

Raspberry Pi and MQTT Essentials

A complete guide to helping you build innovative full-scale
prototype projects using Raspberry Pi and MQTT protocol

Dhairya Parikh

BIRMINGHAM—MUMBAI

Raspberry Pi and MQTT Essentials
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rahul Nair
Publishing Product Manager: Meeta Rajani
Senior Content Development Editor: Sayali Pingale
Technical Editor: Rajat Sharma
Copy Editor: Safis Editing
Project Manager: Neil Dmello
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Shyam Sundar Korumilli
Marketing Coordinator: Nimisha Dua
Senior Marketing Coordinator: Sanjana Gupta

First published: August 2022

Production reference: 0240822

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80324-448-8

www.packt.com

http://www.packt.com

To my parents, Bhumika and Atit, for their sacrifices and constant
encouragement.

C o n t r i b u t o r s

About the author
Dhairya Parikh currently works as a data engineer at Accenture, where he builds efficient data products
to help their clients get the most out of their data. He completed his undergraduate studies in electronics
engineering at BVM Engineering College, Anand. He is a seasoned project developer with several
award-winning projects under his belt. His most recent literary works include several articles written
for the Circuit Cellar magazine. Most of his articles and projects are based on IoT and machine
learning. He is an open source enthusiast with an interest in building projects that make a positive
impact on people’s lives using new development hardware and writing about them in his spare time.

I would like to thank my parents and family for their constant support and
encouragement throughout this project.

I would also like to thank Neil D’mello, Shazeen Iqbal, Preet Ahuja, Rafiaa
Khan, and the entire Packt team for their guidance throughout this project, and
Asim Zulfiqar and John Witts for their technical insights! Finally, I would like

to thank Yashashree Hardikar for all the initial support.

About the reviewer
Asim Zulfiqar is a blogger and tech content creator who has been writing tutorials on embedded
systems and IoT, specifically on MQTT, on his blog and YouTube channel, High Voltages. He also
provides IoT and embedded freelance services to companies through this channel.

He completed his bachelor’s degree in electronic engineering at Sir Syed University of Engineering and
Technology, Pakistan. After that, he completed his Erasmus Mundus joint master’s degree program
in Photonics Integrated Circuits, Sensors, and Networks at Scuola Superiore Sant’Anna (Italy), Aston
University (UK), and Osaka University (Japan).

Reviewing a book is more exciting than I thought, and I have enjoyed
reviewing this book. None of this would have been possible without my family,

friends, teachers, and all the open-source communities that helped me gain
enough knowledge to do so. I would also like to thank the author of this book,

Dhairya, who helped me learn some new concepts, and Packt, for providing me
this opportunity.

Table of Contents
Preface

Part 1: Covering the Basics

1
Introduction to Raspberry Pi and MQTT

What is MQTT and how does it work?� 4
What is MQTT?� 4
Basic concepts of MQTT� 4

A gentle introduction to Raspberry Pi� 7
Setting Up Your Raspberry Pi� 11
Technical requirements� 11

Setting up an SD card for your Raspberry Pi� 12
Flashing the OS image onto the SD card� 20
Setting up Raspberry Pi for the first time� 24
Setting up VNC for Raspberry Pi� 29
Setting up and testing the MQTT broker� 35
Testing the MQTT broker locally� 37

Summary� 38

2
MQTT in Detail

Introducing MQTT clients� 40
MQTT messages� 40
MQTT topics� 41
MQTT clients� 42
How does an MQTT client connect to a broker?� 42

Understanding the MQTT
protocol packet structure� 43

Connect packet� 43
CONNACK packet� 46
PUBLISH and SUBSCRIBE packets� 47

Practical demonstration of
MQTT in action� 52
Summary� 63

Table of Contentsviii

3
Introduction to ESP Development Boards

ESP8266-based NodeMCU
development board� 66
Technical specifications� 67
NodeMCU GPIO pinout and pin configurations� 67
Arduino IDE setup for the NodeMCU
development board� 70

ESP32-based development board� 74
Technical specifications� 75

ESP32 GPIO pinout and pin configurations� 76
Arduino IDE setup for the ESP32
development board� 77

Mini-project 1: NodeMCU as an
MQTT client� 78
Part 1 – NodeMCU development board setup� 78
Part 2 – Raspberry Pi setup� 85

Summary� 86

4
Node-RED on Raspberry Pi

Introduction to Node-RED� 87
Node-RED first-time installation,
setup, and demonstration � 88
Node-RED installation� 88
Running Node-RED on your Pi for the first time�90
Node-RED crash course� 91

Node-RED MQTT components and
dashboard setup� 99
Node-RED MQTT nodes� 100

Node-RED dashboard� 102

Mini project 2 – Controlling a
NodeMCU LED from the Node-RED
dashboard� 105
Hardware requirements� 105
Software requirements� 105
NodeMCU setup� 106
Raspberry Pi setup� 110

Summary� 115

Part 2: Practical Implementation – Building Two
Full-Scale Projects

5
Major Project 1: IoT Weather Station

Hardware requirements� 120
The NodeMCU development board� 121

The DHT11 temperature and humidity sensor� 121
The BMP280 temperature and pressure sensor� 122

Table of Contents ix

The CCS811 air quality sensor� 123
Sensor interfacing� 124

Code explanation� 125
Raspberry Pi setup� 134

Starting Node-RED� 134
Project flow and dashboard setup� 136
Additional functionality – email alerts� 141

Summary� 148

6
Major Project 2: Smart Home Control Relay System

Hardware requirements and setup� 151
ESP32 development board� 152
5V non-latching relay� 153
5V Hi-Link power supply� 154
Miscellaneous components� 154

Hardware setup (PCB design and circuit)� 155

Code explanation� 158
Raspberry Pi setup� 165
Project enhancements� 171
Summary� 174

Part 3: How to Take Things Further – What Next?

7
Taking Your MQTT Broker Global

Establishing the advantages of
a global MQTT broker� 178
How to take your broker global� 178

Option 1 – online MQTT broker� 180
Option 2 – virtual server� 195

Summary� 208

8
Project Prototype to Product – How?

Innovative project ideas� 210
Idea 1 – Home automation system� 210
Idea 2 – air quality monitoring system� 211

IoT services provided by enterprise
cloud platforms� 213
IoT cloud platforms� 214

Project – getting started with AWS IoT Core� 215

How to scale your projects using the
current hardware� 233
Home Assistant� 233
LAMP Server� 235

Summary� 243

Index	 245

Other Books You May Enjoy	 254

Preface

The future of IoT has the potential to be limitless. By 2025, it is estimated that there will be more than
21 billion IoT devices. So, wouldn’t it be great if you could add these to your known technological
stacks? But where to start? Of course, with the basics.

First, we will learn about the most popular hardware used for IoT prototyping, the Raspberry Pi.
Then, we will learn what MQTT, one of the most used communication protocols for communicating
between devices, is. We will then explore why these are the most suitable options to get started, their
advantages, and how they are currently being used in the industry. Then, you will see how to use them
together by setting up your very own MQTT Server on the Raspberry Pi and understanding how
it works. We will get into the details of MQTT and learn more about the clients or devices we will
connect to our server. In particular, we will cover two very popular IoT development boards among
project developers: ESP8266 and ESP32. You will also learn how to build interactive dashboards on
your Pi and control or monitor your client devices. You will build the dashboards using another
popular software – Node-RED.

You will then put your theory into practical use by creating two full-scale projects: an IoT weather
station and a smart relay system. That’s not all; you will also learn how to host your very own MQTT
server on a virtual cloud service. Then you will be guided on the next steps to take after reading this
book, what technologies to learn along with some useful project recommendations. Finally, we will
cover the popular cloud platforms (AWS and GCP) to create IoT projects and also create a project
where we connect our Node MCU to AWS IoT.

Who this book is for
This book is suitable for a wide range of audiences. Particularly, this book is targeted at students who
want to start building IoT projects, educators who want to teach an introductory IT course, technology
enthusiasts, and IoT and hardware developers.

What this book covers
Chapter 1, Introduction to Raspberry PI and MQTT, provides an introduction to the hardware we will be
using, the Raspberry Pi. Moreover, it will also cover the basics of MQTT and how the communication
protocol actually works. Next, we will learn to set up the Raspberry Pi. This includes installing the
popular Debian-based Raspberry Pi OS on our Raspberry Pi. After that, we will install the necessary
libraries and packages to make our device a local MQTT broker.

Prefacexii

Chapter 2, MQTT in Detail, covers how exactly MQTT works. This includes a gentle introduction to
MQTT brokers and clients, and different MQTT control packets will be covered in detail. Finally, we
will see a demonstration of how a client connects and communicates with a broker.

Chapter 3, Introduction to ESP Development Boards, is all about implementing what we learned in
the previous chapter. It will first introduce you to the popular ESP development boards – NodeMCU
and ESP32. After covering the specifications of each board, we will move on to learn how to set up
the boards as an MQTT client. Finally, we will create our first project wherein we will connect to our
Raspberry Pi’s MQTT broker and control the onboard LED through MQTT.

Chapter 4, Node-RED on Raspberry Pi, gets you acquainted with very popular software for the
Raspberry Pi – Node-RED. It is divided into four sections. First is an introduction to Node-RED,
followed by a guide to installing and setting up Node-RED on Raspberry Pi. After that, we will cover
the Node-RED MQTT and dashboard components, and then create a simple project to implement
everything we have learned.

Chapter 5, Major Project 1: IoT Weather Station, is where, now that we have the knowledge from all
the topics discussed in the previous chapters, we will be working on our first major project: making
an IoT weather station. This chapter provides step-by-step instructions on how to build this.

Chapter 6, Major Project 2: Smart Home Control Relay System, helps you create a smart home device to
control wall switches using the Node-RED dashboard hosted on the Raspberry Pi. The device will be
based on the popular ESP32 development board. For this project, we will be preparing a PCB instead
of creating the circuit on a breadboard for a more finished and professional look.

Chapter 7, Taking Your MQTT Broker Global, is where we will discuss the advantages of having an
online MQTT broker further, and two major options that we currently have to achieve these advantages.
We can still use the local broker on our Pi, but we can route all the data to any destination through
the internet.

Chapter 8, Project Prototype to Product, How?, starts by exploring IoT services provided by some popular
cloud services, such as AWS and GCP, now that the book has covered all the essentials required to get
you familiar with all the concepts related to Raspberry Pi and MQTT. We will even create a project
demo integrating our Node MCU board with AWS IoT.

To get the most out of this book
This book has been written for beginners, so in terms of knowledge, there are no prerequisites. As for
the hardware, you will need all the hardware devices listed in the following table in order to follow
along and build projects with me. In terms of software requirements, you will need the Raspberry Pi
Imager software (available for all three major operating systems) to create flashed SD cards for your
Pi (it even supports SD card formatting), Wireshark on the Raspberry Pi OS to dissect the MQTT
control packets, and Node-RED as a dashboard interface for our projects, also to be installed on
Raspberry Pi OS.

Download the example code files xiii

If you are using the digital version of this book, we advise you to type the code yourself or access the
code from the book’s GitHub repository (a link is available in the next section). Doing so will help
you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Raspberry-Pi-and-MQTT-Essentials. If there’s an update to the
code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/860jg.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

void setup ()

{

  pinMode (LED_BUILTIN, OUTPUT);

}

Any command-line input or output is written as follows:

sudo apt install mosquitto mosquitto-clients

https://github.com/PacktPublishing/Raspberry-Pi-and-MQTT-Essentials
https://github.com/PacktPublishing/Raspberry-Pi-and-MQTT-Essentials
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/860jg

Prefacexiv

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance,
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the
Administration panel.”

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Raspberry Pi and MQTT Essentials, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1803244488
https://packt.link/r/1803244488

Part 1:
Covering the Basics

After completing this section, you will know all about Raspberry Pi, MQTT, NodeMCU, ESP32
development boards, and Node-RED. You will gain the knowledge required to build intermediate-
complexity projects.

This part comprises of the following chapters:

•	 Chapter 1, Introduction to Raspberry PI and MQTT

•	 Chapter 2, MQTT in Detail

•	 Chapter 3, Introduction to ESP Development Boards

•	 Chapter 4, Node-RED on Raspberry Pi

1
Introduction to Raspberry Pi

and MQTT

In recent years, the Internet of Things (IoT) has been a trending field for research and development.
The future of IoT has the potential to be limitless. By 2025, it is estimated that there will be
more than 21 billion IoT devices. So, wouldn’t it be great if you could add these to your known
technological stacks? In this book, we will start with the absolute basics.

I will walk you through two fascinating subjects throughout this book: Raspberry Pi, which is a prevalent
development board for beginners, and MQTT, a very commonly used and robust communication
protocol to delve into the world of IoT.

This chapter will introduce you to the basics of MQTT and Raspberry Pi. Moreover, it will help
you set up your Raspberry Pi. Although simple, it is crucial to perform each step as this will help
us set up our own local MQTT broker on the Raspberry Pi. This will also help you understand
how to get started with your new Raspberry Pi by installing an operating system onto it.

First, we will flash the popular Debian-based Raspberry Pi OS on our Raspberry Pi. After that,
we will install all the necessary libraries and packages to make our device a local MQTT broker.

We will cover the following main topics in this chapter:

•	 What is MQTT and how does it work?

•	 A gentle introduction to Raspberry Pi

•	 Setting up your Raspberry Pi

So, let’s start by knowing what MQTT is.

Introduction to Raspberry Pi and MQTT4

What is MQTT and how does it work?
In this section, we will learn about the essential concepts of MQTT. First, we will look at the basic
concepts of MQTT and some history, followed by the functionality and components of MQTT. Finally,
we will have a brief encounter with the salient features of MQTT.

Please note that there are different versions of MQTT, and most of what we discuss is relevant to the
MQTT protocol version 3.1.

What is MQTT?

MQTT stands for Message Queuing Telemetry Transport. It is a lightweight communication protocol.

According to the official MQTT v3.1 documentation:

MQTT is a Client-Server publish/subscribe messaging transport protocol.
It is lightweight, open, simple, and designed to be easy to implement. These

characteristics make it ideal for use in many situations, including constrained
environments for communication in Machine to Machine (M2M) and Internet
of Things (IoT) contexts where a small code footprint is required, and network

bandwidth is at a premium.

This is a clear and clean definition of the MQTT protocol in just a few lines. It is a messaging
protocol designed for easy implementation, primarily client side. It is an open and lightweight
communication protocol with minimal packet overhead. It is generally used for communication
between two or more devices.

Basic concepts of MQTT

Now that we know what MQTT is, we will explore the basic concepts of MQTT we came across in the
previous section. More specifically, we will look at MQTT as a publish/subscribe protocol.

What exactly is a publish/subscribe protocol?

The publish/subscribe protocol is an alternative to the traditional client-server architecture. It means
that instead of categorizing both sending and receiving machines as clients, the clients who send a
message are publishers and the clients who receive the messages are the subscribers.

Another essential feature of such protocols is the decoupling between the clients. In simple
words, the clients never directly communicate with each other. They are mediated by the third
component of this system, known as the broker. In this book, we will be using our Raspberry Pi
as an MQTT broker, which connects different client devices within a local network. The primary
function of the broker is to mediate and manage all communications between the various clients
(i.e., publishers and subscribers).

What is MQTT and how does it work? 5

To better understand how the whole system works, please see Figure 1.1, which shows how the
communication protocol operates with a very simplified diagram. In this example, the publishing
client is a temperature monitor and the subscribing device is a mobile phone:

Figure 1.1 – Basic MQTT communication flow

Please note that this is just a simplified representation. There can be multiple publishers and
subscribers connected to a single broker. As you can see, the temperature monitor sends the current
temperature value of 27°C through the MQTT communication protocol, which is then received by
the MQTT broker, which routes it to the subscriber, a mobile application in our case.

We will now look into some details about publishers, subscribers, and brokers with the help of
an example:

•	 Publishers: These devices or machines are responsible for sending the collected data to the
brokers. For instance, if you have an air quality monitoring system that monitors the CO2
levels in the air every 30 seconds, the device will be set to publish the CO2 concentration
every 30 seconds.

•	 Subscribers: These devices receive the requested sensor data from the brokers. Considering the
preceding example, an air purifier can be a subscriber of our air quality monitoring system. It
constantly receives the CO2 concentration values, and when it crosses a threshold value, the
purifier automatically turns on.

•	 Broker: This intermediary device connects various publishers and subscribers by managing
and routing the data. We will be using Raspberry Pi as a broker for the entirety of this book.

Please note that both the publishers and subscribers are referred to as clients. A client can be a
publisher, subscriber, or both as both these processes are entirely independent of each other, as we
will see in the later chapters.

But another question arises now: how does the broker manage or route which information is sent
where? The following section will answer this question, exploring MQTT functionality.

Introduction to Raspberry Pi and MQTT6

Functionality and components of MQT T

We have already seen the significant components of MQTT, but we will now explore how these
components communicate with each other.

MQTT has no client device addresses or identifiers, making it easy to build an expansible, ad hoc
network. The only thing all clients must know is the address of the broker. So, how do messages get
routed between the clients? The solution for this is topics and messages.

This is how the whole system works:

1.	 First, the publisher sends the data collected to the broker on a particular topic, which is similar
to a channel for data transmission and reception. Please note that a topic can have several
subtopics too. For example, in an application where you send the temperature data from a
sensor connected to your fridge, the topic will look something like this:

Kitchen/Fridge/

The main topic is the kitchen, and the appliance is the subtopic. The message will be
Temperature:14 on the given topic.

2.	 The subscribers listen to the topic. So, if the subscriber is listening to the Kitchen topic, it
will have access to all the subtopics that are a part of this topic.

3.	 The primary function of the broker is to manage all the available topics and route the
information according to the type of client, namely publishers and subscribers.

Now that we are aware of the details of MQTT, we will have a look at the salient features of this
communication protocol.

Salient features of MQT T

This section will cover the main features of this communication protocol:

•	 Lightweight and efficient:

MQTT clients are tiny, and they require minimal resources to operate. So, even microcontrollers
such as ESP8266 can be used as a client as long as they have an active connection to a
network.

This protocol is highly efficient thanks to the small message headers that provide maximum
network bandwidth efficiency.

•	 Bidirectional communication protocol:

MQTT allows to-and-fro messaging capability. This means a device can be a publisher and a
subscriber simultaneously. This also allows easy broadcasting of messages to several devices
at once.

A gentle introduction to Raspberry Pi 7

•	 Highly scalable:

There is no worry about maintaining clients’ addresses or IDs; it is effortless to expand the
MQTT network. Moreover, the decoupling between the publishers and subscribers makes
things even more accessible. The only things required on the client side are the broker’s
IP address and the topic name.

•	 Reliability:

MQTT is highly reliable when it comes to message delivery. As this is an essential aspect
of any communication protocol, MQTT comes with three predefined quality of service
(QoS) levels:

	� QoS 0: At most once

	� QoS 1: At least once

	� QoS 2: Exactly once

•	 Support for unreliable networks:

Many IoT devices are connected over unreliable networks, and MQTT’s support for persistent
sessions reduces the client’s time with the broker. For example, several monitoring devices
are deployed on moving vehicles or in remote areas such as forests.

•	 Highly secure:

MQTT makes it easy to encrypt messages using TLS and authenticate clients using modern
authentication protocols, such as OAuth.

This is the end of this section. We covered the basics of MQTT and the components and salient
features of this popular communication protocol. This protocol will be discussed in detail in Chapter 2,
MQTT in Detail, of this book.

A gentle introduction to Raspberry Pi
This section will introduce you to the Raspberry Pi, the world’s most affordable credit card-
sized computer.

There is a wide range of available Raspberry Pi development boards available. They are primarily
available in four formats:

•	 Model B: These are full-size boards equipped with Ethernet and USB ports.

•	 Model A: These are square-shaped boards, considered light models of Raspberry Pi. They are
different from the Model B because of the absence of an Ethernet port, fewer USB ports, and a
slightly less powerful processor chip. They come at a lower price due to these cuts.

•	 Zero: This is the cheapest and smallest Raspberry Pi available. It is equipped with a significantly
less powerful and low-power processor, includes no USB or Ethernet port, and is equipped
with a mini-HDMI port instead of a full-size HDMI.

Introduction to Raspberry Pi and MQTT8

•	 Compute: This is Raspberry Pi 4 in a compact package for embedded applications. Additional
RAM and eMMC Flash customizations are available (32 different variant configurations are
listed on the official Raspberry Pi website).

The latest models of the Pi available are as follows:

•	 Raspberry Pi Model 4B

•	 Raspberry Pi Model 3 (B+, B, and A)

•	 Raspberry Pi Zero W

•	 Raspberry Pi 400 (a personal computer kit)

•	 Raspberry Pi 4 Compute Module

We will cover the Raspberry Pi Model 4B in depth as it is the latest variant available and is the model
we will be using throughout the book.

Raspberry Pi Model 4B

This is the latest development board from Raspberry Pi (Figure 1.2). It has several new and improved
features that make it an incredible upgrade over the older models. The most significant change is the
support of two 4K displays, which is an astonishing feat on hardware that costs 35 dollars.

Another distinctive feature is the upgraded CPU and RAM options. The latest board is powered by
a new 1.5 GHz quad-core CPU, almost three times faster than the previous-generation processor.
Moreover, the boards are available in 2 GB, 4 GB, and 8 GB LPDDR4 RAM configurations.

It also has USB C support, USB 3.0 support, and Gigabit Ethernet. The Raspberry Pi 4 is a viable
dual-display desktop computer with these new hardware capabilities.

Figure 1.2 – Raspberry Pi Model 4B+: the latest Raspberry Pi development board

A gentle introduction to Raspberry Pi 9

Now, we will dig a bit deeper and cover the hardware specifications of this development board in detail
followed by a brief discussion of some popular operating systems that are available for this board.

Hardware specifications

The hardware specifications of the Raspberry Pi model 4 are as follows, as mentioned on the official
Raspberry Pi 4 product page:

•	 Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

•	 2 GB, 4 GB, or 8 GB LPDDR4-3200 SDRAM (depending on model)

•	 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE

•	 Gigabit Ethernet

•	 Two USB 3.0 ports; two USB 2.0 ports

•	 Raspberry Pi standard 40-pin GPIO header (fully backward compatible with previous boards)

•	 Two micro-HDMI ports (up to 4kp60 supported)

•	 Two-lane MIPI DSI display port

•	 Two-lane MIPI CSI camera port

•	 Four-pole stereo audio and composite video port

•	 H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)

•	 OpenGL ES 3.0 graphics

•	 microSD card slot for loading operating system and data storage

•	 5V DC via USB-C connector (minimum 3A*)

•	 5V DC via GPIO header (minimum 3A*)

•	 Power over Ethernet (PoE) enabled (requires separate PoE HAT)

•	 Operating temperature: 0–50 degrees °C ambient

Introduction to Raspberry Pi and MQTT10

The following figure shows the available ports and some technical specifications of the Raspberry Pi 4:

Figure 1.3 – Raspberry Pi 4 ports and hardware specifications

Now that we are done with the hardware specifications, let’s move toward the available software
options. As the Pi is a full-blown computer, it will run an operating system of its own. Hence, we
will look at some popular operating systems available for the Raspberry Pi.

Operating systems

There are several operating systems available for the Raspberry Pi. We will look at some of the most
popular operating systems listed on their official website:

•	 Raspberry Pi OS (previously known as Raspbian OS).

•	 Ubuntu Core: Ubuntu operating system developed explicitly for embedded boards, with
optimizations focused on security and reliability.

•	 LibreELEC: A distribution for multimedia applications based on the Kodi entertainment center.

•	 Ubuntu Desktop: This is the desktop version of Ubuntu supported on Raspberry Pi Model
3B+ and above. One of the most popular Linux operating systems used worldwide focused on
daily applications for home, school, and work.

Setting Up Your Raspberry Pi 11

Now that we have some knowledge about Raspberry Pi and MQTT, the next step is to learn how to
setup our Raspberry Pi so that we can use it as a MQTT broker. That is exactly what the next section
is about!

Setting Up Your Raspberry Pi
In this section, we will cover how to set up the Raspberry Pi. Although simple, it is crucial to perform
each step as this will help us set up our own local MQTT broker on the Raspberry Pi. This will also
help you understand how to get started with your new Raspberry Pi by installing an operating system
onto it.

First, we will flash the popular Debian-based Raspberry Pi OS on our Raspberry Pi. After that, we will
install all the necessary libraries and packages to make our device a local MQTT broker.

The topics we will be covering will be as follows:

•	 Setting up an SD card for your Raspberry Pi

•	 Flashing the OS image onto the SD card

•	 Setting up your Raspberry Pi for the first time

•	 Setting up VNC for the Raspberry Pi

•	 Setting up and testing the MQTT broker

•	 Testing the MQTT broker locally

First, we will discuss what will be required in terms of hardware to follow this setup process.

Technical requirements

To follow the instructions provided in this section, you will need the following hardware:

•	 Raspberry Pi (model 3B or higher, preferably Raspberry Pi 4)

•	 HDMI display (for first boot only)

•	 Keyboard and mouse (for first boot only)

•	 Power supply for the Pi (the official Pi power supply is recommended)

•	 MicroSD card (minimum 8 GB storage option is recommended)

Introduction to Raspberry Pi and MQTT12

So, let us proceed to the next step, which is installing the official Raspberry Pi OS image and setting
up the SD card.

Setting up an SD card for your Raspberry Pi

In this step, the main aim is to get the microSD Card ready for the Raspberry Pi.

Important Note
If you have purchased a Raspberry Pi bundle with a pre-burnt SD card and some optional
accessories, you can skip this step, as the SD card you have is already loaded with the required
OS. But, if you would like to install a different OS, you can follow this step to do so.

Before installing the OS onto the SD card, we need to format the SD card to make sure nothing corrupts
the OS. There are two methods to do so. The first is the easy way, using software to do this task, and
this can be done in Windows and macOS systems. The second method is a little more complicated,
and it will cover how to do the same for Linux-based systems.

The SD Card Formatter software (managed by the SD Association) helps you wipe the SD card totally
so it can be used for the desired purpose, which, in our case, is to burn an OS image onto it.

We need to perform this step when the SD card we are using has been previously used or has some
data stored on it already. This can corrupt the OS, and so all the existing data needs to be wiped.
Moreover, this is perfect practice and should be done every time we install a new OS.

Let’s look at the following steps:

1.	 To install this software, go to the relevant link depending on the OS you are using:

	� For Windows: https://www.sdcard.org/downloads/formatter/sd-memory-
card-formatter-for-windows-download/

	� For macOS: https://www.sdcard.org/downloads/formatter/sd-memory-
card-formatter-for-mac-download/

2.	 When you open the link on your browser, you will see an agreement on your screen, as shown
in Figure 1.4. Scroll down to the end and press the Accept button:

https://www.sdcard.org/downloads/formatter/sd-memory-card-formatter-for-windows-download/
https://www.sdcard.org/downloads/formatter/sd-memory-card-formatter-for-windows-download/
https://www.sdcard.org/downloads/formatter/sd-memory-card-formatter-for-mac-download/
https://www.sdcard.org/downloads/formatter/sd-memory-card-formatter-for-mac-download/

Setting Up Your Raspberry Pi 13

Figure 1.4 – Download page for SD Card Formatter

3.	 Once you’ve clicked the Accept button, the software setup ZIP file will automatically start
downloading on your system. Once complete, extract the ZIP file and just run the setup
file. This will open an installer window; follow the steps to install the software onto your
system. After the software is successfully installed, you will see the dialog box shown in
the following screenshot:

Figure 1.5 – The dialog box that appears after successful installation of the software

Introduction to Raspberry Pi and MQTT14

4.	 After the software has been installed, the next step is to format our SD card. For this, an SD
card reader is required. There are two options available on the market. One is a USB SD card
reader stick, and the other is an SD card adapter, as shown in the following figure:

Figure 1.6 – Common SD card adapters

5.	 Once getting an adapter, the next step is to insert the SD card into the adapter and then insert
it into the PC. Please note that not all PCs and laptops have SD card readers, so getting a USB
adapter is better to avoid any problems.

6.	 Once the stick has been inserted and detected by your machine, launch the SD Card Formatter
software. A dialog box will open, which looks something like the following:

Figure 1.7 – SD Card Formatter application page

Setting Up Your Raspberry Pi 15

7.	 Next, you have to select your card, which will be visible in the Select card dropdown menu.
There will be two partitions available (in your file explorer) for formatting if you have an OS
image already burned on it. In that case, select the one that has the name boot.

8.	 Once the card is selected, keep all the other settings as default and press the Format button.
This will start the process of wiping the SD card. Once the process is complete, you will see a
dialog box saying Formatting was successfully completed, as seen in the following screenshot:

Figure 1.8 – Formatting completion dialog box

We have successfully formatted our SD card! Now, we are all set to burn our Raspberry Pi OS image
onto our card.

Important Note
Please keep in mind that if you are using an SD card adapter, make sure it is in unlock mode or
you could face formatting issues. Unlocking the adapter means giving the computer access to
the SD card. This is done by simply flipping a small switch on the side of the adapter.

SD card formatting in Linux systems

We will use GParted to format our SD card on a Linux system. It is an open source disk management
software. Just follow these steps:

1.	 First, we will need to install this software, as this does not come preinstalled. We will use the
Ubuntu OS for this tutorial, the most common and widely used Linux OS. Use this command
to install the software via the Linux Terminal:

sudo apt install gparted

Introduction to Raspberry Pi and MQTT16

Once the app has been installed, it will be available in the Applications menu. Just find and
launch the application, as shown in the following figure:

Figure 1.9 – Launching GParted from the Applications menu

2.	 This application requires root privileges to run, so enter your password when prompted. After
that, the application window will pop open, and you will be able to see all the disks presently
connected to your system:

Figure 1.10 – GParted application home screen

Setting Up Your Raspberry Pi 17

The user interface is relatively easy to navigate and much more intuitive than the one we get with
the preinstalled disk utility software. There are additional features that this software provides,
such as creating bootable USB drives and downloading an ISO file, for example.

3.	 Now, select the SD card drive from the top-right corner dropdown, as shown here:

Figure 1.11 – Selecting the USB drive to format

4.	 We will now format this drive, but to do so, we first need to unmount it. Just right-click on the
visible partition, and you will see an option to unmount it , as shown in the following screenshot:

Figure 1.12 – Unmounting the USB adapter before formatting

Introduction to Raspberry Pi and MQTT18

5.	 You can start the formatting process once the drive has been unmounted. To do that, right-
click on the USB drive and select the Format to option. Select the file system of your SD card
(fat32, in most commonly available SD cards):

Figure 1.13 – Selecting the desired file format (fat32 in most cases)

This won’t start the formatting process. It will just add a new operation to the list of pending
operations, as seen here:

Figure 1.14 – List of pending operations

Setting Up Your Raspberry Pi 19

6.	 Now, click the Apply All Operations button, which is the green tick icon at the top, as shown
in Figure 1.15:

Figure 1.15 – Clicking on Apply All Operations

7.	 A window will pop up, warning you that the operation will lead to complete loss of data on the
USB drive. Just click on Apply to start the formatting process:

Figure 1.16 – Clicking Apply to continue formatting

The formatting process will start. You can track the progress using the window that pops up:

Figure 1.17 – Formatting progress dialog box – GParted

Introduction to Raspberry Pi and MQTT20

You will see the window shown in the following screenshot once the formatting process has
been completed:

Figure 1.18 – Formatting process completed dialog box

Your SD card is formatted! Close the application, and your USB adapter will be listed in the file
manager. We can now move to the next step.

Flashing the OS image onto the SD card

Now that our SD card is ready for the Raspberry Pi OS, the next step is to install the Raspberry Pi
Imager software, which is the easiest way to install the OS onto our SD card.

Important Note
For more advanced users who are looking to install a particular OS, follow this link: https://
www.raspberrypi.org/documentation/installation/installing-
images/README.md.

In the next section, we’re going to follow the step-by-step process to install the Raspberry Pi OS on
your SD card.

Downloading and installing the Raspberry Pi Imager software

The first step is to install the software:

1.	 To do that, visit the following link: https://www.raspberrypi.org/software/.

2.	 Once the page is loaded, you will see a section for Raspberry Pi Imager. Just download the
latest version of the software for your OS:

https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/software/

Setting Up Your Raspberry Pi 21

Figure 1.19 – Downloading Raspberry Pi Imager

3.	 Once you press any one of the download links, the latest version of the installer will download
onto your system. (At the time of writing this book, the latest version is v1.5.)

4.	 To run the installer, follow the process by pressing the Next button until the software is installed.
Once the installation is complete, open the Raspberry Pi Imager software. A dialog box will
pop up asking for permission as it requires root/administrator access. Just allow it, and the
application will open:

Figure 1.20 – Raspberry Pi Imager application

Introduction to Raspberry Pi and MQTT22

5.	 We have to choose the OS we want to install, which is the Raspberry Pi OS. To do that, press
the CHOOSE OS button, and you will see all the available options as follows:

Figure 1.21 – All the available OS options

6.	 We will select the first option, Raspberry Pi OS (32-bit). As seen in Figure 1.21, the size of the
latest OS version is 1.1 GB. That means that before burning the OS, the system will download
the 1.1 GB image file.

7.	 Next, choose the SD card directory you want to burn the OS onto. At this point, insert your SD
adapter if you haven’t already, and you will be able to see it listed when you press the CHOOSE
STORAGE button:

Figure 1.22 – Choosing the SD card you want to burn to OS to

Setting Up Your Raspberry Pi 23

8.	 After both the OS and SD card have been selected, press the WRITE button, which will now
be white-colored:

Figure 1.23 – Pressing the Write button

This will start the writing process. The application will first download the image file you chose
and then write it onto the SD card. Please note that you will not see the download progress,
just a Writing progress bar. So, it is an excellent time to grab a cup of coffee or go for a short
walk, as this may take some time:

Figure 1.24 – You can see the writing progress in the application

Introduction to Raspberry Pi and MQTT24

9.	 Once the writing process is over, you will see a dialog box saying Raspberry Pi OS has been
successfully written…. You can now press the Continue button and remove the adapter.

