax 977K Mar 19 22:10 file4.md
 -rw-r--r-- 1 ppremk stax 977K Mar 19 22:10 file5.md
 -rw-r--r-- 1 ppremk stax 1.9M Mar 19 22:10 file6.md
 drwxr-xr-x 4 ppremk stax 128B Mar 19 22:30 scripts

Great! Our alteration is taking shape. However, it looks like we still need to remove
some big files that should not be part of the repository. A neat way to do this is
by taking advantage of the --strip-blobs-bigger-than option when using the git
filter-repo command.

We’ll start by removing files exceeding a certain size:
 # Remove files that are bigger than 5 MB

 $ git filter-repo --strip-blobs-bigger-than 5M
 Processed 8 blob sizes
 Parsed 4 commits
 New history written in 0.10 seconds; now repacking/cleaning...
 Repacking your repo and cleaning out old unneeded objects
 HEAD is now at eea637d add folders
 Enumerating objects: 13, done.
 Counting objects: 100% (13/13), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (7/7), done.
 Writing objects: 100% (13/13), done.
 Total 13 (delta 2), reused 8 (delta 1), pack-reused 0
 Completely finished after 0.37 seconds.

 # Note the new commit history after the directories are renamed

 $ git log --oneline
 * eea637d (HEAD -> main) add folders
 * 21e1028 add remaining files
 * 3f9bd4a add udated readme

 # Verify the big files are removed

396 | Chapter 16: Advanced Manipulations

 $ ls -l
 total 7840
 -rw-r--r-- 1 ppremk stax 20B Mar 19 22:10 README.md
 drwxr-xr-x 3 ppremk stax 96B Mar 19 22:30 configs
 -rw-r--r-- 1 ppremk stax 977K Mar 19 22:10 file4.md
 -rw-r--r-- 1 ppremk stax 977K Mar 19 22:10 file5.md
 -rw-r--r-- 1 ppremk stax 1.9M Mar 19 22:10 file6.md
 drwxr-xr-x 4 ppremk stax 128B Mar 19 22:30 scripts

So far we have demonstrated operations that work on files and directories using
the git filter-repo command. We recommend that you spend time reading the
command’s manual pages to understand all the possible options and variations on
using the path filters, given how flexible and powerful they are. In the next section,
we’ll explore how you can change the content of a file.

Content-based filtering
Suppose you are reviewing the content of the config folder and learn that the env.con‐
fig stores some sensitive information that should not have been committed in the first
place. This is how you would go about redacting the sensitive information:
 $ cat configs/env.config
 PAT=S0m3T0k3n

To remove the sensitive information, git filter-repo digests a list of expressions
you specify in a file when passed in using the --replace-text filter:
 # Create the expression file containing sensitive data you want to remove
 $ echo "S0m3T0k3n" >> sensitive-data.txt

 $ git filter-repo --replace-text sensitive-data.txt
 Parsed 3 commits
 New history written in 0.10 seconds; now repacking/cleaning...
 Repacking your repo and cleaning out old unneeded objects
 HEAD is now at 7a67e7e add folders
 Enumerating objects: 13, done.
 Counting objects: 100% (13/13), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (7/7), done.
 Writing objects: 100% (13/13), done.
 Total 13 (delta 2), reused 8 (delta 1), pack-reused 0
 Completely finished after 0.30 seconds.

 $ git log --oneline
 * 7a67e7e (HEAD -> main) add folders
 * 21e1028 add remaining files
 * 3f9bd4a add udated readme

 $ cat configs/env.config
 PAT=***REMOVED***

Using git filter-repo | 397

Since we did not specify explicit replacement text, git-filter-repo by default repla‐
ces the matching results with ***REMOVED***. You can use string literals, glob pattern
matching, and even regular expressions to find and match words you want to replace
when creating the expression file.

You can replace existing text with new text like so: old==⇒new. This
expression will replace the word old with the word new.

Commit message filtering
We are almost done with our alteration of the repository. It is only fair to ensure that
the commit messages representing the newly written history of our repository are
updated to reflect the new version of the repository.

While inspecting the new history of the repository, you might notice that the first
commit in the history series has a typo, and it also does not do what we wanted it to
do: that is, to pick the latest version of the README.md file. Let’s correct this:
 $ git log --oneline
 * 7a67e7e (HEAD -> main) add folders
 * 21e1028 add remaining files
 * 3f9bd4a add udated readme

To be able to change the commit message, git filter-repo again needs a list of
expressions you specify in a file when passed in using the --replace-message filter:
 # Create the expression file containing the new commit message you want to fix
 # Note we are adding the old commit message as pointed out in the TIP above

 $ echo "add udated readme==>add latest readme" >> fix-commit-msgs.txt

 $ git filter-repo --replace-message fix-commit-msgs.txt
 Parsed 3 commits
 New history written in 0.08 seconds; now repacking/cleaning...
 Repacking your repo and cleaning out old unneeded objects
 HEAD is now at fbf574b add folders
 Enumerating objects: 13, done.
 Counting objects: 100% (13/13), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (6/6), done.
 Writing objects: 100% (13/13), done.
 Total 13 (delta 2), reused 10 (delta 2), pack-reused 0
 Completely finished after 0.28 seconds.

 $ git log --oneline
 * fbf574b (HEAD -> main) add folders
 * c13ca61 add remaining files
 * 06f04cd add latest readme

398 | Chapter 16: Advanced Manipulations

As a final step, with this new altered version of the repository, you have the option
to push this to a new upstream repository or to follow steps to ensure that the older
version of the repository is prudently replaced with this new version. As with any
type of collaborative development, the important aspect here is to ensure that every
collaborator is going to be working with the new copy of the repository.

The filter options for git-filter-repo are just the tip of the iceberg. There are
many advanced use cases and techniques one could leverage to overhaul and fix a
repository. You have the ability to replace user and email details, rename tag names,
replace a commit object’s parent, and even do partial history rewrites targeting one
specific branch or targeting changes for a range of commits. If such a need arises, we
strongly recommend that you consult the manual pages!

If you are interested in learning more about the inner workings
of git-filter-repo, we recommend that you consult the Internals
section of the command’s manual page. The section lists at a high
level how git-filter-repo works:
 $ git filter-repo --help

Summary
In this chapter, we expanded our knowledge on how to manipulate commits in
specific ways, beyond what was discussed in Chapter 9. We looked at a very powerful
technique—using git add -p—to interactively stage hunks of changes for a specified
file to help craft our commits, learned the benefits of using the git rev-list

command, and learned methods to retrieve older versions of files. If you need to pick
any one of these methods to build your git-manipulation-fu, we suggest putting in the
time to learn the git-filter-repo and git fsck commands. They will be your Git
Army knife when the need arises.

Summary | 399

PART V

Tips and Tricks

This final part of the book consists of two chapters that cover the practical aspects of
working with Git repositories day in, day out.

Chapter 17 explains interactive rebasing concepts and offers techniques for migrating
projects that are version-controlled (in either legacy systems or an existing Git-ready
repository) to a new Git-hosted platform. It is important that you understand these
concepts and techniques because, once you get the hang of performing a successful
migration for one type of version control system, you’ll be able to repeat the steps (or
even skip some) when migrating other types of projects. We also talk about how to
properly version-control large files or binaries in your repositories to avoid bloating
the size of your repository, which can have undesired consequences when working in
a shared environment.

In Chapter 18, we discuss GitHub, a popular Git hosting platform used by millions
of developers. We cover features that allow you to execute standard Git operations
beyond the Git command-line tool. We also discuss various client tools from GitHub
before rounding out the chapter by sharing methods for extending the platform to fit
your custom development workflows.

CHAPTER 17

Tips, Tricks, and Techniques

With a plethora of commands and options, Git is a rich resource for performing
varied and powerful changes to a repository. Sometimes, though, the actual steps to
accomplish a particular task are a bit elusive. Sometimes the purpose of a particular
command and option isn’t really clear or becomes lost in a technical description.

This chapter provides a collection of tips, tricks, and techniques that highlight Git’s
ability to do interesting transformations.

Interactive Rebase with a Dirty Working Directory
Frequently, when developing a multicommit change sequence on a local branch, we
realize we need to make an additional modification to a commit we made earlier in
the sequence. Rather than scribbling a note about it on the side and coming back to
it later, as an option we can immediately edit and introduce that change directly into
a new commit and add a note in the commit log entry reminding us that it should be
squashed into a previous commit.

However, when we eventually get around to cleaning up our commit sequence and
want to use git rebase -i, we might find ourselves with a dirty working directory.
In this case, Git will refuse to do the rebase:
 $ git show-branch --more=10
 [main] Tinker bar
 [main^] Squash into 'More foo and bar'
 [main~2] Modify bar
 [main~3] More foo and bar
 [main~4] Initial foo and bar.

 $ git rebase -i main~4
 error: cannot rebase: You have unstaged changes.
 error: Please commit or stash them.

403

If this happens, simply clean out your dirty working directory with git stash first!
 $ git stash
 Saved working directory and index state WIP on main: ed6e906 Tinker bar

 $ git rebase -i main~4

 # In the editor, move main^ next to main~3
 # and mark it for squashing.

 pick 1a4be28 More foo and bar
 squash 6195b3d Squash into 'more foo and bar'
 pick 488b893 Modify bar
 pick ed6e906 Tinker bar

 # Follow instructions in your text editor

 [detached HEAD e3c46b8] More foo and bar with additional stuff.
 Date: Sun Mar 27 16:18:02 2022 +0200
 2 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 file2
 create mode 100644 file4
 Successfully rebased and updated refs/heads/main.

Naturally, you will want to recover your working directory changes now:
 $ git stash pop
 # On branch main
 # Changes not staged for commit:
 # (use "git add <file>..." to update what will be committed)
 # (use "git checkout -- <file>..." to discard changes in working directory)
 #
 # modified: foo
 #
 no changes added to commit (use "git add" and/or "git commit -a")
 Dropped refs/stash@{0} (71b4655668e49ce88686fc9eda8432430b276470)

Garbage Collection
In “The git fsck Command” on page 387, we expanded on the concept of reachability.
We explained how the Git object store and its commit graph might leave unrefer‐
enced or dangling objects within the object store, and gave a few examples of how
some commands might leave these unreferenced objects in your repository.

Having dangling commits or unreachable objects is not necessarily bad; you may
have moved away from a particular commit intentionally or added a blob file and
then changed it before actually committing it. What is bad is that over a long period
of time, manipulating the repository can leave many unreferenced objects in your
object store.

404 | Chapter 17: Tips, Tricks, and Techniques

Historically, within the computer science industry, such unreferenced objects are
cleaned up through a process called garbage collection. It is the job of the git gc
command to perform periodic garbage collection and keep your repository object
stores neat and tidy.

Git’s garbage collection has one other very important task: optimizing the size of
the repository by locating unpacked objects (loose objects) and creating packfiles for
them. We briefly discussed packfiles in “Packfiles” on page 32.

Packfile Heuristics
Unfortunately, there is a lack of documentation explaining the packing heuristics
of Git’s objects in detail, apart from the source code implementation. However, an
excerpt from Git’s technical documentation on this topic sheds some light. Following
is a synopsis of how Git compresses objects.

When Git creates a packfile, it first locates files whose content is very similar and
stores the complete content for one of them. It then computes the differences, or
deltas, between similar files and stores just the differences. For example, if you were to
change or add only one line to a file, Git might store the complete, newer version of
the file and then note the one line that changed as a delta and store it in the pack too.

Git does the file packing very cleverly, though. Since Git is driven by content, it doesn’t
really care if the deltas it computes between two files actually pertain to two versions
of the same file or not. That is, Git can take any two files from anywhere within the
repository and compute deltas between them if it thinks they might be similar enough
to yield good data compression. Thus Git has a fairly elaborate algorithm to locate
and match potential delta candidates globally within a repository. Furthermore, Git is
able to construct a series of deltas from one version of a file to another version, and
another, and so on.

Git also maintains the content of the original blob SHA1 for each complete file (either
the complete content or as a reconstruction after the deltas are applied) within the
packed representation. This provides the basis for an index mechanism to locate
objects within a pack.

So when does garbage collection happen, and how often? Is it done automatically, or
does it need to be done manually? When it runs, does it remove everything it can?
Pack everything it can?

All of these are good questions, and as usual, all of the answers are “It depends.”

Garbage Collection | 405

https://oreil.ly/uRXwS

1 No, that’s not a typo. See “Have You Been Here Before?” on page 415.

For starters, Git runs garbage collection automatically at strategic times:

• If there are too many loose objects in the repository•
• When a push to a remote repository occurs•
• After some commands that might introduce many loose objects•
• When some commands, such as git reflog expire, explicitly request it•

You can also explicitly request that Git run garbage collection by using git gc. There
are a few situations when you should consider running git gc manually:

• If you have just completed a git filter-repo. Recall that filter-repo rewrites•
many commits, introduces new ones, and leaves the old ones on a ref that
should be removed when you are satisfied with the results. All those dead objects
that are no longer referenced, since you just removed the one ref pointing to
them, should be removed via garbage collection.

• After some commands that might introduce many loose objects. This might be a•
large rebase effort, for example.

You should be wary of garbage collection in the following scenarios:

• If there are orphaned refs that you might want to recover•
• If you have used git rerere1 and you do not need to save the resolutions forever•
• If only tags and branches are sufficient to cause Git to retain a commit perma‐•

nently
• If you have used FETCH_HEAD retrievals (URL-direct retrievals via git fetch)•

because they are immediately subject to garbage collection

Git doesn’t spontaneously jump to life and carry out garbage collection of its own
free will, not even automatically. Instead, certain commands that you run cause Git
to consider running garbage collection and packing. But just because you run those
commands and Git runs git gc doesn’t mean that Git acts on this trigger. Rather,
Git takes that opportunity to inspect a whole series of configuration parameters
that guide the inner workings of both the removal of unreferenced objects and the
creation of packfiles. Some of the more important git config parameters include the
following:

406 | Chapter 17: Tips, Tricks, and Techniques

gc.auto

The number of loose objects allowed to exist in a repository before garbage
collection causes them to be packed. The default is 6,700.

gc.autopacklimit

The number of packfiles that may exist in a repository before they are repacked
into larger, more efficient packfiles. The default is 50.

gc.pruneexpire

The period of time unreachable objects may linger in an object store. The default
is two weeks.

gc.reflogexpire

The time period when the git reflog expire command will start to remove
reflog entries. The default is 90 days.

gc.reflogexpireunreachable

The time period when the git reflog expire command will start to remove
reflog entries, but only if they are unreachable from the current branch. The
default is 30 days.

Most of the garbage collection config parameters have a value that means either “do it
now” or “never do it.”

Tips for Recovering Commits
Time is the enemy of lost commits. Eventually, Git’s garbage collection will run and
clean out any dangling or unreferenced commits and blobs. Garbage collection will
eventually retire reflog refs as well. At that point, lost commits are lost, and git fsck
will no longer be able to find them. If you know you are slow to realize a commit has
been lost, you may want to adjust the default timeouts for reflog expiration and retire
unreferenced commits during garbage collection:
 # default is 90 days
 $ git config --global gc.reflogExpire "6 months"

 # default is 30 days
 $ git config --global gc.reflogExpireUnreachable "60 days"

 # default is 2 weeks
 $ git config --global gc.pruneexpire="1 month"

Recovering from an Upstream Rebase
Sometimes when working in a distributed environment where you don’t necessarily
control the upstream repository from which you derived your current development
clone, the upstream version of the branch on which you have developed your work

Tips for Recovering Commits | 407

will undergo a non-fast-forward change or a rebase. That change destroys the basis of
your branch, and prevents you from directly sending your changes upstream.

Unfortunately, Git doesn’t provide a way for an upstream repository maintainer
to state how its branches will be treated. That is, there is no flag that says, “This
branch will be rebased at will” or “Don’t expect this branch to fast-forward.” You,
the downstream developer, just have to know, intuit its intended behavior, or ask the
upstream maintainer. For the most part, other than that, branches are expected to
fast-forward and not be rebased.

Sure, that can be bad. We’ve explained before how changing published history is
bad. Nevertheless, it happens sometimes. Furthermore, there are some very good
development models that even encourage the occasional rebasing of a branch during
the normal course of development.

So when it happens, what do you do? How do you recover so that your work can be
sent upstream again?

First, ask yourself whether the rebased branch is really the right branch on which you
should have been basing your work in the first place. Branches are often intended
to be read-only. For example, maybe a collection of branches is being gathered and
merged together for testing purposes into a read-only branch, but the branches are
otherwise available individually and should form the basis of development work. In
this case, you likely shouldn’t have been developing on the merged collection branch.
(The Linux next branches tend to operate like this.)

Depending on the extent of the rebase that occurred upstream, you may get off easy
and be able to recover with a simple git pull --rebase. Give it a try; if it works, you
win. But we wouldn’t count on it. You should be prepared to recover an ensuing mess
with a judicious use of reflog.

The real, more reliable approach is to methodically transfer your developed and
orphaned commit sequence from your now defunct branch to the new upstream
branch. The basic sequence is as follows:

1. Rename your old upstream branch. It is important to do this before you fetch1.
because it allows a clean fetch of the new upstream history. Try something like
git branch save-origin-main origin/main.

2. Fetch from upstream to recover the current upstream content. A simple git2.
fetch should be sufficient.

3. Rebase your commits from the renamed branch onto the new upstream branch3.
using a command like cherry-pick or rebase. This should be the command git
rebase --onto origin/main save-origin-main main.

408 | Chapter 17: Tips, Tricks, and Techniques

4. Clean up and remove the temporary branch. Try using the command git4.
branch -D save-origin-main.

It seems easy enough, but the key can often be in locating the point back in the
history of the upstream branch where the original history and the new history begin
to diverge. It’s possible that everything between that point and your first commit isn’t
needed at all; that is, the rewritten commit history changes nothing that intersects
with your work. In this case, you win because a rebase should happen readily. On the
other hand, it is also possible that the rewritten history touches the same ground that
you were developing. In this case, you likely have a tough rebase road ahead of you
and will need to fully understand the semantics of the original and changed histories
in order to figure out how to resolve your desired development changes.

Quick Overview of Changes
If you need to keep a repository up to date by continually fetching from an upstream
source, you may find yourself frequently asking a question similar to “So, what
changed in the past week?”

The answer might be found through the git whatchanged command. Like many
commands, it accepts a plethora of options centered on git rev-parse for selecting
commits, and formatting options typical of, say, git log, such as the --pretty=
options.

Notably, you might want to use the --since= option:
 # The Git source repository
 $ cd ~/Repos/git
 $ git whatchanged --since="three days ago" --oneline
 745950c p4000: use -3000 when promising -3000
 :100755 100755 d6e505c... 7e00c9d... M t/perf/p4000-diff-algorithms.sh
 42e52e3 Update draft release notes to 1.7.10
 :100644 100644 ae446e0... a8fd0ac... M Documentation/RelNotes/1.7.10.txt
 561ae06 perf: export some important test-lib variables
 :100755 100755 f8dd536... cf8e1ef... M t/perf/p0000-perf-lib-sanity.sh
 :100644 100644 bcc0131... 5580c22... M t/perf/perf-lib.sh
 1cbc324 perf: load test-lib-functions from the correct directory
 :100755 100755 2ca4aac... f8dd536... M t/perf/p0000-perf-lib-sanity.sh
 :100644 100644 2a5e1f3... bcc0131... M t/perf/perf-lib.sh

That’s dense. But we did ask for --oneline! So the commit log has been summarized
in single lines, like this:
 561ae06 perf: export some important test-lib variables

And each of those is followed by the list of files that changed with each commit:
 :100755 100755 f8dd536... cf8e1ef... M t/perf/p0000-perf-lib-sanity.sh
 :100644 100644 bcc0131... 5580c22... M t/perf/perf-lib.sh

Quick Overview of Changes | 409

The preceding code includes the file mode bits before and after the commit, the
SHA1s of each blob before and after the commit, a status letter (M here means
modified content or mode bits), and finally, the path of the blob that changed.

Although the previous example defaulted the branch reference to main, you could
pick anything of interest or explicitly request the set of changes that were just fetched:
 $ git whatchanged ORIG_HEAD..HEAD

You can also limit the output to the set of changes that affect a named file:
 $ cd /usr/src/linux
 $ git pull

 $ git whatchanged ORIG_HEAD..HEAD --oneline Makefile
 fde7d90 Linux 3.3-rc7
 :100644 100644 66d13c9... 56d4817... M Makefile
 192cfd5 Linux 3.3-rc6
 :100644 100644 b61a963... 66d13c9... M Makefile

The workhorse behind this output is git diff-tree. Grab yourself a caffeinated
beverage prior to reading that manual page.

Cleaning Up
Everyone enjoys a clean and tidy directory structure. To help you achieve repository
directory nirvana, you can use the git clean command to remove untracked files
from your working tree.

Why should you bother to do this, you ask? Perhaps cleaning is part of an iterative
build process that reuses the same directory for repeated builds but needs to have
generated files cleaned out each time. (Think make clean.)

By default, git clean just removes all files that are not under version control from
the current directory and down through your directory structure. Untracked directo‐
ries are considered slightly more valuable than plain files and are left in place unless
you supply the -d option.

Furthermore, for the purposes of this command, Git uses a slightly more conservative
concept of “under version control.” Specifically, the manual page uses the phrase
“files that are unknown to Git,” and for good reason: even files that are mentioned
in the .gitignore and .git/info/exclude files are actually known to Git. They represent
files that are not version-controlled, but Git does know about them. And because
those files are called out in the .gitignore files, they must have some known (to you)
behavior that shouldn’t be disturbed by Git. So Git won’t clean out the ignored files
unless you explicitly request it with the -x option.

410 | Chapter 17: Tips, Tricks, and Techniques

2 We elided an obsolete name reference and shortened the actual output lines for this example.

Naturally, the -X option causes the inverse behavior: namely, only files explicitly
ignored by Git are removed. So be careful when choosing the files that are important
to you.

If you are skittish, do a --dry-run first.

Using git-grep to Search a Repository
You may recall from “Using Pickaxe” on page 184 that we introduced the pickaxe
option (spelled -Sstring) for the git log command, and then in “git diff with Path
Limiting” on page 171, we showed it in use with the git diff command. The pickaxe
option searches back through a branch’s history of commit changes for commits that
introduce or remove occurrences of a given string or regular expression.

Another command that can be used to search a repository is git grep. Rather than
searching each commit’s changes to a branch, the git grep command searches the
content of files within a repository. Because git grep is really a generic Swiss Army
knife with a multitude of options, it is more accurate to say that git grep searches
for text patterns in tracked blobs (i.e., files) of the work tree, blobs cached in the
index, or blobs in specified trees. By default, it just searches the tracked files of the
work tree.

Thus pickaxe can be used to search a series of commit differences, whereas git grep
can be used to search the repository tree at a specific point in that history.

Let’s get the Git source repository and find out how git grep works!2

 $ cd /tmp
 $ https://github.com/git/git.git

 Cloning into 'git'...
 remote: Counting objects: 129630, done.
 remote: Compressing objects: 100% (42078/42078), done.
 Receiving objects: 100% (129630/129630), 28.51 MiB | 1.20 MiB/s, done.
 remote: Total 129630 (delta 95231), reused 119366 (delta 85847)
 Resolving deltas: 100% (95231/95231), done.

 $ cd git

 $ git grep -i loeliger
 .mailmap:Jon Loeliger <jdl@jdl.com> <jdl@freescale.com>
 .mailmap:Jon Loeliger <jdl@jdl.com> <jdl@freescale.org>
 Documentation/gitcore-tutorial.txt:Here is an ASCII art by Jon Loeliger that illustrates how
 Documentation/revisions.txt:Here is an illustration, by Jon Loeliger. Both commit nodes B
 Documentation/revisions.txt:Here are a handful of examples using the Loeliger illustration above,

 $ git grep jdl
 .mailmap:Jon Loeliger <jdl@jdl.com> <jdl@freescale.com>

Using git-grep to Search a Repository | 411

 .mailmap:Jon Loeliger <jdl@jdl.com> <jdl@freescale.org>
 Documentation/technical/pack-heuristics.txt: <jdl> What is a "thin" pack?