This completes the SD card preparation for our Raspberry Pi. In the next step, we will boot into our
new OS for the first time and update and upgrade some software to the latest version, enabling VNC
to wirelessly SSH into our Pi (don’t worry, we will discuss this in detail in a later section).

Setting up Raspberry Pi for the first time

After the OS has been written to the SD card, we will insert this card into our Raspberry Pi, as seen
in the following figure:

Figure 1.25 – Inserting the SD card into the Pi (image from the official Raspberry Pi website)

We will also connect a display using either a display port (if you have a Raspberry Pi 4) or a simple
HDMI display, and a USB keyboard and mouse. Finally, after all the peripherals are connected, we
will connect our power supply (any USB C or micro-USB charger, depending on the model you are
using) to the Pi. Please see the following figure for how to make the connections:

Setting Up Your Raspberry Pi 25

Figure 1.26 – Powering the Raspberry Pi after connecting the peripherals

Once all the setup is complete, connect the power supply to the Pi, and you should see the Pi booting
up on the connected HDMI screen. It will take 20-30 seconds for the first boot. Once it is done, a
welcome screen will appear saying Welcome to Raspberry Pi Desktop, as seen in Figure 1.27:

Figure 1.27 – Raspberry Pi welcome screen

Introduction to Raspberry Pi and MQTT26

Just complete the first-time setup by clicking on the Next button. It will first ask you to set the location
settings and choose the language and keyboard accordingly:

Figure 1.28 – Setting up the location, language, and timezone

After the required information has been entered, press the Next button. It will take a few seconds for
the system to set up the location.

Next, the OS will prompt you to change the default password of your system, which is raspberry.
Select a strong password, and after entering all the required information, press the Next button:

Figure 1.29 – Setting up a new password

Setting Up Your Raspberry Pi 27

After this, the system will help you choose the best resolution according to your display type. You can
skip this step, as we will only use this monitor or display once. In the next section, we will learn how
to set up VNC and SSH on our Pi to access it wirelessly when we are connected to the same network.

Next, we need to connect to a Wi-Fi network, as shown in Figure 1.30. Select your network from the
list of available networks, then authenticate by entering your password to connect to your network.
If you have connected via Ethernet or would like to do it later, you can skip this step by pressing the
Skip button.

Please note that you will require a shared Wi-Fi network to use VNC, and you will need a local network
at the very least. If you skip the step, for now, you can always connect to a network through the Wi-Fi
symbol on the top-right side of the desktop in the following figure:

Figure 1.30 – Connecting to a Wi-Fi network

Finally, the last step of the setup is to update the software to the latest version. As we have used the
newest version of Raspberry Pi OS, no significant updates will be pending. It is still preferable to use
this opportunity to update all the preinstalled software to the latest version (Figure 1.31).

Introduction to Raspberry Pi and MQTT28

Just click Next as given in the instructions, and the process will automatically start:

Figure 1.31 – Updating to the latest software

Important Note
If you fail to update your system through this setup, it is possible to do this later. For this,
open the terminal (the black icon on the top-left side of the home screen) and type the
following commands:

sudo apt update – This will fetch the list of all available updates.

sudo apt dist-upgrade – This will download and install the updates.

It will take some time to fetch all the updates and install them, so this would be an excellent time to
go for a short walk.

After the updates have been successfully downloaded and installed, the system will prompt you to
restart the system for all the changes to take effect. You can do so by simply pressing the Restart
button, as shown in the following figure:

Setting Up Your Raspberry Pi 29

Figure 1.32 – Restarting the system after the first setup

This completes the first-time setup of our Raspberry Pi! In the next section, we will learn how to set
up VNC on our Raspberry Pi to access it wirelessly through our PC. What’s more, we can also use
our PC or laptop keyboard and mouse with the Pi.

Setting up VNC for Raspberry Pi

In this step, we will learn how to set up SSH (Secure Shell) and VNC (Virtual Network Computing)
on the Raspberry Pi. Note that the completion of the previous steps of the OS installation and setup
on the Raspberry Pi is required to set these up.

Before getting into the practical part, let’s learn a bit more about VNC and SSH:

•	 SSH: SSH is a security protocol that gives you remote access to your computer. It can be
used for both remote login and file transfer. It provides several alternating options for strong
authentication. The following figure shows how SSH technology actually works:

Figure 1.33 – How does SSH work?

Introduction to Raspberry Pi and MQTT30

•	 VNC: This is a cross-platform desktop sharing system that allows you to remotely access any
computer system with a server through supported client software. It uses the Remote Frame
Buffer (RFB) protocol to achieve this. It even enables the use of the keyboard and mouse of
the client system as it relays all this information to and fro over a network.

We will be using the RealVNC Server software, which is preinstalled on our Pi. Raspberry Pi will
act as a VNC server, and a client software would be needed to access it through the main computer.

Let’s get started on the steps to set up VNC:

1.	 As mentioned earlier, the software comes preinstalled on the Raspberry Pi OS (the Desktop
OS version), but it is disabled by default. These options must be enabled.

2.	 First, open the Start menu. (It is the Raspberry Pi logo on the top left of the screen.) From
there, make these selections:

Preferences | Raspberry Pi Configuration

Figure 1.34 – Selecting Raspberry Pi Configuration

3.	 Once the Raspberry Pi Configuration dialog box opens, there will be five sections available,
from which we need to select the Interfaces section:

Setting Up Your Raspberry Pi 31

Figure 1.35 – Raspberry Pi Configuration Interfaces

4.	 Enable the VNC and SSH options, then press OK.

Figure 1.36 – Enabling SSH and VNC

Introduction to Raspberry Pi and MQTT32

This will enable both the protocols on your Pi. Now, the Raspberry Pi is remotely accessible.
Congratulations! To verify that it is working, check the top-left part of the screen. A white-
colored VNC logo should be visible now:

Figure 1.37 – Checking for the VNC logo when enabled

5.	 Click on the VNC icon to get the IP address of our Pi. Make a note of this, as it will be required
to access your Pi remotely from your main computer:

Figure 1.38 – Make a note of the IP address

Setting Up Your Raspberry Pi 33

6.	 Move on to the main computer you will be using to access the Pi. The first requirement is to
download the VNC Viewer software. Visit the following link to download it: https://www.
realvnc.com/en/connect/download/viewer/.

This is what the Download page looks like:

Figure 1.39 – The VNC Viewer download page

7.	 After downloading the installer for your specific OS, install it onto your system and open the
application. The application home page will look something like this:

Figure 1.40 – The VNC Viewer application

https://www.realvnc.com/en/connect/download/viewer/
https://www.realvnc.com/en/connect/download/viewer/

Introduction to Raspberry Pi and MQTT34

8.	 Make sure that your Pi and computer are connected to the same network. Once that is done,
enter the IP address of your Pi in the search bar of the application, and then click Enter. It will
show a warning message; just press Continue, and you will then see an Authentication window:

Figure 1.41 – The Authentication window

9.	 Enter the username and password and press OK. If the credentials are correct, your attempt to
establish a connection will be successful, and now you can remotely log in to your Pi:

Figure 1.42 – Remote access to Raspberry Pi

You now have access to your Raspberry Pi wirelessly with the ability to use your computer mouse
and keyboard with your Pi’s OS.

Setting Up Your Raspberry Pi 35

The next step is crucial, as we will install a software library that will allow us to use our Raspberry Pi
as an MQTT broker. We will install the following two libraries developed by Mosquitto:

•	 Mosquitto – MQTT Broker Library.

•	 Mosquitto Clients (optional) – This library allows you to run client code on the Pi.

Setting up and testing the MQTT broker

After this setup step and the testing step that follows, you will be able to host a local MQTT broker
on your Raspberry Pi device. Moreover, you will also test whether your broker is successfully running
by simultaneously running a client code on the Pi itself. Cool, right?

So, let’s get started with the steps to get this done.

Installing the MQT T broker and Clients packages

Mosquitto is a popular MQTT broker well-supported on Debian-based Linux platforms such as
Raspbian. To install this package, just open a new terminal, then type in the following command. It’s
easy to install using the apt package installer:

sudo apt install mosquitto mosquitto-clients

This command requires root privileges for which we have used sudo in our command. After that,
the installation process will start, and once it is complete, you should see an output as shown in the
following screenshot:

Figure 1.43 – Terminal view while installing the packages

Introduction to Raspberry Pi and MQTT36

The mosquitto-clients package is optional for running the Pi as an MQTT broker, but it will
help us test whether the broker is running locally.

This package allows you to use your Raspberry Pi as an MQTT client as well. So, if you want to create
a local dashboard to control all the MQTT clients from your Pi, you will be able to do so.

Enabling the Mosquitto broker

The broker is still not active. To enable it, type in the following command in your terminal window:

sudo systemctl enable mosquitto

systemd is a Linux package manager that will help you monitor and control the different applications
installed. Once the command has been executed, the broker should be running on your Pi. To confirm
that, just run the following command:

sudo systemctl status mosquitto

This should produce an output on the terminal window similar to what is shown in the
following screenshot:

Figure 1.44 – The output of the status command for the broker

The most important thing is that the Active option should show the active (running) status,
which will verify that our broker is up and running!

Setting Up Your Raspberry Pi 37

Important Note
If the status command shows an output that says that your process is dead and your MQTT
broker stopped, restart the MQTT service by typing the following command:

sudo service mosquitto restart

Now, recheck the status, and it should show the status of your MQTT broker as running!

This marks the conclusion of this section. We successfully set up our Raspberry Pi as a local MQTT
broker. Additionally, we installed a package that will let us use the Pi as an MQTT client as well. In
the next section, we will test our MQTT broker’s functionality through a short demonstration.

Testing the MQTT broker locally

Now that the MQTT broker is running on the Raspberry Pi, we will test the connection using a
straightforward project. First, open two terminal windows on your Raspberry Pi. Now, we will do
the following:

1.	 In one terminal window, we will subscribe to a particular MQTT topic, for instance:

test/message

To do this, you will require the mosquitto-clients package. Now, type the following
command in the terminal:

mosquitto_sub -v -t test/message

This will subscribe to the topic entered after -t.

2.	 Next, in the alternate terminal window, we will publish a test message on the same topic to
check whether it is sent and received by the other terminal window.

Just imagine the two terminals as different MQTT clients where one client is a subscriber to
the topics which the other client publishes. To publish a test message of 'Hello World!',
type the following command:

mosquitto_pub -t test/message -m 'Hello World!'

Introduction to Raspberry Pi and MQTT38

3.	 After running the previous command on the second terminal, you should see the message
'Hello World!' on the terminal along with the topic name, as illustrated in the
following screenshots:

Figure 1.45 – Raspberry Pi local MQTT test

Congratulations! You have successfully set up your Raspberry Pi. This marks the end of the first chapter
of this book. Now, let us summarize what we covered in this chapter.

Summary
This chapter introduced us to Raspberry Pi and MQTT. We started with a brief introduction about
MQTT.

Next, we covered the Raspberry Pi, the main hardware we will be using throughout this book. We
started by covering the hardware specifications and some popular operating systems available for the
Pi. Then we set up our Raspberry Pi to work as a local MQTT broker. To do that, we set up the SD
card we will be using for our Pi by formatting it and then flashing the latest version of Raspberry Pi
onto it. After that, we did the essential steps to set up our Raspberry Pi for the very first time. Next,
we installed the packages that let us use our Pi as an MQTT broker as well as an MQTT client. Finally,
we tested the functionality of our Pi as a local MQTT broker.

In the next chapter, we will dive deeper into the different clients we can use with our broker. We will
set up an MQTT client on our main computer to understand how MQTT actually works.

2
MQTT in Detail

This chapter touches on one of the main topics of this book: MQTT. As you saw in the previous
chapter, when we used our Raspberry Pi as an MQTT client, it was straightforward and included just
one command that needed to be executed. But the question is, how does the client connect to the
broker, and how does it send the message to the intended client?

This chapter will address that exact point. It will significantly help you learn what MQTT is and how
it works under the hood. You will gain a clear understanding of this communication protocol, along
with the ability to use your laptops and computers as local MQTT clients, which is a bonus.

We’re going to cover the following main topics in this chapter:

•	 Introducing MQTT clients

•	 Understanding the MQTT protocol packet structure

•	 Practical demonstration of MQTT in action

Let’s go ahead and begin.

MQTT in Detail40

Introducing MQTT clients
MQTT communication flow consists of a client (which can be a publisher or subscriber and in certain
instances, both) and the broker, which manages the flow of all information across different clients.
The following diagram provides an overview of how the MQTT message flow works:

Figure 2.1 – MQTT overview

As discussed earlier in this book, MQTT stands for Message Queuing Telemetry Transport. Simply
put, it is a communication protocol designed for constrained devices with network limitations. It is
designed as a lightweight publish/subscribe messaging protocol. But what does this mean? For this,
we need to be familiar with the concepts of messages, topics, clients, and brokers. Let’s cover each
and how they work.

MQTT messages

A message is a term given to the data that’s shared between different MQTT clients. It can be some
text, sensor readings, and so on.

Introducing MQTT clients 41

MQTT topics

Topics are one of the essential components of this protocol. They provide you with a unique address
for where your message should go. An MQTT topic is a series of strings separated by forward slashes.
Each string before a forward slash indicates a new topic level. This gives you a lot of options for unique
topics. Here is an example of a topic:

•	 Bedroom/Lighting/Lamp

In this example, the topic is interpreted as follows: under the main topic, Bedroom, there is a sub-topic
called Lighting, and under that, there is a subtopic called Lamp. If we send any message to this
topic via a client, any clients connected to this particular topic via our broker will receive this message.

There may be cases when you would want to subscribe to multiple topics from a single client. For
instance, if you want to connect to 30 such topics, it would be very tedious to write each topic name.
There is where Wildcards come into play. They let you subscribe to multiple topics with a single
statement. There are two types of wildcards in MQTT: single-level and multi-level.

Single-level wildcards

In the case of single-level wildcards, you can use them to substitute a single sub-topic hierarchy. This
can be done by simply using the + symbol instead of the subtopic’s name:

Bedroom/+/Lamp

In this case, you can create any topic with the main topic as Bedroom and the third subtopic as Lamp.
The value of the second topic can be anything:

•	 Bedroom/Lighting/Lamp

•	 Bedroom/State/Lamp

However, you can use the following code because the third subtopic in the hierarchy changes:

Bedroom/Lighting/LED

Multi-level wildcards

Now, consider a case when you have multiple possible values in the third subtopic hierarchy as well. In
that case, using the single-level wildcard won’t be enough. Here, we must use the multi-level wildcard,
#, which allows you to subscribe to all the subtopic levels. Consider the following code:

Bedroom/Lighting/#

In this case, all the topics that start with Bedroom/Lightning/ will be subscribed (all the subtopic
levels will be included).

MQTT in Detail42

Now, the question is, how does our broker distinguish between clients? The answer is using client IDs.
Every MQTT client has a client ID that should be unique according to the protocol rules. In most
libraries that we will be using, the system’s client ID would be an auto-generated random string to
keep the IDs unique.

In the next section, we will discuss MQTT clients in detail.

MQTT clients

MQTT clients were discussed briefly in the first section, but we will go into a little more detail here.
I’ve simplified the definition of an MQTT client as any device that runs an MQTT connection package
and connects to an MQTT broker over a local or internet network.

Note that no specific device type is mentioned in the definition. This indicates that a client can be
a small microcontroller or microprocessor-based device, or that it can be a full-fledged server. For
example, the MQTT client can be a tiny and portable device that connects wirelessly (Wi-Fi) and has
a basic MQTT library (for instance, a NodeMCU board). The MQTT client can even be a computer
running an MQTT client program for testing purposes. Any device that can use MQTT over TCP/
IP can be called an MQTT client.

Next, an MQTT client can either be a publisher, subscriber, or both. This depends on the application.
For example, a computer dashboard would most likely be a subscriber to several MQTT topics as its
main task is to show a visual representation of collected data. On the other hand, a sensor node will
most likely be a publisher who constantly sends the collected sensor data.

We discussed what an MQTT broker is in the previous chapters, so let’s move on to the next section,
which answers a fascinating question.

How does an MQTT client connect to a broker?

The MQTT broker is another component of an MQTT connection. Its main task is to manage all the
incoming and outgoing messages. This includes handling all the topics of the network. Moreover, it
stores some missed messages if a particular client has opted for the corresponding Quality of Service
(QoS). Hence, a single broker can simultaneously handle thousands of clients or more if it is a large-
scale implementation.

Now, how exactly does a client connect to a broker either as a subscriber, publisher, or both?

The answer is using something called MQTT control packets (in simple terms, this involves exchanging
specific information via a network) – a connect packet in this case. Whenever a client wishes to connect
to a particular MQTT broker, it sends a connect packet to the broker with the necessary attributes.
In response, a broker sends a connect acknowledgment (CONNACK) packet that contains a status
code indicating if the connection was successful and, if not, the reason why it failed. The following
diagram visualizes how this process works:

Understanding the MQTT protocol packet structure 43

Figure 2.2 – Client-broker connection initiation

Important Note
Please note that in actuality, what happens is that after a client establishes a connection to the
broker in a network, the CONNECT message is the first message it sends.

Moreover, only one CONNECT message can be sent by a single client. If it attempts to send
another one, it results in a protocol violation and disconnects from that client.

Now that we know the basics of how MQTT works, we will dive deeper by covering the essential
control packets that act as the building blocks of this protocol.

Understanding the MQTT protocol packet structure
MQTT control packets are how the data is managed within an MQTT network. For instance, as
discussed in the previous section, when a client wants to connect to a broker, it sends a connect packet
and, in response, gets a connack packet from the broker.

Similarly, when a client wants to publish something on a given topic, it sends a publish packet. When
a client wants all the data arriving on a particular topic, it achieves that by subscribing to the specific
topic using the subscribe packet.

In this section, we will provide a detailed discussion of each of the packets. Please note that we will
be discussing MQTT v3.1.

Connect packet

The previous section mentions that parameters need to be passed along with a connect packet. The
attributes of this message are as follows.

MQTT in Detail44

•	 Fixed headers:

The fixed headers only contain the MQTT control packet type (which is the code for CONNECT);
the remaining length will have a 10-byte variable header, plus the payload.

Figure 2.3 – Connect packet fixed headers

•	 Variable headers: The variable header for the connect packet has four fields that are in the
following order:

	� Protocol Name is a UTF-8 encoded string representing the word “MQTT” (in caps).

	� Protocol Level is an 8-bit value representing the restriction level of the protocol used by
the client. For MQTT v3.1.1, the protocol level value is 0x04. If the broker does not support
that protocol, it should send a 0x01 return code in the CONNACK packet. The 0x01 return
code indicates that the server’s protocol level is unacceptable and unsupported.

	� Connect Flags has a byte that contains several parameters specifying the behavior of the
MQTT connection. It also indicates the presence or absence of fields in the payload.

	� Keep-Alive is a time interval measured in seconds. It is expressed as a 16-bit word; it is the
maximum time interval permitted to elapse between the point at which the client finishes
transmitting one control packet and the point it starts sending the next.

Please refer to the following table to see what the order of each flag in a byte is:

Figure 2.4 – Connect packet flags

All the flags have a binary value. Username and Password are two essential attributes that contribute to
providing better security to our MQTT network through authentication. The Username and Password
flags indicate whether the payload will contain the username and password.

Will Flag is set to 1. This indicates that if the connect request is accepted, a Will Message must be
stored on the server and associated with the network connection. The Will Message must be published
when the network connection is subsequently closed unless the server has deleted the Will Message
on receipt of a disconnect packet.

Understanding the MQTT protocol packet structure 45

Situations in which the Will Message is published include, but are not limited to, the following:

•	 An I/O error or network failure has been detected by the server

•	 The client fails to communicate within the Keep-Alive time

•	 The client closes the network connection without first sending a disconnect packet

•	 The server closes the network connection because of a protocol error

There are two bits for QoS flags. This is because there are three possible values of QoS, as discussed
in Chapter 1, Introduction to the Raspberry Pi and MQTT. So, 0x00 means that the Will Flag is set to
0. If the Will Flag is set to 1, the value of Will QoS can be 0 (0x00), 1 (0x01), or 2 (0x02). It must
not be 3 (0x03). The Will Retain flag indicates whether it is to be retained when published. If
Will Flag is set to 0, then the Will Retain flag must be set to 0.

If Will Flag is set to 1, then a few scenarios can occur: If Will Retain is set to 0, the server must
publish the Will Message as a non-retained message. If Will Retain is set to 1, the server must publish
the Will Message as a retained message.

Finally, the Clean Session bit specifies how the session state will be handled.

The client and server can store a session state to enable reliable messaging to continue across a sequence
of network connections. This bit is used to control the lifetime of the session state.

If Clean Session is set to 0, the server must resume communications with the client based on the
current session’s state (as identified by the client identifier). If Clean Session is set to 1, the client and
server must discard any previous session and start a new one.

The following diagram shows a typical CONNECT packet:

Figure 2.5 – A typical MQTT connect packet

MQTT in Detail46

Next, we will look at the acknowledgment packet, which the broker must send due to this connect
packet. Then, only the client can publish or subscribe to particular topics.

CONNACK packet

When a broker receives a CONNECT message, it must respond with a CONNACK message. The
CONNACK message contains two entries:

•	 The session’s present flag

•	 A connect return code

The following diagram shows a typical CONNACK packet:

Figure 2.6 – A typical MQTT connack packet

Now, let’s understand what the contents in the preceding diagram mean:

•	 sessionPresent: This flag tells the client if there is an existing session available from any
previous interactions with that particular client. If a clean session (the Clean Session flag in
the CONNECT packet is set to true), this flag is set to false. If the clean session flag is
not set, the ACK packet will either return the session present flag as true if it finds session
information for the given client ID or false if no session information is available.

•	 returnCode: This flag helps the client determine whether the connection attempt to the MQTT
broker was successful or not.

Understanding the MQTT protocol packet structure 47

PUBLISH and SUBSCRIBE packets

In a typical MQTT network, there are two basic types of clients:

•	 Publishers

•	 Subscribers

A particular client can be either a subscriber, such as a virtual dashboard, or a publisher, such as a
sensor node, or both, which can be a mobile application that can be used to control appliances and
also monitor certain sensor values.

The following diagram shows what a potential application could be:

Figure 2.7 – Example of an MQTT application

When it comes to publishers, their primary task is to send the data to the broker on a particular topic.
This happens through a PUBLISH packet, which is something similar to an HTTP POST API.

When the data is collected by a client, it initiates a publish message, which contains several headers
and the actual data in the payload of this message.

These headers help the broker keep track of all the publishers and data. In the next section, we
will discuss the publish packet in more depth and how a client and the broker use them within
an MQTT network.

The same goes for the subscriber. It uses the SUBSCRIBE packet to receive all the data or messages
on a particular topic. We will also learn about this packet in the next section.

Publish packet

The main purpose of this packet is to send or publish data to a particular channel. The following
diagram shows the contents of a general publish packet in MQTT. It has three basic components:

•	 Variable headers

•	 Fixed headers

•	 Payload

MQTT in Detail48

A typical MQTT packet is shown in the figure below.

Figure 2.8 – Contents of an MQTT publish packet

Now, let’s discuss each of the components of the packet.

Fixed header

This is a 2-byte fixed header that is sent with every publish packet that’s initiated either by a client or
the server. It contains the following information:

•	 MQTT Control Packet Type: This is a 4-bit value that specifies the type of MQTT packet we
are sending. The value for the publish packet is 0x0011.

•	 The DUP flag specifies whether it is the first time this packet is being sent or not (0 means the
first time, 1 means resent). Its value is also dependent on the QoS flag. If QoS is 0, this flag is
always 0.

•	 The Retain flag specifies whether the message should be retained after being published. This
is only available for QoS levels 1 and 2.

•	 The QoS Flag is a 2-bit value that specifies what QoS value the publish packet is sent with. The
following table explains this value convention in detail:

Table 2.1 – Possible values for QoS flags

Understanding the MQTT protocol packet structure 49

Variable header

The size of these headers is not fixed as the topic name can be anything and the packet identifier is
only specified for packets with a QoS level of 1 or 2. The following list describes the contents of the
variable header in detail:

•	 Topic Name: This specifies what topic the message is being published on. An example of a
topic is test-topic/temperature.

•	 Packet Identifier: This is a unique value that’s given to a packet with QoS levels 1 and 2 so that
the server can recognize if the message has been sent for the first time or resent.

Payload

The payload contains the actual data of the PUBLISH packet. The size of this data is variable and
depends on the type of data being published. Before we look at the next control packet, let’s have a
look at an example PUBLISH packet to know more about its contents:

Figure 2.9 – Sample PUBLISH packet

Please note that a response to a PUBLISH packet is required. There are three basic types of responses
according to the QoS level, as follows:

•	 None: When the QoS level is 0

•	 PUBACK: When the QoS level is 1

•	 PUBREC: When the QoS level is 2

MQTT in Detail50

The subscribe packet will be discussed in detail in the next section. Please note that these are the two
main control packets of the MQTT network, so we will limit ourselves to a detailed explanation of
these two packets only. You can always check out the original documentation of MQTT for additional
details about each control packet:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Subscribe packet

The main purpose of this packet is to receive data that’s been published on a particular topic. Please
keep in mind that this data is sent by the broker and not the publishing client directly. Moreover, a
client can subscribe to more than one topic.

The following diagram shows the components of the MQTT SUBSCRIBE packet:

Figure 2.10 – Components of the SUBSCRIBE packet

These components are quite different from the ones in the PUBLISH packet. The reason is that we
are not sending any data in the payload, but the topic name that we would like to subscribe to and
the QoS level for this subscription.

Now, let’s cover each component of this packet in detail.

Fixed header

The fixed header just contains a single attribute the MQTT Control Packet Type.

This is a 4-bit value that tells the broker that the packet that’s been received is a subscribe packet. The
value of this attribute for this particular packet is 0x1000. The rest of the bits of byte 1 are reserved.
Byte 2 contains the remaining length of the rest of the packet. This means (length of variable header
+ length of payload).

Variable header

The variable header also contains two attributes, but they make a single value together: the most
significant bit (MSB) and the least significant bit (LSB) values of the Packet Identifier.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Understanding the MQTT protocol packet structure 51

Payload

The payload of a SUBSCRIBE packet contains a list of topic filters indicating the topics that the client
wants to subscribe to, followed by an additional byte with the QoS level for each subscription.

Some important points to note are as follows:

•	 Topic Filter contains the topic names. Hence, they are UTF-8 encoded string values that
support wildcard characters.

•	 The SUBSCRIBE packet must contain at least one topic and QoS value pair. If an empty payload
is received, it will be considered a violation of the MQTT protocol and it will throw an error.

•	 The Requested QoS byte has 6 reserved bits and only the last 2 bits are used to specify the QoS
level for a particular topic.

A sample SUBSCRIBE packet looks something like this:

Figure 2.11 – Sample SUBSCRIBE packet

After a SUBSCRIBE packet has been sent to the broker, according to protocol, it must respond with a
SUBACK packet. Here are some important points to know about the behavior of the SUBACK packet:

•	 The SUBACK packet must have the same packet identifier as the SUBSCRIBE packet that it
is acknowledging.

•	 The server is permitted to start sending PUBLISH packets that match the subscription before
the server sends the SUBACK packet.

•	 The SUBACK packet sent by the server to the client must contain a return code for each Topic
Filter/QoS pair. This return code must either show the maximum QoS that was granted for that
subscription or indicate that the subscription failed.

MQTT in Detail52

This is the end of the MQTT control packets subsection. Now comes the most important section of
this chapter, which is seeing how the process works.

Practical demonstration of MQTT in action
In this section, we will look at how the communication protocol works under the hood. For this, we
will use an additional software called Wireshark, which lets us capture all the incoming and outgoing
MQTT packets from our broker hosted on the Raspberry Pi.

Here, we will look at how a subscriber or a publisher connects to and sends the message through our
MQTT broker. So, let’s get started:

1.	 The first step is to install Wireshark on our Raspberry Pi. To do so, open your Terminal and
type in the following command:

sudo apt install wireshark

It will ask you to confirm that you wish to install the package. Just type Y and press Enter. This
will start the installation process. When this happens, you will see a configuration screen appear
in front of you, as shown in the following screenshot. It will ask if you want to allow any user
to have maximum privileges for the Wireshark application. I suggest that you choose No for
this part as it is a very bad practice to do so:

Figure 2.12 – Wireshark configuration screen

This will complete the installation process.

2.	 Next, we will add a new user group specifically for this application so that we can add the users
for which access to this application is allowed. I will name the group wireshark and add the
pi user (please use the hostname) to this group using the following commands:

sudo groupadd wireshark

sudo usermod -a -G wireshark pi

Practical demonstration of MQTT in action 53

3.	 Next, we will need to execute a series of commands so that we can grant the necessary permissions
to our user group for all the required files. Just follow the given instructions to achieve this.
What these commands do is grant read and write execution of the dumpcap file to our group
(where all packet captures are stored) and configure certain capabilities:

sudo chgrp wireshark /usr/bin/dumpcap

sudo chmod 750 /usr/bin/dumpcap

ls -al /usr/bin/dumpcap

sudo setcap cap_net_raw,cap_net_admin=eip /usr/bin/
dumpcap

sudo getcap /usr/bin/dumpcap

4.	 Now, reboot your Raspberry Pi. With that, you have finished configuring Wireshark. You should
be able to run this application by simply entering wireshark in your Terminal.

5.	 Once you execute the wireshark command on your Terminal, a new window will open with
a heading stating The Wireshark Network Analyzer.

It will show all the available network interfaces that can be analyzed. The following screenshot
shows what the home screen looks like:

Figure 2.13 - Wireshark home screen

MQTT in Detail54

6.	 Next, select the wlan0 option as that is the option where we can capture all the packet captures
that are sent or received wirelessly over our Wi-Fi network.

7.	 With that, we are all set up, but there are still things that will greatly help us. The first thing you
will want to do is add a display filter as if you are using your Pi over VNC. You will see several
packets being captured every second, which makes it very difficult to look for the captures
that are of interest to us. For that, simply type mqtt in the Apply a display filter text box and
press Enter.

You can use the following screenshot as a reference:

Figure 2.14 – Applying a display filter in Wireshark

8.	 Upon doing this, an empty screen will appear with no captures as we have not connected any
clients to our broker. We will need to connect with remote clients so that data packets can be
transferred via the wireless network. If you have a Linux or Mac system, this is very easy to do.
Just type in the following command:

sudo apt install mosquitto-clients

This will let you access the mosquitto_pub and mosquitto_sub commands from your
Terminal. For Windows, the process is a little different. First, head to the official Mosquitto
website’s download page: https://mosquitto.org/download/.

https://mosquitto.org/download/

Practical demonstration of MQTT in action 55

Just download the Windows .exe file for your Windows system (32 or 64-bit) and run the
installer. Just keep pressing Next and then install all the required components. It will take some
time, so please be patient. Once it is complete, you will be able to use the mosquitto_pub
and mosquitto_sub commands on your Windows system.

Please note that to run these commands, you will have to navigate to the mosquitto directory,
whose path you will have mentioned during installation. If you kept the default path, you would
find the mosquitto folder under C:\Program Files\mosquitto.

9.	 To test if the installation was successful, we will open two Command Prompt or Terminal
windows on our main system (according to the OS you have) and type in the following
commands, respectively:

mosquitto_sub -h <ip of your pi> -v -t sensors/
temperature

mosquitto_pub -h <ip of your pi> -t sensors/temperature
-p “27”

Upon entering these commands, the number 27 will appear on the window where you ran the
mosquitto_sub command when you execute the mosquitto_pub command.

If this was successful, then you have successfully set up mosquitto on your main system. Now,
let’s look at how MQTT works by looking at the packets that are generated after executing
each command.

10.	 To do so, open the desktop of your Raspberry Pi. You should have the Wireshark window open
with the MQTT display filter already applied. To start the packet captures, just press the button
marked in the following screenshot:

Figure 2.15 – Press the marked button to start the packet captures

MQTT in Detail56

11.	 Now, the application will capture and show all the MQTT packets. Next, go to your main system
and repeat Step 6, executing the two commands mentioned. You will see the output shown in
the following screenshot on the Wireshark application:

 Figure 2.16 – Packet captures for the experiment

12.	 Next, we will dissect the packet captures to understand how the process works. The software will
assist us in doing so. We will break down the packets into two parts: the subscribe packets and
the publish packets. Starting with the subscribe packets, please refer to the following screenshot,
which shows all the corresponding packets:

Figure 2.17 – MQTT subscribe packets

Here, we can see that four packets are listed. The first two are the Connect and Connack packets,
which help the client (in this case, our main system) establish a connection with our broker. We will
start with these first.

CONNECT packet

This packet is sent from the client to the broker requesting a connection. To see more information
about the contents of this packet, just double-click on the first row, which states Connect Command;
this will open a new window where you will be able to see a breakdown of the packet. Expand the
MQTT part and you will be able to see all the contents in detail. The following screenshot shows the
relevant MQTT contents that are a part of this packet:

Practical demonstration of MQTT in action 57

Figure 2.18 – MQTT CONNECT packet dissection

Now, let’s dive deeper into the meaning of the preceding code. We’ll cover this in a similar format to
when we covered the CONNECT packet.

Fixed header

The fixed header is a single byte that specifies the control packet type. In the case of the CONNECT
packet, its value is 0001 0000 (10 in hex format), which is the value of the header flags. It even
displays the interpretation, which is a plus point for us.

Variable header

Next are the variable headers, which contain the following information:

•	 Protocol Name

•	 Protocol Level

•	 Connect Flags

•	 Keep-Alive

As shown in the preceding screenshot, all this information is listed. Protocol Name is MQTT (the hex
value is 4d 51 54 54), while Protocol Level is the version of MQTT our broker is using – that
is, MQTT v3.1.1. For that, the protocol version of 4 has been given. This is one of the reasons why
MQTT may have skipped MQTT v4 and went straight to v5 – to avoid any confusion in protocol levels.

Then, comes Connect Flags, which is a single byte that carries a lot of information. We discussed the
significance of each flag when we discussed this packet, so you can just refer to the screenshot for the
values. The outcome is an unprotected request (no username and password) with no retention, QoS
value of 0, no At Will behavior, and a new session is started (the clean session flag is set to 1).

MQTT in Detail58

Finally, the next two bytes will give you the duration for which this connection will remain active,
which is 60 seconds by default. After that, a ping request will be sent by the client; if it receives a ping
acknowledgment, the connection persists. The following diagram shows the ping packets, along with
their contents, that have been captured by Wireshark:

Figure 2.19 – Ping packets dissected for ease of understanding

Payload

This is yet another variable-length component of this packet. It contains the username and password,
provided their corresponding control flags have been set and the client ID length and the actual client
ID are also a part of the variable component. Only the last two components are present for our test
case, as shown in Figure 2.18 (the last two lines).

CONNACK packet

This is the acknowledgment package that’s sent by our broker to the client. It consists of an acknowledgment
message that says whether the connection has been established or not.

As we know, this packet has three components, as follows:

Figure 2.20 – MQTT CONNACK packet dissection

Fixed header

This contains the same 2 bytes that tell you the type of the MQTT control packet. In this case, the
value will be 20 (0010 0000 – byte value).

Practical demonstration of MQTT in action 59

Acknowledgment flags

These 2 bytes only give you the value of the session’s present flag, which states whether an existing
session is going on for that client. It is not set in our case.

Return code

Finally, we have the return code, which states whether a connection has been established with the
broker. A 00 2-byte value suggests that the connection was accepted by the broker.

SUBSCRIBE and SUBACK packets

Once the connection has been established, the client will send a packet requesting to be a subscriber,
along with all the relevant information.

Refer to the following screenshot to see what the main components of this packet are:

Figure 2.21 – MQTT SUBSCRIBE packet dissection

As you can see, there is a lot of information in this packet. Let’s look at this information in more detail.

Fixed header

The header value for the SUBSCRIBE packet is 80 (1000 0000 in binary format). This is a compulsory
inclusion in each MQTT packet so that the broker and clients know the type of control packet that’s
being used.

Variable headers

Next are the variable headers, which contain the message’s length (the length of the rest of the message).
Including the message identifier and payload, we have 24 bytes. The message identifier is a 2-byte
value with a value of 0001 (hex format).

MQTT in Detail60

Payload

Finally, the payload contains the topic’s name, its length, and the requested QoS by the client.

Once the broker receives this SUBSCRIBE request packet, it will reply to the client with a Subscribe
Ack packet, which will contain the same information as the CONNACK packet but with some
exceptions (the message length and message identifier bytes). The following screenshot shows what
data this packet conveys:

Figure 2.22 – Subscribe Ack packet dissection

With that, you know how a client subscribes to a particular topic. Now, let’s see how a client publishes
a message on a specific topic:

1.	 First, we will analyze all the packets that are sent after executing the publish command.
As we have already executed the command, you should have the captured packets listed in
Wireshark after the SUBSCRIBE packets.

The following screenshot shows the packets that are of interest to us:

Figure 2.23 – MQTT publish command packet capture

The CONNECT and CONNACK packets will be the same as they were for the SUBSCRIBE
packet. They will contain the same information as this is a common process that happens
whenever a client, be it a publisher or subscriber, tries to establish a connection with the MQTT
broker, which is the Raspberry Pi in our case.

Practical demonstration of MQTT in action 61

So, we won’t explain these packets as they have already been covered. Just for reference, please
refer to the following screenshot, which shows the contents of both the CONNECT and
CONNACK packets for the publish command:

Figure 2.24 – The CONNECT and CONNACK packets for the publish command

We will discuss the PUBLISH packet now, which is the packet that commands the broker to publish a
message on a particular topic. We discussed the structure of this packet in the previous section. Before
we look at each component of the packet, please refer to the following screenshot, which shows what
the components of this packet are:

Figure 2.25 – MQTT PUBLISH packet breakdown

MQTT in Detail62

As you can see, there are some changes compared to the previous packets that we have covered. Let’s
explore them together.

Fixed header

The most noticeable change is that in the header flags or the fixed header, along with the MQTT control
packet type, whose value is 0x30 (the code for the PUBLISH packet), we have three additional flags.
DUP Flag indicates if this is the first time this packet is being sent by this client. Its value depends on
the QoS value. For a QoS value of 0, this flag will always have a value of 0, as shown in the preceding
screenshot. QoS Level is shown by 2 bits. Currently, we are operating on a value of 0, which means it
will execute this command once and that’s all. No reply is required. Finally, we have the Retain flag,
which tells the broker if they have to retain the message after sending it. Please note that it is only for
QoS levels 1 and 2 and hence it is set to 0 now.

Variable header

The variable header consists of the various components, as shown in the preceding screenshot – it
conveys the message and topic length (in bytes) and also contains the topic name.

Payload

This is the last component of this packet, and it contains the message content that we want to publish
on the aforementioned MQTT topic name (that is, sensors/temperature). In our case, the message
we sent was 27. Now, if you refer to the breakdown, you will see that the value of the message was
printed as 3237. Why is that?

The answer is the encoding of this message. All the messages follow UTF-8 encoding, and according
to that, the value of hex code 32 means digit 2, while the value of hex code 37 means digit 7. Let’s
refer to the following UTF-8 encoding table:

Figure 2.26 – Hex code to UTF 8 value conversion

Summary 63

Finally, once the publish packet has been sent, the client will send the Disconnect-Request packet,
which means that all the required transactions are over, so it would like to disconnect from the broker.

It sends a packet that has a similar structure to an acknowledgment packet. Its content can be seen
in the following screenshot:

Figure 2.27 – MQTT Disconnect-Request packet breakdown

This topic completes this chapter. Now, let’s summarize what we covered.

Summary
We covered a lot of content about MQTT in this chapter. This will help you a lot in the upcoming
chapters, especially the two projects that we will be creating since you will be aware of how devices
are communicating with the Raspberry Pi’s MQTT broker.

In this chapter, we started by introducing the communication protocol, and we explored the main
components or building blocks of MQTT. Next, we understood how the protocol works and covered
some important control packets, which are the building blocks of MQTT.

Finally, we explored a practical scenario and understood how the actual communication happens
under the hood by using a packet capturing software called Wireshark on our Raspberry Pi.

In the next chapter, we will cover some popular development boards manufactured by Espressif –
the ESP8266-based NodeMCU development board and the ESP32 development board. We will
demonstrate how to use these boards as an MQTT client and communicate with our Pi.

3
Introduction to ESP

Development Boards

In this book, we will be using two types of ESP-based development boards manufactured by Espressif
Systems (688018.SH). Espressif Systems is a public multinational, fabless semiconductor company
established in 2008. They mainly develop state-of-the-art Wi-Fi and Bluetooth-based IoT development
boards and SoCs. Their popular products include the ESP8266 (the chipset powering the popularly
known NodeMCU), ESP32, ESP32-S, and ESP32-C series of chips, modules, and development boards.

This chapter introduces you to two of the most popular development boards: the ESP8266 based
NodeMCU and the ESP32 development board. The chapter is divided into 3 main sections:

•	 ESP8266-based NodeMCU development board

•	 ESP32-based development board

•	 Mini-Project 1: NodeMCU as an MQTT client

This chapter will be divided into three main sections. The first two sections will provide details about
these development boards, discussing each point listed as follows:

•	 Technical specifications of the development board

•	 The pinout diagram and GPIO configuration

•	 Software setup to program these boards using the Arduino IDE

Finally, we will create our very first mini-project, where we will set up a NodeMCU development board
as an MQTT client. This will connect to our Raspberry Pi MQTT broker and control its onboard LED
using the terminal of our home computer. Exciting, right?

Let’s waste no more time and dive in!

Introduction to ESP Development Boards66

ESP8266-based NodeMCU development board
NodeMCU is an open source development board that is designed to prototype IoT applications. The
development board equips the ESP-12E module, which contains an ESP8266 chip. This chip has a
Tensilica Xtensa® 32-bit LX106 RISC microprocessor that operates at an 80 to 160 MHz-adjustable
clock frequency and supports RTOS.

The board can be programmed using two languages, as follows:

•	 Embedded C (using the popular Arduino IDE)

•	 Lua Programming Language

We will learn how to program NodeMCU through the Arduino IDE later in this chapter.

First, let’s look at the actual development board. The following is a diagram of the NodeMCU board
with the important peripherals of the board labeled accordingly:

Figure 3.1 – A NodeMCU development board

Next, we will look at the technical specifications for this development board.

ESP8266-based NodeMCU development board 67

Technical specifications

The development kit that’s based on ESP8266 integrates GPIO, PWM, IIC, and the 1-Wire and ADC
all-in-one board. You can power your development in the fastest way by combining this with NodeMCU
firmware. The technical specifications for the NodeMCU development board are as follows:

•	 Wi-Fi Module: An ESP-12E (32-bit) module that’s similar to the ESP-12 module but with six
extra GPIOs that support the 802.11 b/g/n Wi-Fi protocol.

•	 Power Source: A micro USB port for power, programming, and debugging.

•	 Headers: A 2 x 2.54 mm 15-pin header with access to GPIOs, SPI, UART, ADC, and power
pins. We will discuss the GPIO pinout in detail in the next section.

•	 Power Rating: The required power to power the board is 2.6 to 3.3 V with a current of 250
mA. The USB port provides 5 V, which is regulated to 3.3 V by an on-chip AMS1117 voltage
regulator board.

•	 Dimensions: 49 x 24.5 x 13 mm.

•	 Flash Memory: 4 MB.

•	 SRAM: 64 KB.

•	 ADC Pins: It has 1 ADC pin, which has a voltage range of 0 - 3.3 V.

•	 Digital Pins: It has 11 digital I/O pins.

•	 Miscellaneous: Reset and Flash buttons.

•	 Temperature Range: The company has rated the temperature range for the product to be
between -40 degrees to 125 degrees Celsius.

•	 Price: The NodeMCU board retails in the price range of $2 to $5.

Next, we will look at the pins that the development board boasts and the configuration and functionality
of each pin.

NodeMCU GPIO pinout and pin configurations

The ESP8266 NodeMCU board has a total of 30 pins that can be used to connect it to any peripherals
or development boards.

Introduction to ESP Development Boards68

The following diagram shows the GPIO pinout for the NodeMCU development board:

Figure 3.2 – NodeMCU detailed pinout diagram

The preceding diagram seems considerably complex. So, let’s cover it in parts to make understanding it
easy. The first thing to notice is that there are several pins with more than one box. What this means is
that these pins have more than one possible functionality, but we can only use one at a given moment.
Such pins are called multiplexed pins. We can select our preferred mode for that pin using our code.
We will see how this works practically later in this book.

Now, let’s cover the pins by using the legend provided in the preceding diagram:

•	 Firstly, the power pins are marked in red. As the name suggests, these pins are used to supply
power to external components. There are four power pins, three of which output 3.3 V (the
output of the onboard 3.3 voltage regulator), and one VIN pin, which outputs the raw input
voltage when the board is powered through the on-chip micro USB port. Alternatively, it can
be used to power the board through an external battery.

•	 There are 4 GND or ground pins on the board as well.

ESP8266-based NodeMCU development board 69

•	 The control pins are used to control the ESP8266 chip. There are three such pins of importance
on the board: the Enable (EN), Reset (RST), and Wake (WAKE) pins. They have different
functionalities, as follows:

	� The Enable pin is used to enable or disable the ESP8266 chip. Supplying a HIGH or 3.3 V
signal will enable the ESP8266 chip, while a LOW or GND signal will operate the ESP chip
on minimum or low power mode.

	� The Reset pin, as its name suggests, is used to reset the ESP8266 chip.

	� The Wake pin helps us wake the ESP8266 chip from deep sleep (one of the low-power modes).

•	 The ADC pins are a part of the 10-bit ADC that the NodeMCU board possesses. The maximum
voltage for this ADC is 1 V (0 to 1 V). There are two pins on the board: the ADC0 and TOUT pins.

•	 The UART pins provide a serial communication interface. The NodeMCU board has two
such interfaces: UART0 and UART1. The maximum communication speed is 4.5 Mbps. The
UART0 interface consists of TXD0, RXD0, CTS0, and RST0 pins to enable both transmission
and reception of signals. On the other hand, the UART1 interface just has a TXD1 pin, so it
only supports transmission capabilities. One example application for such an interface could
be logging.

•	 The SPI pins provide an SPI communication interface. The NodeMCU board has two SPI
interfaces: SPI and HSPI. There are eight SPI pins on the board, four for each interface.

•	 The ESP8266 features an SDIO interface as well, which can be used to directly interface SD
cards. 4-bit 25 MHz SDIO v1.1 and 4-bit 50 MHz SDIO v2.0 are supported. There are six pins
for this interface on the board.

•	 There are 17 GPIO pins on the NodeMCU board, which can be used to connect peripherals and
other boards. It can be assigned various functions as the majority of these pins are multiplexed.
You can pull the pin up or down internally through software commands. It can act as an input
and can be set to trigger when it receives a certain signal.

•	 Additionally, the board supports the I2C communication interface. Both master and slave
functionality is supported, with a maximum clock frequency of 100 kHz. There are two pins
for this interface on the board: the SDA (data) and SCL (clock) pins.

•	 Finally, there are two reserved pins on the board. Additionally, some GPIO pins have a wave-
like symbol beside them, which signifies that they are PWM (Pulse Width Modulation) pins.
The PWM frequency range for this board is 100 Hz to 1 kHz.

This concludes this section. Now that we know a lot about the NodeMCU development board (both
its hardware and its GPIO pinout), let’s learn how to set up the Arduino IDE so that we can program
this board through that software. We can even set up our Raspberry Pi to program this board, but for
the sake of simplicity, we will stick to the PC setup.

Introduction to ESP Development Boards70

Arduino IDE setup for the NodeMCU development board

There are two ways to program the board: we can either use Arduino-based C programming or the
Lua programming language.

We will stick to the Arduino IDE setup for this tutorial as it is easier to follow and much more reliable.
Follow these steps to successfully run your first program on the NodeMCU board:

1.	 First, go to https://www.arduino.cc/en/software and download the latest stable
version of Arduino IDE for your computer. This can be seen in the following screenshot:

Figure 3.3 – Choose the download option for your computer’s OS

2.	 Once the installer (executable file) has been downloaded, just install the IDE on your computer.
To do so, just follow the onscreen steps and keep pressing the Next button.

Note
For Windows 8.1 or higher, you can just download the Arduino app from Microsoft Store. If
you downloaded a ZIP file, just extract the contents, copy the extracted Arduino folder to the
desired destination, and launch the application.

https://www.arduino.cc/en/software

ESP8266-based NodeMCU development board 71

3.	 Once the IDE is successfully installed on your computer, open it through the app icon or from
the start or search menu, depending on the operating system you are using.

Although the development environment has been installed on your computer, it does
not support the programming of ESP-based boards out of the box. We need some
additional setup for that. For this, you must go to File | Preferences, as shown in the
following screenshot:

Figure 3.4 – Arduino IDE – Preferences

4.	 In the Additional Board Manager URLs area, paste the following URL:

http://arduino.esp8266.com/stable/package_esp8266com_index.
json

5.	 Now, press OK.

This will allow you to download the necessary package files for ESP8266 development from
Boards Manager.

6.	 The next step is to download all the packages and files needed by the Arduino IDE. To do that,
go to Tools | Board: "Arduino Uno" | Boards Manager.

http://arduino.esp8266.com/stable/package_esp8266com_index.json
http://arduino.esp8266.com/stable/package_esp8266com_index.json

Introduction to ESP Development Boards72

7.	 In the search bar, search for esp8266. You will see find an option by that name, thanks to
the URL we entered:

Figure 3.5 – Arduino IDE Boards Manager

8.	 Install the esp8266 package (the latest version) by pressing the Install button. It will take around
4 to 5 minutes to download and install all the requirements.

Now, you are ready to program your ESP8266-based development boards!

Let’s verify this by uploading the LED Blink code onto our NodeMCU board:

1.	 Open the example Blink code by going to File | Examples | 01. Basics | Blink.

This will open the LED Blink example code in a new window. The code is very simple, as
shown here:

void setup ()

{

  pinMode (LED_BUILTIN, OUTPUT);

}

void loop ()

{

  digitalWrite (LED_BUILTIN, HIGH);   

ESP8266-based NodeMCU development board 73

  delay (1000);   

                    

  digitalWrite (LED_BUILTIN, LOW);    

  delay (1000);                       

}

2.	 Now, we need to select the Node MCU dev board from the Boards menu so that the IDE
recognizes our board. To do so, go to Tools | Board: ‘x’ | ESP8266 Boards | NodeMCU 1.0.

The next step involves connecting the board and selecting the appropriate COM port. This
specifies which USB port your NodeMCU board is connected to.

Important Note
If you are using an older version of the Arduino IDE, you may see a single list of boards instead
of the ESP8266 Boards section. Just scroll down the list to find the board mentioned previously
and click on it.

3.	 Connect your NodeMCU board to your PC using a USB to micro USB cable. Once you’ve
done this, your computer may install some drivers if you are connecting the device for the first
time, but this process does not usually occur in newer systems. Make sure that any other USB
devices connected to the computer are disconnected.

4.	 Now, the COM port for this device needs to be selected. This can be done by going to Tools | Port.

You should see COMxx for a Windows PC and dev/ttyUSBx for a Linux or Mac PC. Just
select the port by pressing on it.

5.	 Finally, press the Upload button, which can be found beside the tick icon on the menu on the
top right-hand side of the Arduino IDE window. This can be seen in the following screenshot:

Figure 3.6 – The Upload button

6.	 If everything works fine, the bottom window will show that the program has been
successfully uploaded onto your development board and the on-board LED will start
blinking in 1-second intervals.

This completes our introduction to the NodeMCU development board. The next section will introduce
you to another popular development board from Espressif, the ESP32 development board. It has
several additional features, such as a greater number of ADC pins, Bluetooth support, and more
compared to the NodeMCU development board (its predecessor), though it comes at a slightly raised
price tag of approximately $8 to $10.

Introduction to ESP Development Boards74

ESP32-based development board
ESP32 is often considered a successor to the NodeMCU development board. It is yet another open
source board designed by Espressif specifically for prototyping mobile devices, wearable electronics,
and IoT applications.

The main upgrade over the last generation chip is a hybrid Wi-Fi and Bluetooth chip, which can help
you provide an additional connection protocol to your application. Note that the ESP32 dev boards
have a single antenna, so only one of the two protocols can be used at a given time.

The following figure shows what the development looks like. The form factor is similar to the NodeMCU
development board but with some notable differences:

Figure 3.7 – ESP32 DEVKIT V1

We will be using this particular model of the ESP32 board in this book, but the information given
here will be also applicable for its other versions as they are all powered by the same chip.

An overview of the ESP32 specifications is as follows:

•	 The ESP32 board is a dual-core 32-bit processor.

•	 It has Wi-Fi and Bluetooth built-in.

•	 Its clock frequency is up to 240 MHz and it has a 512 kB SRAM.

ESP32-based development board 75

•	 This particular board has 30 GPIO pins, with 15 in each row.

•	 It also has a wide variety of peripherals available, such as capacitive touch, ADCs, DACs, UART,
SPI, I2C, and much more.

In the next section, we will cover the technical specifications of the board in detail.

Technical specifications

The following table shows a detailed specification chart for this device. It covers all the important
features and peripherals of the ESP32 development board (ESP32 DEVKIT V1 in particular):

Table 3.1 – Technical specifications of ESP32 DEVKIT V1

Next, we will cover the pinout of the ESP32 development board in detail, as we did for the NodeMCU
development board. There are some additional features that this board boasts over its predecessor in
terms of GPIO pins as well.

Introduction to ESP Development Boards76

ESP32 GPIO pinout and pin configurations

The following diagram shows that there are numerous types of pins on the board:

Figure 3.8 – ESP32 development board pinout diagram

A single pin is multiplexed so that it can perform multiple tasks. These can be decided on using its
multiplexing select registers. For now, we will stick to the simple parts and provide an overview of
the different pins there are:

•	 There are two Power pins: VIN and 3.3 V.

The VIN pin is used to provide external power to the board, while the 3.3 V pin powers the
sensors connected to the board.

•	 There are two Ground pins on the board that can be used for multiple purposes.

•	 There are 15 accessible ADC pins, which are marked as ADCx_y in the preceding diagram.
These pins are used to collect analog data from various sensors or other sources.

•	 There are 25 GPIO pins (purple-colored and multiplexed) that the user can use to connect
various digital data sensors to the board. However, there are always some essential pins that
will be needed for other applications, so using all 25 pins at once is very rare, but possible.

•	 The ESP32 board even has two Digital to Analog (DAC) converter pins.

•	 There are three UART channels in total, out of which one is used by the micro USB port and
the remaining two can be accessed through the U0 and U2 Tx and Rx pins.

ESP32-based development board 77

•	 The board also has Serial Peripheral Interface (SPI) pins, which include the MOSI, MISO,
SCK, and CS pins. Moreover, it also provides I2C protocol support by using the provided SDA
and SCL pins.

•	 Nine pins can be used to access the on-chip Touch sensor. These are marked as Touch0 to
Touch9 in the preceding pinout diagram.

•	 There are two XTAL pins, which can be used to connect an external crystal (to provide a clock
signal) to the ULP processor.

•	 Finally, there are the SensVP and SensVN pins, which are dedicated to measuring small DC
signals (for example, from a thermocouple).

This concludes the pinout diagram description for the ESP32 board. If you wish to learn more, please
check out the official documentation of the ESP32 chip, which is provided on the official Espressif site:

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/

Arduino IDE setup for the ESP32 development board

When it comes to programming, the ESP32 board can easily be programmed through the Arduino
IDE, which is an open source development environment for different development boards (by default,
it can be only used for Arduino boards).

Fortunately, we have to follow the same process we did for the NodeMCU board, but with a few minor
changes. Some additional steps need to be followed to program the ESP32 board:

•	 Change 1: Follow Steps 1 to 3 for the NodeMCU board as-is. In Step 4, please copy the https://
raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/
package_esp32_index.json link instead of the one specified previously. Note that to
keep both, just put a comma (,), after the ESP8266 link and type in the link mentioned previously.

Now, Boards manager knows where to look for all the necessary files that will allow us to
program the ESP32 boards using the Arduino IDE.

•	 Change 2: When you open Boards Manager in the next step, instead of searching for esp8266,
just search for esp32 and install the necessary files for them. It will take around 10 minutes
to download and install all the necessary files.

•	 Change 3: Finally, instead of choosing the NodeMCU as the board, we must choose the ESP32
Board option.

You would most probably have an ESP32 DEVKIT V1 as it is the most popular and cheapest
option of all. Choose the DOIT ESP32 DEVKIT V1 option from the ESP32 Boards section.

Now, you should be able to successfully load the Blink program onto your ESP32.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Introduction to ESP Development Boards78

Important Note
In some ESP32 boards, the program won’t start uploading automatically once you press the
Upload button in the IDE. It will keep trying to detect the board. There is a very simple fix
for this issue.

Once you have pressed the Upload button, just press and hold the BOOT button on the ESP32
kit. It will automatically detect the board and start uploading.

With that, we have introduced two very useful and powerful development boards developed specifically
for Internet of Things (IoT) applications.

Please note that we will be using these boards throughout this book. In fact, in the later chapters, these
boards will act as the sensor nodes for our projects, so you need to become familiar with these devices.

In the next section, we will be creating our first project, wherein we will use an external development
board as an MQTT client that will establish a connection to your Raspberry Pi MQTT broker. Here,
we will do the following:

•	 Set up a NodeMCU device as an MQTT client.

•	 Connect this client to our Raspberry Pi MQTT broker.

•	 Send dummy data from the NodeMCU device to our Pi MQTT broker and control the
NodeMCU’s onboard LED through MQTT.

Let’s get started.

Mini-project 1: NodeMCU as an MQTT client
This is the first project we will be doing related to MQTT and our Raspberry Pi broker.

First, we will start by setting up the NodeMCU board. No external connections need to be made as
we are only controlling the on-chip LED. This will be divided into two parts:

•	 Node MCU setup and code explanation

•	 Raspberry Pi setup and project demonstration

We will first set up our NodeMCU development board for this project.

Part 1 – NodeMCU development board setup

In this section, we will program our NodeMCU board to act as an MQTT client and control its onboard
LED using an external device (your home computer, in this case).

Mini-project 1: NodeMCU as an MQTT client 79

For this, we will write a sketch that gives us access to the features we need. We will be using the pubsub
library for this purpose. The code we will be using will do the following:

1.	 First, it will connect to an MQTT server.

2.	 Once the connection has been established, it will publish "hello world" to the outTopic topic
every 2 seconds.

3.	 Once the connection has been established, it will subscribe to the inTopic/LED topic, printing
out any messages it receives.

4.	 It will receive messages from the subscribed topics and assume that the received payloads are
strings, not binary. If the first character of inTopic is a 1, it will be programmed to switch the
onboard ESP LED on; otherwise, it will switch it off.

5.	 It will reconnect to the server if the connection is lost using a blocking reconnect function.

Code explanation

Now, let’s go through the code in parts so that we can understand it better:

1.	 The first two lines of code import the required libraries. The ESP8266WiFi library is used to
access Wi-Fi networks, which grants the board internet access. The PubSubClient library
is the MQTT client library, which helps us run an MQTT client on the board:

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

2.	 The next three lines are constant variable initializations for the Wi-Fi name, password, and
the MQTT (our Raspberry Pi’s) IP address. The Raspberry Pi’s IP address is the IP address of
the broker.

The following few lines deal with various object and variable initializations that will be
required later in our code:

const char* ssid = "wifi_name";

const char* password = "wifi_password";

const char* mqtt_server = "ip_of_raspberry_pi";

WiFiClient espClient;

PubSubClient client(espClient);

unsigned long lastMsg = 0;

#define MSG_BUFFER_SIZE     (50)

char msg[MSG_BUFFER_SIZE];

int value = 0;

Introduction to ESP Development Boards80

3.	 setup_wifi is a custom function that’s used to connect to the Wi-Fi network. We provided
the network’s credentials as constant variables:

void setup_wifi()

{

  delay(10);

  // We start by connecting to a WiFi network

  Serial.println();

  Serial.print("Connecting to ");

  Serial.println(ssid);

  WiFi.mode(WIFI_STA);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED)

  {

    delay(500);

    Serial.print(".");

  }

  randomSeed(micros());

  Serial.println("");

  Serial.println("WiFi connected");

  Serial.println("IP address: ");

  Serial.println(WiFi.localIP());

}

4.	 The callback function is used to print out the data that’s received on the subscribed MQTT
channels. In this case, we are subscribed to a topic called inTopic. We will be sending data to
this to control the onboard LED. We have programmed the function so that if it receives 1 on
the topic, the LED turns on, while if it receives 0 on the topic, it turns off:

void callback(char* topic, byte* payload, unsigned int
length)

{

  Serial.print("Message arrived [");

  Serial.print(topic);

  Serial.print("] ");

Mini-project 1: NodeMCU as an MQTT client 81

  for (int i = 0; i < length; i++) {

    Serial.print((char)payload[i]);

  }

  Serial.println();

// Switch on the LED if an 1 was received as first
character

  if ((char)payload[0] == '1')

  {

    digitalWrite(BUILTIN_LED, LOW);       

  }

 else

 {

    digitalWrite(BUILTIN_LED, HIGH);  

 }

}

•	 The reconnect function is used to reconnect to the MQTT broker in case there is a problem
and the board disconnects. We must create a random client ID so that there is no possibility
of a duplicate client ID. We use the random function and create a 16-byte random hex value
and append it with the ESP8266Client- string. The reasons for disconnection may include
internet connection failure, duplicate client IDs, and so on.

•	 After that, we will be using the pub-sub client library’s connect, publish, and subscribe functions
(the main MQTT functions) for specific tasks. Let’s take a look at these now.

	� Connect function

First, we will attempt to establish a connection with the MQTT broker with the generated
client ID using the connect function. Please note that you can have other arguments for
this function as well (for instance, if you have security enabled, you will need to send the
user ID and password as well).

All these parameters were discussed in detail in Chapter 2, MQTT in Detail, when we
discussed the theory of MQTT in detail. Information about this function is provided in the
following screenshot:

Introduction to ESP Development Boards82

Figure 3.9 – Pub-sub client connect function explained

	� Publish function

Once the connection to the broker has been established, we publish a hello world! message on
the outTopic topic to acknowledge that the connection has been established. The publish
function performs this task. Information about this function is provided in the following
screenshot:

Figure 3.10 – Pub-sub client publish function explained

	� Subscribe function

Mini-project 1: NodeMCU as an MQTT client 83

Finally, once we have the connection, we will subscribe to the inTopic/LED topic to
control the onboard LED on the NodeMCU board. The function just takes the topic name
as an argument for this project. However, we can also set the QoS (which was discussed in
Chapter 2, MQTT in Detail, as well) value for this topic. Information about this function is
provided in the following screenshot:

Figure 3.11 – Pub-sub client subscribe function explained

If you still need to dive deeper into the pub sub-client library, you can find the complete
documentation for this at https://pubsubclient.knolleary.net/
api#connect.

Note that this function tries to connect to the MQTT broker every 5 seconds:

void reconnect()

{

  // Loop until we're reconnected

  while (!client.connected()) {

    Serial.print("Attempting MQTT connection...");

    // Create a random client ID

    String clientId = "ESP8266Client-";

    clientId += String(random(0xffff), HEX);

    // Attempt to connect

    if (client.connect(clientId.c_str())) {

      Serial.println("connected");

      // Once connected, publish an announcement...

      client.publish("outTopic", "hello world");

      // ... and resubscribe

      client.subscribe("inTopic/LED");

https://pubsubclient.knolleary.net/api#connect
https://pubsubclient.knolleary.net/api#connect

Introduction to ESP Development Boards84

    } else {

      Serial.print("failed, rc=");

      Serial.print(client.state());

      Serial.println(" try again in 5 seconds");

      // Wait 5 seconds before retrying

      delay(5000);

    }

  }

}

5.	 This is the Arduino setup function. Here, we set the built-in LED pin mode to output. Then,
we initiate a serial connection with a baud rate of 115200. Next, we call the setup_wifi
function to connect to the Wi-Fi network.

Next, we connect to the MQTT server, which in our case is the Raspberry Pi. Then, we
specify the callback function using the setCallback function of the PubSubClient
library. Finally, we subscribe to the inTopic/LED topic so that we can control the
onboard LED:

void setup()

{

  pinMode(BUILTIN_LED, OUTPUT);     

  // Initialize the BUILTIN_LED pin as an output

  Serial.begin(115200);

  setup_wifi();

  client.setServer(mqtt_server, 1883);

  client.setCallback(callback);

  client.subscribe("inTopic/LED");

}

The final loop function runs indefinitely. First, we check if the MQTT client is
disconnected and if so, we run the reconnect function. After that, we publish a Hello world
x message every 2 seconds to the outTopic topic, where x is a variable whose value keeps
incrementing.

In addition to this, we already have the callback function defined. So, if we send a 0 or 1 to
inTopic, we can control the LED on the NodeMCU board:

void loop() {

  if (!client.connected()) {

    reconnect();

  }

Mini-project 1: NodeMCU as an MQTT client 85

  client.loop();

  unsigned long now = millis();

  if (now - lastMsg > 2000) {

    lastMsg = now;

    ++value;

    snprintf (msg, MSG_BUFFER_SIZE, "hello world #%ld",
value);

    Serial.print("Publish message: ");

    Serial.println(msg);

    client.publish("outTopic", msg);

  }

}

With that, we have explained the code. You can find the complete code for this project in this book’s
GitHub repository, along with comments to guide you through. Just upload this code to the NodeMCU
board to complete the NodeMCU setup.

Now, let’s set up the Raspberry Pi.

Part 2 – Raspberry Pi setup

This is the easy part of this tutorial. All we need to do is to test and demonstrate that we can control
the onboard LED of the NodeMCU board wirelessly through MQTT.

We will use the Raspberry Pi as an MQTT client to control the NodeMCU’s onboard LED. Follow
these steps:

1.	 Open a Terminal and start the MQTT broker on the Pi if it is not already active. It is highly
unlikely that it would be inactive if you have followed the steps provided in the previous chapters.

2.	 Now, open two new Terminal windows. We will use one of them as an MQTT subscriber that
subscribes to outTopic and the other as an MQTT publisher, which will let us control the
onboard LED of the NodeMCU board.

3.	 In one Terminal window, type the following command:

mosquitto_sub -v -t outTopic

This will subscribe to outTopic, which the NodeMCU board has been sending the
dummy messages to. They should start appearing on the Terminal every 2 seconds.

4.	 In the second Terminal, type the following two commands one after the other:

mosquitto_pub -t inTopic/LED -m 1

mosquitto_pub -t inTopic/LED -m 0

Introduction to ESP Development Boards86

The first command will turn on the NodeMCU’s onboard LED, while the second command
will turn it off.