Ever wonder where the documentation for the git-grep command itself is located?
What files in the git.git even mention git-grep by name? Here’s how you can find
out:
 # Still in the /tmp/git repository

 $ git grep -l git-grep
 .gitignore
 Documentation/RelNotes/1.5.3.6.txt
 Documentation/RelNotes/1.5.3.8.txt
 Documentation/RelNotes/1.6.3.txt
 Documentation/config/grep.txt
 Documentation/git-grep.txt
 Documentation/gitweb.conf.txt
 command-list.txt
 gitweb/gitweb.perl
 grep.c
 t/README
 t/perf/p4220-log-grep-engines.sh
 t/perf/p4221-log-grep-engines-fixed.sh
 t/perf/p7810-grep.sh
 t/perf/p7820-grep-engines.sh
 t/perf/p7821-grep-engines-fixed.sh

There are a few things to note here. First, git-grep supports many of the normal
command-line options to the traditional grep tool, such as -i for case-insensitive
searches, -l for a list of just the matching filenames, and -w for word matching. Using
the -- separator option, you can limit the paths or directories that Git will search. To
limit the search to the occurrence within the Documentation/ directory, do something
like this:
 # Still in the /tmp/git repository

 $ git grep -l git-grep -- Documentation
 Documentation/RelNotes/1.5.3.6.txt
 Documentation/RelNotes/1.5.3.8.txt
 Documentation/RelNotes/1.6.3.txt
 Documentation/config/grep.txt
 Documentation/git-grep.txt
 Documentation/gitweb.conf.txt

Using the --untracked option, you can also search for patterns in untracked (but
not ignored) files that have neither been added to the cache nor committed as part
of the repository history. This option may come in handy if you are developing
some feature and have started adding new files but haven’t yet committed them. A
default git grep wouldn’t search there, even though your past experience with the
traditional grep command might lead you to believe that all files in your working
directory (and possibly its subdirectories) would otherwise be searched.

412 | Chapter 17: Tips, Tricks, and Techniques

So why even bother introducing git grep in the first place? Isn’t the traditional shell
tool sufficient? Yes and no.

There are several benefits to building the git grep command directly into the Git
toolset. The first is speed and simplicity. Git doesn’t have to completely check out
a branch in order to do the search; it can operate directly on the objects from the
object store. This means you don’t have to write some script to check out a commit
from way back in time, then search those files, then restore your original checked-out
state. Second, Git can offer enhanced features and options by being an integrated
tool. Notably, it offers searches that are limited to tracked files, untracked files, files
cached in the index, ignored or excluded files, variations on searching snapshots from
the repository history, and repository-specific pathspec limiters. You can learn more
about the git grep command by typing git grep -–help and reading the help
pages.

Updating and Deleting refs
Way back in “Refs and Symrefs” on page 83, we introduced the concept of a ref
and mentioned that Git also has several symbolic refs that it maintains. By now, you
should be familiar with branches as refs, how they are maintained under the .git
directory, and that the symbolic refs are also maintained there. Somewhere in there a
bunch of SHA1 values exist and get updated, shuffled around, deleted, and referenced
by other refs.

Occasionally, it is nice or even necessary to directly change or delete a ref. If you
know what you are doing, you could manipulate all of those files by hand. But if you
don’t do it correctly, it is easy to mess things up.

To ensure that the basic ref manipulations are done properly, Git supplies the
command git update-ref. This command understands all of the nuances of refs,
symbolic refs, branches, SHA1 values, logging changes, the reflog, and so on. If you
need to directly change a ref ’s value, you should use a command like this:
 $ git update-ref someref SHA1

where someref is the name of a branch or ref to be updated to the new value, SHA1. If
you want to delete a ref, the proper way to do so is as follows:
 $ git update-ref -d someref

Of course, the normal branch operations might be more appropriate, but if you
find yourself directly changing a ref, using git update-ref ensures that all of the
bookkeeping for Git’s infrastructure is done properly too.

Updating and Deleting refs | 413

Following Files That Moved
If, over the history of a file, the file is moved from one place to another within your
repository directory structure, Git will usually only trace back over its history using
its current name.

To see the complete history of the file, even across moves, use the --follow com‐
mand. For example, the following command shows the commit log for a file currently
named file but includes the log for its prior names as well:
 $ git log –-follow file

Add the --name-only option to have Git also state the name of that file as it changes:
 $ git log –-follow --name-only file

In the following example, file a is first added in the directory foo and then moved to
the directory bar:
 $ git init -b main
 Initialized empty Git repository in /tmp/tips-tricks/moved-file/.git/

 $ mkdir foo
 $ touch foo/a
 $ git add foo/a
 $ git commit -m "First a in foo"
 [main (root-commit) 1b4fbff] First a in foo
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 foo/a

 $ mkdir bar
 $ git mv foo/a bar/a
 $ git commit -m "Move foo/a to bar/a"
 [main 00229c3] Move foo/a to bar/a
 1 file changed, 0 insertions(+), 0 deletions(-)
 rename {foo => bar}/a (100%)

At this point, a simple git log bar/a will show only the commit that created the file
bar/a, but adding the option --follow will trace back through its name changes too:
 $ git log --oneline bar/a
 00229c3 (HEAD -> main) Move foo/a to bar/a

 $ git log --oneline --follow bar/a
 00229c3 (HEAD -> main) Move foo/a to bar/a
 1b4fbff First a in foo

414 | Chapter 17: Tips, Tricks, and Techniques

If you want to use its original name, you have to work harder because only the
current name of the file, bar/a, can be referenced normally. Adding the option -- and
then any of its current or former names will work. And adding --all will produce a
comprehensive search as if all refs were searched too:
 $ git log --oneline foo/a
 fatal: ambiguous argument 'foo/a': unknown revision or path not in the working tree.
 Use '--' to separate paths from revisions, like this:
 'git <command> [<revision>...] -- [<file>...]'

 $ git log --oneline -- foo/a
 00229c3 (HEAD -> main) Move foo/a to bar/a
 1b4fbff First a in foo

Have You Been Here Before?
Ever have that feeling you’ve worked through a complex merge or rebase over and
over again? Are you getting tired of it yet? Do you wish there was some way to
automate it?

We thought so. And so did the Git developers!

Git has a feature named rerere that automates the chore of solving the same merge
or rebase conflicts repeatedly. The seemingly alliterative name is a shortening of reuse
recorded resolution. Sometimes long development cycles that use a branch to hold a
line of development that undergoes many development iterations before finally being
merged into a mainline development will have to be rebased or moved through the
same set of conflicts and resolutions many times.

To enable and use the git rerere command, you must first set the Boolean
rerere.enabled option to true:
 $ git config --global rerere.enabled true

Once enabled, this feature records the right and left sides of a merge conflict in
the .git/rr-cache directory and, if resolved, also records the manual resolution to that
conflict. If the same conflict is seen again, the automatic resolution engages and
preemptively solves the conflict.

When rerere is enabled and participates in a merge, it will prevent autocommitting of
the merge. The developer who is performing the merge action will need to review the
automatic conflict resolution before making it a part of the commit history.

Have You Been Here Before? | 415

Rerere has only one prominent shortcoming: the nonportability of the .rr-cache
directory. Conflict and resolution recording happens on a per-clone basis and is not
transmitted in push or pull operations.

Migrating to Git
When porting over an existing project to be version-controlled with Git, we advise
you to plan on doing all of your importing, converting, and cleaning up once up
front, before ever publishing the first Git version of your repository. There are several
steps in a well-planned conversion that you really should take before anyone else
has a chance to clone the first version of your Git repository. For example, all of
your global changes, such as directory renaming, author and email address cleanup,
large-file removal, branch fiddling, and tag construction, will be significantly more
difficult for both you and your downstream consumers if they happen after your
consumers have cloned the conversion repository.

When migrating to Git, two high-level scenarios are possible. The first occurs when
you are migrating from one Git hosting platform to another. The second is when
you’re porting from a non-Git version control system to a Git version control system.
The first scenario is relatively straightforward, especially when you focus on the Git-
ready codebase ported between popular Git hosting platforms. The second scenario
will require some forethought (transforming a non-Git codebase to a Git repository)
before making the transition.

Migrating from a Git Version Control System
Suppose you have been hosting your project repositories in your local Git server
and you decide to move those repositories to one of the many popular Git host‐
ing platforms. The migration process can be as straightforward as adding a new
remote origin path and removing the older value. It will help to consolidate all of
the latest changes from every contributor to the repository before performing the
migration. Technically, downstream collaborators are able to update their copy of
the repository’s version to the new remote origin path, but from an administrative
point of view, coordinating the move from a central source of authority is highly
recommended.

In the following example, we will be migrating one of our local repositories to Git‐
Hub. The following code is an example of how you can migrate your local repository
to GitHub:

416 | Chapter 17: Tips, Tricks, and Techniques

 # path to your local repository
 $ pwd
 /tmp/active-projects/my-super-project

 # Get existing remote origin path
 $ git remote -v
 origin /tmp/bare-repositories/my-super-project (fetch)
 origin /tmp/bare-repositories/my-super-project (push)

If you do not have an existing local repository, you can simulate the
migration process by creating and initializing a new repository in
your local machine. The only difference is that you will not have a
remote origin value for your repository.

First, create a blank placeholder repository in your personal account on the GitHub
platform. You can do this by clicking the New button on the Dashboard page (Fig‐
ure 17-1).

Figure 17-1. Clicking New on the Dashboard page

Next, on the “Create a new repository” page, provide the same name for your existing
repository (Figure 17-2). It is important that you do not initialize the repository at
this step!

Migrating to Git | 417

https://github.com
https://github.com

Figure 17-2. Creating the placeholder repository

418 | Chapter 17: Tips, Tricks, and Techniques

On the next page, follow the instruction that says "…or push an existing repository
from the command line" (Figure 17-3).

Figure 17-3. Update new remote origin and push

Since we are working with an existing repository, we will need to either remove the
old remote origin value or specify the git remote set-url command to update the
new URL path. We chose to remove the old remote origin because we want to publish
our repository to the newly created upstream remote on GitHub:
 $ git remote remove origin

 # returns blank
 $ git remote -v

 # add the new remote origin url
 $ git remote add origin https://github.com/ppremk/my-super-project.git

 # push the local repository to the new upstream
 # we can skip the 'git branch -M main'
 since our default branch is already named main
 $ git push -u origin main
 Enumerating objects: 8, done.
 Counting objects: 100% (8/8), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (6/6), done.
 Writing objects: 100% (8/8), 917 bytes | 917.00 KiB/s, done.
 Total 8 (delta 0), reused 0 (delta 0), pack-reused 0
 To https://github.com/ppremk/my-super-project.git
 * [new branch] main -> main
 Branch 'main' set up to track remote branch 'main' from 'origin'.

Migrating to Git | 419

Your local repository is now available on the new remote, which is hosted on GitHub.
From this point on, you can leverage features of the platform that can help you and
your team collaboratively develop and maintain your project. We will cover Git and
GitHub in more detail in Chapter 18.

You can follow these same basic steps when migrating between popular Git hosting
platforms. If you are only migrating the codebase that is version-controlled with Git,
you simply need to remove the old remote and add a new remote since the reposi‐
tory’s commit history will remain intact. (Migrating to a new platform metadata or
features that are specific to the hosting platform is another topic and is beyond the
scope of this book.)

Migrating from a Non-Git Version Control System
When you need to migrate a codebase that is not version controlled by Git, there are
some additional steps you need to take prior to publishing your repository for others
to consume. The amount of work and planning you need to do may differ depending
on the source system, but you can group the common tasks into four steps.

The first step is to create a Git author data mapping file (this step may be required
depending on the bridge tool used; see the next paragraph). This is to ensure that
existing author information from the source project is correctly mapped to match the
Git author data format when you successfully convert the project into a Git-ready
repository. For instance, the git svn tool is able to consume an author mapping file
containing a list of mapped SVN usernames to match the Git author format. Bear in
mind that you may need to write some scripts to extract the required list of commit
author details from the source project prior to creating the mapping file.

The second step is to use a bridge tool to convert your source project to a Git-ready
repository. Several bridge tools are available that are specific to the source project’s
version control system. Some examples include git svn and git-p4. When perform‐
ing a conversion, you will need to know the size of the project, the number of
branches, how the binaries are stored, how far back you want to retain the version
history, and whether the bridge tool you’re using has any known limitations. Only
then can you plan your conversion steps and communicate the transition to your
collaborators accordingly.

Depending on the tool you use, you can combine the first two steps
into one. You can provide an author’s mapping file as an option
when performing the conversion via supported commands.

420 | Chapter 17: Tips, Tricks, and Techniques

https://oreil.ly/N8cr5
https://oreil.ly/pvoM1

The third step is to perform some housekeeping and prepare the repository prior
to publishing it for your collaborators. This can be a clean-up operation that may
include removing unwanted files or directories, deciding how to manage large objects
or binaries to be version-controlled, and adding relevant files such as .gitignore, along
with any other tasks deemed necessary to ensure that your migrated repository is
ready for consumption.

The fourth step is to publish your repository by creating a new remote origin URL
for contributors to clone and push to. In short, you need to create a placeholder
repository and push the newly migrated repository to a Git hosting platform of your
choosing.

In the following example, we will convert an SVN repository into a Git repository. We
will use https://svnbook.red-bean.com as our source.

First, we extract the author information and create a mapping file:
 # Checkout an svn repository
 $ svn checkout https://svn.code.sf.net/p/svnbook/source/trunk/
 A trunk/en
 A trunk/en/book
 A trunk/en/book/sample-repositories
 ...
 ...

 # Get author information
 # run the following in the “trunk” directory
 $ svn log --xml --quiet | grep author | sort -u | perl -pe 's/.*>(.*?)<.*/$1 = /' > authors.txt

 # Edit the authors.txt file content to match the following format
 # Providing a correct Author Name and Email

 $ cat authors.txt
 FLamY = FLamY <FLamY@email.com>
 Imaged = Imaged <Imaged@email.com>

The script to generate SVN author information is referenced from
the git-scm online book. The shared link also contains examples
and tips on how to migrate from various non-Git version control
systems.

If you have not completed the authors.txt mapping file, you can save some time by
downloading the content of a completed, mapped authors.txt file.

Migrating to Git | 421

https://svnbook.red-bean.com
https://oreil.ly/NPkhh
https://oreil.ly/1nDT5

Since we will be using the git svn bridge, we will be able to provide the author
mapping file as an option when cloning the source. The svnbook has 6,055 revisions,
so this can take a while to clone. Thus we will be limiting the revisions using the -r
option. Note that you may need to install the git svn tool via supported package
managers if the tool is not available in your development environment:
 # Limit the revision to be cloned
 $ git svn clone -r1:100 https://svn.code.sf.net/p/svnbook/source/trunk/ --authors-file=authors.txt
 ...
 ...

 $ cd trunk
 $ pwd
 /tmp/migrations/trunk

 $ git log -2
 commit c0e1e3844c8e54d1d5887b0c0adc9b761de7fd8e (HEAD -> master, git-svn)
 Author: fitz <fitz@email.com>
 Date: Fri Nov 29 15:27:48 2002 +0000

 * ch03.xml: port broken-book changes to trunk.

 git-svn-id: https://svn.code.sf.net/p/svnbook/source/trunk@100
 b70f5e92-ccc6-4167-9ab2-d027528d294b

 commit 82f925a9b5a165c4abbcbe4381b4e6fb50950f3a
 Author: cmpilato <cmpilato@email.com>
 Date: Wed Nov 27 18:31:51 2002 +0000

 * doc/book/book/ch05.xml
 Little spelling and grammar fixes and such. Thanks to my beautiful
 wife Amy for trudging through a full reading of this chapter to
 help me find these things. Sweetie, you wanna be a repository
 administrator now?

 git-svn-id: https://svn.code.sf.net/p/svnbook/source/trunk@99
 b70f5e92-ccc6-4167-9ab2-d027528d294b

git svn also imports the subversion metadata when cloning the
repository. This helps preserve the original git-svn-id that intro‐
duced the revision. If you do not need this metadata for reference,
you can provide the --no-metadata option to skip importing the
metadata.

Now we’ll perform any required housekeeping operations and record those changes
as new commits in the project’s newly converted Git repository.

We will add a README.md file in the root of the directory to provide some context
for the repository:

422 | Chapter 17: Tips, Tricks, and Techniques

 # execute in /tmp/migrations/trunk
 $ echo "This repo was converted from SVN" >> README.md

 # add and commit new changes to the repository
 $ git status
 [main cee31bf] Add README.md in project root
 1 file changed, 1 insertion(+)
 create mode 100644 README.md

Next, we’ll add a new remote to the newly converted repository and push it upstream
for collaborators to continue working on it in its new version-controlled format. The
steps for this are similar to what we described in “Migrating from a Git Version
Control System” on page 416.

Since git svn creates the default branch name using Git’s defaults,
you can rename the branch from master to main using the git
branch -M master main command.

Now let’s push the converted repository to a placeholder repository of the same
name:
 # create placeholder repository on GitHub

 # execute in /tmp/migrations/trunk
 # add new remote origin
 $ git remote add origin https://github.com/ppremk/svnbook.git

 $ git push -u origin main
 Enumerating objects: 561, done.
 Counting objects: 100% (561/561), done.
 Delta compression using up to 8 threads
 Compressing objects: 100% (510/510), done.
 Writing objects: 100% (561/561), 871.80 KiB | 7.45 MiB/s, done.
 Total 561 (delta 255), reused 0 (delta 0), pack-reused 0
 remote: Resolving deltas: 100% (255/255), done.
 To https://github.com/ppremk/svnbook.git
 * [new branch] main -> main
 branch 'main' set up to track 'origin/main'.

Now we can navigate to the Git hosting platform to view the migrated repository
(Figure 17-4).

If your migration requirements are not complex and you do not need the project’s
legacy commit history since it will be archived, you can simply perform a clean cut
migration.

Migrating to Git | 423

Figure 17-4. Migrated svnbook repository on GitHub

A clean cut migration is when you convert your most recent and updated version
of the project as a new Git repository by initializing the new Git repository from
the source project, continuing to add all the files, and committing them as your
initial commit before pushing the repository to a new remote. Just ensure that you
have performed all the necessary housekeeping on the source copy before making it
available to your collaborators:
 # Existing source project post housekeeping

 $ pwd
 /tmp/migrations/svn-repo/trunk

 $ git init -b main
 Initialized empty Git repository in /tmp/migrations/svn-repo/trunk/.git/

 $ git status
 On branch main

 No commits yet

 Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .svn/
 en/
 tools/

 nothing added to commit but untracked files present (use "git add" to track)

 $ git add .
 warning: CRLF will be replaced by LF in .svn/pristine/6d/6dab3fba2...
 The file will have its original line endings in your working directory
 warning: CRLF will be replaced by LF in en/book/sample-repositories/ch04-sample-repos.dump.
 The file will have its original line endings in your working directory

 $ git commit -m "Initial commit"

424 | Chapter 17: Tips, Tricks, and Techniques

 [main (root-commit) 7c09122] Initial commit
 182 files changed, 1573706 insertions(+)
 create mode 100644 .svn/entries
 create mode 100644 .svn/format
 ...
 ...

 # Add new remote and push to upstream to conclude migration

A Note on Working with Large Repositories
A large repository at the highest level can be categorized as a repository with a
commit history spanning years of development or a repository that is huge in size
due to stored large binaries or files. It can also be a combination of both categories,
which would usually be the result of a legacy migration operation. To be precise,
such a repository can either be a monolith or a monorepo, depending on the type of
project you are developing.

The techniques we are about to share when working with such a repository revolve
around working with a range of Git objects that you need for your local development.
These techniques each have their own trade-offs, ranging from performance to the
output behavior of certain Git commands. You should consider whether the trade-
offs are worth the effort when you decide to apply these techniques when working
with your large repositories.

Following are brief explanations of the techniques:

Partial clone
Git’s partial clone feature optimizes the clone performance of your repository. It
allows you to clone a repository without needing to transfer a copy of the entire
Git object store during the clone operation. Git objects that are missing from the
initial clone can later be fetched on demand when you need to work on them.

You can specify a partial clone using the --filter=<filter-spec> option
together with the clone command.

For instance, the git clone --filter=blob:none repo_url command will only
clone tree objects and reachable commits. Only blobs that are reachable from the
tip commit are fetched.

The git clone --filter=tree:0 repo_url command will clone only reachable
commits. Only trees and blobs that are reachable from the tip commit are
fetched.

Shallow clone
Git’s shallow clone feature enables you to clone your repository with a truncated
commit history to the specified number of commits. Typically, this implies the
most recent commit or the latest revision of your repository.

Migrating to Git | 425

https://oreil.ly/sKxsv
https://oreil.ly/izQUT

You can specify a shallow clone using the --depth <depth> option together with
the clone command.

For instance, when you specify the git clone --depth=1 repo_url command,
the clone will fetch only the tip commit along with its reachable tree and blob
objects. You can also perform a shallow clone based on a date. The command
git clone --shallow-since=[date] repo_url will clone a repository with a
truncated history of commits after the supplied date.

Sparse checkout
Git’s sparse-checkout command was introduced in Git version 2.25.0. It simplifies
the process required to initialize and configure working with a restricted set of
directories within your repository. The command is also designed to significantly
improve performance when you are working on a large repository.

When you use sparse-checkout with your existing repository, you need to
initialize the necessary Git configuration option, then specify which directories
you will be working with in the local repository:
 # initialize git configurations to support sparse-checkout
 $ git sparse-checkout init --cone

 # specify which directories to work with sparse-checkout
 $ git sparse-checkout set <dir1> <di2> <dir3>

We highly recommend that you read the GitHub blog posts “Get Up to Speed
with Partial Clone and Shallow Clone” and “Bring Your Monorepo Down to
Size with Sparse-Checkout” to learn how you can use sparse-checkout when
working with a monorepo. These blog posts are published by Derrick Stolee,
a Git contributor since 2017 who focuses on performance. Derrick has also
contributed to speeding up the performance of the git log --graph and the git
push commands for large repositories.

In the next section, we’ll explore another technique that focuses on version control‐
ling large files or objects in your Git repository.

Git LFS
Git Large File Storage, or Git LFS, is an open source Git extension developed to track
large files or objects in a Git repository. Generally, Git is able to version control large
files, but this becomes an issue when the size of the repository grows rapidly, slowing
the performance of your regular Git operations.

If you predominantly work with large, text-based files, this may not be a big issue
because the compression library used by Git is able to handle an effective compres‐
sion of those files, optimizing them for transport and storage in your Git repository.
For files that do not compress well and need to be version-controlled, such as video

426 | Chapter 17: Tips, Tricks, and Techniques

https://oreil.ly/sI1B9
https://oreil.ly/sI1B9
https://oreil.ly/EHvxv
https://oreil.ly/EHvxv
https://www.zlib.net

files, audio files, game graphics texture files, and datasets used for data science
projects, Git LFS is an ideal tool.

It’s fairly easy to use Git LFS. This is because, as it is an extension, much of the
plumbing work is already hidden from you when you start using it in your repository.
Upon installation and initial configuration, you can continue to track any large files
as you would any other files via the standard Git operations and commands. Also,
mainstream Git hosting platforms readily provide support for working with Git LFS
on their servers, allowing you to leverage the feature seamlessly.

Repository Before Git LFS and After Git LFS
Let’s look at how a repository grows in size when you version control a large file.

For our example, we will use a video file since video files do not compress well. The
initial repository we create will contain a 1 MB code file and a 100 MB video file.
Figure 17-5 depicts how we would edit the initial video file and track those changes
as new commits for every change we make; this could be changes to the saturation
setting or even some fancy animation we may add to the video.