That’s all we need to do to set up the Raspberry Pi. The following screenshot shows what the final
screen of the Raspberry Pi should look like. You can also see the Arduino IDE Serial Monitor output
in the image, which logs all the published and received messages:

Figure 3.12 – Mini-project output demonstration – Raspberry Pi

Great! You’ve just completed your very first mini-project and controlled a peripheral of an MQTT client
wirelessly using the MQTT protocol. This also marks the end of this chapter. Now, let’s summarize
what we’ve learned.

Summary
This chapter was solely dedicated to the ESP development boards that we will be using throughout
this book, even in the full-scale projects that we will be creating in the upcoming chapters. First,
we covered the NodeMCU development board, including its technical specifications, and its GPIO
configuration, before learning how to set up the Arduino IDE for this board and flashing our very first
program. Next, we covered the same topics for the ESP32 development board, which is often considered
a successor of the latter with some additional features. Finally, we built our very first mini-project. We
turned our NodeMCU board into an MQTT client and controlled its onboard LED wirelessly using
the MQTT communication protocol.

In the next chapter, we will look at another important component that will be very useful later in this
book when we cover two full projects: Node-RED.

We will use this to create dashboards for our projects and learn how we can store the received MQTT
data in a SQL database later in this book.

4
Node-RED on Raspberry Pi

This chapter will get you acquainted with very popular software for the Raspberry Pi – Node-RED.
It is browser-based low-code programming software that allows beginners to create APIs and control
the Pi hardware by creating flows, a connected component created by wiring several nodes together
to perform a specific task. This chapter has four main sections:

•	 Introduction to Node-RED

•	 Node-RED first-time installation, setup, and demonstration

•	 Node-RED MQTT components and dashboard setup

•	 Mini project 2 – controlling a NodeMCU LED from the Node-RED dashboard

So, let's start with a basic introduction to what exactly Node-RED is.

Introduction to Node-RED
The website of Node-RED (https://nodered.org/) gives a perfect introduction to the purpose
of using the software:

Node-RED is a programming tool for wiring together hardware devices, APIs and online services in new
and interesting ways.

It provides a browser-based editor that makes it easy to wire together flows using the wide range of nodes
in the palette that can be deployed to its runtime in a single click.

Hence, we can say that Node-RED is a UI-based programming tool that can be used to create various
applications, which include hardware device control (Raspberry Pi GPIO access is also available),
flow-based API development, and so on. We can run multiple flows at once and each of them will
run independently.

Moreover, Node-RED allows the easy setup of several additional services, which would otherwise
require a lot of work and experience. One such example is setting up a SQL database to store all the
data arriving in Node-RED through any communication protocol, be it hardware-based (GPIO) or
software-based (MQTT).

https://nodered.org/

Node-RED on Raspberry Pi88

This software is so useful, especially for a device such as the Raspberry Pi, that it comes pre-installed
when you flash the Raspberry Pi OS version with the recommended software. Additional Node-RED
developments were made specifically for the Raspberry Pi. These include the following:

•	 You can access and control the Raspberry Pi GPIO from Node-RED.

•	 Due to the limited memory of the Raspberry Pi, you will need to start Node-RED with an
additional argument to tell the underlying Node.js process to free up unused memory sooner
than it would otherwise.

To do this, you should use the alternative node-red-pi command and pass in the max-old-
space-size argument. Please note that this is browser-based software so when you run this locally
on the Pi, you can access the console window from any device connected to the same network as the
Raspberry Pi.

This section has given us an informative introduction to Node-RED. In the next section, we will first
install and set up Node-RED on our Raspberry Pi and then create two simple flows to get some basic
knowledge on how to use this software.

Node-RED first-time installation, setup, and
demonstration
This section will cover in detail how to install and set up Node-RED on the Raspberry Pi. After that,
two simple demonstration applications will be covered, which will show us the power of Node-RED
and how it can be utilized to its full extent.

Node-RED installation

Installing and setting up Node-RED on your Raspberry Pi is a straightforward process. Please note
that this section assumes that you have already set up your Raspberry Pi with the latest version of the
Raspberry Pi OS with all the initial configurations. If that is not the case, please refer to Chapter 1,
Introduction to Raspberry Pi and MQTT, for that.

First, access your Raspberry Pi as we will require the terminal window at the very least to install
Node-RED on it. There are two ways to access your Pi:

•	 Through the desktop interface: It requires a monitor, keyboard, and mouse connected to the Pi.

•	 Through Secure Shell Protocol (SSH): SSH has to be enabled from Pi configuration to use this
option. You can even use VNC (which stands for Virtual Network Computing) to access the
whole desktop interface through your PC and use your PC’s mouse and keyboard.

Node-RED first-time installation, setup, and demonstration 89

You will need the terminal window regardless of the method you use for this setup process. Please note
that you can use any software to SSH into your Raspberry Pi. Figure 4.1 shows the terminal window
after you SSH into your Pi using Putty:

Figure 4.1 – Raspberry Pi terminal access through SSH (via Putty)

Next, we need to make sure that the Raspberry Pi OS is up to date. For that, just run the two commands
given next in the order they are given. This will take some time, so I would suggest you go out for a
walk or grab a snack in the meantime:

sudo apt update

sudo apt upgrade

You may need to restart your Pi for the updates to be installed. After this is complete, we can proceed
to the actual software installation. As mentioned before, Node-RED comes pre-installed with the full
OS image. But this may be using an older version of Node.js. To install/upgrade to the latest version
of Node-RED (along with the dependencies), please use the following command:

bash <(curl -sL https://raw.githubusercontent.com/node-red/
linux-installers/master/deb/update-nodejs-and-nodered)

Node-RED on Raspberry Pi90

This will walk you through the whole installation process, which will also install all the required
dependencies for Node-RED. Just press Y to start the installation process (Figure 4.2):

Figure 4.2 – Node-RED installation logs

Next, we will see how we start Node-RED on our Raspberry Pi, now that we have successfully installed it.

Running Node-RED on your Pi for the first time

There are two ways to start Node-RED, one through the desktop interface and the other through
a terminal window. To start it through the desktop interface, just open the Node-RED application
through the following path: Start Menu | Programming | Node-RED. This will open a terminal
window with the node-red-start command pre-configured to run.

To start it through the terminal, just open a new terminal window and type in the following command:

node-red-start

Node-RED first-time installation, setup, and demonstration 91

Once you start Node-RED through any of the mentioned methods, wait a few seconds for the
initialization process to complete. Once that is done, you will see a message flash on the terminal
window saying: Node-RED has started, point a browser at <—IP address of Node-RED—>. This
means that Node-RED is now active on the given IP address. The Node-RED server runs on the same
IP address as that of your Raspberry Pi and on port 1880.

You can access Node-RED through any device browser that is connected to the same Wi-Fi network
as your Raspberry Pi. This makes this service easily accessible across multiple platforms with the host
being the Pi. To open Node-RED on any device, all you need to do is the following:

1.	 First, connect to the Wi-Fi network to which your Raspberry Pi is connected (your device
could be a PC, laptop, mobile phone, or even a smart TV!).

2.	 Then, open a browser window.

3.	 In the URL bar, type in your Raspberry Pi’s IP address (which you use to access it via VNC), followed
by a colon, and then the port number for Node-RED, which is 1880. For example, if your Pi’s IP
address is 192.168.0.23, then the URL you need to type in will be 192.168.0.23:1880.

In the next section, we will go through a crash course on all the basic functionalities and features
Node-RED has to offer. The section will further cover two very simple and basic applications that will
utilize the various functionalities of Node-RED.

Node-RED crash course

Now that we have Node-RED installed on our Raspberry Pi, we can further explore all the features
and functionalities it has to offer. We will go about that in the following order:

•	 What do we see on the home screen?

•	 Understanding the following terms–node and flow

•	 Additional features

•	 Creating the Hello World flow

•	 Controlling an LED connected to the Raspberry Pi through Node-RED

Please note that this will give you an overview of how Node-RED works on the Raspberry Pi. So, let’s
get started with the first point.

Node-RED on Raspberry Pi92

What do we see on the home screen?

When you open Node-RED on any web browser, you will see the home screen shown in Figure 4.3.

Figure 4.3 – Node-RED home screen

Now, to understand this screen better, we will divide the main screen into three components and go
through each separately (Figure 4.4). The names of these components are shown next:

1.	 Node palette

2.	 Workspace

3.	 Control panel

Figure 4.4 – Three components of the Node-RED home screen

Node-RED first-time installation, setup, and demonstration 93

Each part has its purpose and that is what we will be discussing in this section.

1 – Node palette

The node palette is a very important, essential component. It has all the nodes that can be used to
create different flows with application-specific functionalities in Node-RED. We will discuss these
terms in detail in the next subsection.

The palette is further segregated into different sections based on the category a particular node belongs
to. This helps the user search for the right node easily. Each node has its required configuration. Some
nodes can be used directly just by dropping them into the workspace and some require additional setup.

2 – Workspace

A major part of the home screen is occupied by the workspace. This is the area where we create our
flows. We drag all the nodes we require for a particular application from the palette to the workspace
and connect them in a particular order to create a flow (which can be interpreted as a program).

3 – Control panel

This is the last component of the Node-RED home screen. This panel has several tabs, each serving
a particular purpose. We will be discussing the important tabs, as follows:

•	 It has the Info tab, which contains information such as how many flows the workspace has,
what nodes are used in each flow, and so on.

•	 The Help tab gives information about each node, which includes several things, such as a short
description of the node, how to use the node in a flow, and so on.

•	 The Debug tab opens the Debugging panel where the debug information of each node is visible
(it can be configured in a flow using the debug node).

•	 The Dashboard tab is also accessible through this component. It gives information about the
components and the dashboard can be opened from this section (note that this tab is not visible
in the preceding figure as we need to install the Node-RED dashboard extension).

Understanding the following terms–node and flow

The following are explanations of the terms:

•	 Node: We will use a very simple analogy to understand what a node is. Whenever you write
code for an application, you create several functions to make the code more readable and
efficient. The nodes are different functions, with each node having particular functionality.

•	 Flow: Continuing with the preceding analogy, when we use multiple nodes and join them to
create a group of nodes performing a specific task, this group is termed a flow. This is like the
code written for that task but instead of code, we use Node-RED’s drag and drop feature to
create a flow performing the same task.

Node-RED on Raspberry Pi94

Additional features

In addition to the basics that we just covered, there are ample additional features. A major feature is
the ability to “install external node extensions.”

That opens a lot of new development opportunities, which include connecting Node-RED to databases,
external services such as IFTTT (If This Then That), Twilio, and so on. The main advantage is that in
most cases, no external tech stack knowledge is required. The setup is minimal, such as entering some
required information. For example, to connect to a SQL database through the MySQL extension (this
will be covered in detail in later chapters), you have to just enter the IP address on which the database
is hosted, its port, database name, and user credentials. There is no need to write a single line of code.

There is an extensions library hosted and managed by www.nodered.org. We can access that
through the Node-RED home page through the additional options, which can be accessed by clicking
the three-line icon on the top-right portion of the screen (Figure 4.5):

Figure 4.5 – Additional options section on the Node-RED screen

This concludes this section. Next, we will be creating two simple flows, which will help us understand
how to operate Node-RED.

Creating the “Hello World” flow

In this section, we will be creating our very first flow with Node-RED. This flow will perform a very
simple task:

Every time we trigger the flow, the current timestamp value will be printed on the debug screen (in the
control panel).

To create this flow, we will require two nodes: the inject node and the debug node. Just drag these
nodes from the node palette onto the workspace once. When this is done, your screen will look like
what’s shown in Figure 4.6.

www.nodered.org

Node-RED first-time installation, setup, and demonstration 95

 Important Note
We need to deploy every time we make any changes in any of the Node-RED flows. Every added
or updated node will have a light-blue dot on top, indicating that these changes will only be
reflected when we redeploy the flows (dots visible in Figure 4.6).

Figure 4.6 – Add the nodes required to create our first flow

The next step is to connect these nodes. To do that, just take your cursor to the gray dot on the inject
node and then drag the line that emerges when you click and hold the left mouse button to the debug
node’s gray dot. This will connect these nodes.

This is all for this flow as no additional setup is required for either node. Now, if you click the inject
node, nothing will happen. To use this flow, we need to deploy the updated flows. To deploy the flows,
all we need to do is click the Deploy button situated on the top-right side of the screen. Once that is
done, we are all set to test our first Node-RED flow!

Testing this flow is very easy. Just open the Debug tab from the control panel and then click the inject
node. Clicking the blue button on the inject node will trigger the flow and the timestamp value will
be printed on the Debug tab (Figure 4.7):

Figure 4.7 – First flow’s output demonstration

Node-RED on Raspberry Pi96

This was the basic version of this flow. There are a few improvements that can be applied to this flow.
For instance, instead of having to manually click the inject node to trigger the flow every time, you
can automate this process so that the flow is automatically triggered after a certain interval. Moreover,
instead of printing the timestamp on the Debug tab, we can print anything we want. So, we will modify
this flow so that it automatically prints the infamous Hello World! string after every 10 seconds. All
we need to do is make some changes in the inject node.

To do that, just double-click on the inject node, which will open an edit window. There are several
customizations possible that differ from node to node. For our case, we will be making two changes:

1.	 First, we will change the return value from timestamp to a custom string of our choice.

2.	 Second, we will set up an interval of 10 seconds to trigger this node.

Refer to Figure 4.8 to make these changes:

Figure 4.8 – Changes made in the inject node

Once these changes have been made, just redeploy the whole flow and see the new flow in action.
Now, you will see the Hello World! string printed in the Debug tab every 10 seconds (Figure 4.9):

Node-RED first-time installation, setup, and demonstration 97

Figure 4.9 – Output of the updated flow

In the next section, we will create a flow to control the Raspberry Pi GPIO.

Controlling an LED connected to the Raspberry Pi through Node-RED

In this section, we will create a flow that will let us control a Raspberry Pi GPIO pin using the flow’s
UI. First, drag the following nodes onto the workspace window:

•	 Two inject nodes

•	 An rpi – gpio out node (found in the Pi-specific nodes section):

Figure 4.10 – Node-RED components for this flow

Node-RED on Raspberry Pi98

Next, we have to configure the nodes according to our requirements. These configurations include
the following:

•	 Renaming the inject nodes and sending a Boolean True or False value according to the
name given to it.

•	 Specifying which RPi GPIO we would like to configure with the GPIO node. In this case, we
will choose GPIO18 (Pin 12).

Please refer to Figure 4.11 for the necessary configurations:

Figure 4.11 – Node configurations for each component of the flow

These were the required software configurations. In terms of hardware setup, you will need the
following components:

•	 A 100–330-ohm resistor

•	 An LED

•	 A breadboard

Now, connect the hardware circuit using Figure 4.12 as a reference.

Node-RED MQTT components and dashboard setup 99

Figure 4.12 – Raspberry Pi LED connection schematic diagram

This completes all the required setup procedures. Now, just deploy the flow from the Node-RED home
screen and you will now have the functionality to control the LED via Node-RED.

This is just a basic demonstration of Node-RED. Using different extensions and customizations,
creating even complex projects is straightforward compared with the conventional coding alternatives
that require programming knowledge. But it is important to note that for complex applications, you
may need to write some custom functions in Node-RED that need to be coded in the JavaScript
programming language (as Node-RED is based on Node.js). But for simple to intermediate-level
projects, creating flows and customizing nodes is enough.

The next section will introduce you to the Node-RED dashboard. It is an interactive dashboard creation
tool that will let you use different widgets such as switches, sliders, and gauges to create an interactive
UI for the control and monitoring of your projects.

Node-RED MQTT components and dashboard setup
This section will start with an introduction to the dashboard and MQTT functionalities of Node-RED.
That will be followed by a simple project in which we will connect an LED to a NodeMCU development
board and demonstrate control capabilities through the Node-RED dashboard. So, let’s get started.

Node-RED on Raspberry Pi100

Node-RED MQTT nodes

The MQTT communication protocol was discussed in detail in the previous chapters. In this section,
we will be seeing how can we use MQTT nodes in Node-RED. In Node-RED, you can find two MQTT
nodes in the network section:

•	 The mqtt in node

•	 The mqtt out node

Please refer to Figure 4.13 to see where you would find the MQTT nodes in the node palette:

Figure 4.13 – MQTT nodes under the network section in the node palette

As the names suggest, the mqtt in node is to capture data coming from various topics (basically for
monitoring) and the mqtt out node is to publish data on a particular topic (for control).

The following parameters are required and need to be configured for both nodes:

•	 Server: The IP of the MQTT server we need to use. In our case, we will be using the local
MQTT server (localhost) hosted on our Raspberry Pi.

•	 Topic: The topic to which the node has to subscribe (to fetch data) or publish.

•	 QoS: This was discussed in detail in the last chapter.

Please take a look at Figure 4.14, which shows the edit options for both the in and out nodes:

Node-RED MQTT components and dashboard setup 101

Figure 4.14 – MQTT in and out nodes’ required configurations (marked)

There are several customizations when we want to add a new MQTT server. The main requirement
is the server’s IP address and the rest is optional (note that by default, the port is 1883, but this is
different if we use SSL). The customizations include the MQTT version, client ID (autogenerated if
kept blank), username and password in the Security tab, and some messages that are triggered when
a client connects or disconnects from a topic.

Please refer to Figure 4.15 to see the configurations available when adding a new MQTT broker for
Node-RED MQTT nodes:

Figure 4.15 – Customizations available when adding a new MQTT broker

Node-RED on Raspberry Pi102

Next, we will cover the Node-RED dashboard installation, setup, and explanation. Please note that this
is why we are using Node-RED, and hence, this is one of the most important sections of this chapter.

Node-RED dashboard

The Node-RED Dashboard is a module that provides a set of nodes in Node-RED to quickly create a
live data dashboard. To learn more about the Node-RED Dashboard, you can check the following links:

Node-RED Dashboard site: http://flows.nodered.org/node/node-red-dashboard

GitHub: https://github.com/node-red/node-red-dashboard

There are two ways in which you can install this module. The first and the most straightforward way is
to install it through the Node-RED UI. To do that, just go to options (the three horizontal bars on the
top-right portion of the screen), then select Manage palette, and search node-red-dashboard
in the Install section. You will see several options in the search results. Just click install for the first
module (Figure 4.16). You have successfully installed the Node-RED Dashboard on your Pi:

Figure 4.16 – node-red dashboard installation from the Node-RED UI

http://flows.nodered.org/node/node-red-dashboard

https://github.com/node-red/node-red-dashboard

Node-RED MQTT components and dashboard setup 103

Alternatively, you can install node-red-dashboard through the terminal using Node package
manager (npm). For that, just type in the following commands in the same order:

node-red-stop

cd ~/.node-red

npm install node-red-dashboard

The first command will stop Node-RED if it is already running. After that, we need to move to the
node-red directory to install any additional modules through npm, which is exactly what the
second command does. After that, just install node-red-dashboard using the third command.

This will create a node-red-dashboard folder in the node-red directory where all the files
related to the dashboard will be stored. To open the Node-RED UI, type your Raspberry Pi IP address
in a web browser followed by 1880/ui, as shown next:

http://<YourPi'sIPAddress>:1880/ui.

There will be two new additions on the Node-RED home screen. First, new nodes will be added to
the node palette under the dashboard category (Figure 4.17):

Figure 4.17 – dashboard nodes in the node palette

Node-RED on Raspberry Pi104

Moreover, there will be a new dashboard section in the control panel. This section will let us manage
the layout, theme, or site of our dashboard. We will discuss these in detail now:

When you open the dashboard pane on the control panel from the tabs located on the left side of the
screen, you will see the options shown in Figure 4.18:

Figure 4.18 – The dashboard pane

By default, we are in the Layout sub-tab. Here, we can create different dashboard tabs and add all
the UI elements to the desired tab according to our requirements. To add a new tab, just click the +
tab button and a new tab will appear in the Tabs & Links window. Now, whenever you add a new
UI node, you can select which tab (or group, to be more specific) it belongs to. You can even see the
same element in this window and we can drag it from one tab to another if required. Different tabs
can be accessed through the menu bar (the three-bar icon) on the dashboard (we’ve created two
dummy tabs for the demo).

To demonstrate the dashboard in action, I have added two switch nodes from the Dashboard section
and added them to two different groups, each in a separate tab. Please refer to Figure 4.19 to see how
you will be able to access different tabs when you open the dashboard:

Figure 4.19 – How to switch tabs in the Node-RED dashboard

Mini project 2 – Controlling a NodeMCU LED from the Node-RED dashboard 105

There are several other customizations in nodes, such as their size and other application-specific
information. For example, consider a Gauge widget, which can be used to graphically display any
incoming value. We can select the heading of this widget, the range, the value format, and even the
unit that will be shown on the dashboard. Hence, we have highly customizable widgets, which help
us build an interactive dashboard.

This concludes this section. In the next section, we will be utilizing all the knowledge we have learned
so far to create a mini-project where we will be controlling the onboard NodeMCU LED using a switch
widget on our Node-RED dashboard.

Mini project 2 – Controlling a NodeMCU LED from the
Node-RED dashboard
The project’s aim is to control the onboard NodeMCU LED using a switch widget on our Node-
RED dashboard, where we will be using MQTT as our primary communication protocol. We will
proceed step by step, covering the hardware requirements, software setup, code explanation, and
project demonstration.

Let's first start with the hardware requirements for this project.

Hardware requirements

This is a very simple project so the hardware requirements are quite straightforward:

•	 A NodeMCU development board

•	 A Raspberry Pi

Information about both these devices has been covered in detail in the previous chapters. In the later
sections, device-specific instructions that need to be followed will be listed.

Software requirements

As for the software requirements, only the Raspberry Pi needs to be considered as the NodeMCU
code explanation will come later.

The following should have been installed, set up, and configured in the Pi:

•	 Raspberry Pi OS setup (refer to Chapter 1, Introduction to Raspberry Pi and MQTT)

•	 Mosquito MQTT package installation and setup (refer to Chapter 1, Introduction to Raspberry
Pi and MQTT)

•	 Node-RED installation and configuration (covered in the earlier sections of this chapter)

Node-RED on Raspberry Pi106

Please note that all these steps have already been performed if you have been following the book. If
any of these steps are left to do, please refer to the chapters mentioned previously to complete them.

Hence, we are good with the software setup too. Next, we will move on to the NodeMCU- and
Raspberry Pi-specific setups.

NodeMCU setup

As far as NodeMCU is concerned, no external sensors or actuators need to be connected for this
project. Hence, we just need to write and upload the code specific to this project.

We will now start with the code walk-through and explanation.

Code explanation

The code for this project is pretty straightforward. This code does the following:

•	 Connects to an MQTT server (the Pi’s server in this case)

•	 Subscribes to the project2/led topic

•	 Changes the on-chip LED state according to the value received on the preceding topic

•	 Reconnects to the MQTT server if it disconnects

Now, we will cover the code in parts for better understanding. If you notice, the code is quite similar
to the code written in Chapter 2, MQTT in Detail. The reason for that is the MQTT connection from
the NodeMCU side remains the same. We are changing how we interact with our node (we used the
terminal in Mini-Project 1 and now we will be using the Node-RED Dashboard UI). So, let's start
with the code explanation.

Importing the required libraries:

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

The first two lines of the code import the required libraries. The ESP8266WiFi library is used to
access Wi-Fi networks, which grants the board internet access. The Pubsubclient library is the
MQTT client library, which helps us run an MQTT client on the development board:

Important credentials and variable declarations:

const char* ssid = "wifi_ssid";

const char* password = "wifi_password";

const char* mqtt_server = "pi_ip_address";

Mini project 2 – Controlling a NodeMCU LED from the Node-RED dashboard 107

WiFiClient espClient;

PubSubClient client(espClient);

unsigned long lastMsg = 0;

#define MSG_BUFFER_SIZE  (50)

char msg[MSG_BUFFER_SIZE];

int value = 0;

The next three lines are constant variable initializations for the Wi-Fi name, password, and the MQTT
(pi) IP address. The Raspberry Pi’s IP address is the IP address of the broker.

The next few lines deal with the various object and variable initializations required later in our code:

Wi-Fi setup function:

void setup_wifi()

{

  delay(10);

  

  Serial.println();

  Serial.print("Connecting to ");

  Serial.println(ssid);

  WiFi.mode(WIFI_STA);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED)

  {

    delay(500);

    Serial.print(".");

  }

  randomSeed(micros());

  Serial.println("");

  Serial.println("WiFi connected");

  Serial.println("IP address: ");

  Serial.println(WiFi.localIP());

}

The setup_wifi function is used to connect to the Wi-Fi network whose credentials we provided
as SSID and password constant variables.

Node-RED on Raspberry Pi108

Callback function for handling MQTT subscribed topics:

void callback(char* topic, byte* payload, unsigned int length)

{

  Serial.print("Message arrived [");

  Serial.print(topic);

  Serial.print("] ");

  for (int i = 0; i < length; i++) {

    Serial.print((char)payload[i]);

  }

  Serial.println();

// LED On Off Logic

  if ((char)payload[0] == '1') {

    digitalWrite(BUILTIN_LED, LOW);       

  }

 else

 {

    digitalWrite(BUILTIN_LED, HIGH);  

 }

}

The callback function is used to print out the data received on the subscribed MQTT channels.
In this case, we are subscribed to the project2/led topic, to which we will be sending data to
control the onboard LED. We have programmed the function such that if it receives '1' on the topic,
the LED turns on, and if it receives zero on the topic, it turns off:

MQTT reconnect function:

void reconnect() {

  // Loop until we're reconnected

  while (!client.connected()) {

    Serial.print("Attempting MQTT connection...");

    // Create a random client ID

    String clientId = "ESP8266Client-";

    clientId += String(random(0xffff), HEX);

    // Attempt to connect

    if (client.connect(clientId.c_str())) {

      Serial.println("connected");

      // resubscribe to the specific topic

Mini project 2 – Controlling a NodeMCU LED from the Node-RED dashboard 109

      client.subscribe("project2/led");

    } else {

      Serial.print("failed, rc=");

      Serial.print(client.state());

      Serial.println(" try again in 5 seconds");

      // Wait 5 seconds before retrying

      delay(5000);

    }

  }

}

The reconnect function is used to reconnect to the MQTT broker if there is a problem and the board
disconnects. The reasons for this may be internet connection failure, duplicate client IDs, and so on.

This function tries to connect to the MQTT broker every 5 seconds.

Arduino code’s setup function:

void setup() {

  // Initialize the BUILTIN_LED pin as an output

  pinMode(BUILTIN_LED, OUTPUT);   

  // Turn off the LED initially.  

  digitalWrite(BUILTIN_LED, HIGH);  

  // Serial port opened

  Serial.begin(115200);      

  // Call the setup_wifi function

  setup_wifi();  

  // Connect to the MQTT Server

  client.setServer(mqtt_server, 1883);

  // Define the Callback Function   

  client.setCallback(callback);

  // Subscribe to this topic  

  client.subscribe("project2/led");      

}

This is the Arduino setup function. We set the built-in LED pin mode to output. Then, we initiate a
serial connection with a baud rate of 115200. Next, we call the setup_wifi function to connect
to the Wi-Fi network.

Node-RED on Raspberry Pi110

Next, we connect to the MQTT server, which in our case is the Raspberry Pi, and then we specify the
callback function using the setCallback function of the Pubsubclient library:

Arduino Code’s Loop Function

void loop() {

  if (!client.connected()) {

    reconnect();   

  }

  client.loop();

}

The final loop function is the one that runs indefinitely. First, we check whether the MQTT client
is disconnected. If so, we run the reconnect function.

In addition to this, we resubscribe to the project2/led topic so if we send a 0 or 1, we can control
the LED on NodeMCU.

This completes the NodeMCU part of the project. Next, we will cover the Raspberry Pi setup.

Raspberry Pi setup

For this project, it is assumed that you have already set up your Raspberry Pi. That includes the
installation of OS, the MQTT package, and also Node-RED (with the node-red-dashboard
module installed).

We have to do the following tasks for the Pi:

1.	 Create a dashboard layout (this includes the creation of a tab and group) for the project.

2.	 Create the project flow and deploy these changes.

So, let’s get started with the dashboard layout setup.

Dashboard layout setup

In this section, we will be creating a simple dashboard for this project on Node-RED. It will consist
of a single tab with a switch widget, which will be used to control the NodeMCU onboard LED. To
do this, just follow the step-by-step tutorial listed next:

1.	 Open Node-RED on your browser of choice. Then navigate and open the dashboard section
from the control panel. The control panel is situated on the right side of the screen. Take a look
at Figure 4.20 for reference:

Mini project 2 – Controlling a NodeMCU LED from the Node-RED dashboard 111

Figure 4.20 – The dashboard section in the Node-RED control panel

2.	 Next, click on the + tab button and then click on the edit button, which will appear when you
hover your mouse pointer over the tab. In the edit window, rename the tab to what you want
(I have simply named it Project 2) and then click the Update button. Refer to Figure 4.21 for
reference:

Figure 4.21 – Creating a new tab and renaming it

Node-RED on Raspberry Pi112

3.	 Next, we need to create a group in the tab as all the widgets we use in our flow need to be
assigned to a particular group. We will create a new group using the + group option, which
appears when you hover over the tab.

4.	 Just clicking it will create a new group, which needs to be renamed as well, using the same
process as for the tab. I have named the group NodeMCU. See Figure 4.22 for reference:

Figure 4.22 – Adding a new group to the tab and renaming it

This completes the dashboard layout setup. We only require a single group for this project as we will
be adding only a single widget.

Next, we will create the flow for this project.

Project flow

We will be creating a simple flow that performs the following task:

It will create a switch widget on your dashboard, which will send 0 and 1 on and off positions
respectively, and this message will then be published on the project2/led topic as payload.

Let's start creating the flow. Just follow these steps:

1.	 Drag two nodes from the node palette. The node names are as follows:

	� The switch node under the dashboard section

	� The mqtt out node under the network section

Mini project 2 – Controlling a NodeMCU LED from the Node-RED dashboard 113

Please refer to Figure 4.23 for reference:

Figure 4.23 – Drag and drop the project flow components onto the workspace

2.	 Connect the switch node to the mqtt out node by dragging a wire across both. We will now
have to configure the nodes for our project. Please note that the following customizations for
each of the two nodes will be required to complete the flow:

	� The switch node will require the Group, Label, On Payload, Off Payload, and Name sections
to be changed.

	� The mqtt out node will require the Server and Name to be set up.

Node-RED on Raspberry Pi114

Please refer to Figure 4.24 to complete the listed customizations and, hence, the flow for this
particular project:

Figure 4.24 – Project flow setup for mini project 2

This completes the project flow setup for this project. Just deploy this flow by clicking the Deploy
button situated on the top-right side of the screen. Now, to view our dashboard, just open the Node-
RED dashboard using the link mentioned earlier in the chapter. Our dashboard will only have a single
tab, and on it, we will find a single switch situated in the middle of the screen. Refer to Figure 4.25 to
see what our dashboard will look like:

Figure 4.25 – Mini Project 2 Node-RED dashboard

Summary 115

You will now be able to control your NodeMCU’s on-chip LED through the switch on the
dashboard. This is just a small demonstration of what this platform can do. This is the end of this
chapter’s last section.

Summary
This chapter mainly focused on a single piece of software that we will be using a lot throughout this
book – Node-RED. We started with an introduction to this software, followed by a tutorial on how
to install/update it to the latest version on our Raspberry Pi. After that, we had a crash course on the
basics of how to use it to its fullest extent. Next, we covered the MQTT components of Node-RED
(the nodes specifically) and installed and got acquainted with the Node-RED dashboard. Finally, we
wrapped up by creating a mini-project wherein we controlled the onboard NodeMCU board wirelessly
through a simple dashboard hosted on the Raspberry Pi.

Now that we have covered all the building blocks for this book (Raspberry Pi, MQTT, and Node-
RED), in the next chapter, we will be creating our first major project: a weather station based on
NodeMCU. This project will have a far more complex and interactive dashboard and it will show us
just how powerful and easy to use Node-RED is.

Part 2: Practical
Implementation –

Building Two
Full-Scale Projects

Now that we possess all the fundamental knowledge about Raspberry Pi, MQTT, ESP development
boards, and Node-RED, it is time to implement this knowledge by developing two full-scale projects!

This part comprises of the following chapters:

•	 Chapter 5, Major Project 1: IoT Weather Station

•	 Chapter 6, Major Project 2: Smart Home Control Relay System

5
Major Project 1:

IoT Weather Station

Now that we are more knowledgeable about the topics discussed in the previous chapters, we will be
making our first major project: an IoT weather station. This chapter gives step-by-step instructions
on how to build this. The instructions will be divided into the following sections:

•	 Hardware requirements

•	 Code explanation

•	 Raspberry Pi setup

The aim of this project is to build a fully functional weather station (based on the popular NodeMCU
development board) whose readings can be monitored on a Node-RED dashboard in real time, which
will be hosted on the Raspberry Pi. Note that we will be using MQTT as the communication protocol
between the NodeMCU and the Raspberry Pi, whose host is also the Pi (hence, the dashboard will be
only available on the local network). The final breadboard circuit is shown in Figure 5.1.

Figure 5.1 – Your very own NodeMCU-based weather station!

Major Project 1: IoT Weather Station120

We will now look at the hardware requirements before moving on to building the weather station.

Hardware requirements
To build our weather station, we will require a development board that fetches the sensor values and
sends them to a particular destination, Node-RED in our case, through a communication protocol. For
the development board, we will utilize the NodeMCU development board for this project primarily
due to its relevant features and cost-effectiveness. Please refer to the following figure to find the
components required to build our weather station (Figure 5.2).

Figure 5.2 – The required hardware for the project

Next, we need to choose appropriate sensors so that the readings we get are both reliable and accurate.
Hence, we choose the following three sensors for our project:

•	 A DHT11 temperature and humidity sensor

•	 A BMP280 pressure sensor

•	 A CCS811 air quality sensor

We will also need something that we can use to interface all the sensors to the development board.
For this, we will use a breadboard and some connecting wires. Now, we will briefly discuss each
component that we will be using in this project.