Figure 17-5. Repository size over time without Git LFS

Git LFS | 427

Notice how the size of the repository grows with every commit we add. This will also
be the total size that a developer will be cloning from a remote server when they need
to work on the repository.

Although in our example the size of the repo is 300 MB, imagine if the project you
are working on tracks video game files or datasets, which can cause a repository to
approach several gigabytes in size. This can significantly impact the bandwidth of
your remote server when you have multiple developers cloning, pushing, and pulling
changes concurrently, resulting in sluggish network performance.

Now let’s examine the same repository when using Git LFS.

The big difference here is that when you use Git LFS in your repository, the extension
will store the large file in an LFS server instead of storing it directly in the Git object
store. Git LFS will store a pointer file in place of the large file you are tracking,
allowing for the size of the repository to remain small while you make continuous
changes to those huge files. Simple yet efficient!

The dotted box and the repo size illustrate the actual size of the
repository when you newly clone and check out to the repository.

In Figure 17-6, notice that the size of the repository remains small because you will
be checked out to the current version of a specific commit in time. This also means
that when you clone the repository and check out to the default branch, you are
essentially downloading a 101 MB repository, which is the version with the latest
changes to the video file. Developers wanting to work on older versions of the video
file can always get the specific version when they check out to a known commit or
branch. This allows Git to fetch the video file from the LFS server if it is not already
present on the developer’s local machine.

428 | Chapter 17: Tips, Tricks, and Techniques

Figure 17-6. Repository size over time with Git LFS

Git LFS | 429

Installing Git LFS
You can install the Git LFS command-line extension via popular package managers
or directly from GitHub:
 # Linux-based systems
 $ sudo apt-get install git-lfs=3.1.4

 # MacOS
 $ brew install git-lfs

Installing the Git LFS extension will also add two filters to your Git configuration
file. These two filters (together with a configured .gitattributes file) are responsible
for intercepting normal Git operations and will ensure that large tracked files are not
directly stored in your repository’s Git object store. Instead, they will be stored in
your local directory in the path .git/lfs/objects/:
 $ cat ~/.gitconfig
 [filter "lfs"]
 smudge = git-lfs smudge -- %f
 process = git-lfs filter-process
 required = true
 clean = git-lfs clean -- %f

When you add an LFS-tracked file, the clean filter will intercept the git add com‐
mand. It will generate an SHA-256 hash of the large file based on the file content,
store it in the local .git/lfs/objects/ folder, generate the pointer file containing an OID,
and store it in the repository’s Git object store.

A pointer file is a UTF-8–based text file. It adheres to a specific format and requires
three fields: the version denoting the pointer file specification, the OID representing
the tracked file’s object ID, and the size of the file captured in bytes.

Running the following command generates a pointer file for a specified file in your
local directory:
 $ git lfs pointer --file=path/to/file
 Git LFS pointer for file

 version https://git-lfs.github.com/spec/v1
 oid sha256:91104678a2b7598a4df9fd42e16baac8e8f695208e5990d47449b9c458ce7a47
 size 35000000

In order to push the LFS-tracked file, you will still rely on the git push command; a
pre-push hook will push the LFS file to the remote LFS server.

On the flip side, when you check out tracked LFS files from your repository into
your working directory, the smudge filter is triggered. When the smudge filter runs,
it intercepts the process that writes Git repo content to your working directory.
For Git LFS, the smudge filter will intercept writing the Git LFS pointer file, parse
the pointer file in memory, and read the Git LFS OID, using the OID to look into

430 | Chapter 17: Tips, Tricks, and Techniques

https://oreil.ly/OUpOT

the .git/lfs/objects/{OID} path. If the file is present, it will read the LFS object;
otherwise, it will download it. Finally, the smudge filter will write the LFS content to
the working directory.

In-depth technical specifications for the Git LFS extension are
available online.

Tracking Large Objects with Git LFS
After installing the Git LFS extension, you can use it in your repositories.

First you need to configure Git LFS for your repository:
 # initialize new repository
 $ pwd
 /tmp/git-lfs

 # inspect .git directory before configuring git lfs
 $ tree .git
 .git
 ├── HEAD
 ├── config
 ├── description
 ├── hooks
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── info
 │ └── exclude
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 8 directories, 17 files

 # configure git lfs for this repository
 $ git lfs install
 Updated git hooks.
 Git LFS initialized.

 # inspect .git directory after configuring git lfs
 $ tree .git
 .git

Git LFS | 431

https://oreil.ly/xJkTe

 ├── HEAD
 ├── config
 ├── description
 ├── hooks
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-checkout
 │ ├── post-commit
 │ ├── post-merge
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── info
 │ └── exclude
 ├── lfs
 │ └── tmp
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 10 directories, 21 files

Git LFS installs an additional folder, .git/lfs/tmp, along with the following commit
hooks: post-checkout, post-commit, post-merge, and pre-push. This is in direct
relation to the clean and smudge filters, which Git LFS uses when intercepting the
standard git add, git push, and git checkout commands.

Now you can add some large files and start tracking them as a Git LFS file:
 # create some large files
 $ truncate -s 100M video1.mp4
 $ truncate -s 100M video2.mp4
 $ truncate -s 300M texture1.png
 $ truncate -s 350M texture2.png

 $ ls -al
 total 0
 drwxr-xr-x 7 ppremk stax 224 Apr 24 16:36 .
 drwxr-xr-x 6 ppremk stax 192 Apr 24 16:15 ..
 drwxr-xr-x 10 ppremk stax 320 Apr 24 16:36 .git
 -rw-r--r-- 1 ppremk stax 314572800 Apr 24 16:36 texture1.png
 -rw-r--r-- 1 ppremk stax 367001600 Apr 24 16:36 texture2.png
 -rw-r--r-- 1 ppremk stax 104857600 Apr 24 16:35 video1.mp4
 -rw-r--r-- 1 ppremk stax 104857600 Apr 24 16:35 video2.mp4

 $ git status
 On branch main

 No commits yet

432 | Chapter 17: Tips, Tricks, and Techniques

 Untracked files:
 (use "git add <file>..." to include in what will be committed)
 texture1.png
 texture2.png
 video1.mp4
 video2.mp4

 nothing added to commit but untracked files present (use "git add" to track)

Since our example has a combination of video and image files, to track them we will
need to specify the file types for Git LFS to manage. Running the following command
will result in the creation of a .gitattributes file. We will need to track this file as well.
Note that you can configure tracking for new file types at any time by running the
same command with different parameters specifying the file type you plan to add:

 $ git lfs track "*.mp4" "*.png"
 Tracking "*.mp4"
 Tracking "*.png"

 $ cat .gitattributes
 *.mp4 filter=lfs diff=lfs merge=lfs -text
 *.png filter=lfs diff=lfs merge=lfs -text

 # Important to track and commit the .gitattributes file
 $ git add .gitattributes
 ...

 # Continue to add remaining files as how you would normally
 $ git add video1.mp4 video2.mp4 texture1.png texture2.png
 $ git commit -m "Add video and texture files"

 $ git log --oneline
 0c88d26 (HEAD -> main) Add video and texture files
 f134596 Add lfs tracking file

 # show information of Git LFS files in the index and working tree
 $ git lfs ls-files
 17a88af837 * texture1.png
 37e130c167 * texture2.png
 20492a4d0d * video1.mp4
 20492a4d0d * video2.mp4

 $ tree .git/lfs
 .git/lfs
 ├── objects
 │ ├── 17
 │ │ └── a8
 │ │ └── 17a88af83717f68b8bd97873ffcf022c8aed703416fe9b08e0fa9e3287692bf0
 │ ├── 20
 │ │ └── 49
 │ │ └── 20492a4d0d84f8beb1767f6616229f85d44c2827b64bdbfb260ee12fa1109e0e
 │ └── 37
 │ └── e1
 │ └── 37e130c1679c21acfe85c2c2f30aba984c910d389c8df9340b5bc4455f809220
 └── tmp

 8 directories, 3 files

Git LFS | 433

As you can see, the steps for working with Git LFS are fairly straightforward. Most of
the internal work is already handled by the extension for you. All you need to do is
install Git LFS on your machine, configure the repositories that will track large files,
and continue to track those files as you would any normal file in Git.

Useful Git LFS Techniques
Listed are some recommended techniques for tracking files in Git LFS:

Tracking file types correctly
When you supply a glob pattern to match a file type, as in the following
command:

git lfs track "*.mp4"

make sure you include the quotation marks, because otherwise your shell will
expand the glob pattern. As a result, Git LFS will track all individual files match‐
ing the specified pattern, and any new .mp4 files will not be tracked since only
the individual file names will be listed in the .gitattributes files instead of the
matching pattern.

Glob pattern matching
Git LFS supports tracking patterns similar to those supported by the .gitignore
file. This allows you to specify matching patterns to track directories or complex
filenames. It is recommended that you execute the git lfs track command
from the top-level directory of your repository since the patterns are matched
relative to the directory in which it is executed. For example:

• git lfs track images/ tracks all files in the images directory and its•
subdirectories.

• git lfs track *-lfs*.png tracks all .png files containing -lfs in their•
filename.

Matching files in case-sensitive platforms
When working with developers in a cross-platform setting, case sensitivity plays
an important role. For example, when you specify the following pattern on
Windows or macOS:

git lfs track "*.png"

both image.PNG and image.png files would be matched. However, on a Linux
machine, only the image.png file would be matched. You can consider the follow‐
ing technique:

git lfs track "*.[pP][nN][gG]"

434 | Chapter 17: Tips, Tricks, and Techniques

as a smart way to ensure that case-insensitive files are correctly matched to your
glob patterns.

Untracking an LFS file
If you decide to untrack a file type, you can do so using the git lfs untrack
command. Upon execution, you will need to add and commit the updated .gitat‐
tributes file again to reflect the changes:
 $ git lfs untrack "*.png"
 Untracking "*.png"

 # git add and commit the updated .gitattributes file

Resolving binary merge conflicts
Resolving merge conflicts in a text-based file is fairly easy, but when dealing with
large binaries, Git does not handle merge conflicts well. The best way to resolve
a binary merge conflict is to avoid it. With the lock command, you can register
a file as locked on the remote server. Locking a file will ensure that Git LFS
makes the specified file read-only on your local machine, thus preventing any
users from editing the file without having to lock it first. This enables you or
another developer to exclusively make changes to a large tracked binary file and
avoid the hassle of figuring out how to resolve a merge conflict in the event the
file is concurrently modified.

To lock a tracked LFS file, the first step is to specify which file types support
locking:
 $ git lfs track "*.png" --lockable

Next, when you are about to edit the file, you will need to specify the lock
command:
 $ git lfs lock assets/image.png
 Locked assets/image.png

Once you are done working on the file, you can unlock the file via the unlock
command. When pushing changes from your local repository, Git LFS will
validate that the file is not locked by another developer:
 $ git lfs unlock assets/image.png
 Unlocked assets/image.png

To get a list of files that are locked, you can run the git lfs locks command:
 $ git lfs locks
 assets/image.png ppremk ID:1401911

Git LFS | 435

You can unlock an existing file by supplying the --force
option with the command; for example, git lfs unlock

assets/image.png --force.

Converting Existing Repositories to Use Git LFS
If your existing repository already has large files and it is not configured to use Git
LFS, you can still install and track the known file types using LFS. However, from
the time you start tracking those files, Git LFS does not automatically convert older
versions of the files as a Git LFS object.

In short, those older versions are already part of the commit history. If you need to
convert the older files to use LFS, that will require a commit history rewrite. If the
trade-off for migrating an existing repository to use Git LFS over losing the commit
history is something you can live with, the git lfs migrate command is the tool
you need.

Let’s examine this:
 # clone an existing repository
 $ git clone https://github.com/ppremk/analyze-this.git
 Cloning into 'analyze-this'...
 remote: Enumerating objects: 22, done.
 remote: Counting objects: 100% (22/22), done.
 remote: Compressing objects: 100% (9/9), done.
 remote: Total 22 (delta 7), reused 22 (delta 7), pack-reused 0
 Receiving objects: 100% (22/22), 36.25 KiB | 331.00 KiB/s, done.
 Resolving deltas: 100% (7/7), done.

 # inspect files
 $ ls -al
 total 7896
 -rw-r--r-- 1 ppremk stax 24 Apr 28 00:47 README-v0.md
 -rw-r--r-- 1 ppremk stax 20 Apr 28 00:47 README.md
 -rw-r--r-- 1 ppremk stax 25000000 Apr 28 00:47 bigfile1.exe
 -rw-r--r-- 1 ppremk stax 30000000 Apr 28 00:47 bigfile2.exe
 -rw-r--r-- 1 ppremk stax 35000000 Apr 28 00:47 bigfile3.exe
 -rw-r--r-- 1 ppremk stax 1000000 Apr 28 00:47 file4.md
 -rw-r--r-- 1 ppremk stax 1000000 Apr 28 00:47 file5.md
 -rw-r--r-- 1 ppremk stax 2000000 Apr 28 00:47 file6.md
 drwxr-xr-x 4 ppremk stax 128 Apr 28 00:47 logs
 drwxr-xr-x 3 ppremk stax 96 Apr 28 00:47 scripts
 drwxr-xr-x 4 ppremk stax 128 Apr 28 00:47 toolkit

 $ git log --oneline
 e2a20a2 (HEAD -> main, origin/main, origin/HEAD) add folders
 19263cb add remaining files
 9ea727a add bigfiles
 1d07224 add udated readme
 cd654e0 intial commit

436 | Chapter 17: Tips, Tricks, and Techniques

By default, the git lfs migrate command will only work on your currently
checked-out branch. You can use the --everything option to include every branch in
your repository.

Next, we will examine which file types are taking up space in your repository:

 # check for large files in the cloned local repository
 $ git lfs migrate info --everything
 migrate: Sorting commits: ..., done.
 migrate: Examining commits: 100% (5/5), done.
 *.exe 90 MB 3/3 files(s) 100%
 *.md 4.0 MB 5/5 files(s) 100%
 *.config 14 B 1/1 files(s) 100%

 LFS Objects 0 B 0/4 files(s) 0%

Now we will migrate the files to use Git LFS. Keep in mind that the git lfs migrate
command will perform the conversions only in your local repository. You will need to
force-push or create a new remote to push the migrated repository after executing the
LFS conversion:

 # The ".exe" file is a good candidate to migrate over to use Git LFS
 $ git lfs migrate import --everything --include="*.exe"
 migrate: Sorting commits: ..., done.
 migrate: Rewriting commits: 100% (5/5), done.
 main e2a20a2db7916f1efc5430a9a15bc5c0a8c41860 -> 7e08e949e76653c8f008a65aa42cea9d48b8b473
 migrate: Updating refs: ..., done.
 migrate: checkout: ..., done.

 # check for the new commit history
 $ git log --oneline
 7e08e94 (HEAD -> main) add folders
 293ff49 add remaining files
 9fab33c add bigfiles
 bdd78fa add udated readme
 b682340 intial commit

 # Force push to existing remote or create a new remote to push the LFS migrated repo

The git lfs migrate command will examine, create, and mod‐
ify .gitattributes files as necessary.

Git LFS | 437

Summary
Some of the tips we shared in this chapter can help you quickly navigate your
day-to-day Git requirements, especially when you need to know what has changed
recently in your repository and when you need to do a direct search on objects in the
Git object store using the git grep command. In this chapter, we also discussed ways
you can successfully plan and migrate your repository to be a full-fledged Git repo.
We ended the chapter by explaining how large files can be version-controlled using
Git LFS—something we highly recommend when you need to work with files that Git
does not compress well, to avoid inflating the size of your repository unnecessarily.

438 | Chapter 17: Tips, Tricks, and Techniques

CHAPTER 18

Git and GitHub

Since the inception of Git in 2005, we’ve seen the growth of a community of Git-
based tools. Today those tools number in the hundreds and come in many forms,
from desktop GUIs to Git extensions in popular IDEs. But one stands out in the
minds of many developers and even nondevelopers: GitHub.

Many regard the emergence of GitHub in a way that many of us now consider
working under the phrase social coding. This concept of working was first applied to
open source enterprises, but over the years we have seen this idea of code as a point
of geographically distributed collaboration grow even in closed source enterprises.
It is not surprising that this trend has led to a transformation in which developers
maintain and build software by way of innersource these days.

In this chapter, we focus on how GitHub leverages native Git functionalities, mainly,
what to expect when you host your repository on the platform. We start by providing
an overview of GitHub as a hosting platform for personal and business accounts.
Then we elaborate on how GitHub fits within the Git ecosystem. Next, we dive into
specifics around working with your repository in GitHub and navigating its available
functionalities, combined with learning how to apply a simple branching strategy
and resolving merge conflicts. Before summarizing the chapter, we briefly discuss
available methods for extending and integrating with the GitHub platform and how
you can practice modern software development using GitHub.

With that, let’s take a look at what GitHub has to offer.

About GitHub
GitHub is, in a nutshell, a Git hosting platform. It is regarded as one of the most
popular platforms, rich in features that facilitate disciplines such as collaborative
coding, automation and CI/CD, security, project management, team administration,

439

https://oreil.ly/f9gaX
https://github.com

and a set of client apps. These functionalities have been a catalyst for building a
community of developers who thrive on building and releasing software products on
the platform, be it for personal or business use.

At the time of this writing, GitHub has 83+ million developers, 4+ million organiza‐
tions, and 200+ million repositories and is present in about 90% of Fortune 100
companies, making it the largest and most advanced development platform in the
world (Figure 18-1).

Figure 18-1. GitHub home page

Types of GitHub Accounts
To start using GitHub, first you need to create an account on the platform. Your
GitHub.com personal account is your identity on the platform, and it represents you
as an individual. Having an active account allows you to collaborate on code stored
on the platform. It also enables you to organize and control access to the code or
repository stored on GitHub.

440 | Chapter 18: Git and GitHub

https://oreil.ly/B6tLd
https://oreil.ly/B6tLd

You can create three types of accounts on GitHub:

Personal accounts
Everyone’s personal account has a username and profile. Figure 18-2 shows an
example of a user profile. With an active personal account, you can own reposito‐
ries, GitHub Packages, and projects. Any actions you take on the platform will be
attributed to your personal account.

Figure 18-2. Octocat’s account profile

There are two types of personal accounts: GitHub Free and GitHub Pro. Neither
type has a limit imposed on the number of public or private repositories an
account can own. They also allow for an unlimited number of collaborators on
those repositories owned by the account. The difference between the types is that
with a GitHub Free account, you will have access only to limited feature sets for
private repositories.

Types of GitHub Accounts | 441

Organization accounts
Organization accounts are shared accounts. An organization account allows for
an unlimited number of persons to collaborate on resources owned by the
organization. Similar to a personal account, an organization account can own
repositories, GitHub packages, and projects. Figure 18-3 shows the option to
display a README.md view in the profile page.

Figure 18-3. GitHub Organization account profile

As a person who has granted access to an organization, you will not be able
to directly sign in to an organization account. Instead, you will need to sign in
to your own personal account. Then, actions you perform on resources owned
by the organization will be attributed to your personal account. Your personal
account can be associated with multiple organizations.

442 | Chapter 18: Git and GitHub

With an organization account, a hierarchy of roles are introduced for each per‐
sonal account that is granted access. The three types of roles are owner, member,
and outside collaborators. An owner is also regarded as an organization admin.
These roles are introduced to gate different levels of access to the organization
and its resources. Figure 18-4, referenced from the official GitHub documenta‐
tion page, helps illustrate this concept.

Figure 18-4. Roles in an organization account

Enterprise accounts
An enterprise account is very similar to an organization account. With an enter‐
prise account, you can manage multiple organizations.

The GitHub Enterprise Cloud and GitHub Enterprise Server are variations of
enterprise accounts that enable you to enforce and centrally manage any policies
or billing information for one or more organizations owned by the enterprise
account. They also allow for specific enforcement options for various settings,
and they support delegation of policy configuration and enforcement to organi‐
zation owners to provide flexibility when administering the account.

With a GitHub enterprise account, you also have two deployment options to
choose from: GitHub Enterprise Cloud, which is cloud-hosted on a GitHub-
operated data center, and self-hosted, where you can deploy a GitHub Enterprise
Server in your own data center or on supported cloud providers.

It is important to understand that, when you use GitHub, you sign in using your
personal account. An organization account helps enhance the collaboration between
multiple personal accounts, and with an enterprise account, it becomes easier to
centrally manage multiple organizations under one roof.

Types of GitHub Accounts | 443

https://oreil.ly/QD7xC
https://oreil.ly/QD7xC

For pricing information and a high-level overview of the features
provided by each account, visit the GitHub website. An in-depth
comparison of the features is available online as well.

GitHub in the Git Ecosystem
In “Git Components” on page 3, we provided an overview of Git components. Fig‐
ure 18-5 revisits that figure here in the context of GitHub.

Figure 18-5. Overview of Git components

Building on Figure 18-5, GitHub is a Git repository hosting platform, which technically
also makes it a Git server. Beyond supporting native Git functionality, GitHub also
has features that enable social coding by lowering the barrier to collaborate. Features
such as GitHub issues, pull request, protected branches, codeowners, organizations,
teams, and projects are some examples.

As a Git Client, GitHub over the years has developed and made freely available some
great tools to help support adoption of the platform. They include the following:

GitHub Desktop
With GitHub Desktop, you can work in your familiar Git workflow via a visual
interface. It is an open source, Electron-based GitHub app that allows you to
make and amend your commits interactively, check out branches from pull
requests, create new branches, easily switch between repositories, and even add
coauthors to your commits. Figure 18-6 shows that Git Desktop is a GUI Git
Client.

444 | Chapter 18: Git and GitHub

https://oreil.ly/YiH5i
https://oreil.ly/m4rvL
https://oreil.ly/m4rvL

Figure 18-6. GitHub Desktop

If you’re interested in contributing to the development of Git‐
Hub Desktop, you can fork the repository.

GitHub CLI
The GitHub CLI is a command-line tool that brings GitHub’s features into your
development environment (either run as a system process that is not connected
to any terminal or run as terminal emulators). You can interact with a GitHub
repository’s issues, pull requests, and a variety of GitHub features right from your
development environment. This tool aims to reduce context switching between
your development environment and the GitHub UI to perform tasks in your
typical development workflow.

The GitHub CLI can be installed using popular package managers for supported
operating systems. It is also freely available and supports extension of its standard
functionality. Once it’s installed, you can use the gh command to query and work
with any GitHub repositories directly from your local terminal:
 # install GitHub CLI

 $ gh repo
 Work with GitHub repositories

 USAGE

GitHub in the Git Ecosystem | 445

https://oreil.ly/5pOEm

 gh repo <command> [flags]

 CORE COMMANDS
 clone: Clone a repository locally
 create: Create a new repository
 fork: Create a fork of a repository
 list: List repositories owned by user or organization
 sync: Sync a repository
 view: View a repository

 INHERITED FLAGS
 --help Show help for command

 ARGUMENTS
 A repository can be supplied as an argument in any of the following formats:
 - "OWNER/REPO"
 - by URL, e.g. "https://github.com/OWNER/REPO"

 EXAMPLES
 $ gh repo create
 $ gh repo clone cli/cli
 $ gh repo view --web

 LEARN MORE
 Use 'gh <command> <subcommand> --help' for more information about a command.
 Read the manual at https://cli.github.com/manual

GitHub CLI complements but does not replace the native Git
commands. However, it does bring GitHub features to your
command line. You can learn more about installation and
potentially contribute to GitHub CLI.

GitHub Mobile
GitHub Mobile is a client application aimed at helping you manage your work on
GitHub from your mobile and smartphone devices. With the mobile application,
you are limited to only GitHub features. You can triage and manage notifications,
collaborate on issues, and pull requests. It also allows you to secure your Git‐
Hub.com account with two-factor authentication.

GitHub codespaces
A GitHub codespace is a development environment hosted in the cloud. The
development environment spins up a Visual Studio code that you can access
from your browser.

You can create a codespace from any branch or commit in your GitHub repos‐
itory. All development work you do will use cloud-based compute resources.
Generally, a codespace runs on a variety of VM-based compute options hosted by
GitHub; you can pick compute options ranging from 2 to 32 core machines.

446 | Chapter 18: Git and GitHub

https://oreil.ly/XB9bG

An advantage of using a codespace is that it provides a consistent development
environment. All you need to do is commit a configuration file to your repos‐
itory in order to create reusable codespace configurations for every allowed
collaborator of your repository.

To learn more about GitHub codespaces, we recommend that you read the
official documentation.

Figure 18-7 shows how easy it is to start a new codespace from within your
browser. This is one step closer to getting away from the “works on my machine”
conundrum developers have been facing over the years.

Figure 18-7. Launching a codespaces

Your organization admin can manage billing costs when using
codespaces by setting a spending limit to avoid surprise
overspending.

Hosting a Repository in GitHub
When you have successfully created an account on GitHub, you can easily create a
repository and start collaborating with your peers. After logging in from the Sign In
page, you are directed to the GitHub Dashboard, shown in Figure 18-8. Here you are
presented with some useful information in a unified view; you can quickly jump to
repositories that were worked on recently, keep track of recent activity, get a feed of
the latest changes from GitHub, and discover new projects or activities of people you
follow via your personal news feed.

Hosting a Repository in GitHub | 447

https://oreil.ly/uTvwd

Figure 18-8. GitHub Dashboard

To create a new repository, click the New button on the upper left of the page. This
will bring you to the “Create a new repository” page (Figure 18-9). Here you can
provide a new repository name under your personal account in the input field. If you
are a member of an organization, you can choose the organization account from the
Owner drop-down combo button.

You can also create a new repo by navigating directly to the New
Repository page.

Also on this page, you have the option to provide a description for the repository,
followed by an option to make this repository either public or private (depending on
the type of account, a third repository visibility type labeled Internal is also presented
as an option). A public repository is discoverable and accessible to anyone who is
on GitHub.com. A private repository will require the owner of the project to invite
collaborators, making it less discoverable. A repository owner can convert the visibil‐
ity of a repository at any point in time. However, bear in mind the consequences of
switching visibilities of a repository, especially if your project already has a thriving
community of active contributors. If you plan to make your project freely available,
we recommend that you set your repository visibility to public from the start.

448 | Chapter 18: Git and GitHub

https://oreil.ly/LBZIr
https://oreil.ly/LBZIr

Once you have decided on your repository’s visibility, you have the option to initialize
the repository. This simply means creating a new bare repository with a README.md
file. You also have the option to add some additional files: a .gitignore file based on a
list of templates for popular programming languages, and a license file offering a list
of templates to choose from.

Figure 18-9. Creating a new repository

Hosting a Repository in GitHub | 449

If you are not sure which type of license to choose for your project,
a high-level overview of license types is online.

If you have an existing repository and you plan to host it in GitHub, do not check the
option to “Add a README file.” By leaving this option unchecked, you will create a
placeholder upstream repository with the name of your choosing. Review “Migrating
from a Git Version Control System” on page 416 for a refresher on this topic. Upon
clicking the “Create repository” button, your new repository will be created with the
options you have provided

Repository View
Figure 18-10 shows the Repository page, which features tabs and links to frequently
used features supporting your development needs.

Figure 18-10. Repository view

The Repository view is your default view. This page displays the names of the owner
and of the repository. In Figure 18-10, temyksciraa is the owner of the vc-git-3rd
repository, and this repository is public. Toward the top of the page are the Pin,
Watch, Fork, and Star buttons.

The Pin option pins the repository on your GitHub profile page (Figure 18-11).

450 | Chapter 18: Git and GitHub

https://oreil.ly/sI7U7

Figure 18-11. Pinned repository

As shown in Figure 18-12, you can control notifications you receive on activities
in this repository. The options allow you to be granular regarding which activity is
important to you. In an open source project, the watcher count can often be a signal
of the usefulness or popularity of the project.

Figure 18-12. Watch options

Hosting a Repository in GitHub | 451

In GitHub, @mention is an easy way to notify or include someone
in a discussion on issues or pull requests. The @mention refers to a
user or team account.

The Fork option allows you to create a copy of the repository in an account you have
access to.

In the past, the term forking carried a negative connotation. In the coding landscape
of yesteryear, forking often meant an aggressive parting of ways with the primary
copy of the project, with the intent to take the program in a different direction.

GitHub’s idea of forking is a positive one that enables a greater number of contribu‐
tors to make a greater number of contributions in a controlled and highly visible way.
This does not pose any risk to the core project because the changes are happening in
the forked repository, not the original repository.

A primary benefit of this model is the transparency and public visibility of the
community contributions, even before they are submitted back to the core project for
discussion and potential incorporation. Figure 18-13 is a view of the mirror copy of
the Git source code on GitHub and represents a great example of forking.

Figure 18-13. Forking

452 | Chapter 18: Git and GitHub

The Star button acts as a bookmark to repositories you are interested in or following.
You can curate a list of categories for any repositories you would like to follow, as
shown in Figure 18-14.

Figure 18-14. Creating Star lists

Code
Figure 18-15 shows the root view of your repository. Here, you can view the total
number of branches and tags in the repository, along with an About section that
displays a description of the repository and links to list the repository’s README,
License, Stars, Code of Conduct if available, Watching, and Forks. If the repository
contains Releases or GitHub Packages, they will also be displayed here. This view
also displays profile pictures of contributors to the project and a breakdown of
programming languages used in the project repository.

You can search for a specific file in the repository using the “Go to file” button. In
addition, you can quickly add a file to the repository without cloning the repo you
are able to do so via the “Add file” button. Figure 18-16 shows how to get the remote
URL of the repository for cloning using supported protocols. It is also where you can
launch a codespace if codespaces are enabled.

Hosting a Repository in GitHub | 453

Figure 18-15. Code view

Figure 18-16. Code button

454 | Chapter 18: Git and GitHub

Figure 18-17 shows a header and information for the files within the repository. The
header captures a summary of the commit message, the short commit SHA, and a
timestamp of the commit. It also summarizes the total number of commits for the
repository.

Figure 18-17. Repository file list

Clicking the commit details in the header will bring you to a contextual page display‐
ing extended information about the specific commit. To view a visual commit history
for the selected branch, you can click the total number of commits in the header
(Figure 18-18).

The repository file list view is a 1:1 representation of your project files and structure.
In other words, it is basically what you will see in your working directory when you
clone your repository. The cool thing about this view from GitHub.com is that, if you
have a markdown file named README.md in the directory, the UI will automatically
render the content of the README.md file for you in the Code view. You can include
README files in specific folders to improve async communication and assist in open
source development.

Hosting a Repository in GitHub | 455

Figure 18-18. Visual commit history

Issues
GitHub issues help you manage and organize your work on GitHub. Although not
a Git feature, issues allow you to track feedback, ideas, tasks, and even bugs for
your project. When you create an issue, you can cross-reference related issues or
pull requests and even @mention teams or users who collaborate on the repository.
Figure 18-19 displays all related issues (either in a closed or open state) for a particu‐
lar repository. This allows you to capture a historic context for how or why certain
development decisions were made in the lifetime of the project. You can even pin
popular issues in the same view.

In the Issues list view, you can sort, filter, and manage labels and milestones for your
repository. You can also create a new issue from here by clicking the “New issue”
button.

456 | Chapter 18: Git and GitHub

Figure 18-19. Issues list

The issues view in Figure 18-20 shows the main thread for an issue, followed by
issue-comment replies. In the Comment field, you can write and format replies using a
syntax for formatting text called GitHub Flavored Markdown. You can take advantage
of the text formatting toolbar to help in using the correct syntax. All of the activities
you do in an issue are reflected in the issue’s timeline.

This includes activities such as adding an assignee, creating labels, and adding the
issue to either a milestone or a project. You can also create a new branch for a specific
issue to work on adding a feature or bug fix in isolation from the default branch, or
to link an existing pull request to the issue referencing the changes you introduce to
address the context discussed in the issue.

Hosting a Repository in GitHub | 457

Figure 18-20. Issues view

You can keep up with the progress on the issue by subscribing or customizing the
iissue notification settings as shown in Figure 18-21.

Depending on the rights you have been assigned in the repository, when required
you can lock the conversation of the issue, pin it, transfer it, or even delete it (we
recommend closing the issue instead of deleting it, to help in capturing the history of
the effort).

For more detail on how you can leverage GitHub issues to organize and track your
work on GitHub, we recommend that you review the official documentation.

You can find the specifications for the GitHub Flavored Markdown
syntax online.

458 | Chapter 18: Git and GitHub

https://oreil.ly/5iuAU
https://oreil.ly/ZXE7c
https://oreil.ly/ZXE7c

Figure 18-21. Issue notification settings

Pull Requests
A GitHub pull request allows you to inform changes you are proposing in a branch
for a specific repository. You can facilitate code reviews and discussions on the
potential changes you are proposing with collaborators of the repository, further
prompting required changes or commits to address feedback from the process. Once
all required criteria are met, you can then proceed to merge your pull request into the
intended target branch of the repository.

Much like the view shown in Figure 18-19, a pull request (Figure 18-22) has a similar
pull request list and shares the same functionality.

You can create a new pull request from here by clicking the “New pull request”
button.

Hosting a Repository in GitHub | 459

Figure 18-22. Pull request list

Figure 18-23 also shares many similarities with Figure 18-20, albeit with a few excep‐
tions. For example, there is an extra Reviewers option. This option alerts assigned
reviewers to any open pull requests. Just like the issues view, all activities you do in
a pull request are reflected in the pull request’s timeline, including the commits you
add via the branch that the pull request is based on.

Reviewers can be automatically assigned if there is a CODEOWN‐
ERS file defined in a branch in the repository.

460 | Chapter 18: Git and GitHub

https://oreil.ly/dHqJs
https://oreil.ly/dHqJs

Figure 18-23. Pull request view

The pull request view shown in Figure 18-23 also includes a number of tabs. The
Conversations tab is meant to facilitate review discussions for the changes you are
introducing via a topic or feature branch. The conversations can be captured as an
issue comment or inline review on the line of code that is committed.

Hosting a Repository in GitHub | 461

Figure 18-24 is an example of an inline code comment conversation.

Figure 18-24. Inline code comment conversation

Within the Conversation tab, near the end of the page, there is a section that includes
a list for one of the Code quality features in a pull request. (The other is the Checks
tab.) The view shown in Figure 18-25 informs you whether your commits meet the
required standards and conditions enforced by the owner of the repository.

462 | Chapter 18: Git and GitHub

Figure 18-25. Pull request status check

Hosting a Repository in GitHub | 463

Status checks are mostly associated with external processes, most commonly your
continuous integration builds and deployment pipelines, code linting, and code qual‐
ity checks, which are triggered for every push you make in the branch of your pull
request in the repository. Repository owners and admins can configure required
status checks via branch protection rules from the “Code and automation” section of
the repository’s settings page.

In the Commits tab, you are presented with the branch commit history (Fig‐
ure 18-26) associated with your pull request. From this view you can jump to specific
commits by clicking the commit SHA, the commit message, or the < > - browse code
button. Status check notifications for each of the commits (shown as a tick or check
mark) are also displayed in this view.

Figure 18-26. Branch commit history

In a pull request, there are two types of status checks. One is the pull request status
check shown in Figure 18-25, and the other is the Checks page. Figure 18-27 differs
from Figure 18-25 in that checks provide detailed line annotations and messaging
and are available for use only with a GitHub app.

464 | Chapter 18: Git and GitHub

Figure 18-27. Checks

As mentioned in the official GitHub documentation about checks,
the Checks tab will be populated for pull requests only if you set up
checks.

When reviewing a pull request, any collaborators with read access to the repository
can view and comment on the proposed changes. These reviews can include sugges‐
tions specific to lines of code in files being introduced or the overall batch of commits
in the branch of the pull request. The “Files changed” tab is where the maintainer of
the repository can review incoming changes and apply them directly from the pull
request. Figure 18-28 shows a view after the “Files changed” tab.

Hosting a Repository in GitHub | 465

https://oreil.ly/0jzxV

Figure 18-28. Files changed

As a reviewer, you can suggest changes by clicking on the blue plus sign when you
hover over the lines in a file (see Figure 18-29).

Figure 18-29. Suggesting changes

466 | Chapter 18: Git and GitHub

The files tree view allows for easy navigation between files that are edited in the pull
request. You can compare changes from selected commits or all commits in the pull
request (see Figure 18-30).

Figure 18-30. Comparing changes

When viewing introduced changes in a file, you can select how the diff view is
presented by clicking the gear icon. You can select from a unified or a split view and
also select to hide whitespace when necessary (see Figure 18-31).

Finally, as a maintainer or owner of the repository, you can approve a pull request
(Figure 18-32) by clicking the “Review changes” button. Here you can comment on,
approve, or request changes to the proposed contribution. Note that you will be able
to approve or request changes only for pull requests of other collaborators!

Hosting a Repository in GitHub | 467

Figure 18-31. Diff view

Figure 18-32. Approving a pull request

468 | Chapter 18: Git and GitHub

The shipit squirrel and the acronym LGTM (Looks Good To Me)
go hand in hand when approving a pull request!

Figure 18-33 shows the end result of an approved pull request. If all status checks
are passing and required approvals are in place, the pull request is ready to merge
into a target branch! When deciding to merge, GitHub provides you with three merge
options to choose from, as shown in Figure 18-34. The options are self-explanatory
and build on the native Git merge strategies we discussed in Chapter 17.

Figure 18-33. Approved pull request in a conversation

Hosting a Repository in GitHub | 469

Figure 18-34. Three merge options

Once you have merged the pull request, it is a good housekeeping practice to choose
the “Delete branch” option (Figure 18-35). The deleted branch can be restored at a
later time if required, but bear in mind that you may run into conflicts given the
development of the project over time.

Figure 18-35. Delete branch

470 | Chapter 18: Git and GitHub

The GitHub Flow
The GitHub Flow is a lightweight branch-based workflow. From a pure Git imple‐
mentation, the branching strategy for GitHub Flow consists of one long-lived branch
and short-lived branches from which changes are merged.

Typically the long-lived branch is the default branch, commonly termed main, and
the short-lived branches are the feature branches, representing changes that are being
introduced.

The principle here is that you will be using short-lived branches to introduce changes
to your repository that will be merged to the long-lived branch once the short-lived
branches satisfy mandatory requirements. These changes can range from bug fixes to
features and functionalities you add to your project.

When adopting the GitHub Flow, you can follow the steps directly through the
GitHub web interface, standard Git command line, GitHub CLI, or GitHub Desktop
or any IDEs that support Git as an extension.

Following are the steps for adopting the GitHub Flow:

Step 1: Create a branch
The first step is to create a branch in your repository (Figure 18-36). Pick a
meaningful name for your branch; this will help your collaborators quickly grasp
the intended changes being introduced. When working in a team, it’s also best to
stick to an agreed naming convention for a better development experience.

Figure 18-36. Creating a branch

Introducing changes via a branch also allows you to experiment and iterate on
changes in isolation and away from the main branch, avoiding breaking anything
in your main codebase.

The GitHub Flow | 471

Step 2: Make changes
The next step is to start introducing changes. This is done via commits (see Fig‐
ure 18-37). Be sure to craft your commits to be atomic, capturing and grouping
changes as a logical unit. By doing so, if you need to revert a specific change,
you can select to revert a single commit instead of having to roll back a batch of
changes.

Figure 18-37. Making changes

A clear and succinct commit message will make life easier for you and your
collaborators in future development efforts!

Step 3: Create a pull request
Once you are ready to share your changes and solicit reviews from your collab‐
orators, you can open a pull request for your branch (see Figure 18-38). In
your pull request, including context on changes you are introducing will provide
valuable information for collaborators who will be conducting the review. This
will allow for meaningful async discussions around the specifics of your changes,
leading to a smooth and pleasant reviewing experience.

Figure 18-38. Creating a pull request

It is important to note that the pull request you open is on GitHub. For this to
happen, you will need to propagate your changes to the remote repository hosted

472 | Chapter 18: Git and GitHub

there. In short, if you have been working on your local machine, you will need to
push your changes to the remote upstream repository on GitHub.com.

Step 4: Address review comments
After the pull request is opened, you and your collaborators can easily have con‐
versations about the code and changes you are introducing (see Figure 18-39).
If the repository already has code quality features set up, such as status checks,
you will need to ensure that all criteria are met, all while the review process is
ongoing.

Figure 18-39. Addressing review comments

Reviewers can request changes, leave comments, and approve your changes, all of
which you can access from the Conversation tab.

Step 5: Deploy your code
Once your pull request is approved, you have the option to deploy from your
feature branch to a staging or even production environment (see Figure 18-40).
This step is highly dependent on your workflow, specifically, the automation,
continuous integration builds, and deployment pipelines adopted by teams as
their development practice.

Figure 18-40. Deploying the code

The GitHub Flow | 473

At GitHub, ChatOps allow a pull request to be deployed to a production envi‐
ronment, making it self-serve for any contributor of a repository. As an industry-
standard best practice, we’ve seen similar workflows but with deployment done
to a staging rather than a production environment.

Step 6: Merge the pull request
The final step in the GitHub Flow is to merge your pull request into the main
branch (see Figure 18-41). Depending on the branch protection rule configured
for the repository, you may need to ensure that all checks, statuses, and approvals
are in place prior to completing the merge.

Figure 18-41. Merging the pull request

Upon successfully merging your feature branch into the main branch, as a
good housekeeping practice you should delete the feature branch since all your
changes will be part of the main line. This also helps prevent collaborators from
accidentally working on a branch that may be outdated.

A comprehensive guide on the GitHub Flow, with substeps for each step we described
here, is available on the official GitHub documentation page.

In addition to the GitHub Flow, there are alternative workflows that you can adopt
according to your development needs. You can learn about them in the Git documen‐
tation.

One popular workflow that is commonly compared to the GitHub Flow is the Git
Flow. We recommend reading this blog post by Vincent Driessen to learn more about
the Git Flow branching model.

Resolving Merge Conflicts in GitHub
Merge conflicts are a natural by-product of working with a distributed version con‐
trol system like Git. A merge conflict isn’t necessarily a bad thing. As you already
know, merge conflicts occur when branches have competing or conflicting changes.

474 | Chapter 18: Git and GitHub

https://oreil.ly/VKZc9
https://oreil.ly/siP25
https://oreil.ly/siP25
https://oreil.ly/Y6prx

When dealing with merge conflicts in your workflow, on the GitHub web interface,
you have the ability to visually compare changes you intend to merge from your
branch and the target base branch. You can view a list of conflicting changes or files
during a merge conflict via the “Resolve conflicts” button (see Figure 18-42) on the
“Pull request” page.

Figure 18-42. Resolving a merge conflict

Let’s simulate a merge conflict and learn how to resolve it on the GitHub web
interface.

We will use the GitHub Flow to introduce a change to the README.md file in
our example repo. For simplicity, we will skip Step 4 and Step 5 from the previous
exercise to help focus on key takeaways from this section:

Step 1: Create a branch
We will create a new branch from the GitHub web interface as user temyksciraa
by clicking the branch selector menu. Provide a meaningful branch name and
click the “Create: branch” option (Figure 18-43).

Figure 18-43. Adding a new feature branch

Resolving Merge Conflicts in GitHub | 475

Step 2: Make changes
Next, we will start introducing changes to the README.md file. We can directly
edit the file by clicking the pencil icon at the upper right of the file when in view
mode. We’ll provide a good commit message and commit directly to the branch
created earlier (Figure 18-44).

Figure 18-44. Adding new changes to README.md

Step 3: Create a pull request
When in the Code tab, GitHub provides a shortcut for you to quickly create
a pull request from branches with changes that were pushed to the repository
recently (it detects this automatically and proposes a banner with the branch
name). Clicking “Compare & pull request” will redirect you to the “Create a pull
request” page where you can verify the changes and open a new pull request
(Figure 18-45).

For this example to work, please do not immediately merge
the pull request you just created!

476 | Chapter 18: Git and GitHub

Figure 18-45. Creating a new pull request

Step 4: Address review comments
After the pull request is opened, you and your collaborators can easily have
conversations about the code and changes you are introducing. If the repository
already has code quality features set up, such as status checks, you will need to
ensure that all criteria are met, all while the review process is ongoing.

Reviewers can request changes, leave comments, and approve your changes, all of
which you can access from the Conversation tab.

Step 5: Deploy your code
Once your pull request is approved, you have the option to deploy from your
feature branch to a staging or even production environment. This step is highly
dependent on your workflow, specifically, the automation, continuous integra‐
tion builds, and deployment pipelines adopted by teams as their development
practice.

At GitHub, ChatOps allow a pull request to be deployed to a production envi‐
ronment, making it self-serve for any contributor of a repository. As an industry-
standard best practice, we’ve seen similar workflows but with deployment done
to a staging rather than a production environment.

Step 6: Merge the pull request
When you are ready, you can merge the pull request by clicking the “Merge pull
request” button (Figure 18-46).

Resolving Merge Conflicts in GitHub | 477

Figure 18-46. Merging changes

Now that we have prepared the first branch, we will introduce a new conflicting
change via another new branch created from the main branch. Follow the steps we
outlined initially for GitHub Flow to create this branch and introduce changes to it,
and then open a pull request when you are ready, but do not merge the changes yet!

We will simulate the user ppremk creating a new branch named
ppremk/update-readme for this example.

In order to trigger the merge conflict, you should now merge the changes from
the earlier pull request, that is, the changes introduced by user temyksciraa via the
temyksciraa/add-image branch in Figure 18-46.

Upon merging, you will see the “Resolve conflicts” button shown in the pull request
section of the newly created pull request by the second user, in this case the user
logged in as ppremk (Figure 18-47).

478 | Chapter 18: Git and GitHub

Figure 18-47. Resolving conflicts

In the “Conflict resolution” page shown in Figure 18-48, you can view the conflict
resolution markers along with some information on the branches that are having the
conflict. This is captured as a short description between the pull request title and the
conflict resolution file list view. Resolve the conflict as you see fit. We discussed how
to inspect and resolve conflicts in “Inspecting Conflicts” on page 132.

Figure 18-48. Conflict resolution page

When there is more than one conflicting change for a file, you can
traverse through the conflicts by clicking the Prev and Next options
in the file content view header component.

In our example, we have decided to combine both conflicting changes introduced
via the separate branches. We have also cleaned up the conflict resolution markers.

Resolving Merge Conflicts in GitHub | 479

As a final step to resolve the conflict, click the “Mark as resolved” button (see
Figure 18-49).

Figure 18-49. Marking a conflict as resolved

Once you have marked a conflict as resolved, the files with the conflict will display
a green checkmark to denote the resolution and whether all conflicting files have
been marked as resolved. By clicking the “Commit merge” button at the upper right
of the page, you can continue with the next steps for merging the pull request (see
Figure 18-50).

Figure 18-50. Committing a conflict resolution

On the “Pull request” page, you will notice that the “Merge pull request” button (see
Figure 18-51) is visible again, and you can proceed to merge the changes to the target
branch. Do note that your resolution will show up as an extra commit, with the
default commit message “Merge branch main into…”

After completing the merge, you can navigate to the Code tab to view the new
content of the README.md file, which combines changes from users temyksciraa and
ppremk in the same file (Figure 18-52).

480 | Chapter 18: Git and GitHub

Figure 18-51. Merging a resolved conflict

Figure 18-52. Updated README.md

Resolving Merge Conflicts in GitHub | 481

In this example, we were able to resolve simple conflicts that can be directly resolved
via the GitHub web interface. There will be situations where the merge conflict is
complex, and it will not be intuitive to resolve the conflict from the web interface
directly. For such scenarios, you will need to resolve the conflict from the command
line (Figure 18-53).

Figure 18-53. Resolving the conflict from the command line

GitHub provides you with some tips on how to do this. Clicking the link “command
line instructions” will give you the steps you can take to resolve the conflict from your
local machine. Upon resolving the conflict locally, you will need to push the changes
back to the upstream repository to continue merging the change.