Hardware requirements 121

The NodeMCU development board

The NodeMCU is an immensely popular development board based on the ESP8266 chip. The most
important feature of this board is its ability to connect and use Wi-Fi for communication. Besides
this, it has a lot of GPIO pins and supports I2C, SPI, and PWM. Therefore, its features paired with its
cheap price make it the perfect choice for numerous IoT projects.

A NodeMCU development board is shown in Figure 5.3.

Figure 5.3 – A NodeMCU development board

The general features of this board are as follows:

•	 It is easy to use

•	 It can be configured to act as an access point or station

•	 It can be used for event-driven API applications

•	 No external antenna is required for Wi-Fi connection (internal antenna provided)

•	 It contains 13 GPIO pins, 10 PWM channels, I2C, SPI, ADC, UART, and 1-Wire

•	 It can be programmed using the popular open source IDE platform, Arduino IDE

The DHT11 temperature and humidity sensor

The DHT11 sensor can be used to measure temperature and humidity values and communicate them
serially over a single wire. This is a fairly basic sensor with intermediate accuracy. The value range
for each is as follows:

•	 Temperature: 0 to 50°C

•	 Humidity: relative humidity given as a percentage (20 to 90%)

Major Project 1: IoT Weather Station122

Have a look at what the commercially available DHT11 sensor looks like in Figure 5.4.

Figure 5.4 – A DHT11 temperature and humidity sensor (three-pin)

The sensor can have three or four pins. They are VCC, GND, NC (this pin is not used and hence is not
included in the three-pin format), and Signal. The sensor can be powered by 3.3 V or 5 V. We need
to connect the sensor GND (Ground) to the development board GND and the Signal pin needs to
be connected to a digital pin.

The BMP280 temperature and pressure sensor

The BMP280 is a sensor that can be used to measure barometric pressure and altitude readings. In
addition to this, it also gives out temperature readings, and this data is accessible via an SPI or I2C
communication protocol.

Figure 5.5 shows what a commercially available BMP280 sensor looks like.

Figure 5.5 – A BMP280 temperature and pressure sensor

Hardware requirements 123

We will only use the pressure and altitude values for this project, and we will use the Inter-Integrated
Circuit (I2C) communication protocol. The characteristics of this sensor are listed here:

•	 The sensor’s operating voltage range is 1.71 to 3.6 volts.

•	 The sensor’s operating temperature range is between -40 and 85 degrees Celsius but it provides
the most accurate measurements between 0 and 65 degrees.

•	 The sensor has a peak current threshold of 1.12 mA.

•	 The operating pressure ranges between 300 hPa and 1100 hPa.

The CCS811 air quality sensor

The CCS811 is a low-cost air quality sensor that has the capability of measuring the volatile organic
compounds (VOCs) in an indoor environment using a metal oxide gas sensor. Additionally, it also
has the capability to output the equivalent CO2 (eCO2) values.

In terms of the hardware itself, it supports both an analog-to-digital converter (ADC) and I2C
interface. Moreover, it supports a number of drive modes, which help us configure the interval between
two consecutive readings. This is a very important feature, as it helps us optimize the overall power
consumption during active measurement cycles, giving the device extended battery life, especially
for portable devices.

Please refer to the following figure (Figure 5.6) to see what the actual sensor looks like.

Figure 5.6 – A CCS811 air quality sensor

Major Project 1: IoT Weather Station124

The CCS811 has five modes of operation:

•	 Mode 0: Idle, low-current mode

•	 Mode 1: Constant power mode, with IAQ measurement every second

•	 Mode 2: Pulse heating mode, with IAQ measurement every 10 seconds

•	 Mode 3: Low-power pulse heating mode, with IAQ measurement every 60 seconds

•	 Mode 4: Constant-power mode, with sensor measurement every 250 milliseconds

These are all the required components. The next section will cover how to interface them.

Sensor interfacing

Now that we have all the required components, we just need to connect everything together. For that,
we will be using a breadboard and connecting wires. Please note that the CCS811 and BMP280 sensors
will be connected to the NodeMCU board via I2C and that the DHT11 sensor will be connected to
the digital pin for sensor value transmission. A schematic diagram that represents this is shown in
Figure 5.7.

Figure 5.7 – The hardware sensor interfacing for Major Project 1

The circuit schematic for this project is pretty straightforward. The NodeMCU’s D1 and D2 pins are
multiplexed and can also be used as I2C pins (SDA and SCL). The DHT11 sensor is connected to
digital pin D4.

After the above connections have been made, we are ready to move on to the next step of our project,
which is writing the code for the weather station and flashing it into your NodeMCU development board.

Code explanation 125

Code explanation
The hardware has been set up and now we need to write and flash the code for it. The code will do
the following:

1.	 Configure the pins for connecting the sensors.

2.	 Connect to the MQTT broker (the Pi’s broker in this case).

3.	 Subscribe to the relevant MQTT topics.

4.	 Get the sensor values and publish them to their particular topics. This will reflect on the
dashboard in real time.

5.	 Reconnect to the MQTT server if it disconnects.

The last two steps will run indefinitely. Now, we will look at the code in chunks, and finally, we will
look at the whole code and the relevant GitHub link. So, let’s get started with the code explanation.
As the code is a little complicated, the code has been divided into important subsections for clarity
and better understanding.

To import the required libraries, we need the following:

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

#include <Wire.h>

#include <Adafruit_BMP280.h>

#include "SparkFunCCS811.h"

#include "DHT.h"

First, we will need to import all the required libraries. That includes specific libraries for the BMP280,
CCS811, and DHT sensors. These are specific Arduino libraries written to help you easily get readings
from these sensors. To know more about them, just follow the links below to the GitHub repository
for each library:

•	 Adafruit_BMP280 – https://github.com/adafruit/Adafruit_BMP280_Library

•	 CCS811 – https://github.com/sparkfun/SparkFun_CCS811_Arduino_Library

•	 DHT11 – http://www.github.com/markruys/arduino-DHT

Equally, the Wire library corresponds to I2C connections, the ESP8266WiFi library enables the
Wi-Fi capability, and the Pubsubclient library connects to the MQTT brokers.

https://github.com/adafruit/Adafruit_BMP280_Library
https://github.com/sparkfun/SparkFun_CCS811_Arduino_Library
http://www.github.com/markruys/arduino-DHT

Major Project 1: IoT Weather Station126

To define constants, variables, and objects, we need the following:

// Constants

#define CCS811_ADDR 0x5B

// Variables

const char* ssid = "wifi_ssid";

const char* password = "wifi_password";

const char* mqtt_server = "pi_ip_address";

// Objects

WiFiClient espClient;

PubSubClient client(espClient);

Adafruit_BMP280 bmp; // I2C

CCS811 mySensor(CCS811_ADDR);

DHT dht;

Next, we have to define the constants, variables, and objects for the project. These include the Wi-Fi and
MQTT credentials, objects for various sensor library classes, and Wi-Fi and MQTT client initialization.

For the Wi-Fi setup function, see the following:

// Custom function for Wifi connection establishment

void setup_wifi()

{

  delay(10);

  Serial.println();

  Serial.print("Connecting to ");

  Serial.println(ssid);

  WiFi.mode(WIFI_STA);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED)

  {

    delay(500);

    Serial.print(".");

  }

  randomSeed(micros());

  Serial.println("");

Code explanation 127

  Serial.println("WiFi connected");

  Serial.println("IP address: ");

  Serial.println(WiFi.localIP());

}

The setup_wifi function is used to connect to the Wi-Fi network, the credentials for which we
provided as ssid and password constant variables.

For the MQTT Callback Function, see the following:

// Callback Function

void callback(char* topic, byte* payload, unsigned int length)

{

  Serial.print("Message arrived [");

  Serial.print(topic);

  Serial.print("] ");

  for (int i = 0; i < length; i++) {

    Serial.print((char)payload[i]);

  }

  Serial.println();

}

The callback function is used to print the data received on the subscribed MQTT channels.
Additionally, we can write code that performs specified actions based on the messages received on
particular topics.

As this project mostly deals with capturing the sensor data and transmitting it (that is, publishing
it) to our dashboard, there will be no additional logic included in the callback function. We will
cover this concept in detail in Chapter 6, Major Project 2: Smart Home Control Relay System, where
we will create an ESP32-based smart-switching system, where we will control the switches wirelessly
through a Node-RED dashboard. There, we will be subscribing to specific topics and controlling the
state of a relay based on the message we receive on that particular topic.

For the MQTT reconnect function, see the following:

// Function to reconnect to MQTT server

void reconnect() {

  // Loop until we're reconnected

  while (!client.connected()) {

    Serial.print("Attempting MQTT connection...");

    // Create a random client ID

Major Project 1: IoT Weather Station128

    String clientId = "ESP8266Client-";

    clientId += String(random(0xffff), HEX);

    // Attempt to connect

    if (client.connect(clientId.c_str()))

    {

     Serial.println("connected");      

// resubscribe to the specific topic

      client.subscribe("IoTWeatherStation/temperature/celcius");

      client.subscribe("IoTWeatherStation/temperature/
farenhiet");

      client.subscribe("IoTWeatherStation/humidity");

      client.subscribe("IoTWeatherStation/pressure");

      client.subscribe("IoTWeatherStation/altitude");

      client.subscribe("IoTWeatherStation/TVOC");

      client.subscribe("IoTWeatherStation/eCO2");

      client.subscribe("IoTWeatherStation/hic");

    }

    else {

      Serial.print("failed, rc=");

      Serial.print(client.state());

      Serial.println(" try again in 5 seconds");

      // Wait 5 seconds before retrying

      delay(5000);

    }

  }

}

The MQTT reconnect function is in place to establish a connection to the broker again, in case
there are issues from the NodeMCU side. These issues can be anything from internet failure to
hardware problems.

This function tries to reconnect to the broker every five seconds and once the connection has been
re-established, it resubscribes to all the important MQTT topics.

For computing the heat index, which is optional, see the following:

float computeHeatIndex(float temperature, float
percentHumidity) {

  float hi;

  temperature = 1.8*temperature+32; //convertion to *F

Code explanation 129

  hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2)
+ (percentHumidity * 0.094));

  if (hi > 79) {

    hi = -42.379 +

             2.04901523 * temperature +

            10.14333127 * percentHumidity +

            -0.22475541 * temperature*percentHumidity +

            -0.00683783 * pow(temperature, 2) +

            -0.05481717 * pow(percentHumidity, 2) +

             0.00122874 * pow(temperature, 2) * percentHumidity
+

             0.00085282 * temperature*pow(percentHumidity, 2) +
             -0.00000199 * pow(temperature, 2) *
             pow(percentHumidity, 2);

    if((percentHumidity < 13) && (temperature >= 80.0) &&
(temperature <= 112.0))

      hi -= ((13.0 - percentHumidity) * 0.25) * sqrt((17.0 -
abs(temperature - 95.0)) * 0.05882);

    else if((percentHumidity > 85.0) && (temperature >= 80.0)
&& (temperature <= 87.0))

      hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 -
temperature) * 0.2);

  }

  hi = (hi-32)/1.8;

  return hi; //return Heat Index, in *C

}

The computeHeatIndex function is used to calculate the heat index value from the temperature
and humidity values. Please note that if you use the DHT library from Adafruit instead of the one
used here, this function is available in the library itself.

For the setup() function, see the following:

void setup()

{

  Serial.begin(115200);

  Wire.begin(); //Initialize I2C Hardware

Major Project 1: IoT Weather Station130

  dht.setup(D4);

  if (mySensor.begin() == false)

  {

    Serial.print("CCS811 error. Please check wiring.
Freezing...");

    while(1);

  }

  if (!bmp.begin(0x76)) {

    Serial.println(F("Could not find a valid BMP280 sensor,
check wiring or try a different address!"));

    while(1) { delay(10); }

  }

  // Default settings from datasheet

  bmp.setSampling(Adafruit_BMP280::MODE_NORMAL,     

                  Adafruit_BMP280::SAMPLING_X2,     

                  Adafruit_BMP280::SAMPLING_X16,    

                  Adafruit_BMP280::FILTER_X16,      

                  Adafruit_BMP280::STANDBY_MS_500);

                  

  setup_wifi();

  

  client.setServer(mqtt_server, 1883);

  client.setCallback(callback);

  client.subscribe("IoTWeatherStation/temperature/celcius");

  client.subscribe("IoTWeatherStation/temperature/farenhiet");

  client.subscribe("IoTWeatherStation/humidity");

  client.subscribe("IoTWeatherStation/pressure");

  client.subscribe("IoTWeatherStation/altitude");

  client.subscribe("IoTWeatherStation/TVOC");

  client.subscribe("IoTWeatherStation/eCO2");

  client.subscribe("IoTWeatherStation/hic");

}

Code explanation 131

The setup() function does the following:

•	 Opens a serial port connection with a baud rate of 115200

•	 Enables I2C connectivity with Wire.begin()

•	 Sets up the DHT sensor pin for the GPIO D4 on the NodeMCU

•	 Checks whether the BMP280 and CCS811 sensors are working properly

•	 Establishes the BMP280 sensor settings

•	 Connects to Wi-Fi using the setup_wifi function

•	 Connects to the MQTT broker and subscribes to all the necessary topics

To reconnect to the MQTT broker logic, see the following:

void loop()

{

  // Reconnect to MQTT Broker Logic

  if (!client.connected()) {

    reconnect();   

  }

This code block checks for any active MQTT connections and if it does not find one, it runs the
reconnect function.

For the Variable Initialization, see the following:

  //Variable Initialization

  float co2val;

  float tvocval;

  static char temperatureC[7];

  static char temperatureF[7];

  static char humid[7];

  static char co2[7];

  static char tvoc[7];

  static char pressure[7];

  static char altitude[7];

  static char hic[7];

Major Project 1: IoT Weather Station132

This code block initializes all the variables that will be used in this loop function.

For the Sensor Value Assignment, see the following:

  // Sensor Value Assignment

  if (mySensor.dataAvailable())

  {

    mySensor.readAlgorithmResults();

    co2val = mySensor.getCO2();

    tvocval = mySensor.getTVOC();

  }

  float temperature_C = bmp.readTemperature();

  float pressureval = bmp.readPressure();

  float altitudeval = bmp.readAltitude(1013.25);

  float humidity = dht.getHumidity();

  float hi = computeHeatIndex(temperature_C, humidity);

  float temperature_F = dht.toFahrenheit(dht.getTemperature());

  delay(2000);

Now that we have all the variables, we will read the sensor values using the functions provided by the
sensor libraries and store them in their respective variables.

To convert float values into string values, see the following:

// Convert Float values to String (in Character Array format)

  dtostrf(temperature_C, 6, 2, temperatureC);

  dtostrf(temperature_F, 6, 2, temperatureF);

  dtostrf(humidity, 6, 2, humid);

  dtostrf(co2val, 6, 2, co2);

  dtostrf(tvocval, 6, 2, tvoc);

  dtostrf(pressureval, 6, 2, pressure);

  dtostrf(altitudeval, 6, 2, altitude);

  dtostrf(hi, 6, 2, hic);  

To publish these values through MQTT topics, we will need to convert these float or decimal values
into string datatypes (specifically in char array format). Hence, we will use the dtostrf function
to accomplish this.

Code explanation 133

To publish the sensor data, see the following:

  // Publish the sensor data on their particular MQTT topics

  client.publish("IoTWeatherStation/temperature/celcius",
temperatureC);

  client.publish("IoTWeatherStation/temperature/farenhiet",
temperatureF);

  client.publish("IoTWeatherStation/humidity", humid);

  client.publish("IoTWeatherStation/pressure", pressure);

  client.publish("IoTWeatherStation/altitude", altitude);

  client.publish("IoTWeatherStation/TVOC", tvoc);

  client.publish("IoTWeatherStation/eCO2", co2);

  client.publish("IoTWeatherStation/hic", hic);

Next, we will publish all the sensor values to their specific MQTT topics. We will be using the
Pubsubclient library’s client.publish function to achieve this.

For printing the sensor values, see the following:

  // Printing the Sensor Values on Serial Monitor

  Serial.print
ln("--");

  Serial.print("Temperature: ");

  Serial.println(temperature_C);

  Serial.print("Humidity: ");

  Serial.println(humidity);

  Serial.print("Heat Index Value: ");

  Serial.println(hic);

  Serial.print("TVOC Value: ");

  Serial.println(tvocval);

  Serial.print("eCO2 Value: ");

  Serial.println(co2val);

  Serial.print("Pressure Value: ");

  Serial.println(pressureval);

  Serial.print("Altitude Value: ");

  Serial.println(altitudeval);

  Serial.print

Major Project 1: IoT Weather Station134

ln("--");

}

Finally, we will be printing the sensor values on the serial monitor so that when you see unusual sensor
values on your dashboard, you know that debugging is required.

This completes the code explanation section. Please note that the whole code for this project is available
in the GitHub repository created for this book. Please find the link for the same repository here:

https://github.com/PacktPublishing/Raspberry-Pi-and-MQTT-Essentials

In the next section, we will set up our Raspberry Pi for this particular project. This includes creating
a new dashboard for this project and setting up a Node-RED flow.

Raspberry Pi setup
The Raspberry Pi will be the host for the local MQTT broker in this project and also the dashboard
hosting device. The dashboard for this project will be created using Node-RED and the Node-RED
dashboard module, which will both be running on the Pi.

The previous chapters cover in detail how to set up and activate the MQTT broker (refer to Chapter 1,
Introduction to Raspberry Pi and MQTT, to refresh your memory). If you have followed the book by
chapter, you will already have the MQTT broker up and running on boot. The next step is to create
the Node-RED flow and the dashboard for our project. Please follow these step-by-step instructions,
which will walk you through the entire setup process.

Starting Node-RED

Run the node-red-start command on the Pi to start Node-RED at the following IP address:
<pi's ip address>:1880. Please refer to Figure 5.8 for reference.

https://github.com/PacktPublishing/Raspberry-Pi-and-MQTT-Essentials

Raspberry Pi setup 135

Figure 5.8 – Starting Node-RED on the Raspberry Pi through the terminal

We will now look at the setup of the dashboard.

Major Project 1: IoT Weather Station136

Project flow and dashboard setup

Next, on the home screen of Node-RED, create a new flow following the instructions provided in
Figure 5.9 to get a new, blank workspace.

Figure 5.9 – Creating a new flow in Node-RED

From the node palette, just drag the following nodes into the blank workspace. We will put them all
into the workspace first and then we will connect them together to create our flow, incorporating the
following nodes:

•	 Eight mqtt in nodes (from the network section)

•	 Two text nodes (from the dashboard section)

•	 Two chart nodes (from the dashboard section)

•	 Four gauge nodes (from the dashboard section)

After dragging these nodes into the workspace, there will be 16 nodes in the blank space in total.
Please have a look at Figure 5.10 for reference.

Raspberry Pi setup 137

Figure 5.10 – Nodes to be dragged into the workspace

Before moving on to the configuration of nodes, we need to create a layout for the dashboard. We
will choose a 2x4 layout, which simply means that there will be two rows on the dashboard with four
widgets in each row.

For this, we need to create a new tab for our project and then create four different groups (with groups
acting as columns). Each group will have two widgets.

Please follow Figure 5.11 to refer to what the layout and the dashboard layout setup will look like.

Figure 5.11 – The Node-RED dashboard layout for this project

Major Project 1: IoT Weather Station138

Now that we have all the nodes in our workspace, we will set up each node. That includes all the UI
nodes being set up according to the value they will handle and the MQTT In nodes being set up
for different topics. Please note that this tutorial assumes that you have already configured your Pi’s
MQTT broker in Node-RED. If you haven’t, please follow the Project part of Chapter 4, Node-RED
on Raspberry Pi.

Follow the preceding figure to group the UI nodes accordingly. For instance, in this project, we have
chosen to show the following values:

1.	 temperature (Celsius), temperature (Fahrenheit), humidity, and altitude as gauges

2.	 pressure and heat index values as text displays

3.	 TVOC and eCO2 values as charts

Hence, we will be grouping the nodes accordingly. There are eight mqtt in nodes and four gauge
nodes. Please follow the instructions to fill in all the required details. Please refer to Figure 5.12 to
understand how to set up the mqtt in nodes and the gauge nodes.

Figure 5.12 – mqtt in and gauge node configuration for this project

Raspberry Pi setup 139

Important note
Please bear in mind that the topic names and the node names mentioned in the preceding figure
have been chosen according to the code and personal preference. The code explanation contains
all the topic names used for this project. Please name the topics and nodes in a meaningful way
so that they are easy to understand.

Once the configuration for these nodes is complete, we will move on to the text nodes and the
chart nodes. The text node shows a single value with a label that changes in real time according
to the received data. On the other hand, the chart node shows a chart (in our case, a line chart)
where the x-axis is the time axis, and the y-axis is the sensor value. We will display the pressure and
heat index values in this format.

For this project, we will choose to display all the values within a two-minute window. As for which
values to use this widget for, we have chosen the air quality sensor values (TVOC and eCO2). Please
refer to Figure 5.13 to complete the configuration for the text nodes and the chart nodes.

Figure 5.13 – Text and chart node configuration

Major Project 1: IoT Weather Station140

We will also increase the font of the label. To increase the font, type Label_
name.

This completes the configuration of all our nodes for the flow. The next step is to connect all the
nodes to complete the flow. We will have to connect each mqtt in component to its corresponding
dashboard component (refer to Figure 5.12) so that whatever incoming data arrives on a particular
MQTT topic will be reflected on our dashboard in real time.

Please refer to Figure 5.14 for assistance on how to connect the project flow.

Figure 5.14 – The final Major Project 1 flow

The flow and dashboard setup is complete. Now, the only thing required is to deploy this flow. To do
that, click the Deploy button in the top-right corner of the screen. If everything has been carried out
as instructed, you will see that all your mqtt nodes have connected to the broker (indicated by the
green dots).

Raspberry Pi setup 141

Now, let us see how our project dashboard looks. For this, please power up the weather station by
connecting the NodeMCU to a power source. Then open the Node-RED dashboard by typing the
following IP address in your browser tab:

<--Raspberry Pi's IP Address-->:1880/ui

If you have multiple tabs, the first tab will be opened by default. Just click the menu icon at the top
left and switch to the IoT Weather Station tab. If all the setup has been followed according to the
mentioned steps, your dashboard will look similar to that shown in Figure 5.15.

Figure 5.15 – The Major Project 1 Dashboard!

This marks the end of this section. In the next section, we will add some additional functionalities
to our project. We will enable a simplified alert mechanism, which will send an email alert to a user
when a sensor reading crosses a certain threshold value.

Additional functionality – email alerts

Now that we have the dashboard ready, we will add an additional feature to our project. We will be
creating a simple email alert mechanism using Node-RED, which sends the user an alert whenever a
particular defined event is triggered.

For instance, if we have set up an event that is triggered when the temperature of a room increases to
35 degrees Celsius, the system will automatically send an email alert to any email address of our choice.

Major Project 1: IoT Weather Station142

To add the email feature, we will be using the email package of Node-RED. So, let’s get started. Just
follow the steps given below to implement this feature:

1.	 Go to Manage palette within the options menu, which you can open by clicking on the top-right
icon on the home page. Please have a look at Figure 5.16 for reference.

Figure 5.16 – Opening the Manage palette window in Node-RED

2.	 Search for the email package by typing email in the search box and install the node-red-
node-email package (it should be at the top of the list of available packages). Please have a
look at Figure 5.17 for reference.

Figure 5.17 – Installing the Node-RED email package

Raspberry Pi setup 143

3.	 Now, you can see the email-related blocks in the social section of the node manager. Please
take a look at the following figure.

Figure 5.18 – The additional social section after installing the email package

4.	 Now, we are ready to create a new subflow that will enable us to send email alerts. Our alert
system will work as follows: if the temperature goes above a threshold value, an email alert
is generated saying that the alarm was triggered, and after it falls within the acceptable range
again, another email saying that the alarm has been turned off is sent to the given email ID.

For this functionality, we require the following nodes:

	� Two function nodes

	� One email node (the connection dot on the left side indicates an output node)

	� One debug node for debugging purposes

Major Project 1: IoT Weather Station144

Once you drag these nodes into the workspace, it should look something like the
following figure.

Figure 5.19 – The workspace with the nodes required to create the alert system

5.	 Next, we will need an email account that the email alerts will be sent to. Please note that one
of the following conditions needs to be met if you are to use a Gmail account, with links to
perform each of the given conditions:

	� Enable an application password (https://support.google.com/mail/
answer/185833?hl=en).

	� Enable less secure access via your Google Account settings (https://support.google.
com/accounts/answer/6010255?hl=en).

Once this is done, we are ready to finally set up our flow.

6.	 We will be using two function nodes, one of which will be used to set up the logic and one of
which will be used to create the actual body of the message. Please refer to the following code
for each of the functions.

https://support.google.com/mail/answer/185833?hl=en
https://support.google.com/mail/answer/185833?hl=en
https://support.google.com/accounts/answer/6010255?hl=en
https://support.google.com/accounts/answer/6010255?hl=en

Raspberry Pi setup 145

To alert the logic function, see the following:

var temperature=msg.payload;

var alert_flag=context.get("alert_flag");

if(typeof alert_flag=="undefined")

alert_flag=false;

if (temperature>35 && !alert_flag)

{

    alert_flag=true;

    msg.alert=1;

    context.set("alert_flag",alert_flag);

    return msg;

}

if (temperature<=35 && alert_flag)

{

    alert_flag=false;

    msg.alert=0;

    context.set("alert_flag",alert_flag);

    return msg;

}

The logic is fairly simple. We use the variable as an alert flag for the logic. If the temperature
goes above 35 degrees Celsius, the alert flag is set, which in turn will be used to compose the
alert message. Once the temperature falls below 35 degrees Celsius, the flag is set to false
again, and another email alert will be sent saying that the temperature is back to normal.

Next, refer to the function that will create a simple alert message.

To create an alert message function, see the following:

var temp=msg.payload;

msg.to="<reciever email address>";

var d =new Date();

var message="";

if(msg.alarm)

{

    msg.topic="High Temperature Alert!";

    message="   ";    

Major Project 1: IoT Weather Station146

}

else

{

    message=" Temperature is back to normal now. The
current temperature is ";

   msg.topic="Temperature Alarm Reset.";

}

msg.payload="time:"+d+message +msg.payload;

return msg;

As depicted here, this will create a simple alert message for both the use cases discussed. The
rest of the code is self-explanatory.

7.	 Next, we will be setting up the email node. A valid email address is required (if you are using
Gmail, please carry out the aforementioned fixes to your settings) with the necessary credentials.
Please refer to the following figure for the setup process.

Figure 5.20 – Set up the email node

Raspberry Pi setup 147

8.	 Once all the nodes are set up, connect the nodes that are shown in Figure 5.21 to complete the
project flow.

Figure 5.21 – The final project flow with an alert system

9.	 This completes the overall setup process.

Now, simply deploy the flow, and if you have followed this tutorial carefully, you should be
able to send alert messages through Node-RED. A sample alert message looks something
like the one that the following figure shows.

Figure 5.22 – A sample email alert message

Major Project 1: IoT Weather Station148

This marks the end of this section and this chapter. You have successfully built your very first full-scale
project: a fully functional IoT weather station! This project has dealt with getting you familiar with the
monitoring capabilities of the Raspberry Pi and MQTT platforms.

There are several enhancements or improvements that can be made to this project:

•	 The first major enhancement would be additional nodes. The Pi and MQTT communication
protocol can easily handle several devices simultaneously, so we can create multiple dashboards
for different nodes.

•	 Next, we can add a data storage feature. The easiest way to achieve this is by configuring a
MySQL database with Node-RED. Once this is done, we can easily store our sensor data in a
database. This data can be used in the future to perform several different analysis tasks.

•	 We can even create forecasting models with a lightweight framework such as TensorFlow Lite,
which will let us use our existing data to predict future values.

These are only a few of the many improvements that can be made to this project. The possibilities
are endless.

Summary
This chapter guided you through building your very first major project using MQTT and Raspberry Pi.
We built an IoT weather station based on the NodeMCU development board. We started by discussing
the hardware requirements for the weather station and briefly introduced the sensors we would be
using. Then, we moved on to interfacing these sensors to the NodeMCU board and proceeded with
writing the code for our weather station. In the next section, we set up the Raspberry Pi for this project.
We created our project dashboard on Node-RED and added a new alert feature to our project as well.

As discussed above, this is a monitoring-based project, which only allows us to fetch the data from
a node and display it on the dashboard. In the next chapter, we will explore the control capabilities
of this system by creating a dashboard to control a smart home device (relay) based on another very
popular development board, the ESP32 board. As a bonus, we will even create a printed circuit board
(PCB) for our project to give it a more professional and finished look.

6
Major Project 2: Smart Home

Control Relay System

In this chapter, we will be creating yet another full-scale project using the concepts we learned in the
initial chapters of this book. The main objective of this chapter is to create a smart home device for
controlling wall switches using the Node-RED dashboard hosted on the Raspberry Pi. The device will
be based on the popular ESP32 development board.

This chapter is a step-by-step tutorial to build this project from scratch. We will be covering the
following aspects of the project:

•	 Hardware requirements and setup

•	 Code explanation

•	 Raspberry Pi setup

•	 Project enhancements

Major Project 2: Smart Home Control Relay System150

For this project, we will be preparing a PCB instead of creating the circuit on a breadboard for a more
finished and professional look. The final hardware is shown in Figure 6.1.

Figure 6.1 – Smart home control relay system (ESP32)

In this figure, we can see that the hardware has four relays, and the functionality or features include
the following:

•	 Control via MQTT or any other mode supported by the ESP32

•	 Manual control functionality (control using conventional switches)

•	 An alarm using an on-chip buzzer

Please note that all the code resources will be available in the GitHub repository for this book. The
link for the repository is in the Preface section.

Important Note
Please note that basic soldering skills are a prerequisite for this project. You will need to solder
the components on the PCB. All the components are through-hole, so a beginner-level solder
iron will also be sufficient for this task.

The first thing we will do is go through the hardware requirements and setup process. We will briefly
learn about all the components used in this project, followed by the PCB design and assembly.

Hardware requirements and setup 151

Hardware requirements and setup
This project has been chosen to demonstrate the control capabilities of our Raspberry Pi MQTT
system. Hence, there will be no sensors used in this project. But that is very possible and extremely
easy to implement. In fact, that can be a challenge for you: build a project with both monitoring and
control components.

For now, the components required to build this project are as follows (Figure 6.2):

•	 ESP32 development board

•	 5V non-latching relay

•	 Hi-Link 5V power supply

•	 Two resistors – 10k ohm and 330 ohm

•	 Two-pin terminal connectors

•	 BC547 transistor

•	 1N4007 diodes

•	 Buzzer

•	 LEDs

Figure 6.2 – Required components to build this project

Now, we will briefly go through each major component’s role, as we did for the first project.

Major Project 2: Smart Home Control Relay System152

ESP32 development board

We have chosen the ESP32 development board as the brains for this project (Figure 6.3). One major
reason for that is that it gives us the option to use Bluetooth, which is a universal communication
protocol (especially in smartphones), to control our IoT devices. Even though we are not going
to use Bluetooth in this project, it is possible to switch this project to a Bluetooth-based home
automation system.

Figure 6.3 – ESP32 development board

Moreover, it is more powerful than the ESP8266 chip on the Node MCU and it has much more pin
configuration possibilities. The salient features of this device are as follows:

•	 It has 520 KB of SRAM, making it suitable for numerous applications.

•	 It boasts a hybrid chip to support both Wi-Fi and Bluetooth wireless communication protocols.

•	 It supports numerous power management modes, making it perfect for low-power applications.

•	 It has a 4 MB flash memory.

•	 It possesses an onboard antenna on the microcontroller PCB for long-range wireless
communications.

Hardware requirements and setup 153

5V non-latching relay

We want to control home switches, for which we will be requiring a switch that can be controlled through
our development board. However, there is no provision to connect a switch to the microcontroller
directly (it would fry the chip!). So, what is the solution? Relays!

Relays are the devices that act as these switches. Their primary task is to close and open an AC
connection when it is triggered by a low-power DC signal, which a microcontroller is capable of
doing. We will be adding relays in addition to our conventional home switches so that we can control
them using MQTT.

Figure 6.4 – Relay module with pin configuration

Primarily, when dealing with mains power, solid state relays (SSR) are preferred, as they have a
number of advantages over conventional non-latching relays. But as this is a hobby project, we will
be using 5V non-latching relays for this project. Please note that SSRs are a lot more expensive than
normal relay modules. The features of the relay that we will be using are as follows:

Figure 6.5 – Relay module (5V-10A) specifications

Major Project 2: Smart Home Control Relay System154

5V Hi-Link power supply

The Hi-Link 5V switch power supply is a very popular and low-cost step-down power supply module.
The primary goal of this component is to convert the conventional 120-230V AC supply to a 5V DC
output. It is available in different power and voltage ratings, but we choose the simplest of them, which
has a power rating of 5 W (Power = Voltage * Current), so it supports a maximum current of 1 Ampere.

The package we are using is developed specifically for use on different printed circuit boards, making
it the perfect choice for custom DIY circuits. Being a switching source, it handles all the voltage
fluctuations in the voltage grid internally. It is widely used in home automation and smart home
applications. The component will look something like this:

Figure 6.6 – Hi-Link power supply (5V – 5 W)

Salient features of this component are as follows:

•	 Available in a thin and small package.

•	 Supports an input voltage in the 90–264V range.

•	 Provides a steady output with low ripple and noise.

•	 It has inbuilt safety features, such as short circuit protection and output overload.

•	 Low power consumption, environmental protection, and no-load loss < 0.1 W.