Development Workflows
The choice of Git as a development team’s version control system and, more specifi‐
cally, the choice of GitHub as the repository host facilitates dozens of unique usage
patterns. Three of these usage styles are briefly described.

482 | Chapter 18: Git and GitHub

The centralized model, shown in Figure 18-54, while still offering the local commit
insulation that isn’t afforded by true centralized systems like SVN, is the simplest but
least interesting of the models. It is an easy first step because developers push their
local commits frequently so as to simulate the “everything is on the central server”
state that was enforced by their version control tool of yesteryear. Although this can
be a viable starting pattern with Git, it is a mere stepping stone toward unique and
valuable leveraging of the distributed and collaborative model Git and GitHub have
to offer.

Figure 18-54. Centralized model

Next up is the lieutenant and commander model shown in Figure 18-55. You’ll
recognize it as very similar to that enabled by the pull request facilities of GitHub.
It is important to note that Git projects in the absence of GitHub have a means of
implementing this model through emails and links passed around as patches, but
always with greater apparent friction and ceremony than real pull requests.

Development Workflows | 483

Figure 18-55. Linux lieutenant and commander model

Last, for companies that are leveraging open source and want to donate back their
bug fixes but keep the innovations in-house, an arbitrator for the two repositories can
be established. This arbitrator, as shown in Figure 18-56, picks and chooses which
commits are cherry-picked and pushed back into the public domain to the open
source version of the project. Although this is possible, as companies gain experience
interfacing with the open source culture and community, this style of approach is
becoming less common. Companies either hire open source developers as contractors
or have dedicated teams enforcing proper policies and guidance on how a developer
can contribute back to a project correctly, avoiding any unwanted legal issues.

484 | Chapter 18: Git and GitHub

Figure 18-56. Partial open source model

Integrating with GitHub
GitHub as a Git hosting web application platform is a great starting point, but with
its growing community of developers who are eager to use true services and not just
features exposed through the web interface, GitHub can be seamlessly integrated in a
variety of ways.

To facilitate the community construction of supporting tools, GitHub has built a full
API available in two stable versions: the REST API and the GraphQL API. GitHub’s
REST API has gone through three major evolutions, and the current REST API v3,
as it is known, offers almost all UI-accessible features in an equivalent API form. In
some cases, advanced services are offered through the API that aren’t even part of the
GitHub UI yet. The GraphQL API, on the other hand, offers different functionalities
and provides a more precise and flexible method to query the exact data you need to
fetch through supported clients.

Integrating with GitHub | 485

https://oreil.ly/J6UZg
https://oreil.ly/nQRXP

Webhooks is another integration option that you can use to extend GitHub. Through
webhooks, you can build a GitHub app or an OAuth app that can be triggered to
execute certain business logic by listening to events subscribed at an organization or
repository level. You can be very specific as to the list of events you can subscribe to
since there will be a rate limit enforced by GitHub for the number of requests that are
sent to the server. For instance, applying a label to or closing an issue is considered an
event. The “Webhook events and payloads” page lists all available webhooks and their
payloads.

Figure 18-57 shows code samples of a GitHub API call and its response.

Figure 18-57. REST API code sample

486 | Chapter 18: Git and GitHub

https://oreil.ly/1ISTX
https://oreil.ly/TH2uC

The API call’s response will list all issues assigned to the authentica‐
ted user across all visible repositories.

Figure 18-58 shows a code sample of a GraphQL API call.

Figure 18-58. GraphQL API code sample

The query in Figure 18-58 returns the 20 most recently closed
issues (the issue’s title and URL) and the first five labels in the
repository octocat/Hello-World.

Note that a GitHub app is a first-class actor within GitHub, has more fine-grained
control on permission, and uses its own identity to perform required actions when
triggered. An OAuth app uses GitHub as an identity provider to authenticate as the
user who needs to grant access to the requesting app.

The “Differences Between GitHub Apps and OAuth Apps” official documentation is a
recommended read if you plan to build integrations using this model. Note that there
is a possibility that by the time this book is published, legacy OAuth apps on GitHub
may not be supported.

Integrating with GitHub | 487

https://oreil.ly/sVXBc
https://oreil.ly/TEFHl
https://oreil.ly/Wrkso

Summary
GitHub today has shaken the foundations of many traditional centralized version
control systems by showing that high-performance, collaborative, and distributed
version control can be found in open source solutions as well as in an enterprise
setup that adopts a similar principle.

What we have elaborated on in this chapter barely scratches the surface of what you
can achieve on the platform. We have not discussed useful GitHub features such
as GitHub Actions, GitHub Packages, GitHub Pages, GitHub Repository Releases,
or the GitHub Project Board, all of which you can leverage to suit your modern
development needs! Discussing how you can leverage Git and GitHub in today’s
modern software development practices such as GitOps or even IssueOps would
require a separate book; trying to cover it all in one chapter wouldn’t do the topic
justice.

Offset by only a short delay from Git’s own development, GitHub has equally shown
that a sharp web application as a Git hosting platform can reduce tool burden,
facilitate quicker fixes, allow a greater number of contributors to further a project,
and, most importantly, turn the act of coding into a truly social, collaborative activity,
all while maintaining a high quality of work.

488 | Chapter 18: Git and GitHub

1 Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

APPENDIX A

History of Git

No cautious, creative person starts a project nowadays without a backup strategy.
Because data is ephemeral and can be lost easily—through an errant code change or a
catastrophic disk crash, say—it is wise to maintain a living archive of all work.

For text and code projects, the backup strategy typically includes version control, or
tracking and managing revisions. Each developer can make several revisions per day,
and the ever-increasing corpus serves simultaneously as repository, project narrative,
communication medium, and team and product management tool. Given its pivotal
role, version control is most effective when tailored to the working habits and goals of
the project team.

A tool that manages and tracks different versions of software or other content is
referred to generically as a version control system (VCS), a source code manager
(SCM), a revision control system (RCS), and several other permutations of the
words revision, version, code, content, control, management, and system. Although
the authors and users of each tool might debate esoterics, each system addresses the
same issue: develop and maintain a repository of content, provide access to historical
editions of each datum, and record all changes in a log. In this book, the term version
control system is used to refer generically to any form of revision control system.

Git, a particularly powerful, flexible, and low-overhead version control tool that
makes collaborative development a pleasure, was invented by Linus Torvalds to
support the development of the Linux1 kernel, but it has since proven valuable to a
wide range of projects.

489

The Birth of Git
Often, when there is discord between a tool and a project, the developers simply
create a new tool. Indeed, in the world of software, the temptation to create new tools
can be deceptively easy and inviting. In the face of many existing version control
systems, the decision to create another one shouldn’t be made casually. However,
given a critical need, a bit of insight, and a healthy dose of motivation, forging a new
tool can be exactly the right course.

Git, affectionately termed “the information manager from hell” by its creator (Linus
is known for both his irascibility and his dry wit), is such a tool. Although the
precise circumstances and timing of its genesis are shrouded in political wrangling
within the Linux kernel community, there is no doubt that what came from that
fire is a well-engineered version control system capable of supporting the worldwide
development of software on a large scale.

Prior to Git, the Linux kernel was developed using the commercial BitKeeper VCS,
which provided sophisticated operations not available in then-current, free software
VCSs such as RCS and the Concurrent Versions System (CVS). However, when the
company that owned BitKeeper placed additional restrictions on its “free as in beer”
version in the spring of 2005, the Linux community realized that BitKeeper was no
longer a viable solution.

Linus looked for alternatives. Eschewing commercial solutions, he studied the free
software packages but found the same limitations and flaws that led him to reject
them previously. What was wrong with the existing VCSs? What were the elusive
missing features or characteristics that Linus wanted and couldn’t find?

Facilitate distributed development
There are many facets to “distributed development,” and Linus wanted a new
VCS that would cover most of them. It had to allow parallel as well as independ‐
ent and simultaneous development in private repositories without the need for
constant synchronization with a central repository, which could form a develop‐
ment bottleneck. It had to allow multiple developers in multiple locations even if
some of them were offline temporarily.

Scale to handle thousands of developers
It isn’t enough just to have a distributed development model. Linus knew that
thousands of developers contribute to each Linux release. So any new VCS had
to handle a very large number of developers whether they were working on the
same or different parts of a common project. And the new VCS had to be able to
integrate all of their work reliably.

490 | Appendix A: History of Git

Perform quickly and efficiently
Linus was determined to ensure that a new VCS was fast and efficient. In order
to support the sheer volume of update operations that would be made on the
Linux kernel alone, he knew that both individual update operations and network
transfer operations would have to be very fast. To save space and thus transfer
time, compression and “delta” techniques would be needed. Using a distributed
model instead of a centralized model also ensured that network latency would
not hinder daily development.

Maintain integrity and trust
Because Git is a distributed revision control system, it is vital to obtain absolute
assurance that data integrity is maintained and is not somehow being altered.
How do you know the data hasn’t been altered in transition from one developer
to the next? Or from one repository to the next? Or, for that matter, that the data
in a Git repository is even what it purports to be?

Git uses a common cryptographic hash function, called Secure Hash Function
(SHA1), to name and identify objects within its database. Though perhaps not
absolute, in practice it has proven to be solid enough to ensure integrity and trust
for all of Git’s distributed repositories.

Enforce accountability
One of the key aspects of a version control system is knowing who changed
files and, if at all possible, why. Git enforces a change log on every commit that
changes a file. The information stored in that change log is left up to the devel‐
oper, project requirements, management, convention, and so on. Git ensures that
changes will not happen mysteriously to files under version control because there
is an accountability trail for all changes.

Immutability
Git’s repository database contains data objects that are immutable. That is, once
they have been created and placed in the database, they cannot be modified.
They can be re-created differently, of course, but the original data cannot be
altered without consequences. The design of the Git database means that the
entire history stored within the version control database is also immutable.
Using immutable objects has several advantages, including quick comparison for
equality.

Atomic transactions
With atomic transactions, a number of different but related changes are per‐
formed either all together or not at all. This property ensures that the version
control database is not left in a partially changed or corrupted state while an
update or commit is happening. Git implements atomic transactions by record‐
ing complete, discrete repository states that cannot be broken down into individ‐
ual or smaller state changes.

History of Git | 491

Support and encourage branched development
Almost all VCSs can name different genealogies of development within a single
project. For instance, one sequence of code changes could be called “develop‐
ment,” while another is referred to as “test.” Each version control system can also
split a single line of development into multiple lines and then unify, or merge, the
disparate threads. As with most VCSs, Git calls a line of development a branch
and assigns each branch a name.

Along with branching comes merging. Just as Linus wanted easy branching to
foster alternate lines of development, he also wanted to facilitate easy merging of
those branches. Because branch merging has often been a painful and difficult
operation in version control systems, it would be essential to support clean, fast,
easy merging.

Complete repositories
So that individual developers needn’t query a centralized repository server for
historical revision information, it was essential that each repository have a com‐
plete copy of all historical revisions of every file.

A clean internal design
Even though end users might not be concerned about a clean internal design, it
was important to Linus, and ultimately to other Git developers. Git’s object model
has simple structures that capture fundamental concepts for raw data, directory
structure, the recording of changes, and so forth. Coupling the object model with
a globally unique identifier technique allowed a very clean data model that could
be managed in a distributed development environment.

Be free, as in freedom
’Nuff said.

Given a clean slate to create a new VCS, many talented software engineers collabora‐
ted and Git was born. Necessity was the mother of invention again!

Precedents
The complete history of VCSs is beyond the scope of this book. However, there
are several landmark, innovative systems that set the stage for or directly led to the
development of Git. (This section is selective, hoping to record when new features
were introduced or became popular within the free software community.)

492 | Appendix A: History of Git

2 UNIX® is a registered trademark of The Open Group in the United States and other countries.
3 “The Source Code Control System,” IEEE Transactions on Software Engineering 1(4) (1975): 364–370.
4 “RCS: A System for Version Control,” Software Practice and Experience 15(7) (1985): 637–654.

The Source Code Control System (SCCS) was one of the original systems on Unix2

and was developed by M. J. Rochkind in the early 1970s.3 This is arguably the first
VCS available on any Unix system.

The central store that SCCS provided was called a repository, and that fundamental
concept remains pertinent to this day. SCCS also provided a simple locking model
to serialize development. If a developer needed files to run and test a program, they
would check them out unlocked. However, to edit a file, they had to check it out
with a lock (a convention enforced through the Unix filesystem). When finished, the
developer would check the file back into the repository and unlock it.

The Revision Control System (RCS) was introduced by Walter F. Tichy in the early
1980s.4 RCS introduced both forward and reverse delta concepts for the efficient
storage of different file revisions.

The Concurrent Versions System (CVS), designed and originally implemented by
Dick Grune in 1986 and then crafted anew some four years later by Berliner and col‐
leagues, extended and modified the RCS model with great success. CVS became very
popular and was the de facto standard within the open source community for many
years. CVS provided several advances over RCS, including distributed development
and repository-wide changesets for entire “modules.”

Furthermore, CVS introduced a new paradigm for the lock. Whereas earlier systems
required a developer to lock each file before changing it and thus forced one devel‐
oper to wait for another in serial fashion, CVS gave each developer write permission
in their private working copy. Thus changes by different developers could be merged
automatically by CVS unless two developers tried to change the same line. In that
case, the conflict was flagged, and the developers were left to work out the solution.
The new rules for the lock allowed different developers to write code concurrently.

As often occurs, perceived shortcomings and faults in CVS eventually led to a new
VCS. Subversion (SVN), introduced in 2001, quickly became popular within the
free software community. Unlike CVS, SVN committed changes atomically and had
significantly better support for branches.

BitKeeper and Mercurial were radical departures from all the aforementioned sol‐
utions. Each eliminated the central repository; instead, the store was distributed,
providing each developer with their own shareable copy. Git is derived from this
peer-to-peer model.

History of Git | 493

https://oreil.ly/rK76m

5 See “Venti: A New Approach to Archival Storage”, Plan 9, Bell Labs.
6 Private email.
7 See this starting point on how the old BitKeeper logs were imported into a Git repository for older history

(pre-2.5).

Finally, Mercurial and Monotone contrived a hash fingerprint to uniquely identify a
file’s content. The name assigned to the file is a moniker and a convenient handle
for the user and nothing more. Git features this notion as well. Internally, the Git
identifier is based on the file’s contents, a concept known as a content-addressable file
store. The concept is not new.5 Git immediately borrowed the idea from Monotone,
according to Linus.6 Mercurial was implementing the concept simultaneously with
Git.

Timeline
With the stage set, a bit of external impetus, and a dire VCS crisis imminent, Git
sprang to life in April 2005.

Git became self-hosted on April 7 with this commit:
 commit e83c5163316f89bfbde7d9ab23ca2e25604af29
 Author: Linus Torvalds <torvalds@ppc970.osdl.org>
 Date: Thu Apr 7 15:13:13 2005 -0700

 Initial revision of "git", the information manager from hell

Shortly thereafter, the first Linux commit was made:
 commit 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
 Author: Linus Torvalds <torvalds@ppc970.osdl.org>
 Date: Sat Apr 16 15:20:36 2005 -0700

 Linux-2.6.12-rc2

 Initial git repository build. I'm not bothering with the full history,
 even though we have it. We can create a separate "historical" git
 archive of that later if we want to, and in the meantime it's about
 3.2GB when imported into git - space that would just make the early
 git days unnecessarily complicated, when we don't have a lot of good
 infrastructure for it.

 Let it rip!

That one commit introduced the bulk of the entire Linux kernel into a Git reposi‐
tory.7 It consisted of the following:
 17291 files changed, 6718755 insertions(+), 0 deletions(-)

Yes, that’s an introduction of 6.7 million lines of code!

It was just three minutes later when the first patch using Git was applied to the kernel.
Convinced that it was working, Linus announced it on April 20, 2005, to the Linux
Kernel Mailing List.

494 | Appendix A: History of Git

https://oreil.ly/A5ljM
https://oreil.ly/fj0nf

Knowing full well that he wanted to return to the task of developing the kernel, Linus
handed the maintenance of the Git source code to Junio Hamano on July 25, 2005,
announcing that “Junio was the obvious choice.”

About two months later, version 2.6.12 of the Linux kernel was released using Git.

What’s in a Name?
Linus himself rationalizes the name “Git” by claiming, “I’m an egotistical @$%&, and
I name all my projects after myself. First Linux, now git.” Granted, the name “Linux”
for the kernel was sort of a hybrid of Linus and Minix. The irony of using a British
term for a silly or worthless person was not missed, either.

Since then, others have suggested some alternative and perhaps more palatable inter‐
pretations: the Global Information Tracker seems to be the most popular.

History of Git | 495

APPENDIX B

Installing Git

So, before you can use Git, you must install it. The steps to install Git depend greatly
on the vendor and version of your operating system. This appendix describes how
to install Git on Linux, macOS, and Microsoft Windows. We also share how you can
obtain the Git source code and then build and install from it.

Using Linux Binary Distributions
Many Linux vendors provide precompiled, binary packages to make the installation
of new applications, tools, and utilities easy. Each package specifies its dependencies,
and the distribution’s package manager typically installs the prerequisites and the
desired package in one (well-orchestrated and automated) fell swoop.

Debian/Ubuntu
On most Debian and Ubuntu systems, Git is offered as a collection of packages,
where each package can be installed independently depending on your needs. Prior
to the 12.04 release, the primary Git package was called git-core. As of the 12.04
release, it is simply called git. Examples of other git packages include git-gui, gitk,
gitweb, and git-svn.

Because distributions vary greatly, it’s best to search your distribution’s package depot
for a complete list of Git-related packages.

This command installs the latest (stable) version of Git on your Debian/Ubuntu
operating system:
 $ apt-get install git

497

Other Binary Distributions
To install Git on other Linux distributions, find the appropriate package or packages,
and use the distribution’s native package manager to install the software:

On Gentoo systems
 $ emerge --ask --verbose dev-vcs/git

On Arch Linux systems
 $ pacman -S git

On Fedora systems
 # For up to Fedora version 21
 $ yum install git

 # For Fedora version 22 and above
 $ dnf install git

On other distributions
For other popular Linux distributions, the git-scm download documentation lists
all the commands you need.

Again, be mindful that some distributions may split the Git release among many
different packages. If your system lacks a particular Git command, you may need to
install an additional package.

Be sure to verify that your distribution’s Git packages are sufficiently up to date. After
Git is installed on your system, run git --version to verify the latest version of Git.
At the time of this writing, the latest version is Git 2.37.0.

Installing Git on macOS
On macOS, the approach is similar. You have various options for installing Git via
popular package manager and binary installers:

Homebrew
 $ brew install git

MacPorts
 # Requires MacPorts to be installed prior to installing Git
 $ sudo port install git

Other installers
The git-scm download documentation lists popular installers.

498 | Appendix B: Installing Git

https://oreil.ly/eods1
https://oreil.ly/8QlHq

Installing Git on Windows
On Windows, you have the option to install Git from a standalone installer, from a
portable installer, or by using the Windows Package Manager, winget, or the commu‐
nity maintained package manager, chocolatey:

Git for Windows
Download the installer, and follow the instructions to configure and select
options when installing it via the standalone installer.

winget
 # Execute from Powershell or Command Prompt
 PS C:\>winget install --id Git.Git -e --source winget

Chocolatey
 # Execute from Powershell or Command Prompt
 PS C:\>choco install git.install

Obtaining a Source Release
If you prefer, you can download the Git code from its canonical source or download
a specific version of Git. You can find various versions available as tarballs. As
mentioned earlier, the version we are using in this book is Git 2.37.0:
 $ wget https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.37.0.tar.gz
 $ tar xzf git-2.37.0.tar.gz
 $ cd git-2.37.0

Building and Installing from Source Release
Git is similar to other pieces of open source software. Just configure it, type make, and
install it. Small matter of software, right? Perhaps.

If your system has the proper libraries and a robust build environment, and if you
do not need to customize Git, then building the code can be a snap. On the other
hand, if your machine lacks a compiler or a suite of server and software development
libraries, or if you’ve never built a complex application from source, then you should
consider building Git from scratch only as a last resort. Git is highly configurable, and
building it shouldn’t be taken lightly.

To continue the build, consult the INSTALL file in the Git source bundle. The file lists
several external dependencies, including the zlib, ssh, and libcurl libraries, to name a
few.

Note that some of the requisite libraries and packages may belong to larger packages.

Installing Git | 499

https://oreil.ly/OfzUG
https://oreil.ly/h5NLj
https://oreil.ly/RsWSY
https://mirrors.edge.kernel.org/pub/software/scm/git
https://oreil.ly/dCEy3

Once your system and build options are ready, the rest is easy. These commands
build and install Git in your home directory (we added the --prefix=/usr/local
flag to install Git for all users):
 $ cd git-2.37.0
 $./configure --prefix=/usr/local
 $ sudo make all
 $ sudo make install

 # refresh the shell
 $ exec bash

 $ git --version
 git version 2.37.0

 $ which git
 /usr/local/bin/git

To install the Git documentation, add the doc and install-doc targets to the make
and make install commands, respectively:
 $ cd git-2.37.0
 $ make all doc
 $ sudo make install install-doc

A build from source includes all the Git subpackages and commands. There is no
need to build or install those utilities independently.