Miscellaneous components

Apart from the components listed previously, several passive components are required for this project.
These components will be discussed in this subsection.

Hardware requirements and setup 155

First, the BC547 transistors (4) and resistors (10k-ohms) are required to complete the relay circuits. In
order to operate a relay through our development board, we require these components. The transistor
acts as a switching circuit and helps change the relay state from our development board’s digital pin.

The circuit diagram is shown in Figure 6.7:

Figure 6.7 – Relay module connection diagram

Moreover, the LEDs are to show the status for different services (Wi-Fi connection, MQTT server
connection, and so on) of our ESP32. The 330-ohm resistors are used to connect the LEDs to the
ESP32 digital pins.

The buzzer can be used as an alarm when something goes wrong. This concludes the explanation
of all the hardware components we are going to use in this project. Next, we will cover how to
assemble everything.

Hardware setup (PCB design and circuit)

As mentioned in the introduction, we will be developing a PCB for this project. But PCB designing
requires a lot of skill, experience, and knowledge, which is a separate discussion topic itself. So, we
will be using an already available open source design that was developed by a tech YouTuber called
Sachin Soni (the channel is called techiesms).

Major Project 2: Smart Home Control Relay System156

Please refer to Figure 6.8 for the PCB image. Note that the design is readily available on the popular
PCB development website EasyEDA.

Figure 6.8 – Project PCB design schematic

You can just download the PCB Gerber file and order your own set of PCBs from any of the popular
PCB providers (such as JLC PCB). It will take some time to get your hands on those PCB boards, and
the amount of time depends on the country you live in. Once you have the PCB and all the components,
we are ready to build our project.

For those who are new to soldering, I have added a link to a YouTube video that walks you through
the basics of soldering in the reference links. Please go through that video if you have never soldered
anything before. I suggest you buy some extra components to practice on a test board first. Once you
get the hang of it, just solder all the components to the printed circuit board for this project.

Hardware requirements and setup 157

If you do not have access to a soldering iron or do not know how to use one, you can create a simple
circuit on a breadboard or a PCB using the schematic diagram shown in the following image:

Figure 6.9 – Basic breadboard project schematic

Please note that you will need to supply the relay board externally with a 5V supply as the ESP32 has
a maximum voltage output of 3.3V.

Important Note
Soldering irons can seriously injure you if not used correctly. If you are a minor, please do it
under adult supervision.

Major Project 2: Smart Home Control Relay System158

You have already seen in the first section what the final PCB looks like (refer to Figure 6.1). Please
refer to Figure 6.10 to see how the circuit is connected:

Figure 6.10 – Project connection schematic diagram

In the next section, we will be writing and uploading the project code to our ESP32 board.

Code explanation
The hardware setup is complete and the PCB is ready. It is time to write some code for our project.
This code will be written in the Arduino IDE for our ESP32 development board.

The code will have the following tasks to perform:

1.	 Connect to the pre-configured Wi-Fi network.

2.	 Connect to the MQTT broker hosted on the same network (on the Pi, in our case).

3.	 Pin initialization for the GPIO pins we will be using in this project.

4.	 Subscribe to various switch topics.

5.	 Reconnect to the MQTT server if it disconnects.

6.	 Develop a logic to control the relays based on the payload received on those topics (in the
callback function).

Code explanation 159

Points 4, 5, and 6 will run indefinitely (part of the loop() function). The code is available on
the GitHub repository of this project. Now, we will divide the code into parts to make it easier to
understand, as we did before.

To import the required libraries use this code:

// Importing the required Libraries

#include <WiFi.h> //WiFi functionality access for ESP32

#include <PubSubClient.h>   // Enables the use of MQTT

We will first import the required libraries, and in our case there are only two. The first one is the Wi-Fi
library, which enables our ESP32 to connect to any Wi-Fi network. The second one is the Pubsubclient
library, which gives ESP32 the ability to connect to MQTT brokers.

Please note that there are no sensors used in this project, unlike in the first major project, so no
additional libraries are required. Hence, we can run both projects on the same board together (this
will be given as an assignment later).

Next, we will initialize the necessary variables and objects.

To initialize variables and object, use this code:

// WiFi and MQTT Credentials

const char* ssid = "wifi_ssid";

const char* password = "wifi_password";

const char* mqtt_server = "Pi's ip address";

// Other Variable and object declarations

int relay1 = 15;

int relay2 = 2;

int relay3 = 4;

int relay4 = 22;

WiFiClient espClient;

PubSubClient client(espClient);

Next, we have to define the constants, variables, and objects for the project. That includes the Wi-Fi
and MQTT credentials and Wi-Fi and MQTT client initialization.

Moreover, we will assign the pins to which the relays are connected as variables as they will be used
multiple times in the code.

Major Project 2: Smart Home Control Relay System160

For the Wi-Fi setup function, use this code:

// Custom function for Wifi connection establishment

void setup_wifi()

{

  delay(10);

  Serial.println();

  Serial.print("Connecting to ");

  Serial.println(ssid);

  WiFi.mode(WIFI_STA);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED)

  {

    delay(500);

    Serial.print(".");

  }

  randomSeed(micros());

  Serial.println("");

  Serial.println("WiFi connected");

  Serial.println("IP address: ");

  Serial.println(WiFi.localIP());

}

The setup_wifi function is used to connect to the Wi-Fi network, the credentials of which we
provided as constant variables, ssid and password.

In the MQTT callback function, add this to read the received messages:

void callback(char* topic, byte* message, unsigned int length)

{

  // Reading the received messages

  Serial.print("Message arrived [");

  Serial.print(topic);

  Serial.print(". Message: ");

  String messageTemp;

  

  for (int i = 0; i < length; i++) {

    Serial.print((char)message[i]);

Code explanation 161

    messageTemp += (char)message[i];

  }

  Serial.println();

In this section, we first check for any messages that are received on a topic and store it in a variable.
The next sections are the core logic for this project, checking messages on particular topics, and setting
the relays accordingly.

The below code snippet describes the code logic to control Switch 1 through our dashboard.

  // Relay Control Logic starts here.

  

  if (String(topic) == "IoTSmartSwitches/Switch1") {

    Serial.print("Changing output to ");

    if(messageTemp == "1"){

      Serial.println("Switch 1 turned On");

      digitalWrite(relay1, HIGH);

    }

    else if(messageTemp == "0"){

      Serial.println("Switch 1 turned off");

      digitalWrite(relay1, LOW);

    }

  }

This is the main code block, which repeats for every single relay module pin. First, we check for the
topic, and if it matches, we check the message we have received. If we get 1, we turn on the relay and
if we receive 0, we turn it off. Please note that if any other message is received on this topic, there will
be no change in the relay state.

Similarly, the code snippets below describe the code logic to control switches 2-4 through our dashboard.

  else if (String(topic) == "IoTSmartSwitches/Switch2") {

    Serial.print("Changing output to ");

    if(messageTemp == "1"){

      Serial.println("Switch 2 turned On");

      digitalWrite(relay2, HIGH);

    }

    else if(messageTemp == "0"){

      Serial.println("Switch 2 turned off");

Major Project 2: Smart Home Control Relay System162

      digitalWrite(relay2, LOW);

    }

  }

The code block for Relay 2 is the same, with only the change in the topic name and the relay pin that
is controlled.

  else if (String(topic) == "IoTSmartSwitches/Switch3") {

    Serial.print("Changing output to ");

    if(messageTemp == "1"){

      Serial.println("Switch 3 turned On");

      digitalWrite(relay3, HIGH);

    }

    else if(messageTemp == "0"){

      Serial.println("Switch 3 turned off");

      digitalWrite(relay3, LOW);

    }

  }

The code block for Relay 3 is the same, with only the change in the topic name and the relay pin that
is controlled.

  else if (String(topic) == "IoTSmartSwitches/Switch4") {

    Serial.print("Changing output to ");

    if(messageTemp == "1"){

      Serial.println("Switch 4 turned On");

      digitalWrite(relay4, HIGH);

    }

    else if(messageTemp == "0"){

      Serial.println("Switch 4 turned off");

      digitalWrite(relay4, LOW);

    }

  }

}

With the logic defined for all four relays, we will get real-time feedback for our switches. We can
control their state just by sending out messages to their respective topics.

Code explanation 163

Important Note
Please keep in mind that this code assumes that your board pins are active high. But some
ESP32 board models (mine, for one) have active low pins, so you would have to exchange the
digitalWrite commands for each case.

Here’s the MQTT reconnect function:

void reconnect()

{

  // Loop until we're reconnected

  while (!client.connected()) {

    Serial.print("Attempting MQTT connection...");

    // Create a random client ID

    String clientId = "ESPClient-";

    clientId += String(random(0xffff), HEX);

    // Attempt to connect

    if (client.connect(clientId.c_str()))

    {

      Serial.println("connected");

      client.publish("outTopic", "Reconnected!");

      

      // Subscribe to all the relevant topics

      client.subscribe("IoTSmartSwitches/Switch1");

      client.subscribe("IoTSmartSwitches/Switch2");

      client.subscribe("IoTSmartSwitches/Switch3");

      client.subscribe("IoTSmartSwitches/Switch4");

      

    }

    else

    {

      Serial.print("failed, rc=");

      Serial.print(client.state());

      Serial.println(" try again in 5 seconds");

      // Wait 5 seconds before retrying

      delay(5000);

    }

  }

}

Major Project 2: Smart Home Control Relay System164

The MQTT reconnect function is in place to establish a connection to the broker again in case there
are some issues with the ESP32 development board. These issues could be anything from internet
connectivity issues to hardware failure.

This function tries to reconnect to the broker every 5 seconds and once the connection has been
re-established, it will resubscribe to all the individual switch topics.

Here’s the setup function:

void setup()

{

  // put your setup code here, to run once

  Serial.begin(115200);

  

  setup_wifi();

  client.setServer(mqtt_server, 1883);

  client.setCallback(callback);

  client.subscribe("IoTSmartSwitches/Switch1");

  client.subscribe("IoTSmartSwitches/Switch2");

  client.subscribe("IoTSmartSwitches/Switch3");

  client.subscribe("IoTSmartSwitches/Switch4");

      

  pinMode(relay1, OUTPUT);

  pinMode(relay2, OUTPUT);

  pinMode(relay3, OUTPUT);

  pinMode(relay4, OUTPUT);

  

  digitalWrite(relay1, LOW);

  digitalWrite(relay2, LOW);

  digitalWrite(relay3, LOW);

  digitalWrite(relay4, LOW);

  

}

The setup function does the following:

•	 Opens a serial connection port with a baud rate of 115200

•	 Connects to Wi-Fi and establishes a connection to our Pi (MQTT broker)

Raspberry Pi setup 165

•	 Subscribes to all four switch MQTT topics

•	 Sets the relay pins’ mode to output and set all those pins to Low

Here’s the loop function:

void loop() {

  // put your main code here, to run repeatedly

  if (!client.connected()) {

    reconnect();

  }

  client.loop();

}

The loop function has only one task: to check if the MQTT connection is intact, and if it is not, then
run the reconnect function.

This marks the end of the code explanation section. In the next section, we will set up our Raspberry
Pi for this project. That includes the following tasks:

•	 Setting up the MQTT broker (already done)

•	 Creating a Node-RED flow

•	 Creating a dashboard for this project

Looks like we have our work cut out for us. Let’s get started!

Raspberry Pi setup
The Raspberry Pi will be the host for the local MQTT broker in this project and also the dashboard
hosting device. The dashboard for this project will be created using Node-RED and the Node-RED
dashboard module, which will both be running on the Raspberry Pi.

Setting up MQTT and Node-RED on the Raspberry Pi has already been covered, so we will start with
the Node-RED setup portion straight away. The first step is to start Node-RED after booting up your Pi.

Just open a new terminal on your Pi and type in the following command:

node-red-start

Major Project 2: Smart Home Control Relay System166

Please refer to Figure 6.11 for reference:

Figure 6.11 – Starting Node-RED on the Pi

Raspberry Pi setup 167

This command will start your Node-RED and give you the IP address from which you can access the
Node-RED editor from any device connected to the same network as the Pi. Once you open Node-
RED, the next step is creating the flow and, in turn, the dashboard for this project. As this is a control
project, the dashboard will be fairly simple, consisting of just four switches. There are some things that
can be added to improve this project, but we will stick to the basics to make things easier for beginners.

Just follow the step-by-step instructions to set up the entire Node-RED environment for this project
(including both the flow creation and dashboard setup):

1.	 On the Node-RED home screen, just create a new flow following the instructions provided in
Figure 6.12 to get a new and blank workspace.

Figure 6.12 – Creating a new flow in Node-RED

2.	 Next, we need to install a new extension for better dashboard switches. So, just go to additional
options and click Manage Pallete, and then go to the install tab on the new window that
opens. Search for node-red-contrib-ui-multistate-switch and download the
first extension.

3.	 Create a new flow; you can give it the name of your choice. Once that is done, just drag out the
following nodes onto the workspace (as shown in Figure 6.13):

	� Four mqtt out nodes

Major Project 2: Smart Home Control Relay System168

	� Four multistate switch nodes

Figure 6.13 – Nodes used for this project

4.	 Please note that we will create a simple dashboard with four switches for this project. We will
use two-state switches, each with on and off buttons. The dashboard layout is simple and shown
in Figure 6.14.

After the layout setup is done, the next step is to set up each of the nodes.

Figure 6.14 – Node-RED dashboard layout setup

Raspberry Pi setup 169

5.	 The setup instructions for both the mqtt out and switch nodes are shown in Figure 6.15.

The following information is required to be filled for the mqtt out node:

	� Select the MQTT broker

	� Topic name according to the switches

	� Name of the node (name appearing on the workspace)

The following information needs to be entered for the switch node:

	� Name of the node

	� Group for the dashboard layout setup

	� Label string (the string that appears on the dashboard)

	� Set Appearance to rounded (based on your preference)

	� Add the labels as shown in Figure 6.15:

Figure 6.15 – Node setup for this project

Major Project 2: Smart Home Control Relay System170

6.	 Now that the nodes have been set up for our project, we will just connect the nodes according
to Figure 6.16:

Figure 6.16 – Final Project 2 flow

Once the flow has been set up, all that we need to do is deploy the node. To do that, just click
the Deploy button in the top-right corner of the screen. Once that is done, you should see that
the blue dots on each of our project’s nodes have vanished.

If everything has been done as instructed, you will see that all your MQTT nodes have connected
to the broker (indicated by the green dot). Hence, we have successfully completed the Node-
RED setup. Now all that is left for us to do is test the dashboard.

7.	 Now, let’s see how our project dashboard looks. For this, please power on the PCB by connecting
it to an AC power supply (powering the ESP32 won’t work).

Then open the Node-RED dashboard by typing the following IP address on your browser tab:

<Raspberry Pi's IP Address>:1880/ui

If you have multiple tabs, the first tab will be opened by default. Just press the menu icon in
the top left and switch to the IoT Smart Switches tab. If you have followed all the setup steps,
your dashboard will look similar to the one shown in Figure 6.17:

Project enhancements 171

Figure 6.17 – Project 2 dashboard (in dark mode!)

As you can see, you have control of all the four relays here. Now, all that’s required is to test this system.
Just turn on any switch and you should see an instantaneous change in the state of one of the relays.
There is a very high speed and low latency connection established between the Pi and the ESP32 project.

You should be able to control all the devices connected to those relays through this dashboard.

Congratulations! You just completed the second and the final major project for this book. Now, you
are aware of the control capabilities of this system as well. But there is always room for improvement.
Several improvements can be made as far as this project is concerned. In the next section, we will be
discussing what exactly can be done to make this project better than it already is.

Project enhancements
Project enhancement is a crucial part of project development. We always strive to make things better
than they already are. This case is no different.

There are several possible enhancements, both on the hardware and software. Let’s walk through
some of them:

1.	 The first and main hardware enhancement is adding manual feedback to our system. In fact,
the PCB supports it.

The current system, as it stands, does not allow the user to use manual switches, and even if
we managed to use them, we cannot get their statuses (that is, at any given moment, we can’t
see the state of a switch). But the PCB we are using has a special function: it can provide the
current state of any connected application (on or off) on particular ESP32 digital pins. Hence,
we can get feedback. Please refer to the circuit diagram for the PCB to see how you need to
connect the switch wires to the PCB.

Major Project 2: Smart Home Control Relay System172

The portion on the PCB that helps achieve this is marked in Figure 6.18:

Figure 6.18 – Screw terminals that add manual feedback

Now, as far as the code part is concerned, here is a code snippet that will give you some idea
about how to implement this in your existing project. This is an assignment for you: implement
manual control into your IoT smart home system.

Manual Automation Code Snippet

#define S1 32

#define S2 35

#define S3 34

#define S4 39

// You can access the LEDs and Buzzer through this pins.

#define LED1 26

#define LED2 25

#define LED3 27

#define Buzzer 21

Project enhancements 173

void Call_ManualAutomation()

{

  Serial.println("Manual Automation");

  digitalWrite(R1, digitalRead(S1));

  Serial.println("Relay-1: ");

  Serial.println(digitalRead(S1));

  delay(1);

  digitalWrite(R2, digitalRead(S2));

  Serial.println("Relay-2: ");

  Serial.println(digitalRead(S2));

  delay(1);

  digitalWrite(R3, digitalRead(S3));

  Serial.println("Relay-3: ");

  Serial.println(digitalRead(S3));

  delay(1);

  digitalWrite(R4, digitalRead(S4));

  Serial.println("Relay-4: ");

  Serial.println(digitalRead(S4));

  delay(1);

}

2.	 The next possible improvement that can be made is the development of a mobile application
to control the switches. Technically, we can still open the Node-RED dashboard on our phone
browser and control the relays from there, but a mobile application is a more finished and
better solution.

A number of no-code app development platforms are available. The best and the easiest to
use is the MIT App Inventor. You can find the link for this in the references section. It allows
you to develop apps using drag-and-drop components and a no-code setup process. I have
also included a link to a tutorial video on how to use this platform in the references section.

Here is an app development exercise for you.

Develop an application to control the relays on our project’s PCB using MIT App Inventor. The
following links will help you get started:

	� MIT App Inventor: https://appinventor.mit.edu/

	� Tutorial video: https://highvoltages.co/iot-internet-of-things/
how-to-mqtt/how-to-make-mqtt-android-application-using-mit-
app-inventor/

https://appinventor.mit.edu/
https://highvoltages.co/iot-internet-of-things/how-to-mqtt/how-to-make-mqtt-android-application-using-mit-app-inventor/
https://highvoltages.co/iot-internet-of-things/how-to-mqtt/how-to-make-mqtt-android-application-using-mit-app-inventor/
https://highvoltages.co/iot-internet-of-things/how-to-mqtt/how-to-make-mqtt-android-application-using-mit-app-inventor/

Major Project 2: Smart Home Control Relay System174

3.	 Another possible enhancement in this project would be the addition of a global MQTT broker.
Currently, the project can only be used within the local network (your Wi-Fi connection).

In order to be able to control these switches from anywhere in the world, we would require
an MQTT broker that is hosted online and accessible on any network. This opens a whole
new world of possibilities: the addition of multiple devices, monitoring components, and
so on. We can achieve this in a number of ways. These will be discussed in detail in the
next chapter.

Summary
We developed our second full-scale project in this chapter, creating a smart relay system based on
ESP32 and operated over MQTT. We will walk through the key points we covered in this chapter just
to refresh your memory.

We started with the hardware requirements and setup of those components. This includes setting up
our system and connecting all the components on a custom PCB. Next, we moved on to the explanation
of the code, wherein we broke the code into several snippets to make it easier to understand. After
that, we set up the project dashboard on the Raspberry Pi. Finally, we moved onto the demonstration
part of the project to see our project in action.

In the next chapter, we will cover how to take this concept even further by taking the MQTT broker
global so that we can access our devices through MQTT from anywhere without the constraint of
local network coverage.

Part 3: How to Take
Things Further –

What Next?

The two projects we’ve covered gave you a hands-on experience in developing innovative
end-to-end IoT projects. But how do we scale these projects and move to the next level? You will
find out in this part.

This part comprises of the following chapters:

•	 Chapter 7, Taking Your MQTT Broker Global

•	 Chapter 8, Project Prototype to Product, How?

7
Taking Your MQTT Broker

Global

The previous two chapters covered two fully functional prototype projects so that you can get hands-on
experience on how to build IoT projects. So, what next?

Now that you have seen the potential of IoT and the hardware we used – the Raspberry Pi – you are
ready to learn how to utilize these technologies best. In this chapter, we will talk about the MQTT
broker that we have currently hosted on the Raspberry Pi. This gives us access to it within a local
network only. But what if we can access it over the internet?

Figure 7.1 – MQTT meets the internet!

In this chapter, we will cover the following topics:

•	 Establishing the advantages of a global MQTT broker

•	 How to take your broker global

Everything discussed in this chapter is not always required, so if you just want to create small projects
for your home, I suggest sticking with the Raspberry Pi instead of using the options presented in the
coming sections.

Important Note
Please note that most of the options that we will be discussing in this chapter will be paid for
(monthly subscriptions mostly). This is optional and you can avoid this chapter if you are just
a beginner and do not intend to scale your project beyond your own home.

Taking Your MQTT Broker Global178

Establishing the advantages of a global MQTT broker
There are several advantages of using an MQTT broker that is hosted on a server or machine with
internet access. We will look at some of these in this section:

•	 Accessibility: You can access the devices connected to your broker from anywhere and with
any device, so long as you have an active internet connection.

•	 Scalability: When you use a Pi, you have limited coverage. However, that is not the case with
an online MQTT broker. You can easily connect multiple smart devices, which are present in
different locations.

•	 Efficient channel use: This method supports multiple devices, allowing you to proficiently
utilize channels.

•	 Large-scale compatibility: If you want to use this at a larger scale (for example, you have more
than 10,000 devices in your ecosystem), you can easily choose a new plan, which gives you
access to more storage and more topics (larger channel bandwidth).

•	 Cost efficient: We can keep using the local brokers (hosted on low-cost devices such as the
Raspberry Pi) so that we can still get a control interface for our project. Also, we get certain
functionalities such as storage capabilities without increasing our costs by paying for extra
storage space on online servers.

These benefits are just some of the reasons why we should switch to an online broker. Moreover, we
already have the advantages that MQTT has to offer over other communication protocols, such as HTTP.

Now, let’s discuss the options we have at present to switch to an online MQTT broker and how choosing
a particular option will impact your existing devices.

How to take your broker global
In this section, we will discuss the two major options that we have to grant internet access to our
existing projects.

There are two ways to obtain access to a global MQTT broker:

•	 Online MQTT brokers: Several online MQTT brokers provide you with a ready-to-use
MQTT broker (credentials are provided). These are available on a subscription basis (monthly,
quarterly, or annually).

Some popular sites for this are HiveMQ, Paho, CloudMQTT, and Adafruit IO. These can be
seen in the following diagram:

How to take your broker global 179

Figure 7.2 – Some popular online MQTT brokers

We will be using the HiveMQ platform to test this later. We will use the free plan provided by
the platform, wherein you will be given the following features:

Figure 7.3 – Free plan provisions

•	 Virtual Server: If you want more customization and additional features, you can get a virtual
server from AWS, Azure, Google Cloud Platform, or Digital Ocean.

After getting a fresh instance, you can just install an MQTT broker, as we did on the Raspberry
Pi, and access the broker through the IP address of your server. Please follow the same process
given in Chapter 1, Introduction to Raspberry Pi and MQTT (the Raspberry Pi as an MQTT
broker sub-section), to install the mosquitto open source MQTT broker on the virtual server.

In this chapter, we will be choosing Digital Ocean as the platform of choice. We will set up a
basic Linux server instance and install and demonstrate the use of our global MQTT broker
through a simple project: we will send some messages from our Pi to the broker.

Taking Your MQTT Broker Global180

There are a lot of alternatives when it comes to choosing a platform for hosting a virtual instance.
Some popular free sources that can be used are Amazon Web Services (AWS EC2 Service)
and Google Cloud Platform (GCP), which allow you to spawn a single virtual instance under
their free-tier plan. But please keep in mind that if you are not cautious about staying within
the limits of the free tier, you may end up getting billed heavily. Hence, I am using Digital
Ocean for this tutorial.

The choice of setting up a virtual server has the advantage of providing the user with additional
customization options and, at times, being more cost-efficient. But the downside of this is that
you need some experience working with Linux to get the most out of all the available options.
Hence, I would suggest that beginners stick with the first option.

In the upcoming subsections, we will cover all the steps required to set up your global MQTT broker
in both cases and how to test that they are successfully up and running.

There will be two subsections – one describing the setup process when using an online MQTT broker
service and another describing the setup process wherein we will get a Digital Ocean droplet (their
term for an instance) and install the mosquitto MQTT broker on it.

Option 1 – online MQTT broker

In this subsection, we will set up an online MQTT broker and test it through the Node-RED interface
of our Raspberry Pi. Then, we will discuss the advantages and disadvantages of this option.

I chose a free MQTT broker so that everyone of all skill levels can try this. We will set up a free cluster
on HiveMQ Cloud, which is where our broker will be deployed. We can access it using the credentials
and the hostname we obtain after the setup process. After setting up the broker, we will develop a
simple Node-RED flow to test the broker:

Figure 7.4 – HiveMQ Cloud

Follow these steps:

1.	 HiveMQ Cloud is a cloud-native IoT messaging broker service provided by HiveMQ. There is
a free tier available too, which lets you set up to 100 MQTT topic sessions.

How to take your broker global 181

Open the HiveMQ Cloud site by going to https://www.hivemq.com/mqtt-cloud-
broker/:

Figure 7.5 – Hive MQ Cloud home page

2.	 From the home page, just press the Sign up now button. This will redirect you to the HiveMQ
Cloud portal. From this page, you will be able to sign up for free:

Figure 7.6 – Pressing the Sign up now button

https://www.hivemq.com/mqtt-cloud-broker/
https://www.hivemq.com/mqtt-cloud-broker/

Taking Your MQTT Broker Global182

3.	 Once you get to the Cloud portal, you will see a login page. Just go to the Sign Up tab by clicking
on the Sign Up text. There, just enter the email and password as instructed (it would be wise
to use a new email and not your personal email).

Once you’ve done that, just click the Sign Up button to proceed to the next step:

Figure 7.7 – The HiveMQ Cloud portal to sign up

4.	 Next, a new page will open, where you will have to agree to the Terms of Service defined by
the HiveMQ website. Just agree to these by checking the provided checkbox. Then, click the
Continue button:

Figure 7.8 – Agreeing to the Terms of Service

5.	 Now, you will be redirected to a new page that will state that you need to verify your email
address to continue (refer to Figure 7.9 and Figure 7.10). A verification email will have been
sent to the email ID that you provided while signing up.

How to take your broker global 183

Just open that email and click on the Confirm my account button. This will redirect you to the
login page, which indicates that your email ID has been verified and that your account is active:

Figure 7.9 – The email verification message

The verification email text will look something like this:

Figure 7.10 – Verification email

Taking Your MQTT Broker Global184

6.	 After that, you will be redirected to the Login page. Just enter the required credentials (email
and password) and click the Login button. You will be redirected to a new page where you will
be asked for some additional information:

Figure 7.11 – Entering additional information

7.	 Once you have done this, click the Continue button. This completes the sign-up process. You
will be redirected to a new page where you have to choose the cloud provider where your cluster
will be located. At the time of writing, there are two options:

	� Amazon Web Services (AWS)

	� Azure

You can choose any provider of your choice. I have chosen AWS for the time being. The following
screenshot shows what the web page will look like:

How to take your broker global 185

Figure 7.12 – Choosing a cloud provider

8.	 Once you have selected a provider, you will be redirected to the Cluster Details page – specifically,
to the Getting started sections.

You will have to just follow the steps shown on the screen. The first step would be to set up the
credentials for your IoT devices. You will see the following page:

Figure 7.13 – The Cluster Details (Getting Started) page

9.	 The first step is to set up the MQTT broker credentials. These will be required when we try to
initiate a connection from any client to the broker.

Taking Your MQTT Broker Global186

Just enter the Username and Password details of your choice. You will also need to re-enter the
password in the Confirm password textbox. Once you’ve done that, just click the Add button.
I have entered the following sample credentials:

	� Username: test-user

	� Password: Demo@password123

	� Confirm password: Demo@password123

These can be seen in the following screenshot:

Figure 7.14 – Entering the MQTT credentials

10.	 Once the credentials have been added, a new section will open called Connect your first
MQTT clients.

Here, you will find tutorials on how to use all the available tools with your new broker, as
well as how to define the necessary configurations when trying to connect to the same broker
through code:

Figure 7.15 – Tutorials for different tools and programming languages

How to take your broker global 187

11.	 This completes the setup process. With that, you have finally set up your very own online MQTT
broker. You can find the details about your cluster in the Overview tab.

Here, you will find the following details:

	� Hostname and relevant ports

	� Basic cluster information

	� Capacity (for various properties)

You can manage the active credentials from the Access Management tab. The credentials we
first entered will already be active. These can be removed and more credentials can be added too:

Figure 7.16 – Cluster Details overview

Now that the setup process is complete, we will develop a simple Node-RED flow to demonstrate how
to set up and use this MQTT broker hosted on the cloud.

Simple Node-RED flow to test the new broker

To create a simple flow to demonstrate how to work with this broker, follow these steps:

1.	 The first step is to start Node-RED after booting up your Raspberry Pi. Just open a new terminal
on your Pi and type the following command:

node-red-start

Taking Your MQTT Broker Global188

You can also use the following command:

node-red

The output can be seen in the following screenshot:

Figure 7.17 – Starting Node-RED on the Pi

2.	 This command will start Node-RED and give you an IP address where you can access the Node-
RED editor from any device connected to the same network as the Raspberry Pi.

Open Node-RED on any browser of your choice by typing ß pi's ip address à:1880
into your address bar. This will open the Node-RED home screen. From there, just create a new
flow by following the instructions provided to get a new, blank workspace:

How to take your broker global 189

Figure 7.18 – Creating a new flow in Node-RED

3.	 Now, you just need to add the following nodes to your workspace:

	� One Inject node

	� One Debug node

	� One MQTT in node

	� One MQTT out node

After adding these nodes, your workspace will look something like this:

Figure 7.19 – The flow for testing our MQTT broker

Next, we must set up the nodes to function in a particular manner. For this project, we will do the
following:

•	 When the Inject node is pressed, a “Hello World!” message is published on the test/publish topic.

•	 The MQTT in-node subscribes to the test/subscribe topic and whenever a message arrives on
that topic, it prints the same on the Debug section (available on the right-hand side).

Taking Your MQTT Broker Global190

Please follow the instructions provided to set up each node (see Figure 7.20):

•	 MQTT In Node: Here, we just need to fill in the Topic textbox.

•	 MQTT out Node: Here, we just need to fill in the Topic textbox.

•	 Debug Node: No setup is required for the debug node.

•	 Inject Node: Just cross out the msg.topic option and for msg.payload, change the
output option to String and fill in the text “Hello World!”.

In addition, we need to configure a new broker (our HiveMQ MQTT broker). We will need the
following information from the HiveMQ cluster:

•	 Host IP address (hostname)

•	 MQTT credentials username

•	 MQTT credentials password

Refer to the following screenshot to see how to setup all the nodes for this project’s flow.

Figure 7.20 – All node configurations for this flow

How to take your broker global 191

Please refer to Figure 7.21 to set up a new broker in Node-RED:

Figure 7.21 – MQTT broker setup

Once all the nodes have been set up, you are ready to create your final flow. The following screenshot
shows what the final flow for this project looks like:

Figure 7.22 – Final project flow

Now that the project flow is complete, we will see this this project in action!

Taking Your MQTT Broker Global192

Project demonstration

For project demonstration purposes, we will use HiveMQ’s MQTT WebSocket client. The following
screenshot shows what the client looks like:

Figure 7.23 – HiveMQ’s MQTT WebSocket client

This tool lets you connect to your broker and then, via its interface, publish and subscribe messages
to particular topics. Here, we will use the topics we configured into our Node-RED flow.

The first thing you must do is deploy the flow on Node-RED. Once you’ve done that, just open the
HiveMQ WebSocket client by going to http://www.hivemq.com/demos/websocket-
client/.

First, you will need to initiate a connection to your broker. That can be done via the Connection tab
on the WebSocket client’s page. After opening the page using the aforementioned link, you just need
to fill in all the necessary fields required to connect to your MQTT broker:

http://www.hivemq.com/demos/websocket-client/
http://www.hivemq.com/demos/websocket-client/

How to take your broker global 193

Figure 7.24 – Establishing a connection to the HiveMQ MQTT broker

Once the connection has been established, we are ready to proceed with the demonstration. Next,
we need to do the following:

•	 Subscribe to the test/publish topic. This will let us monitor any messages or payloads that arrive
on this particular topic. We have configured the node to send the “Hello World!” message to
this topic when the Inject node is triggered.

•	 Publish the “Hello World!” string on the test/subscribe topic. We have subscribed to this topic
in our Node-RED flow. So, whenever a message is published on this topic, the payload is printed
on the Debug tab in Node-RED.

You must set up the WebSocket client so that it can do this. To do this, just follow the instructions
provided in the following screenshot:

Figure 7.25 – MQTT WebSocket client setup

Now, we are ready to see the final project demonstration. This project will do the following:

•	 Whenever we trigger the inject node of our project, a “Hello World!” message will be printed
in the Messages section of the WebSocket client.

Taking Your MQTT Broker Global194

•	 When you publish a message to the test/subscribe topic through the WebSocket client, the
same message will be printed on the Debug tab in Node-RED.

The following screenshot shows the output of the publish message:

Figure 7.26 – Publish message output demonstration

The following screenshot shows the output of the subscribe message:

Figure 7.27 – Subscribe message output demonstration

With that, we have come to the end of this section. In the next section, we will discuss the second
option we can adopt to make our MQTT broker global: hosting it on a virtual server. We will discuss
its pros and cons and host our very own MQTT server on the Digital Ocean platform.

So, let’s get started!

How to take your broker global 195

Option 2 – virtual server

In this section, we will discuss the second option that we have: hosting the MQTT broker on a virtual
server. Several popular sites provide this service. However, for this project, we will choose Digital Ocean.
(Please keep in mind that you will need a credit card as this will cost you around 5 dollars a month.)

As discussed earlier, there is a free-tier option available too. You can opt for a free trial on AWS or
GCP. In both cases, you will be provided with free credits that you can use in any of the available
services the platform has to offer.

Important Note
Even though the aforementioned options are free, there are certain conditions. First, you need
to be a first-time user (or have an email ID that hasn’t been registered). Second, you still need
a credit card for verification.

The charges that are incurred on these platforms once the free-tier threshold is crossed are considerably
more compared to Digital Ocean. However, using any of the two platforms is also acceptable. The
only change in the tutorial would be the process of spawning your virtual server. There are several
tutorials available on how to set up a virtual server on AWS or GCP.

In this subsection, we will walk through the process of setting up a new virtual server (called droplet)
on Digital Ocean and then install and set up an MQTT broker on that server. Then, we will test the
broker with the same project we created when we tested our HiveMQ’s online MQTT broker.

So, let’s begin with the setup:

1.	 Creating a new Digital Ocean account: You will need to create a Digital Ocean account to
access the control panel and create a new droplet. To create a new account, navigate to the
Digital Ocean new account registration page: https://cloud.digitalocean.com/
registrations/new.

You can choose to register via email, Google, or GitHub. Once you’ve confirmed your account,
you will need to enter your credit card or PayPal information. This information is collected
to verify your identity and keep spammers out. You will not be charged until you choose a
plan and confirm your subscription, which we will cover in Step 4. You may see a temporary
pre-authorization charge to verify the card, which will be reversed within a week.

Once your information has been accepted, you will be taken to a window that says Registration
Complete. You are now ready to proceed to the next step.

2.	 Logging in to your Digital Ocean account: Once your account has been successfully created,
just log in to your account; you will see a control panel.

This is the home screen you will get for your account. This is where you can manage all the
droplets, databases, and domains and also navigate through all the services Digital Ocean has
to offer.

https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new

Taking Your MQTT Broker Global196

Moreover, you can create different projects so that you can keep track of the resources that are
used in individual projects.

For this tutorial, we will be creating a simple virtual server instance known as a Droplet. The
following screenshot shows what the control panel for your account will look like:

Figure 7.28 – My Digital Ocean control panel

3.	 Setting up a new Droplet: Click the Create button at the top right to expand the menu. There,
click the Droplets option, which will redirect you to a new web page:

Figure 7.29 – Creating a new droplet

How to take your broker global 197

You can even open this web page from the home screen of the dashboard, provided that you
don’t have any active droplets, in which case you will have a Get started with a Droplet button
in the Resources tab.

From this page, you can configure various droplet characteristics such as CPU, memory, OS,
and more. The most used and popular configuration options will be preselected, but we will
change them according to our requirements.

4.	 Choosing an image for your Droplet: Now, we will choose which OS our droplet will have.
Various OSs are available on this platform and they have been widely divided into four main
categories:

	� Distributions are basic or vanilla OS images such as Ubuntu and Fedora. They have no
additional packages pre-installed.

	� Container distributions, which include the Rancher OS.

	� Marketplace images consist of preconfigured applications, such as WordPress, LAMP, or
application-specific Docker images, to help simplify getting started. These are some popular
images that are used for specific applications. They come with all the required software packages
pre-installed. One such example is the popular LAMP server configuration, which we will
be covering in the last chapter of this book (Chapter 8, Project Prototype to Product – How?).

	� Custom images are required if the OS for your requirements is not available for any of the
aforementioned options. In that case, you will have to upload your own OS image through
this option so that it will be flashed on your droplet.

For this tutorial, we will be using a basic Ubuntu 20.04 64-bit LTS distribution for our droplet.
This is because it is the most used Linux OS with a very good developer community and support.

Please note that this option will be chosen for you by default:

Figure 7.30 – Choosing an OS for your virtual server

5.	 Choosing a plan: In this section, you will have to choose a particular plan according to your
compute and storage requirements, such as CPU, memory, storage, and more.

Taking Your MQTT Broker Global198

The DigitalOcean platform has segregated its plans into five basic categories:

	� Basic Droplets is for most basic and low compute-intensive applications such as web hosting
a single website. For Basic Droplets, you can also choose between Regular and Premium
CPU configurations, based on your requirements.

	� General Purpose Performance Droplets is an option that provides a balance between
memory and CPU compute power.

	� CPU-Optimized Performance Droplets are for applications that have CPU-intensive tasks
such as batch processing of several pipelines or video processing tasks. They give you the
best CPU performance but the memory options are limited.

	� Memory-Optimized Performance Droplets are used when you need a lot of RAM in your
application, which can be a database server with several concurrent query executions.

	� Storage-Optimized Droplets are best suited for applications that need high-performance
storage. One example can be maintaining a data warehouse.

For this project, we will choose the most basic configuration available as we only need to run
an MQTT broker on the server for now. The plan is a Basic Droplet with the following:

	� A shared regular Intel processor

	� 1 GB of RAM and 1 CPU core

	� 25 GB of SSD disk space

	� A 1,000 GB data transfer limit per month (this is a very important feature only available in
Digital Ocean. In AWS or GCP, you are charged extra for the data transfer costs.)

Now, let’s see how this section looks on their website. As we can see, the plan will cost you $5
per month:

Figure 7.31 – Choosing the most basic plan

6.	 Choosing a data center region: In this section, we must select a region in which our droplet
will be created.

How to take your broker global 199

The region with the best performance and minimum latency has already been selected but
you can choose the data center nearest to you and your users. Several configurations are only
available in a specific region, so you should plan for that as well:

Figure 7.32 – Choosing an appropriate data center region

The web page grays out any non-supported configurations by default, so you should not have
any issue selecting a region for your droplet.

For this tutorial, you can choose any data center of your choice. I will just keep the default
center selected. Please note that if you wish to upgrade your plan in the future, you may need
to change your data center region according to the plan you choose as not all configurations
are available in every region.

7.	 Authentication: In the Authentication section, you can choose what type of security option
you would like for your droplet. There are two options provided by Digital Ocean:

	� SSH keys, in which you will have to upload your own private key so that it can be used by
the server when you try to remotely access it using the same key.

	� Password, which is the most basic form of authentication, wherein the system will let you
set up a password that you will be asked for every time you log in to your droplet.

These options can be seen in the following screenshot:

Figure 7.33 – Choosing your preferred authentication method

Taking Your MQTT Broker Global200

If you choose to use SSH keys, you will need to upload a key or select an existing key that has
been previously uploaded for this Digital Ocean account. As we are doing this for the first time,
we will need to upload a key.

You can even add multiple keys for authentication. Click on the New SSH Key button to upload
a new key. If you wish to use SSH keys for authentication, please refer to the following reference
link, which is a tutorial that walks you through the process of creating your own set of SSH keys:

https://docs.digitalocean.com/products/droplets/how-to/add-ssh-
keys/

For this project, we will use a simple password for authentication. Just choose the Password
option and then type in a password of your choice (keep the requirements listed in Figure 7.33
in mind). This will create a password for the root user, which you can use to access your droplet.

8.	 Reviewing the options and creating the Droplet: Once everything is done, there is a Finalize
and Create option, wherein you can choose how many droplets with the aforementioned
configurations you want to create and what the hostname of each droplet (a default name
is provided) should be. Also, you can choose in what project you want to create this droplet
and specify some tags for the droplet too, which allows you to organize and relate between
multiple droplets:

Figure 7.34 – The Finalize and create section for droplet creation

https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/
https://docs.digitalocean.com/products/droplets/how-to/add-ssh-keys/

How to take your broker global 201

Once you have selected your configurations, just click on the Create Droplet button to start the
creation process. A progress bar will appear, showing how close your Droplet is to being ready:

Figure 7.35 – Droplet creation progress bar

Once this process is complete, you will be able to see your droplet listed on the home screen,
along with a green dot to the right and the IP address of the droplet, which can be used to
access it remotely:

Figure 7.36 – The Resources section after droplet creation

To learn more about the droplet, just click on the droplet’s name. This will open a new page
with all the necessary details and usage analytics graphs.

Congratulations! You have successfully configured and created your first Digital Ocean droplet. Now,
we will set up an MQTT broker on this droplet and test that it’s working using the same project we
created earlier.

MQT T broker setup

Setting up an MQTT broker on the droplet is a very easy process. We essentially have to follow the
same steps that we did when we set up the Mosquitto MQTT broker on the Raspberry Pi.

To do that, we will need access to the terminal of the droplet we created. Here, we have two options.
Let’s look at the first:

1.	 We can access it through the Web Console area provided by Digital Ocean. To access this
console, just click on your droplet from the control panel and then click on the Console button,
as shown in Figure 7.37.

Taking Your MQTT Broker Global202

2.	 You will be asked to enable the Droplet Console area. Just follow the instructions to install a
new console agent. Once this is done, you will be able to access your droplet through the web
console:

Figure 7.37 – How to access the web console to access your droplet

However, there are limitations while using the web console, including limited functionality and a lack
of ease of access. Hence, we will opt for the second option.

Now, let’s look at the second option:

1.	 We can use a third-party SSH client to access our droplet. Here, we will use PuTTY. Please
note that this is only required for Windows systems. If you are using Linux or Mac, you will
be able to SSH into any servers through the terminal itself. Moreover, once you install PuTTY,
you will be able to do the same through your Windows command prompt:

Figure 7.38 – PuTTY for Windows

How to take your broker global 203

To install PuTTY on your system, go to https://www.putty.org/.

After the installation is complete, just open PuTTY on your Windows PC or laptop. Then,
under Host name, enter the IP address of your droplet. This should open a terminal that will
prompt you to enter a username and password. Just enter the following:

	� Username: root

	� Password: <-droplet password->

If you are using a Linux or macOS system, then simply open your terminal and enter the
following command:

ssh root@<-droplet ip->

After entering this, you will be prompted to enter the password. Just enter your droplet’s
password and you will successfully log in to your server.

2.	 Once you have access to the terminal, you just have to type in the following command to install
all the packages required to run an MQTT broker on this server (this is the same command
we ran on the Raspberry Pi):

sudo apt install mosquitto mosquitto-clients

You may have to enter your password the first time you use sudo.

This will install all the required packages for your droplet. Once the installation is complete,
we are ready to proceed to the next step, which is to enable our broker.

As was the case for the Raspberry Pi, we do not require the mosquitto-clients package
to run the broker. However, with this package, we can emulate MQTT clients from the terminal
itself, as well as on the server, which is great for debugging and testing.

3.	 Enable the broker using the following command:

sudo systemctl enable mosquitto

The broker should now be running. You can confirm this by running the following command:

sudo systemctl status mosquitto

https://www.putty.org/

Taking Your MQTT Broker Global204

The following screenshot shows the preceding command’s output:

Figure 7.39 – Output of the status command for the broker

The most important thing is that the Active: option should show an active (running) status, which
will verify that our broker is up and running. If the status shows that your process is dead, you can
simply restart your broker using the following command:

sudo service mosquitto restart

This will resurrect the process and should change the status to running again.

Great! You have successfully set up your very first fully customizable online MQTT broker running
your very own server. Now, it is time to get our hands dirty with some coding to test our broker.

Testing our broker

To test this broker, we will use the same flow we created to test HiveMQ’s online MQTT broker as the
functionality to test remains the same.

The flow is shown in the following screenshot:

Figure 7.40 – Project flow used to test the HiveMQ broker

How to take your broker global 205

We will also use our server for testing purposes as we already have the client’s package set up there.

The next step is to set up a new broker for our Node-RED flow. Just follow the instructions provided
in Figure 7.41 to do so. Please note that no username and password have been set up for the broker,
so we can access it directly. This is not at all recommended as it raises a lot of security concerns.

It is very easy to set up a username and password combination for your broker – you just need to run
a single command and change a few lines in a configuration file. Follow these steps:

1.	 Open a new terminal on your Pi and type the following command:

sudo mosquitto_passwd –c /etc/mosquitto/passwd <USERNAME>

2.	 Type in the username of your choice instead of USERNAME. Then, the system will prompt
you to enter a password, which will not show on your screen. Just type the password of your
choice and press Enter.

3.	 This will create a password file named passwd in the /etc/mosquitto directory. All we
need to do now is add some lines in the Mosquitto configuration file. To do this, just type the
following command in the terminal:

sudo nano /etc/mosquitto/mosquitto.conf

4.	 This will open the configuration file in the nano text editor. Go to the end of the file and add
the following lines:

allow_anonymous false

password_file /etc/mosquitto/credentials

5.	 Once you have added these lines, press Ctrl + X on your keyboard and press Y to save the
changes we just made.

6.	 Now, the final step is to restart our MQTT broker so that these changes can take effect. To do
this, type the following command:

sudo systemctl restart mosquitto

Taking Your MQTT Broker Global206

That is all you need to do to set up basic authentication for your MQTT Broker. However, since we
are just testing the functionality, we will not be setting up a username and password for our broker:

Figure 7.41 – Adding our new MQTT broker to Node-RED

Now, just change the broker settings for both the MQTT in and out nodes and redeploy the flow.

Next, we will need the terminal of our server again. We will be using the mosquitto_pub and
mosquitto_sub commands to test whether our broker is up and running. mosquitto_pub and
mosquitto_sub are command-line tools provided by Mosquitto for publishing and subscribing
to topics using any MQTT broker. We used these when we tested the broker on our Raspberry Pi. We
will follow the same steps to test this broker as well.

Type the following command on your terminal. The purpose of this command is to publish the message
“Hello World!” on the test/subscribe topic:

mosquitto_pub -h <droplet ip> -p 1883 -t test/subscribe -m
"Hello World!"

Once you run this command, you should see that the same message is printed on the Debug tab of
Node-RED:

How to take your broker global 207

Figure 7.42 – Testing our broker hosted on a virtual machine using the mosquitto_pub command

Note
Please do not try to access the IP address shown in the preceding screenshot as it is no longer
active.

This shows that we can now use our broker and publish a message on any topic through a client device
connected to the internet (our Pi is the client in this case).

Next, we will check the subscribe capabilities through the mosquitto_sub command. Just type the
following command on your terminal and press Enter:

mosquitto_sub -h <droplet ip> -p 1883 -t test/publish

This command will subscribe to the test/publish command. Now, we have configured our Node-RED
flow to print a “Hello World!” message when we trigger the inject node.

Taking Your MQTT Broker Global208

We will do this by pressing the blue button on the inject node. This should show the same message
printed on the terminal too:

Figure 7.43 – Testing our broker hosted on a virtual machine using the mosquitto_sub command

Now, we can subscribe to any topic and access the arriving messages through a client device connected
to the internet and our MQTT broker.

Summary
We covered a lot of interesting topics in this chapter. So, let’s go through them once more to refresh
our memory. We started by discussing the limitations of our present Raspberry Pi MQTT broker and
then looked at the advantages of an MQTT broker, which can be hosted and accessed through the
internet. Then, we discussed two options that can help us take our MQTT broker global and learned
how to set up each and test them using a simple Node-RED flow on our Raspberry Pi.

We are almost at the finish line! We have covered a lot of content throughout this book. In the next
chapter, we will cover the topics that will assist you in answering a very important question: What next?

8
Project Prototype to

Product – How?

We are almost at the finish line. This book has covered all the essentials required to get yourself familiar
with numerous concepts related to Raspberry Pi and MQTT. But this is just the beginning! Now, the
most important question arises: What Next?

This chapter provides the answer to this question. We will be covering a lot of important things that
will assist you in choosing your future path.

In this chapter, we will cover the following topics:

•	 Innovative project ideas

•	 IoT services provided by enterprise cloud platforms

•	 How to scale your projects using the current hardware

So, let’s get started!

Project Prototype to Product – How?210

Innovative project ideas
“Building projects is the best way to learn a technology, period.”

This is the motto I believe in. Learning a technology is not just about theory. You can read more than
100 books on a single piece of technology but to master it, you have to have hands-on experience
in working with that technology. This helps you not only understand the nitty gritty details but also
learn new things that you have to pick up while building a project:

Figure 8.1 – It all starts with an idea!

The projects chosen in this book were handpicked by me as I built them when I was first getting
familiar with Raspberry Pi. We will cover two very popular project ideas that you can build to further
expand your knowledge of Pi and the MQTT communication protocol.

Please note that this section only provides an overview of these ideas; you will have to research yourself
and build them, which is how you will learn and master various technological skills.

Idea 1 – Home automation system

Smart homes are quickly gaining popularity, all thanks to the cheaper and more powerful hardware
available on the market currently. This is not a new concept and has been implemented by thousands
of DIY enthusiasts, including myself:

Figure 8.2 – Home automation in a nutshell

Innovative project ideas 211

The preceding figure signifies how easy home automation is to implement. A single Raspberry Pi can
act as a hub for your entire home automation system!

The main advantage of this idea is that you can implement it at any scale, from a single appliance
to a whole house being controlled through a single hub. Let’s discuss how you can use your existing
skillset to create this project. First, by now, it should be clear how the hardware components will be
used. You will use the following:

•	 A Raspberry Pi, which will act as the central hub for your home automation ecosystem. It will
be used to control all the client or end node devices.

•	 The ESP32 and ESP8266-based home automation projects will be used as the client. You can
use the Major Project 2 that you built directly for this. You will need multiple projects to create
this at a larger scale. For instance, one such project will be required for each room of your
apartment or house.

Idea 2 – air quality monitoring system

Air is essential to sustain life on our planet. As we all must have studied in school, air is 78% nitrogen,
21% oxygen, and 1% argon; the rest of the gases are very minute in volume. Nonetheless, several gases
are categorized as polluters, with carbon dioxide being the main culprit. Apart from this, there are
other minute solid particles that greatly affect human health, known as particulate matter. They are
categorized based on particulate size (in microns), and the two major types are PM2.5 and PM10. Three
main components can be used to monitor these with a conventional air quality monitoring system.

You can simply connect one of the commercially available sensors to your Raspberry Pi and write
some simple Python code to start monitoring these parameters. You can choose any sensor of your
choice for this purpose. Some options are as follows:

•	 Honeywell HPM Particle sensor: This provides laser-based light scattering particle sensing,
including PM1.0, PM2.5, PM4.0, and PM10. It responds in less than 6 seconds, has UART, and
has standard and compact versions. These are just some of the characteristics of this sensor:

Figure 8.3 – Honeywell HPM Particle Sensor

Project Prototype to Product – How?212

•	 SDS011 sensor: This is a recently developed air quality sensor created by a company called
Nova Fitness. You can monitor PM2.5 and PM10 readings using this sensor:

Figure 8.4 – SDS011 sensor

You will also require a UART interface if you want to connect any of these sensors to the Pi. However,
most sensors come with a USB to Serial connector, as shown here:

Figure 8.5 – USB to Serial connector for sensors

Regarding the software, you will need to code in Python to read the values from the sensor through
UART. What you do with these values is up to you. You can create a Node-RED dashboard, like the
one we created for the weather station, or you can use external data visualization or storage tools
such as Adafruit IO, ThingSpeak, and so on. The following is an example dashboard for this project:

IoT services provided by enterprise cloud platforms 213

Figure 8.6 – Example quality monitoring dashboard (Adafruit IO)

In this section, we discussed two very popular ideas that you can implement using the skills you’ve
learned throughout this book. Now, we will explore some IoT services offered by enterprise cloud
platforms such as Amazon Web Services (AWS) and Google Cloud Platform (GCP) and create a
simple project using one such service – you learn best by doing!

IoT services provided by enterprise cloud platforms
Modern cloud platforms such as AWS, GCP, and Azure provide a fully managed IoT system architecture
that can help you do the following:

•	 Data collection and analysis

•	 Remote access and deployments

•	 IoT data security

•	 Third-party application integrations

The main advantage of using such a platform is that the hardware is completely managed by the cloud
service provider, along with data security and access control management. This creates a very powerful
and useful platform for a user managing numerous IoT devices on a single platform.

The whole system architecture is broken into four parts:

•	 Hardware Layer: All the IoT sensors and devices fall under this layer. Their primary task is
data collection and sharing.

Project Prototype to Product – How?214

•	 Network Layer: The data that’s collected by the sensors must reach the IoT cloud platform in
some way and that is through this layer. This can be a direct transfer – that is, through Wi-Fi or
Ethernet to the platform – or an indirect transfer, through an IoT gateway. Here, the hardware
shares its data over a local network to the gateway (which can be a Raspberry Pi as well!) through
BLE, WiFi, Zigbee, and so on, and then the data is shared to the IoT platform over the internet.

•	 Middleware Layer: The cloud platform’s IoT services fall in this layer – that is, a fully managed
IoT platform with numerous features and advantages over the conventional platforms.

•	 Application Layer: This is the final layer where all the applications fall and is what the end
users use. They can be a customer, a data analyst – anyone. The application could be a mobile
application, web dashboard, and so on.

Now, let’s discuss two such platforms in brief, after which we will create a simple project, wherein we
will demonstrate how to connect Node MCU to AWS IoT Core.

IoT cloud platforms

With the global IoT market rapidly progressing, an enterprise solution to handle all the IoT-related
applications is essential. This is where the IoT cloud platforms come in. These platforms make the task
of hosting an IoT service a lot easier as it only manages the hardware, software (in some use cases),
and maintenance. All we need to do is host our service and write the product-specific code.

We will discuss two major IoT platforms in brief in this section: AWS and GCP.

Amazon Web Services

Amazon provides a range of services when it comes to IoT. The main advantage of these services is
that they are completely managed and scalable and support almost an unlimited number of devices
and message transfers. There are several use cases for the platform: industrial (IIoT), consumer and
commercial markets, and more. Some popular IoT services that AWS provides are as follows:

•	 AWS IoT Core: This allows seamless and secure connections between devices over a fully
managed architecture

•	 AWS IoT Device Defender: Security and auditing for your IoT devices

•	 AWS IoT Device Management: Register, monitor, and manage your IoT devices

•	 FreeRTOS: A lightweight operating system for microcontrollers for low-power edge devices

•	 AWS IoT Greengrass: For managing intelligent IoT devices on the edge

Google Cloud Platform

GCP allows the IoT Core service to link your IoT devices to the cloud. It is a highly scalable and fully
managed service offered by GCP, which maintains a unique logical configuration for each device.

IoT services provided by enterprise cloud platforms 215

One of the defining features of this service is automatic load balancing, which means the architecture
automatically scales up when the number of devices or the data traffic increases.

There are two major components of the IoT Core service:

•	 Device Manager: This manages all the connected IoT devices, including authentication,
registration, and configuration management. It even helps you control your devices remotely
from the cloud.

•	 Protocol Bridge: This component’s main task is to provide a way to connect your IoT device
to Google Cloud through various wireless communication protocols (for example, HTTP and
MQTT).

Now that we’ve covered AWS and GCP, let’s implement what we’ve discussed practically by connecting
a Node MCU device to AWS IoT Core and sending BME280 sensor data to the cloud.

Project – getting started with AWS IoT Core

In this section, we will connect our Node MCU to a Wi-Fi network and, through that, connect it
to AWS IoT Core. We will demonstrate the publish and subscribe capabilities by sending BME280
Sensor data to the cloud and sending a simple Hello World message from the cloud to the Node MCU
development board.

Project hardware setup

To get started, we need to connect the BME280 sensor to the Node MCU. The following is a circuit
diagram for the same:

Figure 8.7 – NodeMCU BME280 schematic diagram

Project Prototype to Product – How?216

The preceding diagram shows that you need to connect the BME280 sensor to our NodeMCU
development board. Now, let’s set up the AWS IoT Core environment.

AWS IoT Core setup

First, we must set up AWS IoT Core. To do so, you must go to https://aws.amazon.com/:

Figure 8.8 – AWS home page (click on the Sign in to the Console button)

Next, you must click on the Sign in to the Console button, which will redirect you to a new sign-in
page. If you already have an active AWS account, just sign in using those user credentials; otherwise,
just go to https://portal.aws.amazon.com/billing/signup, which will let you create
a new account under the free tier.

Please note that you will need to enter your credit card details for the sign-up process, just for verification
purposes. You will not be charged for anything until you use the services as you can stay within the
free tier limits. Once you have signed in to your account, go to the AWS IoT Core service home page.
You can do that either by searching for it via the Console search bar, going to the Service tab, or by
going to https://aws.amazon.com/iot-core/.

This will open the AWS IoT dashboard, as shown in the following screenshot:

https://aws.amazon.com/
https://portal.aws.amazon.com/billing/signup
https://aws.amazon.com/iot-core/

IoT services provided by enterprise cloud platforms 217

Figure 8.9 – The AWS IoT Core dashboard

Next, we have to connect our device to AWS IoT Core. For this, we need something called a thing,
which is the representation of your physical device in the cloud. Just click on All Devices from the
right pane and then click on Things from the dashboard home page. This will open a new web page
that will take you through the thing registration process. Just click the Create things button:

Figure 8.10 – Creating a new thing (AWS IoT)

Project Prototype to Product – How?218

We just need to create a single thing (for our Node MCU), so press Next. You will have to go through
three steps to create a thing on AWS, as shown here:

Figure 8.11 – Steps to create a thing on AWS IoT Core

In Step 1, all we need to do for now is give our thing a name. I will be naming it NodeMCU for this
tutorial; you can name it whatever you like. There is no need to change any additional settings. Just
press Next after you have given your thing an appropriate name:

Figure 8.12 – Creating a new thing (Step 1)

The next step is to configure a certificate file (also known as a CSR) for your thing. This file is used for
authentication purposes and is very important for maintaining security standards. We can either create
a new certificate file (which we are going to do now) or upload an existing CSR file and skip this step.

IoT services provided by enterprise cloud platforms 219

We will just let AWS auto-generate the certificate for us (which is selected by default) and press Next:

Figure 8.13 – Step 2 – Configure device certificate

The next step is to attach policies to this certificate, which means configuring what the device should be
able to do (connect, subscribe, publish, and so on). For this tutorial, we need all three functionalities,
so we will be creating our policy accordingly. Just click the Create policy button:

Figure 8.14 – Creating a new policy for our certificate

Project Prototype to Product – How?220

To create such a policy, we will need to add four policy actions. First, just give your policy a unique
name (I have named mine NodeMCU_Policy), and then add the following actions:

•	 Iot:Connect

•	 Iot:Publish

•	 Iot:Subscribe

•	 Iot:Receive

Note that we need to allow all these policies. Moreover, we need the resource ARN for our thing for
each policy. Getting this is a bit tricky, so the easy way is to choose a connect policy from the Policy
examples tab; this will give you the resource ARN. Which looks something like this:

arn:aws:iot:us-east-1:316634146583

Figure 8.15 – Adding an example policy to get the resource ARN

Now, we need to fill in the following in the Policy resource section for each action:

•	 Connect: *

•	 Publish: *

•	 Subscribe: *

•	 Receive: *

IoT services provided by enterprise cloud platforms 221

Please note that if we want to add the Subscribe action, we need both the Receive and Subscribe
actions. The first will allow the thing to receive messages, while the second will let you subscribe to
any particular MQTT topic. * is a wildcard, which implies that any AWS resource that applies this
policy will be able to access all the mentioned actions. Once all the actions have been set, the policy
document will look something like this:

Figure 8.16 – Policy document configuration

After the configuration is complete, just click on the Create policy button. Your policy should appear
in the AWS IoT Policies section, as well as the Add policy to certificate section (Step 2, remember?)
for which we created this.

Just select the policy to attach it to the certificate and then press the Create thing button.

Figure 8.17 – Attaching our policy to the certificate and creating our thing

Project Prototype to Product – How?222

Now, a new window will pop up that lists all the key and certificate files that have been created. Here,
we need to download four files:

1.	 Certificate file

2.	 Public key

3.	 Private key

4.	 The root CA 1 RSA 2,048-bit key

Please rename the files according to the names provided here to avoid confusion in the future. The
following screenshot shows which files need to be downloaded for this tutorial:

Figure 8.18 – The Download certificates and keys view

Once all the necessary files have been downloaded, just press the Done button. This concludes all
the setup required from AWS IoT Core. Now comes the interesting part! We will write the code that
will let the Node MCU board establish a connection with AWS IoT Core and allow us to publish and
subscribe to the topics we mentioned during the setup.

IoT services provided by enterprise cloud platforms 223

For better reference, here are the publish and subscribe topic names we will be using for this project:

•	 Publish Topic: ESP8266/publish

•	 Subscribe Topic: ESP8266/subscribe

Let’s start by explaining the code for this project.

Code explanation

The NodeMCU code we will be writing for this project will do the following:

1.	 Connect to a Wi-Fi network.

2.	 Establish a connection with AWS IoT Core.

3.	 Get the sensor data, create a JSON file, and publish it on the Publish topic.

4.	 Subscribe and print any messages that have been published on the Subscribe topic.

First, we will do something different in this project, which is a better practice than what we have
done so far. We will store all the sensitive data information such as the certificates, private key, Wi-Fi
credentials, and the AWS endpoint address in a separate secrets.h file for more secure and flexible
usage of these parameters in our main code.

To do this, just create a new tab after creating a new Arduino file by going to the downward arrow icon
at the top-right of the Arduino IDE window and expanding the menu to find and click the Create
New Tab option. Save the file with the name secrets.h.

Now, let’s look at a step-by-step explanation of the code, as we have done in all the previous projects. We
have two files, so we will divide this section into two parts as well. Let’s start with the secrets.h file:

#include <pgmspace.h>

#define SECRET

const char WIFI_SSID[] = "…";               //Wifi SSID Name

const char WIFI_PASSWORD[] = "….";           //Wifi Password

#define THINGNAME "…." // Name of your thing in AWS

int8_t TIME_ZONE = +5.5; //IST(India): +5.5 UTC (Time Zone
parameter)

const char MQTT_HOST[] = "xxxxxxxxxxxxxx-ats.iot.us-east-1.
amazonaws.com"; // Get this from the AWS IoT Core Settings

static const char cacert[] PROGMEM = R"EOF(

-----BEGIN CERTIFICATE-----

[…………]

-----END CERTIFICATE-----

)EOF";

// Copy contents from XXXXXXXX-certificate.pem.crt here ▼

Project Prototype to Product – How?224

static const char client_cert[] PROGMEM = R"KEY(

-----BEGIN CERTIFICATE-----

[…………]

-----END CERTIFICATE-----

)KEY";

// Copy contents from  XXXXXXXX-private.pem.key here ▼

static const char privkey[] PROGMEM = R"KEY(

-----BEGIN RSA PRIVATE KEY-----

[…………]

-----END RSA PRIVATE KEY-----

)KEY";

This file is used to store all the sensitive and reusable parameters of the main code. Let’s look at these
parameters:

1.	 First are the Wi-Fi credentials, which must be specified.

2.	 Next, you need to store the name of the thing you gave on AWS IoT as this will be used as the
client’s name to establish a connection.

3.	 The TIME_ZONE parameter (the difference between your time zone and UTC in hours) will
be used to fetch the latest UTC (covered later in the code).

4.	 MQTT_HOST will contain the AWS endpoint, which will be used as the MQTT host. It can
be fetched by going to the settings of AWS IoT Core. The following screenshot shows where
you can find it:

Figure 8.19 – Getting the AWS endpoint for the project

IoT services provided by enterprise cloud platforms 225

5.	 Finally, we need to store the certificate, private key, and the Amazon Root CA1 certificate we
downloaded from AWS. To get the text data of these certificates, just open them in Notepad
and copy and paste their contents into this file accordingly. You will find comments to help
you out with this.

Next, we will write the main code for this project, in which we will include this secrets.h file so
that we have access to all the variables and constants we defined in it.

Chapter_8_Project_Code.ino

Since this code is quite large, we have broken it into short snippets for easier understanding and
explanation. First, we must import the necessary libraries:

#include <ESP8266WiFi.h>

#include <WiFiClientSecure.h>

#include <PubSubClient.h>

#include <ArduinoJson.h>

#include <time.h>

#include <Wire.h>

#include <Adafruit_BMP280.h>

#include "secrets.h"

As you can see, we will be using some new libraries we haven’t covered:

•	 The WiFiClientSecure.h file is a subpart of the ESP8266WiFi library and will be used to
connect to AWS IoT Core using the certificate and private key we downloaded. To learn more
about this, go to https://arduino-esp8266.readthedocs.io/en/latest/
esp8266wifi/bearssl-client-secure-class.html.

•	 The ArduinoJSON library will be used to format the sensor data in JSON format before it’s
published on our topic. This is a good practice and can be implemented in the projects we
covered previously in this book as well. Please note that you will have to download ArduinoJSON
version 6.0 or higher for this project. Please visit the library documentation to learn more about
this library: https://arduinojson.org/v6/doc/.

•	 The time.h file is used to get access to certain functions to set the time as per your time zone
for the NodeMCU board. This is important as the current time is required for certification
verification of AWS IoT.