500 | Appendix B: Installing Git

Index

Symbols
! (exclamation point)

feature branch indicator, 63
.gitignore file, 119

(pound sign)
comments for merge commits, 130
comments in .gitignore file, 118

* (asterisk)
REMOVED replacement text, 398
active branch indicator, 63
git show-branch commits, 64
refspec syntax, 249

+ (plus sign)
git diff command output, 18, 158, 168

--word-diff= mode, 162
git show-branch commits, 64
refspec syntax, 249

+++ (triple plus sign) in git diff output, 18, 158,
168

- (dash)
bare double dash, 9

filename indication, 9, 70, 415
git grep path limiting, 412

git diff command output, 18, 158, 168
merge conflicts, 128, 133-136
--word-diff= mode, 162

git show-branch commits, 64
git show-branch separator, 63, 64
short (-) and long (--) options, 8

--- (triple minus sign) in git diff output, 18, 158,
168

. (dot)
current directory in Unix, 12
double-dot syntax (..)

commit ranges, 97, 280, 322
commit ranges for patches, 319, 322-325
git diff command ranges, 168-171
ranges as set operation, 97

triple-dot syntax (…)
commit ranges, 100, 171, 280
git diff path… command, 163
git log graph of merge structure, 218
qualifiers for refs, 235

.. (double-dot syntax)
commit ranges, 97, 322

main and origin/main, 280
patch generation, 319, 322-325

git diff command ranges, 168-171
ranges as set operation, 97

... (triple-dot syntax)
commit ranges, 100, 171, 280
git diff path… command, 163
git log graph of merge structure, 218
qualifiers for refs, 235

/ (slash)
branch names, 57
directory parameter when trailing, 353

: (colon)
commit:path options, 386
pushes with just destination ref, 281
refspec syntax, 249

< > (angle brackets) as git log commit indica‐
tors, 137

<<<===>>> (conflict resolution markers), 71
git diff command for conflict, 128, 133-136

--check option to highlight markers, 132
inspecting conflicted files, 132-138
text merge driver, 152

501

@ (at sign)
git diff command output, 158, 168
hunks in diff output, 374
qualifiers for refs, 235

^ (caret)
commit ranges as set operation, 97
git show-branch output, 64
parent commits, 85

{ } (curly brackets) as ref qualifiers, 235
~ (tilde) for parent commits, 85

A
absolute commit names, 82
active branch indicator (*), 63
adding a file

.git hidden directory, 38
local repository, 12-14

ahead and behind commits on tracking
branches, 279

aliases, 23
already up-to-date merge strategy, 145

applying, 151
angle brackets (< >) as git log commit indica‐

tors, 137
annotated tags, 27, 46
anonymous read access repositories published,

288-292
about, 288
Git and HTTP daemons, 292
git-daemon, 288-290

Git-native protocol, 247, 288
HTTP daemon, 290
Smart HTTP, 291

anonymous write access repositories published,
292

Apache and Smart HTTP, 291
APIs for GitHub, 485, 486
approxidate() function for date handling, 383

Git date parsing, 384
Arouet, François-Marie, 392
Assemblies for .NET, 355
asterisk (*)

REMOVED replacement text, 398
active branch indicator, 63
git show-branch commits, 64
refspec syntax, 249

at sign (@)
git diff command output, 158, 168
hunks in diff output, 374

qualifiers for refs, 235
atomic changesets of commits, 80
authoritative copy (see depot)
automating actions, 415

B
“backing up” with Git, 298
backward porting, 207
bare double dash (--), 9

filename indication, 9, 70, 415
git grep path limiting, 412

bare repositories, 233, 240
depot creation, 252

space saving options, 286
git push command and, 282
publish bare repositories, 242, 286
reflog disabled by default, 233, 242

beginning with Git (see introduction to Git)
behind and ahead commits on tracking

branches, 279
Berliner, Brian, 493
binary merge driver, 153
BitKeeper version control system, 490, 493, 494
blob objects (blobs), 27, 391

about commits, 79
content tracking, 29-31

history of Git, 494
packfile heuristics, 405
pathname versus content, 31

git add command creating, 38, 39
git diff command on, 160
index cached representation, 28
lost commits

reconnecting, 391
recovering, 386-390
tips for recovering, 407

object store visualized, 33-35
packfiles, 27, 32

packfile SHA1 hash values, 405
patch git diff identifying, 334
SHA1 hashes and, 38

(see also SHA1 hash values)
tree objects linked to, 53
viewing via git cat-file, 38

branches
about, 6, 55

motivation for using, 56
read-only, 408

active branch indicator, 63

502 | Index

checking out branches, 66-70
about, 66
any commit via detached HEAD, 74-76
files instead of branches, 69
hook for, 349
keeping working directory, switching

branches, 70-72
newly created branch, 72
uncommitted changes, 68
unreachable commits, 75

deleting, 76-78
feature branch indicator, 63
.git/HEAD examined, 50
managing

about, 58
creating branches, 61
creating branches and checking out, 72
listing branch names, 63
remote branches added and deleted,

280-282
remote branches renamed, 281
viewing via git show-branch, 63-66
working in branches, 59-61

merges, 123
(see also merge commits)

merging changes into different branch,
70-72
base branch information, 72

names of branches, 57
ambiguous name handling, 277
default branch name, 57
git branch command introducing, 62
hierarchical branch names, 57
pointer to most recent commit, 59, 64
rules for names, 57
tag with same name, 60

object store visualized, 33
recovering from upstream rebase, 407
refspec mapping names, 248
remote branches added and deleted,

280-282
remote branches renamed, 281, 408
stable branch for submodule workflow, 362
stashed changes converted to, 230-232
switching branches, 70, 205

keeping working directory, switching
branches, 70-72

recovering from upstream rebase, 408
tags versus, 60

tracking branches, 244-246
about, 56
ahead and behind, 279
creating, 276
creating for example, 254
deleting remote, 76-78
remote branch modifications, 282
using different name, 277

browser support for published repositories, 290

C
caching a file, 108

(see also git add command)
caret (^)

commit ranges as set operation, 97
git show-branch output, 64
parent commits, 85

cat command
configuration files viewed, 22
.git/HEAD examined, 50

checking out branches, 66-70
any commit via detached HEAD, 74-76

unreachable commits, 75
date-based checkout, 382-384

cautions, 383
files instead of branches, 69
hook for, 349
newly created branch, 72
sparse checkout, 426
uncommitted changes, 68

CHERRY_PICK_HEAD, 83-84
CI/CD (continuous integration/continuous

delivery) system of commits, 188
clients for Git, 4

git blame command output, 184
GitHub, 444

clone origin, 305
cloning a repository, 19, 242

--bare option, 241
clone origin, 305
forking projects, 308-311

about forks, 308, 309
choosing to fork, 309, 310
forking projects at GitHub, 310, 452
pull requests, 310
reconciling forks, 309

hooks not copied, 339
copy via .git/hooks directory, 339

partial clones, 425

Index | 503

remotes for connections, 239, 243
origin remote, 243

shallow clones, 425
submodule in repository, 357
tracking branches, 244-246
upstream parent, downstream clone, 299
upstream repository development cycle, 266
where to start your repository, 304

collision of SHA1 same values, 39
same content, no collision, 41

colon (:)
commit:path options, 386
pushes with just destination ref, 281
refspec syntax, 249

command-line interface, 6-9
aliases, 23
bare double dash (--), 9
Git commands listed

categorization of commands, 36
git help -a command, 36
online, 23

overriding configuration file and environ‐
ment variables, 10

short (-) and long (--) options, 8
comments (#)

.gitignore file, 118
merge commits, 130

commit author configuration, 9
author mapping file, 420, 421
environment variables holding identity, 10
git commit --author to supply identity, 10

commit history, 45
about altering, 188
about git log command, 87
altering commits

about, 187
caution, 189, 206
changing HEAD commit, 192-194
git cherry-pick command for, 203-205
git reset command for, 194-202
git revert command for, 191
published repositories, 295
rebasing commits, 206-219
rebasing interactive option, 209-213
remote repository development cycle,

267
schools of thought, 188

commit ranges, 96-101, 280, 322
patch generation, 319, 322-325

set operation, 97
converting repositories to LFS, 436
distributed development, 297
dynamic commit history, 296
finding commits

about, 177
git bisect command, 177-183
git blame command, 183
pickaxe, 184

git rev-list command, 382
date-based checkout, 382-384
retrieving old version of file, 384-386

git show-branch command, 65
graphs of commits, 90-96, 127

--all option for all refs, 321
commit ranges, 88, 96-101
gitk tool to view, 95, 127
since..until, 88
viewing branches before merge, 126

lost commits
reconnecting, 391
recovering, 386-390
tips for recovering, 407

merges, 123
(see also merge commits)

patching versus merging, 338
published history, 189
renaming branch while preserving, 57
retained, not squashed, 154
rewriting with git filter-repo, 391-399

about, 391
about examples, 392
--analyze option for analysis, 393
caution, 392
commit message filtering, 398
content-based filtering, 397
path-based filtering, 394-397

topological sort orders, 325
viewing old commits, 88-90

formatting options, 89
since..until, 88

commit objects (commits), 27
about commits, 79

commit process, 346
recorded units of change, 80

ahead and behind commits, 279
altering commits

about, 187
caution, 189, 206

504 | Index

changing HEAD commit, 192-194
git cherry-pick command for, 203-205
git reset command for, 194-202
git revert command for, 191
published repositories, 295
rebasing commits, 206-219
rebasing interactive option, 209-213
remote repository development cycle,

267
schools of thought, 188

atomic changesets, 80
branches, 33
commit and publish steps separate, 296
commit history, 45, 87

(see also commit history)
finding commits

about, 177
git bisect command, 177-183
git blame command, 183
pickaxe, 184

Git internal workings, 43-45, 53
tree object contained by, 53

git rev-list command, 382
gitlink linking to tree objects, 352
hooks for commit actions, 346-347
identifying commits

about, 81
absolute commit names, 82
reflog HEAD names as symbolic commit

names, 234
refs and symrefs, 83-85
relative commit names, 85-87

log message, 13, 113
empty log message aborting commit, 113
git filter-repo command filtering, 398
git log -p command reporting, 137
pound sign comments, 130
reusing ORIG_HEAD message, 199

lost commits
reconnecting, 391
recovering, 386-390
tips for recovering, 407

meta-information edited, 194
object store visualized, 33-35
parent commits, 85
patches allowing choice of commits, 317

(see also patches)
patching versus merging, 338
pre-commit hook creation, 344

root commit, 85
timestamps of commits unimportant, 94
topological sort orders, 325
unreachable commits, 75
upstream and downstream role duality, 301

“commit rights” as misnomer in Git, 286
components of Git, 3-5
Concurrent Versions System (CVS), 490, 493
configuration files

about, 20
command-line specifications overriding, 10
commit author configuration, 9
default branch name, 57
git config (see git config command)
Git LFS, 430
git-daemon as inetd service on server, 289
.gitmodules file, 355

git submodule add creating, 356
submodule add versus init, 358
username in submodule metadata, 364

hierarchy of, 21
listing settings of all variables, 22
remote named entities, 246
remote repositories, 272

git config command, 274
git remote command, 273
manual editing, 275

SMTP information, 328
tracking branch information, 278
--unset option, 23

conflict resolution markers (<<<===>>>), 71
git diff command for conflict, 128, 133-136

--check option to highlight markers, 132
inspecting conflicted files, 132-138

(see also merge conflicts)
text merge driver, 152

content tracking by Git, 29-31
history of Git, 494
packfile heuristics, 405
pathname versus content, 31

continuous integration/continuous delivery
(CI/CD) system of commits, 188

controlled access repositories published,
287-288
Git hosting solutions, 288, 292

copying a repository (see cloning a repository)
core.logAllRefUpdates for reflog, 233, 386
cover letter for email, 329
credential reuse by submodules, 364

Index | 505

criss-cross merges, 144
“Cryptanalysis of SHA-1” (Schneier), 39
curly brackets ({ }) as ref qualifiers, 235

D
DAG diagrams for commits, 35, 91-96

distributed development commit history,
297

dangling objects, 387
garbage collection, 75, 404-407

dash (-)
bare double dash, 9

filename indication, 9, 70, 415
git grep path limiting, 412

git diff command output, 18, 158, 168
merge conflicts, 128, 133-136
--word-diff= mode, 162

git show-branch commits, 64
git show-branch separator, 63, 64
short (-) and long (--) options, 8

date handling function approxidate(), 383
Git date parsing, 384

date-based checkout, 382-384
cautions, 383

date-based qualifiers for refs, 235
Debian Git installation, 497
default branch name

git init command, 10, 57
main as name, xiii
master as name, 57

degenerate merges strategies
already up-to-date, 145
applying, 151
fast-forward, 145, 146-148

deleted files recovered via checkout, 69
git restore command, 70

deleting a file from repository, 18
adding it back after removing, 115
and working directory, 113-115

deleting branches, 76-78
remote branches, 280-282

deleting ref, 413
depot holding authoritative copy

about example on remote repositories, 251
adding a new developer, 258-260
creating depot, 252
creating origin remote, 253-255
developing in your repository, 256
getting repository updates, 260-265

fetch step, 262
merge or rebase step, 263
merge versus rebase, 264

Git hosting platforms, 293
pushing changes, 256

detached HEAD mode, 74-76
checking out old commit, 382
Git bisect mode, 179
submodule files during update, 359
unreachable commits, 75

developer and maintainer roles, 299
maintainer–developer interaction, 300

development branch, 245
development repositories, 240

git push command and, 282
reflog enabled by default, 233, 242
your own workspace, 303

where to start your repository, 304
diffs, 157

(see also git diff command)
DISPLAY environment variable, 181
distributed development

changing public history, 295
no one true history, 297
separate commit and publish steps, 296

distributed repository structure, 294
distributed version control and separation of

commit and publish, 296
documentation online

branch and tag with same name, 60
Git complete documentation, 8
Git LFS technical specifications, 431
Git Release Notes, xiii
Git workflows, 474

Git Flow blog post, 474
git-scm manual, 370, 421, 498
GitHub

codespaces, 447
GitHub apps versus OAuth apps, 487
GitHub Flow, 474
Issues documentation, 458
Markdown syntax, 458

index, 104
packfile heuristics, 405
SHA256 extension, 39
subtree manual installation, 364

dot (.)
current directory in Unix, 12
double-dot syntax (..)

506 | Index

commit ranges, 97, 280, 322
commit ranges for patches, 319, 322-325
git diff command ranges, 168-171
ranges as set operation, 97

triple-dot syntax (…)
commit ranges, 100, 171, 280
git diff path… command, 163
git log graph of merge structure, 218
qualifiers for refs, 235

double-dot syntax (..)
commit ranges, 97, 322

main and origin/main, 280
patch generation, 319, 322-325

git diff command ranges, 168-171
ranges as set operation, 97

downstream and upstream flows, 299
maintainer versus developer, 299
role duality, 301

Driessen, Vincent, 474
--dry-run option, 225, 228, 231, 411

E
editor Git defaulting to, 13

configuration options, 23
emacs, 380

emailing patches, 326
applying patches, 330-337
bad patches, 337

environment variables
author identity, 10
command-line specifications overriding, 10
Git editor, 13, 23
gitk or git log for git bisect visualize, 181
name of .git directory, 83

exclamation point (!)
feature branch indicator, 63
.gitignore file, 119

exit status of hooks, 340
example script, 344

F
fast-forward merge strategy, 145, 146-148

applying, 151
non-fast-forward pushes, 268

feature branch exclamation point indicator, 63
FETCH_HEAD, 83-84

garbage collection avoided, 406
file management

about the index, 26, 27, 103

Git internal workings, 39
importance and functions of, 103-105

file classifications in Git, 105-107
git add command, 39, 107-111
git commit --all to stage all unstaged, 111
git mv command, 116-117
git rm command, 113-115
status of index via git status, 104

file managment
about the index

Git internal workings, 51
initializing new repository, 11

file:// for Git URL, 246
filenames

command line double dash, 9, 70, 415
Git internal workings, 39
pathname versus content, 31

--first-parent option, 155
forking projects, 308-311

about forks, 308, 309
choosing to fork, 309, 309, 310
forking projects at GitHub, 310, 452
pull requests, 310
reconciling forks, 309

forward porting, 207
fundamentals of Git object creation, 49-54

G
garbage collection, 404-407

about, 404
about cluttered git fsck report, 390
configuration parameters, 78, 406, 407
packfiles from unpacked objects, 405

packfile heuristics, 405
reflog, 236
unreachable objects, 75, 404
when to avoid running, 406
when to run manually, 406

gc.auto option, 407
gc.autopacklimit option, 407
gc.pruneExpire option, 78, 407
gc.reflogExpire option, 78, 407
gc.reflogExpireUnreachable option, 407
Git

about, xi, 3
advice for those new to, 4
characteristics, 5
current version, xiii, 7, 498
free as in freedom, 492

Index | 507

“information manager from hell”, 490,
494

name, 495
tenets of, 490
thinking in Git, 1, 5
version control systems, 489

author data mapping file, 420
clients, 4

git blame command output, 184
GitHub, 444

command-line interface, 6-9
aliases, 23

commands listed, 23
components, 3-5
configuration files, 20

(see also configuration files)
content tracking, 29-31

history of Git, 494
packfile heuristics, 405
pathname versus content, 31

content-addressable database, 29
default editor configuration, 13, 23
documentation online, 8

branch and tag with same name, 60
index, 104
LFS technical specifications, 431
packfile heuristics, 405
Release Notes link, xiii
SHA256 extension, 39
subtree manual installation, 364
workflows, 474

GitHub and, 444
(see also GitHub)

history of
about version control systems, 489
birth of Git, 490-492
inventor Linus Torvalds, 489
precedents, 492
timeline, 494

installing
Debian/Ubuntu Linux binary, 497
macOS, 498
other Linux binary distributions, 498
preparing to work with Git, 9
source code, 499-500
Windows, 499

introduction to, 9
about preparing to work with Git, 9
advice for those new to, 4

local repository, 10-19
shared repository, 19-20

maintenance via patches, 317
(see also patches)
mailing list address, 317

migrating to
about, 416
from non-Git version control system,

420-424
Git server to hosting platform, 416-420

object store, 26, 33-35
about object creation, 49-54
content-addressable database, 29
files and trees, 39
packfiles, 27, 32
refs and symrefs, 83-85
repository internal workings, 36-47,

49-54
peer-to-peer backup via, 298
reflog for tracing, 232-237

configuration parameters, 407
development not bare repositories, 233,

242
enabling and disabling, 233, 386
garbage collection, 236
.git hidden directory storage, 237
HEAD names as symbolic commit

names, 234
server, 4, 285

Git hosting solutions, 288, 292, 444
git-daemon as inetd service, 289
GitHub as, 444
meaning of “server”, 285
migrating to hosting platform, 416-420
publishing advice, 292
shared repository, 19-20

git add command, 12-14
commit step after, 12-18

stage changes, commit changes, 107
conflict markers removed before, 140
file management and the index, 107-111
gitlink creation, 352
illustration, 243
--interactive option, 111
merge conflict resolved, 129
-p option for staging hunks, 371-381

hunk definition, 374
splitting hunks, 375
verifying with git diff, 377

508 | Index

renaming a file, 19
tracked files, 105
trees and files, 39
unreferenced blobs, 390

git am command, 301, 330-337
--3way option for three-way merge, 334
--abort option, 333
about process of, 347
bad patches, 337
.git/rebase-apply directory created, 332
hooks for patch actions, 347
merging versus patching, 338
resetting or aborting patch application, 333
--show-current-patch option, 332

git apply command, 330
hook applypatch not run by, 348

git bisect command, 177-183
bad parameter for bad commit, 179

using a different term, 183
finishing, 183
good parameter for good commit, 179

using a different term, 183
log parameter for answers, 180
--pretty option, 89, 181
replay parameter to start over, 181
reset parameter to finish, 183
run parameter for scripts, 182
scripts, 182
start parameter to begin search, 179

--term-new and --term-old options, 183
visualize parameter to visually inspect, 181

git blame command, 183
-L option for ranges, 184
--since option for time frame, 184

git branch command
ambiguous name handling, 277
creating a branch, 61
deleting branches, 76-78, 408
detached HEAD mode, 75
information via git show-branch, 63-66
listing branch names, 63, 67

active branch indicator, 63
remote repository, 63

renaming remote branch, 281, 408
--set-upstream-to option, 279
--track option to use different name, 277

git cat-file command, 38, 40, 44
.git object directory, 52
-p option for tag object, 46

-t option for object type, 388
git checkout command, 66-70

about, 206
checking out a path, 206
contrasted with reset and revert, 205

any commit via detached HEAD, 74-76
-b option to create and checkout, 72
date-based checkout, 382-384

cautions, 383
-f option to force, 69
files instead of branches, 69
-m option

merge changes, 70-72
restore index with conflicted files, 141

--ours or --theirs during conflict, 139
--recurse-submodules option, 363
uncommitted changes, 68

git cherry-pick command, 203-205
CHERRY_PICK_HEAD, 84

git clean command, 410
-d option for untracked directories, 410
--dry-run option, 411
-x option to include ignored files, 410
-X option to remove only ignored files, 411

git clone command, 19, 242, 243
--bare option, 241

depot creation, 252
--depth option for shallow clone, 425
--filter option for partial clone, 425
partial clones, 425
remotes for connections, 239, 243

origin remote, 243
shallow clones, 425
submodule in repository, 357

--recurse-submodules option, 357
submodule username storage, 364
upstream repository development cycle, 266

git command
bare double dash (--), 9
git without arguments to list options, 7
short (-) and long (--) options, 8

git commit command
about snapshot of changes, 5
--all option to stage all unstaged, 111
--amend option for altering most recent,

192-194
meta-information on commit, 194
not with shared repositories, 206
SHA1 ID re-generated, 194

Index | 509

commit author configuration, 9
--author to supply identity, 10

git status command, 12
--help option, 15
hooks for commit actions, 346-347
--interactive option, 111
introduction to Git

adding a file, 12-14
commit objects, 43-45
editing a file, 14
git write-tree and git commit-tree, 43-45
removing a file, 18

local repository illustration, 243
log message, 13, 113

empty log message aborting commit, 113
git log -p command reporting, 137
pound sign comments, 130
reusing ORIG_HEAD message, 199

merge committed, 130
(see also merge commits)

--no-verify option to bypass hooks, 345
object store changes, 52
--reuse-message= option, 199
staged hunks, 378
viewing commits, 16-17

viewing commit differences, 17
git commit-tree command, 43-45
git config command

aliases, 23
commit author configuration, 9
default branch name, 57
--global option, 21
listing settings of all variables, 22
remote repository configuration, 274
rerere enabled, 415
SMTP information for mailing patches, 328
submodule tracking specific branch, 362
--unset option, 23

git configcore .logAllRefUpdates for reflog, 233,
386

git diff command, 17
about diffs, 157

detail about contents, 158
about git diff traversing two trees, 158-159

tree or treelike objects to use, 159
--base option for combined changes, 134
blob objects, 160
--cached option for changes staged, 105

commit specified, 159

synonym for git diff --staged, 105
--check option to highlight markers, 132,

140
--color option to colorize output, 162
commit name parameter, 159
commit ranges (..), 168-171
example, 163-166
forms of, 159-163
git apply command accepting output, 330
git format-patch command contrasted, 318
Git internals, 160

how diffs are derived, 173
HEAD parameter for both staged and

unstaged, 163
hex ID numbers, 18
hunk definition, 374
--ignore-all-space to ignore whitespace, 162
-M option for file renames, 162
merge with conflict, 128, 133-136
Myers diff algorithm, 158
--name-only option for only filenames, 163
--name-status option for summary, 163
no parameters, 138, 159

verifying readiness of next commit, 161
--ours option synonym for HEAD, 134
--output= option to redirect, 163
output explained, 166
path limiting, 171
path… option, 163
-r option for traversing path hierarchies,

158
-S option for specifying string, 172, 184

called the pickaxe, 173, 184
stage numbers as parameters, 139
--staged option to verify staging, 377

synonym for git diff --cached, 105
staging a file into the index, 105
--stat option to add statistics, 162
syncing repositories with root-level diff, 159
--theirs option, 139

MERGE_HEAD synonym, 134
-u option for unified diff, 157

comparing two hierarchies, 158
-w option to ignore whitespace, 162
--word-diff= mode, 162

git fetch command, 243
FETCH_HEAD, 84
origin remote with default refspec, 243
refspec, 249

510 | Index

(see also refspecs)
submodule update, 361

git filter-branch replaced by git filter-repo com‐
mand, 391
read safety section if use, 392

git filter-repo command, 391-399
about, 391

caution, 392
running git gc command after, 406

about examples, 392
--analyze option for repository analysis, 393
.git hidden directory analysis file, 393
--help option, 399
installing, 393
--path option for path-based filtering,

394-397
--invert-paths to remove only specified

file, 395
--path-rename option to rename folder, 395
--replace-message option for commit mes‐

sage, 398
--replace-text option, 397

default replacement text, 398
--strip-blobs-bigger-than option, 396

Git Flow workflow, 474
git format-patch command, 301, 317

about patches, 315
applying patches, 330-337

bad patches, 337
three-way merge, 334

commit ranges, 319, 322-325
--cover-letter option, 329
git diff command contrasted, 318
git diff output extra information, 334
mailing patches, 326

bad patches, 337
format.headers configuration option,

329
Gmail, Thunderbird, Outlook, 328
mbox-style mail folder created, 328

merging versus patching, 338
-n option for most recent n commits, 318
-o option for output directory, 329
--pretty formatting for text file patches, 329
topological sorts and patches, 325
why use patches, 316

git fsck command, 387-390
about, 78, 387, 390
garbage collection to clean up, 390

--no-reflog option for dangling objects, 389
git gc command, 404-407

configuration parameters, 406
hook for, 350
when to avoid running, 406
when to run manually, 406

git grep command, 411-413
-- separator for path limiting, 412
benefits over command line grep, 413
--help option, 413
-i option for case insensitivity, 412
-l option for matching filenames, 412
pickaxe contrasted, 411
--untracked option, 412
-w option for word matching, 412

git hash-object command, 38, 109
git help command

-a for all commands, 36
hooks available, 346, 349

.git hidden directory, 11, 26
clones, 242
config file, 21

refspecs added when clone, 249
remotes created by git remote, 243
tracking branch information, 278

conflict tracking information, 138
exclude file instead of .gitignore, 121
Git LFS, 432
$GIT_DIR holding name, 83
hooks directory, 339, 342

pre-commit hook creation, 344
receiving repository for push, 348

internal workings, 36-38, 49-54
files and trees, 40

rebase-apply directory, 332
reflogs, 237
refs and symrefs, 83-85
rerere conflict cache directory, 415
stash of index and working directory, 223

Git hosting platforms
altering commit history, 189
depot for repository hosting, 293
Git LFS support, 427
GitHub, 439

(see also GitHub)
hook alternatives, 350
migrating from Git server, 416-420
systematically incorporating changes, 315

git init command, 10

Index | 511

--bare flag, 240
hooks copied to new repository, 339
naming default branch, 10, 57
tree .git command after, 36

Git LFS (Large File Storage)
about, 426
binary merge conflict resolution, 435
case sensitivity, 434
converting existing repositories, 436
documentation online, 431
glob pattern matching, 434
hooks, 432

pre-push to push LFS file to remote
server, 430

installing, 430
pointer files, 430
repository before and after LFS, 427
tracking large objects, 431-434

.gitattributes file, 433
locking a tracked file, 435
untracking an LFS file, 435

git log command, 16-17
-- option for filename, 415
about commit history, 87
--all option for comprehensive search, 415
commit ranges, 96-101

git diff command differences, 168-171
main and origin/main, 280
set operation, 97
since..until, 88

--first-parent option, 155
--follow option for history, 117

filename parameter to follow file, 414
--name-only option, 414

formatting options, 89
-G option for regular expressions, 185
graphs of commits, 90-96, 127

--all option for all refs, 321
commit ranges, 96-101
DAG diagrams for commits, 35, 91-96
gitk tool to view, 95
viewing branches before merge, 126

hex numbers, 18
--merge option for conflicts, 137

--left-right option for commit markers,
137

-p for patch changes since commit, 89, 137
--pretty option, 89

email value, 318

--oneline for pretty=oneline, 91
viewing old commits, 88-90

git ls-files command, 104, 108
-s option for all files, all stages, 138
-u option for unmerged/conflicted files, 131,

138
git ls-remote command, 243

refs in remote repository, 250
git merge command

aborting or restarting a merge, 141
about merges, 123, 124

technical view, 123
conflicts dealt with

about, 130
example merge with conflict, 127-130
finishing up, 140-141
git diff command for, 128, 133
Git tracking conflicts, 138
locating conflicted files, 131

context sensitivity, 124, 126
examples of merges

about, 124
conflict, 127-130
git add command after conflict, 129
merging two branches, 125-127
preparing for a merge, 124

Git internals
Git object model and merges, 153
history retained, not squashed, 154
why merges work like they do, 155

illustration, 243
rebasing contrasted with, 213-219
--squash option for squash commits, 155

git merge-base command, 72
branch start points, 96, 143

git mv command, 116-117
renaming a file, 116-117

Git tracking renamed file, 117
local repository, 19
problems tracking renamed file, 118
SVN tracking renamed file, 117

Git native protocol, 247, 315
patches instead, 316
publishing

Git and HTTP daemons, 292
git-daemon, 247, 288, 292

SSH connections, 247, 292
git pull command, 243

git stash for merge conflicts, 227

512 | Index

--rebase option
git stash command for clean, 228
recovering from upstream rebase, 408

refspecs, 250
(see also refspecs)

--squash option for squash commits, 155
superproject with submodule updates, 362

git push command, 243
-f option to force, 269
hooks for push actions, 348-349
into bare repositories only, 282
process of push, 348
--recurse-submodules=on-demand, 360
refspec, 249

(see also refspecs)
no refspec specified, 251

remote branches added and deleted,
280-282

remote branches renamed, 281
git rebase command, 206-219

--abort option to abandon, 209
about, 213, 218
conflict suspending processing, 208

--continue option to continue, 209
--skip option to move to next, 209

converting to different upstream repository,
305-306

Git internal workings, 214-217
hook for, 349
--interactive option

dirty working directory, 403
modifying commits, 209-213

merge contrasted with, 213-219
--onto option to transplant, 208, 296
--rebase-merges option to preserve struc‐

ture, 217
recovering from upstream rebase, 407

git reflog command, 75, 78
show parameter to view, 233

git remote command, 243
add parameter, 279

shortening subtree URL, 366
configuring remote repository, 273
migrating from Git server to GitHub,

416-420
origin remote created for example, 253-255
show parameter for information, 278

git rerere command, 415
garbage collection avoided, 406

rerere.enabled set to true, 415
git reset command, 194-202

about, 202
contrasted with revert and checkout, 205
not with shared repositories, 206

--hard option for most effects, 197, 202, 205
dirty working directory, 142
ORIG_HEAD to discard merge, 141
patch application gone wrong, 333
reflog preventing commit loss, 389

--mixed option as default mode, 196, 200
recovering lost commits, 386-390
--soft option for least effects, 196, 200

git restore command, 70
git rev-list command, 382

date-based checkout, 382-384
cautions, 383

-n option for n commit IDs, 382
old version of file retrieved, 384-386
verifying commit range, 323

git rev-parse command, 39, 46, 87
disambiguation heuristic, 83
reference parsing, 235

git revert command, 191
about, 206

contrasted with reset and checkout, 205
safe for shared repositories, 191, 206

git rm command, 113-115
adding it back after removing, 115
--cached option for staged to unstaged, 114
-f option to force removal, 115
local repository, 18
renaming a file, 19

git send-email command
--cc option to add recipients, 329
--compose option for cover letter, 329
directory specified for files to send, 329
mailing patches, 326

git show command, 16
commits, 90
--pretty=fuller for commit details, 45

git show-branch command, 63-66
--more= option for additional commits, 65
stash parameter, 223

git show-ref command for current repository,
250

git sparse-checkout command, 426
git stash command

about, 221

Index | 513

stack of stash states, 223, 231
--all option for untracked and ignored files,

228
apply parameter without drop, 224
branch parameter, 230-232
conflict, 224

drop to remove from stack, 224
converting stashed changes into branch,

230-232
--include-untracked option, 228
interrupted workflow, 222-227
list parameter to view stashed context,

225-227
log message, 222
names of entries, 226
--patch option to choose hunks to stash, 228

hunk definition, 374
pop parameter to continue, 222, 223-224
push parameter, 222

--staged flag to save index and working
directory, 223

show parameter for entry changes, 226
git diff options applicable, 227
-p flag for diffs, 227

updating local work with upstream changes,
227-229
clean git pull --rebase command, 228

working directory cleanup, 404
restoring to pre-cleanup, 404

git status command, 12, 104
ahead and behind commits, 279
conflicted files marked, 131
file classifications, 106
patch application conflict, 335
unmerged files after conflict, 131

git submodule command, 355-363
about, 355
about submodules, 351, 354
add parameter to add submodule, 356
--recurse-submodules credentials passed

down, 364
split parameter for history of subdirectory,

365
submodule add versus init, 358
sync parameter, 363
update parameter, 362

--init option, 357, 363
--remote option, 362

why submodules, 355

git subtree command, 364-368
add parameter to add subproject, 365
installation, 364
pull to pull subproject updates, 367

git svn tool
author mapping file, 420, 421
converting source to Git-ready, 420-423

git switch command, 70
--recurse-submodules option, 363

git symbolic-ref command, 84
git tag command, 46
git update-ref command, 413

-d option to delete ref, 413
Git URLs (Uniform Resource Locators)

HTTP/HTTPS ports, 248
remote repository names, 246-248
shortening subtree URL, 366

git version command, 7, 498
git whatchanged command, 409

--since option, 409
git write-tree command, 40
git-daemon for publishing

anonymous read access repositories,
288-292

anonymous write access repositories, 292
--export-all option for all identifiable repo‐

sitories, 288
Git native protocol, 247, 288
inetd service on server, 289
--interpolated-path option, 289, 292
multiple, virtually hosted Git daemons, 289

git-p4 tool to convert source to Git-ready, 420
git-scm manual, 370, 421, 498
.gitconfig file, 21
GitHub, 310, 447

about, 439
account types, 440-444

enterprise accounts, 443
organization accounts, 442
personal accounts, 441, 443
pricing and features on website, 444

APIs, 485, 486
blog posts on monorepo tips, 426
codespaces, 446

documentation, 447
Dashboard

Code view, 453-455
Issues, 456-458
Issues documentation, 458

514 | Index

pull requests, 459-470
Repository page, 450-453

development workflows, 482-484
forking projects, 310, 452
Git ecosystem and, 444
git filter-repo source code, 391
Git LFS installation, 430
GitHub Flow, 471-474

documentation, 474
hosting a repository, 447-470

creating a new repository, 448-450
integrating with, 485-487

GitHub apps versus OAuth apps, 487
Markdown syntax documentation, 458
merge conflict resolution, 474-482
migrating local repository to, 416-420
Webhooks, 486

GitHub apps versus OAuth apps, 487
GitHub CLI, 445
GitHub Desktop client, 444
GitHub Flow, 471-474

documentation, 474
GitHub Mobile, 446
.gitignore file, 12, 118-121

about ignored files, 105
how to ignore a file, 106, 107

gitk tool
--first-parent option, 155
git bisect visualize command, 181
git log --graph instead, 127
view commit history, 95

gitlinks, 351-354
Git operations not dereferencing, 353
linking to missing objects, 353
submodule added, 356

.gitmodules file, 355
git submodule add command creating, 356
submodule add versus init, 358
username in submodule metadata, 364

Gitolite project for access control, 288
gitweb utility for browser support, 290
$GIT_DIR environment variable, 83
$GIT_EDITOR environment variable, 13, 23
glob patterns

git filter-repo --replace-text command, 398
Git LFS file tracking, 434
.gitignore file, 119

--global option, 21
Gradle Multiproject Builds, 355

GraphQL API for GitHub, 485, 486
graphs of commits, 90-96, 127

--all option for all refs, 321
commit ranges, 88, 96-101
DAG diagrams for commits, 35, 91-96

distributed development commit his‐
tory, 297

gitk tool to view, 95, 127
since..until, 88
viewing branches before merge, 126

grepping text patterns in repo files, 411-413
options as in traditional grep tool, 412
pickaxe contrasted, 411
untracked files, 412
word “broken”, 344

Grune, Dick, 493

H
haiku via rebase interactive option, 209-213
Hamano, Junio, 341, 495
hash mark (#)

comments for merge commits, 130
comments in .gitignore file, 118

hash values, 29
(see also SHA1 hash values)

HEAD, 83
changing HEAD commit

git commit --amend command, 192-194
git reset --hard ORIG_HEAD to discard

merge, 141
git reset command, 194-202

detached HEAD mode, 74-76
checking out old commit, 382
Git bisect mode, 179
submodule files during update, 359
unreachable commits, 75

git log command to view, 88
git reflog show command, 233
git reset command saving to ORIG_HEAD,

141, 199
hex numbers

git diff commit IDs, 18
git hash-object command, 38, 109
SHA1 hash values, 29, 38

collision of same values rare, 39
looking up via prefix, 39
same content, same value, 41

history of Git
about version control systems, 489

Index | 515

birth of Git, 490-492
inventor Linus Torvalds, 489
precedents, 492
timeline, 494

hooks
about, 339

alternatives, 340, 350
caution about using, 340, 350
client-side and server-side, 339
reasons to use, 341

available hooks, 346-350
about help to list, 346, 349
commit-related hooks, 346-347
other hooks, 349
patch-related hooks, 347
push-related hooks, 348-349

bypassing, 345
choosing to use a hook, 340, 350
creating first hook, 344
Git LFS, 432

pre-push to push LFS file to remote
server, 430

installing, 342
example hooks, 342

scripts, 342
names of scripts, 342

types of, 339
exit status, 340

HTTP daemon for publishing, 290
Git and HTTP daemons, 292
Smart HTTP, 291

HTTP transfer protocol, 315
patches instead, 316

HTTP/HTTPS URL variants, 247
HTTPS versus SSH for cloning, 248
ports, 248

hunk definition, 374
git add -p command for staging hunks,

371-381
git stash --patch command to choose hunks,

228
splitting hunks, 375

hyphen (see dash (-))

I
ignored files, 105

.gitignore file, 118-121
about, 12

how to ignore a file, 106

index, 28
about, 26, 103

importance and functions of, 103-105
initializing new repository, 11

conflicted files marked, 131
binary merge driver, 153

git add command actions, 39, 107-111
“putting a file in the index”, 108

git commit --all to stage all unstaged, 111
git diff command

comparing changes, 105
no parameters, 138, 159

Git internal workings, 39, 51
git mv command, 116-117
git reset command, 194
git rm command, 113-115
git stash command to save, 223
interactive hunk staging, 372

hunk definition, 374
merges with clean index, 124, 142
status via git status, 104
tree object created from, 40

inetd service in git-daemon setup, 289
innersource, 439

(see also GitHub)
installing Git

Debian/Ubuntu Linux binary, 497
macOS, 498
other Linux binary distributions, 498
preparing to work with Git, 9
source code, 499

building and installing from, 499
Windows, 499

interactive hunk staging, 371-381
hunk definition, 374
splitting hunks, 375

interrupted workflow using stash, 222-227
introduction to Git, 9

about preparing to work with Git, 9
advice for those new to, 4
local repository, 10-19

adding a file, 12-14
creating initial repository, 10-11
editing then committing, 14
removing a file, 18
renaming a file, 19
viewing commit differences, 17
viewing commits, 16-17

shared repository, 19-20

516 | Index

L
Large File Storage (see Git LFS)
large repositories, 425-426

Git LFS, 426-437
converting repositories to LFS, 436

LFS (Large File Storage) (see Git LFS)
lightweight tags, 27, 46
Linux kernel code

“backup” via internet downloads, 298
fork reconciliation, 309
Git invented to support development, 489
history of, 489, 494, 495
largest octopus merge, 150

Local History, 11
--local option, 22
local repository

about, 5
branch names listed, 63

(see also branches)
git show branch command, 63-66

client-side hooks, 339
development cycle

alternate histories, 267
cloning a repository, 266
fetching the alternate history, 269
merge conflicts, 271
merging histories, 270
non-fast-forward pushes, 268
pushing merged history, 271

hooks available, 346-350
about help to list, 346, 349
commit-related hooks, 346-347
other hooks, 349
patch-related hooks, 347
push-related hooks, 348-349

index, 11, 28
(see also index)

introduction to Git, 10-19
adding a file, 12-14
creating initial repository, 10-11
editing then committing, 14
removing a file, 18
viewing commit differences, 17
viewing commits, 16-17

Local History, 11
migrating to GitHub, 416-420
refspec mapping names, 248
remote repository development cycle,

265-272

sensitive information, 187
updating with upstream changes, 227-229

local-tracking branch, 245
ls command to list objects in object store, 387,

389

M
macOS installation of Git, 498
Mail User Agent (MUA) for mailing patches,

326
mailing patches, 326

applying patches, 330-337
bad patches, 337

main as branch name
git init command, 10
relative commit names, 85
use in book, xiii

maintainer and developer roles, 299
maintainer–developer interaction, 300

Makefile modification, 228
man command, 8

man git-init, 37
master as default branch name, 57
Maven Multimodule Projects, 355
Mercurial version control system, 493
merge commit of normal merges, 148
merge commits

aborting or restarting merge, 141
about, 141
about merges, 123, 124

hooks for, 350
technical view, 123

commit ranges, 98
conflicts dealt with

aborting or restarting merge, 141
about, 130
example merge with conflict, 127-130
finishing up, 140-141
git diff command for, 128, 133-136
git log command for, 137
git rebase command pausing, 208
Git tracking conflicts, 138
inspecting conflicted files, 132-138
locating conflicted files, 131
patch application, 335
small, frequent commits, 138

context sensitivity, 124, 126
criss-cross merges, 144
examples of merges

Index | 517

about, 124
git add command after conflict, 129
git diff command for conflict, 128,

133-136
merge with conflict, 127-130
merging two branches, 125-127
preparing for a merge, 124

Git internals
Git object model and merges, 153
history retained, not squashed, 154
why merges work like they do, 155

git show-branch output, 64
merge drivers, 152
parent commits, 85, 86
patch three-way merge, 334

patching versus merging, 338
strategies

about criss-cross merges, 142-145
applying, 151
degenerate merges, 145-148
merge drivers, 152
normal merges, 148
specialty merges, 150

merge conflicts
aborting or restarting merge, 141
about merges, 123
binary merge conflict resolution, 435
conflict resolution markers, 71
dealing with

aborting or restarting merge, 141
about, 130
finishing up, 140-141
git diff command for, 128, 133-136
git log command for, 137
git rebase command pausing, 208
Git tracking conflicts, 138
inspecting conflicted files, 132-138
locating conflicted files, 131
small, frequent commits, 138

example merge with conflict, 127-130
git diff command for conflict, 128

git rebase command, 208
GitHub merge conflict resolution, 474-482
-m option to merge changes, 71
non-fast-forward pushes, 269
patch application, 335
remote repository development cycle, 271

merge markers (see conflict resolution mark‐
ers)

merge-org merge strategy, 148
applying, 151

MERGE_HEAD, 83-84
merging changes into different branch, 70-72

base branch information, 72
metadata

editing commit object metadata, 194
username in submodule metadata, 364

migrating to Git
about, 416
from non-Git version control system,

420-424
Git server to hosting platform, 416-420

minus sign (-)
bare double dash, 9

filename indication, 9, 415
git grep path limiting, 412

git diff command output, 18, 158, 168
merge conflicts, 128, 133-136
--word-diff= mode, 162

short (-) and long (--) options, 8
minus sign (–)

bare double dash
filename indication, 70

git show-branch commits, 64
git show-branch separator, 63, 64

modularization via submodules, 355
monolith repositories, 425-426

GitHub blog post on tips, 426
monorepo repositories, 425-426

GitHub blog post on tips, 426
Monotone version control system, 494
moving a file via git mv command, 116-117
multiple repository management

converting to different upstream repository,
305-306

forking projects, 308-311
about forks, 308, 309
choosing to fork, 309, 309, 310
forking projects at GitHub, 310, 452
pull requests, 310
reconciling forks, 309

multiple upstream repositories, 306-308
where to start your repository, 304
your own workspace, 303

mutt mail client for mailing patches, 328
Myers diff algorithm, 158
Myers, Eugene W., 158

518 | Index

N
names of branches, 57

ambiguous name handling, 277
default branch name, 57
git branch command introducing, 62
hierarchical branch names, 57
pointer to most recent commit, 59, 64
rules for names, 57
tag with same name, 60

names of repositories, 246-251
namespaces

refs, 83
SHA1 hashes, 38
tracking branches, 244-246

Newren, Elijah, 391, 392
nonbare repositories (see development reposi‐

tories)
normal merges strategies

applying, 151
merge-org strategy, 148
octopus strategy, 148, 149
recursive strategy, 148, 149
resolve strategy, 148

O
object IDs, 29, 82

(see also SHA1 hash values)
object store, 26, 33-35

about object creation, 49-54
content tracking, 29-31
content-addressable database, 29

git commit --amend command re-
generating, 194

files and trees, 39
git show command to display objects, 90
listing objects in, 387
object type via git cat-file command, 388
packfiles, 27, 32
refs and symrefs, 83-85
repository internal workings, 36-47, 49-54

blob objects and hashes, 38
commit objects, 43-45
.git hidden directory, 36-38
tag objects, 46
tree hierarchies, 42

unreachable objects, 387
garbage collection, 75, 404-407
unreachable commits, 75

octopus merge strategy, 148, 149

applying, 151
largest to date, 150

online resources (see resources online)
origin remote, 243

creating for example depot, 253-255
origin/main, 83

ORIG_HEAD, 83-84
git reset --hard ORIG_HEAD to discard

merge, 141
git reset command saving HEAD to, 141,

199
ours merge strategy, 150

applying, 151

P
packfiles, 27, 32

garbage collection creating, 405
packing heuristics, 405
SHA1 for each object in pack, 405

parent commits, 85, 94
parent repository as upstream, 299
partial clones, 425

GitHub blog post on tips, 426
patches

about, 315
about transfer protocols, 315
applying, 330-337

git diff output extra information, 334
resetting or aborting, 333
show patch and files affected, 332
three-way merge, 334

bad patches, 337
generating patches, 317

commit ranges, 319, 322-325
-n option for most recent n commits,

318
topological sorts and patches, 325

history of Git, 494
hooks for patch actions, 347
interactive hunk staging, 371-381

hunk definition, 374
splitting hunks, 375

mailing patches, 326-329
bad patches, 337

merging versus patching, 338
upstream versus downstream role duality,

301
why use patches, 316

path limiting options, 385

Index | 519

commit:path option, 386
pathnames

content versus, 31
Git internal workings, 39

tree hierarchies, 42
paths as different versions of a file, 385

commit:path options, 386
peer review via patches, 317
peer-to-peer backup via Git, 298
period (.)

current directory in Unix, 12
double-dot syntax (..)

commit ranges, 97, 280, 322
commit ranges for patches, 319, 322-325
git diff command ranges, 168-171
ranges as set operation, 97

triple period syntax (…)
commit ranges, 100, 171
git diff path… command, 163

triple-dot syntax (…)
commit ranges, 280
git log graph of merge structure, 218
qualifiers for refs, 235

pickaxe, 184
git diff -S option, 172, 184
git grep contrasted, 411

plumbing commands, 36
plus sign (+)

git diff command output, 18, 158, 168
--word-diff= mode, 162

git show-branch commits, 64
refspec syntax, 249

pointer files for Git LFS, 430
porcelain commands, 36

index hidden from user, 104
pound sign (#)

comments for merge commits, 130
comments in .gitignore file, 118

protocols for remote repositories, 246
about transfer protocols, 315
Git native protocol, 247
Git URLs, 246-248
SSH versus HTTPS for cloning, 248

published history, 189
altering commits and, 189
recovering from upstream rebase, 407

publishing repositories
about, 286
advice, 292

anonymous read access repositories,
288-292
about, 288
Git and HTTP daemons, 292
git-daemon, 288-290
HTTP daemon, 290
Smart HTTP, 291

anonymous write access repositories, 292
bare repositories published, 242, 286
changing public history, 295
commit and publish steps separate, 296
controlled access repositories, 287-288

Git hosting solutions, 288, 292
git-daemon, 288-290

Git native protocol used, 247, 288
maintainer versus developer roles, 299

maintainer–developer interaction, 300
pull (see git pull command)
“pull into a dirty tree”, 227
pull requests, 310

GitHub, 459-470
push (see git push command)

Q
quantum physics effects, 298

R
ranges in git subcommands (..)

commit ranges, 96-101, 322
main and origin/main, 280
patch generation, 319, 322-325

RCS version control system, 490, 493
rebasing commits, 206-219

about, 213, 218
running git gc command after, 406

converting to different upstream repository,
305-306

Git internal workings, 214-217
hook for, 349
interactive option

dirty working directory, 403
modifying commits, 209-213

merge contrasted with, 213-219
rebase-merges option to preserve structure,

217
recovering from upstream rebase, 407
setting a starting point for new commit, 296

recursive merge strategy, 148, 149
applying, 151

520 | Index

reflog, 232-237
commit loss prevented, 389

git fsck --no-reflog command, 389
configuration parameters, 407
development but not bare repositories, 242
development not bare repositories, 233
enabling and disabling, 233, 386
garbage collection, 236
.git hidden directory storage, 237
HEAD names as symbolic commit names,

234
refs, 83-85

drawing an ASCII graph with all refs, 321
qualifiers, 235
relative commit names, 86
updating and deleting, 413

refspecs, 248-251
git fetch command, 249

origin remote with default refspec, 243
git pull command, 250
git push command, 249

no refspec specified, 251
remote branches added and deleted,

280-282
remote branches renamed, 281
syntax, 249

relative commit names, 85-87
Release Notes link, xiii
remote branches, 245

adding and deleting, 280-282
renaming, 281

remote repositories
about, 239
bare repositories, 240
branch names listed, 63
clones, 242

sharing via, 239
(see also shared repositories)

configuring remotely
about, 272
git config command, 274
git remote command, 273
manual editing, 275

development cycle
about, 265
alternate histories, 267
cloning a repository, 266
fetching the alternate history, 269
merge conflicts, 271

merging histories, 270
non-fast-forward pushes, 268
pushing merged history, 271

development repositories, 240
example of multiple repositories

about depot, 251
adding a new developer, 258-260
creating depot, 252
creating origin remote, 253-255
developing in your repository, 256
getting repository updates, 260-265
pushing changes, 256

FETCH_HEAD, 84
git commands, 243
git show-branch for information, 63-66
multiple, 275
multiple upstream, 306-308
names of repositories

about, 246
referring to remote repositories, 246-248
refspec, 248

remote branches added and deleted,
280-282

remote branches renamed, 281
remotes for connections, 239

about, 246
git config command, 243
origin remote, 243
origin remote created for example,

253-255
sensitive information, 187
server-side hooks, 339
structure of, 293-295
tracking branches, 244-246

about, 56
ahead and behind, 279
creating, 276
deleting, 76-78
remote branch modifications, 282
using different name, 277

remote-tracking branches, 245
treated as read only, 246

remotes for repository connections, 243
about, 239, 246
origin remote, 243

creating for example depot, 253-255
removing a file from local repository, 18
renaming a file

git mv command, 116-117

Index | 521

local repository, 19
problems tracking renamed file, 118
tracking rename in Git, 117
tracking rename in SVN, 117

repo history (repository commit history), 13
repositories, 25

about commits, 80
about server for Git, 285
about “repository” term, 493
bare repositories, 240

depot creation, 252
git push command and, 282
space saving options, 286

branch renamed, 57
(see also branches)

changes listed, 409
cleaning out untracked files, 410
cloning, 19

(see also cloning a repository)
“commit rights” as misnomer in Git, 286
deleting a file, 113-115
development repositories, 240

git push command and, 282
distributed repository structure, 294
Git internals, 36-47

blob objects and hashes, 38
commit objects, 43-45
files and trees, 39
.git hidden directory, 36-38
SHA1 hash values, 41

(see also SHA1 hash values)
tag objects, 46
tree hierarchies, 42

GitHub repository hosting, 447-470
hooks

acting on specific repositories, 339
client-side and server-side, 339

index, 11, 28
(see also index)

large repositories, 425-426
converting repositories to LFS, 436
Git LFS, 426-437

local repository, 5
(see also local repository)
adding a file, 12-14
branch names listed, 63

(see also branches)
creating initial repository, 10-11
Local History, 11

updating with upstream changes,
227-229

maintainer versus developer roles, 299
maintainer–developer interaction, 300

merges in single repository, 123
multiple repository management

converting to different upstream reposi‐
tory, 305-306

forking projects, 308-311
multiple upstream repositories, 306-308
where to start your repository, 304
your own workspace, 303

publishing
about, 286
advice, 292
anonymous read access repositories,

288-292
anonymous write access repositories,

292
changing public history, 295
commit and publish steps separate, 296
controlled access repositories, 287-288
Git hosting solutions, 288, 292
maintainer versus developer roles, 299
maintainer–developer interaction, 300

reflog enabled and disabled, 233
remote repository branch names listed, 63

(see also remote repositories)
sensitive information, 187
shared repositories, 19-20

altering commits and published history,
189, 206

altering safe with git revert command,
191, 206

structure of, 294
structure of, 293-295
syncing with root-level diff, 159
tracking branches, 244-246

(see also tracking branches)
upstream and downstream flows, 299

role duality, 301
resolve merge strategy, 148

applying, 151
resources online

Git commands listed, 23
Git documentation, 8

branch and tag with same name, 60
Git LFS technical specifications, 431
index, 104

522 | Index

packfile heuristics, 405
Release Notes link, xiii
SHA256 extension, 39
subtree manual installation, 364
workflows, 474

git filter-repo installation, 393
Git Flow workflow blog post, 474
Git maintenance mailing list address, 317
git-scm manual, 370, 421, 498
GitHub blog posts on monorepo tips, 426
GitHub documentation

codespaces, 447
GitHub apps versus OAuth apps, 487
GitHub Flow, 474
Issues, 458
Markdown syntax, 458

GitHub pricing and features, 444
REST API for GitHub, 485, 486
Revision Control System (RCS), 490, 493
Rochkind, M. J., 493
root commit, 85
Rsync protocol, 248

S
Schneier, Bruce, 39
scripts

about hook scripts, 342
creating a pre-commit script, 344
exit status, 340

example script, 344
git bisect command, 182
grepping for word “broken”, 344
hooks

about, 339
available hooks, 346-350
bypassing, 345
caution about using, 340, 350
choosing to use a hook, 340, 350
creating first hook, 344
example hooks, 342
installing, 342
not copied during clone, 339, 342
reasons to use, 341
types of, 339

searching text patterns in repo files, 411-413
pickaxe contrasted with git grep, 411

Secure Hash Function (SHA1), 491
(see also SHA1 hash values)

sensitive information

altering commits to remove, 187
git filter-repo command to remove, 397
local versus remote repositories, 187

server for Git, 4, 285
Git hosting solutions, 288, 292

GitHub as, 444
git-daemon as inetd service, 289
GitHub as, 444
meaning of “server”, 285
migrating to hosting platform, 416-420
publishing, advice on, 292
shared repository, 19-20

SHA1 hash values, 29
about Secure Hash Function, 491
commit absolute name, 82
commit speed via, 80
git add command creating, 38
git commit --amend command re-

generating, 194
.git hidden directory, 38
git rebase command re-generating, 213
globally unique identifiers, 29, 82

collision of same values rare, 39
same content, same value, 41

lost commits
reconnecting, 391
recovering, 386-390
tips for recovering, 407

object type determination, 388
packfile objects, 405
patch git diff identifying blob, 334
prefix for looking up, 39, 82
refs and symrefs, 83-85
same content, same value, 41

subdirectory with same content, 42
SHA256 values instead, 39
tag objects, 46

SHA256 hash values, 39
shallow clones, 425

GitHub blog post on tips, 426
shared repositories

about, 239
(see also remote repositories)

altering commits and published history,
189, 206
git revert command safe, 191, 206

bare repositories, 240
clones, 242

sharing via, 239

Index | 523

development repositories, 240
introduction to Git, 19-20
names of repositories

about, 246
referring to remote repositories, 246-248
refspec, 248-251

remotes for connections, 239
structure of, 294

slash (/)
branch names, 57
directory parameter when trailing, 353

Smart HTTP for publishing, 291
SMTP information into global configuration

file, 328
SMTP open relay servers for Git email, 327
social coding, 439, 444
Source Code Control System (SCCS), 493
source code for Git, 499

building and installing from, 499
space beginning git diff output line, 158
spaces ignored by git diff command, 162
sparse checkout, 426

GitHub blog post on tips, 426
specialty merges strategies

applying, 151
ours strategy, 150
subtree strategy, 150

squash commits, 155
rebase interactive option, 210-213

SSH (Secure Shell) connections
Git-over-SSH protocol, 247, 292, 293
HTTPS compared for cloning, 248

stable branch for submodule workflow, 362
staging directory, 28, 103

(see also index)
stash

about, 221
stack of stash states, 223, 231

apply parameter without drop, 224
choosing hunks to stash, 228

hunk definition, 374
conflict, 224

drop to remove from stack, 224
converting stashed changes into branch,

230-232
--include-untracked option, 228
interrupted workflow, 222-227
listing stashed context, 225-227
log message, 222

names of entries, 226
pop parameter to continue, 222, 223-224
push parameter, 222

--staged flag to save index and working
directory, 223

showing changes for an entry, 226
git diff options applicable, 227
-p flag for diffs, 227

untracked and ignored files stashed, 228
updating local work with upstream changes,

227-229
clean git pull --rebase command, 228
git push command after popping, 229

Stolee, Derrick, 426
subdirectory and SHA1 hash value, 42
submodules

about, 351, 354, 355
credential reuse, 364
gitlinks, 351-354

Git operations not dereferencing, 353
linking to missing objects, 353
submodule added, 356

metadata username, 364
subtrees as alternatives to, 364

(see also subtrees)
visual comparison of the two, 368

why submodules, 355
working with, 355-363

adding a submodule, 356
changing from within superproject,

359-361
cloning a repository, 357
detached HEAD mode during update,

359
pulling submodule updates, 361
pulling superproject updates, 362
submodule add versus init, 358
switching branches in superprojects, 363
tracking specific branch, 362
workflow for collaborative development,

362
subtrees, 364-368

about, 364
adding a subproject, 365
changing subproject within superproject,

367
installation, 364
merge strategy, 150

applying, 151

524 | Index

pulling subproject updates, 367
shortening subtree URL, 366
submodule visual comparison, 368

SVN (Subversion) version control system
history of, 493
tracking renamed files, 117
tracking revisions, 173

switching branches, 70
keeping working directory, 70-72

symrefs (symbolic references), 83-85
reflog HEAD names as commit names, 234

syncing repositories with root-level diff, 159
system configuration settings, 21
--system option, 21

T
tag objects (tags), 27

annotated tags, 27, 46
branch with same name, 60
branches versus, 60
copied into clones, 242
Git internal workings, 46
lightweight tags, 27, 46
object store visualized, 33-35

template directory, 339
text merge driver, 152
text-based files compressing well, 426
three-dot diffs (…), 163
three-way diff markers (see conflict resolution

markers)
three-way merge, 334
Tichy, Walter F., 493
tilde (~) for parent commits, 85
time-based qualifiers for refs, 235
timestamps of commits unimportant, 94

distributed development, 297
topic branch (see development branch)
topological sort orders of commits, 325
Torvalds, Linus, 183, 309, 489, 494

birth of Git, 490-492, 494
tracing via reflog, 232-237

development not bare repositories, 242
enabling and disabling, 233
.git hidden directory storage, 237
HEAD names as symbolic commit names,

234
tracing via reflog, 236

tracked files, 105
tracking branches, 244-246

about, 56
ahead and behind, 279
creating, 276

created for example, 254
deleting remote, 76-78
remote branch modifications, 282
using different name, 277

tree command on .git hidden directory, 36,
49-54

tree objects (trees), 27
about commits, 79
blob objects linked to, 53
commit object containing, 53
created from index, 40
files and trees, 39
git diff comparing, 159-163
gitlink linking to commit objects, 352
object store visualized, 33-35
packfiles, 27, 32
pathname versus content, 31
“pull into a dirty tree”, 227
tree hierarchies, 42
viewing via git cat-file, 40

triple-period syntax (…)
commit ranges, 100, 171, 280
git diff path… command, 163
git log graph of merge structure, 218
qualifiers for refs, 235

U
Ubuntu Git installation, 497
undoing the effects of a commit, 191
union merge driver, 153
unreachable objects, 387

garbage collection, 75, 404-407
unreachable commits, 75

untracked files, 106
cleaning out, 410
git rm --cached to untrack, 114
git stash --include-untracked command, 228

upstream repository
about, 243
changes listed, 409
configuring remotely

about, 272
git config command, 274
git remote command, 273
manual editing, 275

Index | 525

converting to different upstream repository,
305-306

creating a depot, 252
development cycle

about, 265
alternate histories, 267
cloning a repository, 266
fetching the alternate history, 269
merge conflicts, 271
merging histories, 270
non-fast-forward pushes, 268
pushing merged history, 271

maintainer versus developer, 299
multiple upstream repositories, 306-308
recovering from upstream rebase, 407
upstream and downstream flows, 299

role duality, 301
URLs (see Git URLs)
user-specific configuration settings, 21
user.email for git config, 9, 21
user.name for git config, 9, 21
username in submodule metadata, 364

V
version control systems (VCSs), 489

birth of Git, 490-492
(see also Git)

landmark VCSs leading to Git, 492
Linux development prior to Git, 490

version of Git
current version, xiii, 7, 498
git version command, 7, 498
master as default branch name, 57

visualization
DAG diagrams for commits, 35, 91-96

distributed development commit his‐
tory, 297

git bisect visualize command, 181
graphs of commits, 90-96, 127

--all option for all refs, 321
commit ranges, 88, 96-101
gitk tool to view, 95, 127
since..until, 88
viewing branches before merge, 126

submodules versus subtrees, 368

Voltaire on git filter-repo, 392

W
web viewing of published repositories, 290
Webhooks for GitHub, 486

GitHub apps versus OAuth apps, 487
website converted to repository, 10
whitespace ignored by git diff command, 162
wildcard characters

Git LFS file tracking, 434
git show-branch command, 66
.gitignore file, 119
hierarchical branch names and, 57
refspec syntax, 249

Windows
hooks and, 343
installing Git, 499

WIP for work in progress, 222
workflow interrupted so stash, 222-227
working directory, 11

checking out branches, 67
deleting a file, 113-115
git apply command leaving modified, 330
git bisect command with clean directory,

179
git diff command with no parameters, 138,

159, 161
git reset command, 194
git stash command to save, 223
index as cache of current state, 103
maintaining state while switching branches,

70-72
managing branches, 58
merges with clean directory, 124, 142

git diff to expose dirty files, 159, 161
rebase requiring clean directory, 403

interactive option with dirty directory,
403

restoring files via checkout, 69
git restore command, 70

Z
zlib library for packfiles, 32

526 | Index

About the Author
Prem Kumar Ponuthorai is responsible for strategizing and enabling GitHub’s offer‐
ings for the Expert Services Delivery organization. Having built on his software
engineering background by becoming a Git convert, Prem has given Git workshops
at conferences and provided training in Git for enterprise customers across diverse
industries.

Jon Loeliger is a freelance software engineer who contributes to open source projects
such as Linux, U-Boot, and Git. He has given tutorial presentations on Git at many
conferences, including Linux World, and has written several papers on Git for Linux
Magazine.

Colophon
The animal on the cover of Version Control with Git is a long-eared bat. It is a fairly
large bat that is common and widespread throughout Great Britain and Ireland. It
can also be found in Japan. Often seen in colonies of 50 to 100 or more, it lives in
open woodlands, as well as in parks and gardens and in spaces under houses and
church roofs. It also hibernates in caves, where it is more solitary in habit.

The long-eared bat is a medium-sized bat with a broad wingspan of about 25 cm.
Its ears are very long and have a very distinctive fold. Their inner edges meet each
other on the top of the head, and their outer edges end just behind the angle of the
mouth. When the bat sleeps, it folds its ears under its wings. During flight, the ears
are pointing forward. Its fur is long, fluffy, and silky, extending a short way onto the
surface of its wings. It is dusky brown in color on top and light or dirty brown in
color below. Juveniles are pale gray, lacking the brown tinges of the adults. Its diet
consists of flies, moths, and beetles. It glides among foliage, frequently hovering to
scour for insects. When traveling to another tree, its flight is swift, strong, and close
to the ground.

Long-eared bats breed in autumn and spring. Pregnant females form nursery colonies
of 100 or more in early summer, and the single young or twins are born in June and
July. Bats are the only true flying mammals. Contrary to popular misconception, they
are not blind, and many can actually see very well. All British bats use echolocation to
orient themselves at night; they emit bursts of sound that are of such high frequencies
they are beyond the human range of hearing and are therefore called ultrasound. The
bats then listen to and interpret the echoes bounced back from objects around them
(including prey), which allows them to build a “sound picture” of their surroundings.

Like all bats, this species is vulnerable to a number of threats, including the loss of
roost sites, as hollow trees are often cut down if thought unsafe. Pesticide use has
devastating effects, causing severe declines in insect abundance and contaminating

food with potentially fatal toxins. Insecticides applied to timbers inside buildings
where roosts occur are a particular danger. The initial treatment can wipe out whole
colonies (spraying timber where bats are roosting is now illegal), but the effects of
these chemicals can be lethal to bats for up to 20 years. In Britain, under the Wildlife
and Countryside Act, it is illegal to intentionally kill, injure, take, or sell a bat; to
possess a live bat or part of a bat; and to intentionally, recklessly damage, obstruct,
or destroy access to bat roosts. Under the conservation regulations, it is an offense to
damage or destroy breeding sites or resting places. Offenders can be charged up to
5,000 pounds per bat affected and be sentenced to six months of imprisonment.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Dover Animals. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Essential Know-How
	New in This Revision
	Navigating the Book
	Installing Git
	A Note on Inclusive Language
	Omissions
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Attributions

	Part I. Thinking in Git
	Chapter 1. Introduction to Git
	Git Components
	Git Characteristics
	The Git Command Line
	Quick Introduction to Using Git
	Preparing to Work with Git
	Working with a Local Repository
	Working with a Shared Repository
	Configuration Files

	Summary

	Chapter 2. Foundational Concepts
	Repositories
	Git Object Store
	Index
	Content-Addressable Database
	Git Tracks Content
	Pathname Versus Content
	Packfiles

	Visualizing the Git Object Store
	Git Internals: Concepts at Work
	Inside the .git Directory
	Blob Objects and Hashes
	Tree Object and Files
	A Note on Git’s Use of SHA1
	Tree Hierarchies
	Commit Objects
	Tag Objects

	Summary

	Part II. Fundamentals of Git
	Chapter 3. Branches
	Motivation for Using Branches in Git
	Branching Guidelines
	Branch Names
	Dos and Don’ts in Branch Names

	Managing Branches
	Working in Branches
	Creating Branches
	Listing Branch Names
	Viewing Branches and Their Commits
	Switching (Checking Out) Branches
	Merging Changes into a Different Branch
	Creating and Checking Out a New Branch
	Detached HEAD
	Deleting Branches

	Summary

	Chapter 4. Commits
	Commits: Recorded Units of Change
	Atomic Changesets
	Identifying Commits
	Absolute Commit Names
	Refs and Symrefs
	Relative Commit Names

	Commit History
	Viewing Old Commits
	Commit Graphs
	Commit Ranges

	Summary

	Chapter 5. File Management and the Index
	Importance of the Index
	File Classifications in Git
	Using git add
	Notes on Using git commit
	Using git commit --all
	Writing Commit Log Messages

	Using git rm
	Using git mv
	A Note on Tracking Renames
	The .gitignore File
	Summary

	Chapter 6. Merges
	Merge: A Technical View
	Merge Examples
	Preparing for a Merge
	Merging Two Branches
	A Merge with a Conflict

	Working with Merge Conflicts
	Locating Conflicted Files
	Inspecting Conflicts
	How Git Keeps Track of Conflicts
	Finishing Up a Conflict Resolution
	Aborting or Restarting a Merge

	Merge Strategies
	Degenerate Merges
	Normal Merges
	Specialty Merges
	Applying Merge Strategies
	Merge Drivers

	How Git Thinks About Merges
	Merges and Git’s Object Model
	Squash Merges
	Why Not Just Merge Each Change One by One?

	Summary

	Chapter 7. Diffs
	Forms of the git diff Command
	Simple git diff Example
	Understanding the git diff Output
	git diff and Commit Ranges
	git diff with Path Limiting
	How Git Derives diffs
	Summary

	Part III. Intermediate Skills
	Chapter 8. Finding Commits
	Using git bisect
	Using git blame
	Using Pickaxe
	Summary

	Chapter 9. Altering Commits
	Philosophy of Altering Commit History
	Caution About Altering History
	Using git revert
	Changing the HEAD Commit
	Using git reset
	Using git cherry-pick
	reset, revert, and checkout
	Rebasing Commits
	Using git rebase -i
	rebase Versus merge

	Summary

	Chapter 10. The Stash and the Reflog
	The Stash
	Use Case: Interrupted Workflow
	Use Case: Updating Local Work in Progress with Upstream Changes
	Use Case: Converting Stashed Changes Into a Branch

	The Reflog
	Summary

	Chapter 11. Remote Repositories
	Part I: Repository Concepts
	Bare and Development Repositories
	Repository Clones
	Remotes
	Tracking Branches
	Referencing Other Repositories
	Referring to Remote Repositories
	The refspec

	Part II: Example Using Remote Repositories
	Creating an Authoritative Repository
	Make Your Own Origin Remote
	Developing in Your Repository
	Pushing Your Changes
	Adding a New Developer
	Getting Repository Updates

	Part III: Remote Repository Development Cycle in Pictures
	Cloning a Repository
	Alternate Histories
	Non-Fast-Forward Pushes
	Fetching the Alternate History
	Merging Histories
	Merge Conflicts
	Pushing a Merged History

	Part IV: Remote Configuration
	Using git remote
	Using git config
	Using Manual Editing

	Part V: Working with Tracking Branches
	Creating Tracking Branches
	Ahead and Behind

	Adding and Deleting Remote Branches
	Bare Repositories and git push
	Summary

	Chapter 12. Repository Management
	Publishing Repositories
	Repositories with Controlled Access
	Repositories with Anonymous Read Access
	Repositories with Anonymous Write Access

	Repository Publishing Advice
	Repository Structure
	Shared Repository Structure
	Distributed Repository Structure

	Living with Distributed Development
	Changing Public History
	Separate Commit and Publish Steps
	No One True History

	Knowing Your Place
	Upstream and Downstream Flows
	The Maintainer and Developer Roles
	Maintainer–Developer Interaction
	Role Duality

	Working with Multiple Repositories
	Your Own Workspace
	Where to Start Your Repository
	Converting to a Different Upstream Repository
	Using Multiple Upstream Repositories
	Forking Projects

	Summary

	Part IV. Advanced Skills
	Chapter 13. Patches
	Why Use Patches?
	Generating Patches
	Patches and Topological Sorts
	Mailing Patches
	Applying Patches
	Bad Patches
	Patching Versus Merging
	Summary

	Chapter 14. Hooks
	Types of Hooks
	A Note on Using Hooks
	Installing Hooks
	Example Hooks
	Creating Your First Hook

	Available Hooks
	Commit-Related Hooks
	Patch-Related Hooks
	Push-Related Hooks
	Other Local Repository Hooks

	To Hook or Not
	Summary

	Chapter 15. Submodules
	Gitlinks
	Submodules
	Why Submodules?
	Working with Submodules

	Submodules and Credential Reuse
	Git Subtrees
	Adding a Subproject
	Pulling Subproject Updates
	Changing the Subproject from Within the Superproject

	Git Submodule and Subtree Visual Comparison
	Summary

	Chapter 16. Advanced Manipulations
	Interactive Hunk Staging
	Loving git rev-list
	Date-Based Checkout
	Retrieve an Old Version of a File

	Recovering a Lost Commit
	The git fsck Command
	Reconnecting a Lost Commit

	Using git filter-repo
	Examples Using git filter-repo

	Summary

	Part V. Tips and Tricks
	Chapter 17. Tips, Tricks, and Techniques
	Interactive Rebase with a Dirty Working Directory
	Garbage Collection
	Tips for Recovering Commits
	Recovering from an Upstream Rebase
	Quick Overview of Changes
	Cleaning Up
	Using git-grep to Search a Repository
	Updating and Deleting refs
	Following Files That Moved
	Have You Been Here Before?
	Migrating to Git
	Migrating from a Git Version Control System
	Migrating from a Non-Git Version Control System
	A Note on Working with Large Repositories

	Git LFS
	Repository Before Git LFS and After Git LFS
	Installing Git LFS
	Tracking Large Objects with Git LFS
	Useful Git LFS Techniques
	Converting Existing Repositories to Use Git LFS

	Summary

	Chapter 18. Git and GitHub
	About GitHub
	Types of GitHub Accounts
	GitHub in the Git Ecosystem
	Hosting a Repository in GitHub
	Repository View
	Code
	Issues
	Pull Requests

	The GitHub Flow
	Resolving Merge Conflicts in GitHub
	Development Workflows
	Integrating with GitHub
	Summary

	Appendix A. History of Git
	The Birth of Git
	Precedents
	Timeline
	What’s in a Name?

	Appendix B. Installing Git
	Using Linux Binary Distributions
	Debian/Ubuntu
	Other Binary Distributions

	Installing Git on macOS
	Installing Git on Windows
	Obtaining a Source Release
	Building and Installing from Source Release

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