Now, let’s look at the variable, object, and constant declarations:

// BMP 280 Sensor value variables

float temperature_C ;

float pressure ;

https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/bearssl-client-secure-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/bearssl-client-secure-class.html
https://arduinojson.org/v6/doc/

Project Prototype to Product – How?226

float altitude ;

// Variables to implement publish every 5 second logic

unsigned long lastMillis = 0;

unsigned long previousMillis = 0;

const long interval = 5000;

// variables to store the latest time fetched by the NTP
Client.

time_t now;

time_t nowish = 1510592825;

// AWS Publish and subscribe topic mentioned in the AWS policy
you created

#define AWS_IOT_PUBLISH_TOPIC   "ESP8266/publish"

#define AWS_IOT_SUBSCRIBE_TOPIC "ESP8266/subscribe"

// WiFi SSL to add the certificates and key we retrieved from
AWS

WiFiClientSecure net;

BearSSL::X509List cert(cacert);

BearSSL::X509List client_crt(client_cert);

BearSSL::PrivateKey key(privkey);

// Objects for pubsub and BMP sensor

PubSubClient client(net);

Adafruit_BMP280 bmp;

The next step is to initialize all the necessary variables, constants, and objects that we will be using in
this code. Certain variables have been used without any initializations (their style has been changed to
bold). This is because they have been defined in the secrets.h file, which we will define at the end.

Now, let’s look at the NTPConnect function:

void NTPConnect(void)

{

  Serial.print("Setting time using SNTP");

  configTime(TIME_ZONE * 3600, 0 * 3600, "pool.ntp.org", "time.
nist.gov");

  now = time(nullptr);

  while (now < nowish)

  {

    delay(500);

    Serial.print(".");

IoT services provided by enterprise cloud platforms 227

    now = time(nullptr);

  }

  Serial.println("done!");

  struct tm timeinfo;

  gmtime_r(&now, &timeinfo);

  Serial.print("Current time: ");

  Serial.print(asctime(&timeinfo));

}

This function is used to fetch the latest time. This is required for proper authentication, as discussed
previously. Please note that the only thing you need to keep in mind here is the TIME_ZONE variable,
which will also be defined in the secrets.h file. This is the number by which the time in your
region is behind or ahead of the UTC (as we need UTC for authentication).

Now, let’s look at the MQTT callback function:

void messageReceived(char *topic, byte *payload, unsigned int
length)

{

  Serial.print("Received [");

  Serial.print(topic);

  Serial.print("]: ");

  for (int i = 0; i < length; i++)

  {

    Serial.print((char)payload[i]);

  }

  Serial.println();

}

This is the standard MQTT callback function we have been using throughout this book. It prints the
incoming messages on the subscribed topics on the Serial monitor.

Now, let’s look at the Setup_WiFi() function:

void Setup_WiFi()

{

  delay(10);

  // We start by connecting to a WiFi network

  Serial.println(String("Attempting to connect to SSID: ") +
String(WIFI_SSID));

Project Prototype to Product – How?228

  WiFi.mode(WIFI_STA);

  WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

  while (WiFi.status() != WL_CONNECTED)

  {

    delay(500);

    Serial.print(".");

  }

  randomSeed(micros());

  Serial.println("");

  Serial.println("WiFi connected!");

  Serial.println("IP address: ");

  Serial.println(WiFi.localIP());

}

The main purpose of this function is to establish a network connection over Wi-Fi using the credentials
you will specify in the secrets.h file (WIFI_SSID and WIFI_PASSWORD).

Now, let’s look at the connectAWS() function:

void connectAWS()

{

  delay(3000);

  Setup_WiFi();

  NTPConnect();  

  net.setTrustAnchors(&cert);

  net.setClientRSACert(&client_crt, &key);

  client.setServer(MQTT_HOST, 8883);

  client.setCallback(messageReceived);

  Serial.println("Connecting to AWS IOT");

  while (!client.connect(THINGNAME)) {

    Serial.print(".");

    delay(1000);

  }

  if (!client.connected()) {

    Serial.println("AWS IoT Timeout!");

    return;

  }

  // Subscribe to a topic

IoT services provided by enterprise cloud platforms 229

  client.subscribe(AWS_IOT_SUBSCRIBE_TOPIC);

  Serial.println("AWS IoT Connected!");

}

This function does the following:

1.	 Connects to Wi-Fi by calling the setup_wifi function.

2.	 Gets the latest time by calling the NTPConnect function.

3.	 Establishes a connection with the AWS MQTT endpoint (this will be fetched from the AWS
IoT Core settings) and initializes the callback function.

4.	 Tries to establish a connection with the thing we created. If a connection can be established,
it subscribes to the topic we have specified in our AWS IoT policy (the topic name is already
defined).

Now, let’s look at the publishMessage() function:

void publishMessage()

{

  StaticJsonDocument<200> doc;

  doc["time"] = millis();

  doc["temperature"] = temperature_C;

  doc["pressure"] = pressure;

  doc["altitude"] = altitude;

  char jsonBuffer[512];

  serializeJson(doc, jsonBuffer); // print to client

  client.publish(AWS_IOT_PUBLISH_TOPIC, jsonBuffer);

}

This function’s primary task is to store the latest BMP sensor values in a JSON document, convert
it into a char array, and then publish this data on the AWS Publish topic we defined in the code.

Now, let’s look at the setup() function:

void setup()

{

  Serial.begin(115200);

  if (!bmp.begin(0x76)) {

    Serial.println(F("Could not find a valid BMP280 sensor,
check wiring or "

                      "try a different address!"));

Project Prototype to Product – How?230

    while (1) delay(10);

  }

  // Default settings from datasheet

  bmp.setSampling(Adafruit_BMP280::MODE_NORMAL,     

                  Adafruit_BMP280::SAMPLING_X2,     

                  Adafruit_BMP280::SAMPLING_X16,    

                  Adafruit_BMP280::FILTER_X16,      

                  Adafruit_BMP280::STANDBY_MS_500);

  connectAWS();

}

Here, we do the following:

1.	 Initialize or open a Serial connection with a baud rate of 115200.

2.	 Check if the BMP sensor is connected, and if it is, specify the default setting parameters for it.

3.	 Call the connectAWS function, which connects to Wi-Fi, sets up the latest time, and connects
to AWS IoT Core.

Now, let’s look at the loop() function:

void loop()

{

  temperature_C = bmp.readTemperature();

  pressure = bmp.readPressure();

  altitude = bmp.readAltitude(1013.25);

  Serial.print(F("Temperature : "));

  Serial.print(temperature_C);

  Serial.print(F("%  Pressure : "));

  Serial.print(pressure);

  Serial.print(F("   Altitude : "));

  Serial.println(altitude);

  delay(2000);

  now = time(nullptr);

  if (!client.connected())

  {

    connectAWS();

  }

  else

IoT services provided by enterprise cloud platforms 231

  {

    client.loop();

    if (millis() - lastMillis > 5000)

    {

      lastMillis = millis();

      publishMessage();

    }

  }

}

This is the final loop() function in which we will fetch the latest BMP sensor values and print them
on the Serial monitor and set up the latest time. After that, we will check whether a connection with
AWS IoT Core has been established and, if it has, publish the sensor values on the AWS Publish topic
(ESP8266/publish in this case) every 5 seconds.

With that, we’ve explained the code. Now, we will see the project in action, for which we will be using
the MQTT test client provided by AWS IoT.

Project demonstration

Now that everything has been set up, we are ready to test the project! Once you have connected the
BMP280 sensor to the NodeMCU board, just upload the code to the board. If everything has been
done according to this tutorial, you will be able to upload the code onto the board successfully. This
completes the setup on the hardware end.

Next, you will have to open the AWS IoT Core dashboard from the left pane and select the MQTT
test client option, which you can find under the Test section. This will open a new page that will look
something like this:

Figure 8.20 – The MQTT test client page

Project Prototype to Product – How?232

This is a web-hosted MQTT client that has already been connected to your AWS endpoint. You can
publish and subscribe to different topics through this tool. Now, let’s check whether we can receive
the BMP280 sensor values from our NodeMCU. For that, just add the ESP8266/publish text under
Topic filter in the Subscribe to a topic section and click the Subscribe button.

Now, connect the NodeMCU to a power source and wait for a few seconds (setting up the latest time
takes some time). You should be able to see the sensor values on the screen every 5 seconds:

Figure 8.21 – NodeMCU sensor values every 5 seconds

Great! Now, let’s test whether our NodeMCU board can print messages that have been published on
the ESP8266/subscribe topic (specified in the code). For this, just open the Publish to a topic section
on the MQTT test client tool and type the aforementioned topic name in the Topic name textbox.
Keep the message payload as is. Before publishing the message, open the Serial monitor for your
NodeMCU board as you will be able to see the message there.

Once you have it open, click the Publish button. You should be able to see the message there, as
shown here:

Figure 8.22 – Sample message published through the MQTT test client on AWS

How to scale your projects using the current hardware 233

This marks the end of this section. The possibilities with this are endless as we can pass this data
through any of the available AWS services to create dashboards, run inference by passing them through
trained ML models, and even use this data to train a machine learning model. We can even create
automations using AWS Lambda – this is just the tip of the iceberg. This is a step you will take only
after you have scaled your projects to a certain level as these enterprise solutions are pretty expensive
and the complexity of the solutions also increases after adding different AWS services into the mix.
Now, let’s learn how to scale them immediately and on a much smaller scale.

How to scale your projects using the current hardware
We discussed a lot of options for scaling our current setup, starting with using a cloud-hosted MQTT
broker, in Chapter 7, Taking Your MQTT Broker Global. In the previous section, we discussed how
we can use enterprise IoT platforms for this. But the main drawback of such products is that they are
quite expensive and although they do provide customizations, there are always some drawbacks you
may face while working on a particular use case.

For this reason, I have added this section as well. This will give you a gentle introduction to all the
tools you will need to build an actual product using the existing tools that you have. For maximum
customization, you always need to have your own software base, which you will have to develop from
scratch. There are several approaches that you can take to achieve this, and, in this section, we will
cover a few of them.

So, without further ado, let’s get started.

Home Assistant

Node-RED, though easy to use, has its limitations as it was created for educational purposes. Moreover,
there are far more capable software packages built specifically for home automation such as Home
Assistant, openHAB, and IFTTT.

In this section, we will discuss one of the most popular and obvious choices – Home Assistant:

“Home Assistant is a dedicated home automation system that is completely open
source. It allows you to control all your devices over a local network (which

provides data privacy) by running it on a local server such as a Raspberry Pi. The
major advantage of this software is the vast developer community that supports

this project.”

This system provides several advantages over the existing Node-RED system that we use:

•	 Its major advantage is the number of supported devices, specifically commercial home
automation devices such as Philips Hue smart lights, Google’s Nest thermostat, and more. All
such devices can be configured with our current setup without any hassle. All such connections
are referred to as Configurations in Home Assistant. At the time of writing, there are 1,800+
such configurations available and they keep on adding more.

Project Prototype to Product – How?234

•	 We can even add different wireless connectivity modes to our system just by connecting an
external board to our Raspberry Pi. For instance, you can add Zigbee support to the system
just by adding a Zigbee support board to your Raspberry Pi.

•	 One of the most impactful advantages of using Home Assistant is the developer community. It
has a very active and helpful community that can support you every step of the way.

Now, to get started with Home Assistant on the Raspberry Pi, you just need to create an OS image
to specifically run the Home Assistant application. To do this, you must follow some steps that are
similar to those you followed to set up your SD card in Chapter 1, Introduction to Raspberry Pi and
MQTT (Setting up the SD card) with a small change:

1.	 When you open the Raspberry Pi Imager and click on the Choose OS button, you have to
select the Home Assistant option instead of the latest Raspberry Pi OS build. The following
screenshot shows how to select it:

Figure 8.23 – Installing and flashing the Home Assistant OS on the Raspberry Pi

2.	 Once you select that option, you will have two options for operating systems – one for Raspberry
Pi 3 and the other for Raspberry Pi 4/400. Just choose one according to the Raspberry Pi model
you own and then follow the rest of the steps, as you did in Chapter 1, Introduction to Raspberry
Pi and MQTT. The following screenshot shows these options:

How to scale your projects using the current hardware 235

Figure 8.24 – Home Assistant OS options based on the Raspberry Pi model

Now that you have the Home Assistant OS flashed on your SD card, just insert that into the Raspberry
Pi so you can get started with Home Assistant! Here is the link to the official Home Assistant website,
which contains several examples, detailed documentation, and more to help you get started: https://
www.home-assistant.io/.

Now, if you still want further customization, you will have to install and set up every software requirement
yourself from scratch. We will explore this option in brief and learn how to set up a basic LAMP server
on the Raspberry Pi, which is the first step you need to take toward developing a fully custom setup.

So, let’s get started!

LAMP Server

LAMP stands for Linux Apache MySQL PHP/Python/Pearl. This is a popular software bundle used
specifically for web development. There is a very popular alternative for the programming language,
JavaScript, a very popular and powerful web development language.

We will stick to the basics and set up the PHP language, along with an additional piece of software,
phpMyAdmin, which is a database management web interface. For the database, we will use MariaDB,
which is built on top of MySQL with some additional and useful features. Follow these steps:

1.	 Updating the Raspberry Pi OS: Before we can install any component, we need to make sure that
our OS (the Linux component) is up to date. Just run the update and upgrade commands
that we have run several times throughout this book in a new terminal window:

sudo apt update && sudo apt upgrade -y

https://www.home-assistant.io/
https://www.home-assistant.io/

Project Prototype to Product – How?236

2.	 Installing Apache: Once this is done, we will start by installing and setting up our first component,
Apache. It is a popular web server software that allows you to host and handle web pages. To
install this on your Raspberry Pi, just run the following command:

sudo apt install apache2 -y

The following screenshot shows what the output of this command looks like:

Figure 8.25 – Installing Raspberry Pi Apache2

Once this command runs successfully, Apache will be installed. Now, to test this installation, you just
need to do the following:

1.	 First, change the directory to /var/www/html. Just type the following command in the
terminal:

cd /var/www/html

2.	 This is the home directory of your server. All the source code for your website or web page will
go in here. By default, an index.html file is present in this directory. You can easily access
your server’s index file through your Raspberry Pi’s IP address. You can easily get the address
by typing ifconfig or hostname -L in your terminal.

3.	 Once you get the IP address, just type that address into any browser connected to the same
network as your Pi. You should see the following output if everything has been installed correctly:

How to scale your projects using the current hardware 237

Figure 8.26 — Apache2 Debian Default Page (index.html)

With that, we have installed the Apache package. Next, we will install the PHP component.

PHP installation and setup

Hypertext Preprocessor (PHP) is a server-side scripting language that is used to develop dynamic
web applications. To install PHP on your Pi, just type the following command in your terminal:

sudo apt install php -y

Now, let’s test whether it has been installed as expected. For this, we will replace the default index.
html file with a file of our own. For this, just move to Apache’s home directory and type in the
following commands:

cd /var/www/html

sudo rm index.html

sudo nano index.php

Project Prototype to Product – How?238

In your index.php file, add the following code to print a message of your choice on your web page.
We will print the most basic message – "hello world":

<?php echo "hello world"; ?>

The following screenshot shows what this will look like on your screen:

Figure 8.27 – Your first PHP script!

To save your file, press Ctrl + X, followed by Y, and press Enter to exit. Now, for the changes to take
effect, we will restart the Apache server using the following command:

sudo service apache2 restart

To test this, just type in the IP address of your Pi on a browser. You should see an output similar to
the following instead of the one you saw when you first installed Apache:

Figure 8.28 – Sample output page

If everything works as expected, then you have successfully installed and configured PHP on your
Pi. Now, you can write PHP scripts that can be used to communicate with databases and client-side
scripting language pages.

How to scale your projects using the current hardware 239

In the next subsection, you will learn how to install MySQL on your Raspberry Pi. Essentially, you will
be installing a database server on your Pi that can be accessed through any device connected to the
local network. Moreover, you will install another software component called phpMyAdmin, which is
a GUI for accessing and managing the database.

MariaDB and phpMyAdmin installation

MySQL (SQL stands for Structured Query Language) is a popular relational database that is completely
open source.

We will be installing the MariaDB server, which has been built on top of MySQL. First, we need to
install MariaDB and the php-mysql package, which will allow us to use phpMyAdmin to manage
our MariaDB database. Now, to install and set up everything, we need to run three commands, one
after the other:

sudo apt install mariadb-server php-mysql -y

sudo service apache2 restart

sudo mysql_secure_installation

The first command will install the database server and the supporting package. Then, we need to
restart the Apache web server so that it can detect the new packages. To complete the installation, we
need to type in the third command, which will define the configuration:

Figure 8.29 – The mysql_secure_installation command’s output

As you can see, this command lets you secure your database using the credentials that you specify.
Just follow these steps to complete this process:

1.	 You will be asked to Enter current password for root. There’s nothing to add here, so just
press Enter.

2.	 Type in Y and press Enter to set the root password.

3.	 Type in a password at the new password prompt and press Enter.

Project Prototype to Product – How?240

Important Note
Remember this root password as you will need it later.

4.	 Type Y to remove anonymous users.

5.	 Type Y to disallow root login remotely.

6.	 Type Y to remove the test database and access to it.

7.	 Type Y to reload the privilege tables.

When the installation is completed, you’ll see a message stating, Thanks for using MariaDB!.
This can be seen in the following screenshot:

Figure 8.30 – MariaDB installation completion message

Next, we will install phpmyadmin on our system. To do that, just type the following command in
your terminal:

sudo apt install phpmyadmin -y

The PhpMyAdmin installation program will ask you a few questions. We’ll use dbconfig-common
to configure this. Then, follow these steps:

1.	 Select Apache2 when prompted and press the Enter key.

2.	 When asked Configuring phpmyadmin?, select OK and press Enter.

How to scale your projects using the current hardware 241

3.	 When asked Configure database for phpmyadmin with dbconfig-common?, select Yes.

4.	 Type your password and press OK:

Figure 8.31 — phpMyAdmin configuration window

Now, we just need to enable the PHP MySQLi extension and restart Apache2 for changes to take effect.
This can be done by using the following commands:

sudo phpenmod mysqli

sudo service apache2 restart

Now, we need to perform one final step before we can open the phpMyAdmin interface. We need to
create a link that will allow Apache’s home directory to access the phpmyadmin folder. This can be
done by the following command:

sudo ln -s /usr/share/phpmyadmin /var/www/html/phpmyadmin

Now, you will be able to see a phpmyadmin folder in Apache’s home directory. This means you can
access the UI for this application just by typing the following address in any browser connected to the
same network as your Raspberry Pi: <Pi’s IP Address>/phpmyadmin.

Project Prototype to Product – How?242

You should see the login page for phpMyAdmin open in your browser window, as shown in the
following screenshot:

Figure 8.32 – phpMyAdmin login page

Enter the defined user credentials and press the Go button to log in:

Figure 8.33 — PhpMyAdmin home page

Summary 243

With that, you have installed both the database and the database management component and, in
turn, the LAMP configuration on our Raspberry Pi!

Now, you can use these software tools to create dashboards and access them through a web interface.
This gives you immense customization options, but the tradeoff is that you need to know how to create
web pages in any programming language of your choice.

“All good things must come to an end.”

Hence, this marks the end of our book. Now, let’s summarize what we have learned in this book.

Summary
We covered a lot of topics throughout this book and provided several projects to help you practically
implement the knowledge you’ve gained.

You have learned a variety of essential skills throughout this book. For instance, you can now set up
your own Raspberry Pi and you know what MQTT is, which means you can use this communication
protocol in any of your projects. Furthermore, you have learned how to set up the Node MCU and
ESP32 development boards and how to write efficient and robust code for them. At this point, you
can build two fairly complex prototype projects on your own: an IoT Weather Station and a Smart
Home control system!

After that, you learned the basics of Bash (the language used to write and execute Linux commands)
and how to set up an online MQTT broker, either on an independent provider or on your very own
virtual machine. Finally, you learned how to connect your IoT devices to AWS IoT and how to connect
your LAMP server to your Raspberry Pi.

These are just some of the things you can do now. But this is just the beginning – keep learning and
improving yourself!

Index

A
ACK packet 46
Adafruit_BMP280

reference link 125
Adafruit IO 212
ADC (analog-to-digital converter) 123
ADC pins 69
air quality monitoring system 211-213
Amazon Web Services (AWS)

about 180, 213, 214
IoT services 214

Apache
installing 236, 237

Arduino-based C programming 70
Arduino IDE setup

for ESP32 development board 77, 78
for NodeMCU development board 70-73

ArduinoJSON library 225
AWS account

reference link 216
AWS IoT Core

about 214
reference link 216

AWS IoT Core project
code explanation 223-231
demonstration 231-233

hardware setup 215, 216
setup 216-222
working with 215

AWS IoT Device Defender 214
AWS IoT Device Management 214
AWS IoT Greengrass 214

B
BearSSL WiFi Classes

reference link 225
BMP280 temperature and pressure sensor

about 122
characteristics 123

broker 5

C
CCS811 air quality sensor

about 123
modes of operation 124
reference link 125

client 5
connect acknowledgment (CONNACK) packet

about 42, 46, 58
acknowledgment flags 59
fixed header 58

Index246

message 46
returnCode 46
return code 59
sessionPresent 46

CONNECT message 43
CONNECT packet

about 42-45, 56, 57
fixed headers 44, 57
flags 44
payload 58
variable header 44, 57

control panel 93
control pins 69
CSR file 218

D
DHT11 temperature and humidity sensor

about 121, 122
reference link 125

Digital Ocean
reference link 195
setting up 195

Digital to Analog (DAC) converter pins 76
Disconnect-Request packet 63
Droplet

about 196
MQTT broker, setting up 201-204
MQTT broker, testing 204-207
setting up 196-201

DUP flag 48

E
Enable pin 69
enterprise cloud platforms

providing, IoT services 213

ESP32-based development board
about 74, 75
Arduino IDE setup 77, 78
GPIO pinout 76, 77
pin configurations 76, 77
technical specifications 75

ESP8266-based NodeMCU development board
about 66
Arduino IDE setup 70-73
GPIO pinout 67, 69
pin configurations 67-69
technical specifications 67

F
flow 93
FreeRTOS 214

G
Google Cloud Platform (GCP)

about 180, 195, 213, 214
IoT Core service, components 215

GParted
used, for formatting SD card 15

GPIO pinout 67
GPIO pins 69
ground pins 68

H
hardware requirements and setup, smart

home control relay system
5V Hi-Link power supply 154
5V non-latching relay 153
about 151
ESP32 development board 152
ESP32 development board, features 152

Index 247

miscellaneous components 154, 155
PCB design and circuit 155-158

HiveMQ Cloud
about 180
online MQTT broker, setting up 180-187
reference link 181

HiveMQ WebSocket client
reference link 192

Home Assistant
about 233
advantages 233
on Raspberry Pi 234, 235
reference link 235

home automation system 210, 211
home screen, Node-RED crash course

control panel 93
node palette 93
workspace 93

Honeywell HPM Particle Sensor 211
HTTP POST API 47
Hypertext Preprocessor (PHP)

installing 237-239

I
I2C communication interface 69
I2C (Inter-Integrated Circuit)

communication protocol 123
IF This Then That (IFTTT) 94
Internet of Things (IoT) 78
IoT cloud platforms

about 214
Amazon Web Services (AWS) 214
Google Cloud Platform (GCP) 214, 215

IoT services
enterprise cloud platforms, providing 213

IoT system architecture
Application Layer 214
Hardware Layer 213

Middleware Layer 214
Network Layer 214

IoT Weather Station project
BMP280 temperature and

pressure sensor 122, 123
CCS811 air quality sensor 123, 124
code explanation 125-134
dashboard setup 136-141
DHT11 temperature and humidity

sensor 121, 122
email alerts functionality 141-148
hardware requisites 120
NodeMCU development board 121
Node-RED, starting 134
project flow 136-141
Raspberry Pi setup 134
sensor interfacing 124

L
LAMP server

Apache, installing 236, 237
MariaDB installation 239, 240
PHP installation and setup 237-239
phpMyAdmin installation 240-243
Raspberry Pi OS, updating 235

least significant bit (LSB) 50
Linux Apache MySQL PHP/Python/

Pearl (LAMP) 235
Lua programming language 70

M
MariaDB

installing 239
Message Queuing Telemetry Transport (MQTT)

about 4
components 6
concepts 4

Index248

CONNACK packet 58
CONNECT packet 56
features 6, 7
functionality 6
publish/subscribe protocol 4, 5
SUBSCRIBE and SUBACK packets 59
working 4
working, practical demonstration 52

Mosquitto
about 35
download link 54
enabling 36, 37

most significant bit (MSB) 50
MQTT broker

access, obtaining 178-180
advantages 178
clients packages 35
enabling 36, 37
installing 35
MQTT client, connecting to 42, 43
setting up 35
setting up, on Droplet 201-204
subscriber/publisher connecting to and

sending message through 52-56
testing locally 37, 38
testing, on Droplet 204-207
virtual server 195

MQTT client
about 40, 42
connecting, to broker 42, 43
NodeMCU as 78

MQTT control packets 42
MQTT Control Packet Type 48
MQTT example

broker 5
publisher 5
subscriber 5

MQTT messages 40

MQTT protocol packet structure
about 43
CONNACK packet 46
CONNECT packet 43-45
PUBLISH packet 47
SUBSCRIBE packet 47

MQTT topics
about 41
single-level wildcards 41

multi-level wildcards 41, 42
multiplexed pins 68

N
node 93
NodeMCU

as MQTT client 78
setting up 106

NodeMCU, code explanation
about 106
Arduino codes loop function 110
Arduino code’s setup function 109
callback function, for handling MQTT

subscribed topics 107, 108
credentials and variable declarations 106
MQTT reconnect function 108, 109
required libraries importing 106
Wi-Fi setup function 107

NodeMCU development board
about 121
features 121

NodeMCU development board setup
about 78, 79
code explanation 79-85

NodeMCU LED
controlling, from Node-RED dashboard 105
hardware requirements 105
software requirements 105, 106

Index 249

node package manager (npm) 103
node palette 93
Node-RED

about 87, 88
demonstration 88
installation 88, 89
running, on Raspberry Pi 90
setting up 88
URL 87

Node-RED crash course
about 91
additional feature 94
flow 93
Hello World flow, creating 94-96
home screen 92, 93
LED connected, controlling to Raspberry

Pi through Node-RED 97-99
node 93

Node-RED dashboard
about 102-105
reference link 102
used, for controlling NodeMCU LED 105

Node-RED flow
creating to test online MQTT

broker 187-191
Node-RED MQTT components

setting up 99
Node-RED MQTT dashboard

setting up 99
Node-RED MQTT nodes

about 100-102
mqtt in node 100
mqtt out node 100
parameters 100

O
online MQTT broker

about 178-180
Node-RED flow, creating to test 187-191
project demonstration 192-194
setting up, on Hive MQ Cloud 180-187

OS image
flashing, onto SD card 20

P
Packet Identifier 50
particulate matter 211
phpMyAdmin

installing 240-243
Power over Ethernet (PoE) 9
power pins 68
project enhancement

about 171, 172
development, of mobile application 173
global MQTT broker, adding 174
hardware enhancement 171

project ideas
about 210
air quality monitoring system 211-213
home automation system 210, 211

publisher 5
PUBLISH packet

about 47
components 47
fixed header 48, 62
payload 49-63
variable header 49, 62

publish/subscribe protocol 4
Pulse Width Modulation (PWM) pins 69
PuTTY

about 202
URL 203

Index250

Q
QoS flag 48
Quality of Service (QoS) 42

R
Raspberry Pi

about 7
dashboard layout setup 110-112
Node-RED, running 90
project flow 112-115
setting up 24-29, 85, 86, 110
setup 165-171
VNC (Virtual Network Computing),

setting up 29-35
Raspberry Pi Imager software

about 20
downloading 20
download link 20
installing 20-23

Raspberry Pi Model 4B
about 8
hardware specifications 9, 10
operating systems 10

Raspberry Pi models 7, 8
RealVNC Server software 30
Remote Frame Buffer (RFB) protocol 30
Reset pin 69
Retain flag 48

S
SD card

formatting, in Linux systems 15-20
OS image, flashing onto 20
setting up, for Raspberry Pi 12-15

SD Card Formatter software 12

SD Card Formatter software, for macOS
reference link 12

SD Card Formatter software, for Windows
reference link 12

SDIO interface 69
SDS011 sensor 212
SensVN pins 77
SensVP pins 77
Serial Peripheral Interface (SPI) pins 69, 77
single-level wildcards 41
smart home control relay system

hardware requirements and setup 151
project code, writing on ESP32

board 158-164
solid state relays (SSR) 153
SSH keys

reference link 200
SSH (Secure Shell)

about 29
working 29

SUBACK packet 51, 59
Subscribe Ack packet 60
SUBSCRIBE packet

about 50, 59
fixed header 50, 59
payload 51, 60, 61
variable header 50, 59

subscriber 5

T
thing 217
ThingSpeak 212
time.h file 225
touch sensor 77

Index 251

U
UART channels 76
UART pins 69

V
Virtual Network Computing (VNC)

about 29, 30, 88
setting up, for Raspberry Pi 30-34

virtual server 179, 195
VNC Viewer

download link 33
volatile organic compounds (VOCs) 123

W
Wake pin 69
WiFiClientSecure.h file 225
wildcards 41
Will Message 44
Wireshark 52
workspace 93

X
XTAL pins 77

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Packt.com

packt.com
customercare@packtpub.com
customercare@packtpub.com
www.packt.com

Other Books You May Enjoy254

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

MQTT Essentials - A Lightweight IoT Protocol

Gaston C. Hillar

ISBN: 9781787287815

•	 Understand how MQTTv3.1 and v3.1.1 works in detail

•	 Install and secure a Mosquitto MQTT broker by following best practices

•	 Design and develop IoT solutions combined with mobile and web apps that use MQTT messages
to communicate

•	 Explore the features included in MQTT for IoT and Machine-to-Machine communications

•	 Publish and receive MQTT messages with Python, Java, Swift, JavaScript, and Node.js

•	 Implement the security best practices while setting up the MQTT Mosquitto broker

https://www.packtpub.com/product/mqtt-essentials-a-lightweight-iot-protocol/9781787287815?_ga=2.31687230.1665669549.1660109910-382698671.1625729090

Why subscribe? 255

Raspberry Pi Pico DIY Workshop

Sai Yamanoor | Srihari Yamanoo

ISBN: 9781801814812

•	 Understand the RP2040’s peripherals and apply them in the real world

•	 Find out about the programming languages that can be used to program the RP2040

•	 Delve into the applications of serial interfaces available on the Pico

•	 Discover add-on hardware available for the RP2040

•	 Explore different development board variants for the Raspberry Pi Pico

•	 Discover tips and tricks for seamless product development with the Pico

https://www.packtpub.com/product/raspberry-pi-pico-diy-workshop/9781801814812?_ga=2.267527822.1665669549.1660109910-382698671.1625729090

256

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Raspberry Pi and MQTT Essentials, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

authors.packtpub.com
https://packt.link/r/1803244488

	Cover
	Title Page
	Copyright and Credits
	Dedicated
	Contributors
	Table of Contents
	Preface
	Part 1:
Covering the Basics
	Chapter 1: Introduction to Raspberry Pi and MQTT
	What is MQTT and how does it work?
	What is MQTT?
	Basic concepts of MQTT

	A gentle introduction to Raspberry Pi
	Setting Up Your Raspberry Pi
	Technical requirements
	Setting up an SD card for your Raspberry Pi
	Flashing the OS image onto the SD card
	Setting up Raspberry Pi for the first time
	Setting up VNC for Raspberry Pi
	Setting up and testing the MQTT broker
	Testing the MQTT broker locally

	Summary

	Chapter 2: MQTT in Detail
	Introducing MQTT clients
	MQTT messages
	MQTT topics
	MQTT clients
	How does an MQTT client connect to a broker?

	Understanding the MQTT protocol packet structure
	Connect packet
	CONNACK packet
	PUBLISH and SUBSCRIBE packets

	Practical demonstration of MQTT in action
	Summary

	Chapter 3: Introduction to ESP Development Boards
	ESP8266-based NodeMCU development board
	Technical specifications
	NodeMCU GPIO pinout and pin configurations
	Arduino IDE setup for the NodeMCU development board

	ESP32-based development board
	Technical specifications
	ESP32 GPIO pinout and pin configurations
	Arduino IDE setup for the ESP32 development board

	Mini-project 1: NodeMCU as an MQTT client
	Part 1 – NodeMCU development board setup
	Part 2 – Raspberry Pi setup

	Summary

	Chapter 4: Node-RED on Raspberry Pi
	Introduction to Node-RED
	Node-RED first-time installation, setup, and demonstration
	Node-RED installation
	Running Node-RED on your Pi for the first time
	Node-RED crash course

	Node-RED MQTT components and dashboard setup
	Node-RED MQTT nodes
	Node-RED dashboard

	Mini project 2 – Controlling a NodeMCU LED from the Node-RED dashboard
	Hardware requirements
	Software requirements
	NodeMCU setup
	Raspberry Pi setup

	Summary

	Part 2: Practical Implementation – Building Two
Full-Scale Projects
	Chapter 5: Major Project 1:
IoT Weather Station
	Hardware requirements
	The NodeMCU development board
	The DHT11 temperature and humidity sensor
	The BMP280 temperature and pressure sensor
	The CCS811 air quality sensor
	Sensor interfacing

	Code explanation
	Raspberry Pi setup
	Starting Node-RED
	Project flow and dashboard setup
	Additional functionality – email alerts

	Summary

	Chapter 6: Major Project 2: Smart Home Control Relay System
	Hardware requirements and setup
	ESP32 development board
	5V non-latching relay
	5V Hi-Link power supply
	Miscellaneous components
	Hardware setup (PCB design and circuit)

	Code explanation
	Raspberry Pi setup
	Project enhancements
	Summary

	Part 3: How to Take Things Further – What Next?
	Chapter 7: Taking Your MQTT Broker Global
	Establishing the advantages of a global MQTT broker
	How to take your broker global
	Option 1 – online MQTT broker
	Option 2 – virtual server

	Summary

	Chapter 8: Project Prototype to
Product – How?
	Innovative project ideas
	Idea 1 – Home automation system
	Idea 2 – air quality monitoring system

	IoT services provided by enterprise cloud platforms
	IoT cloud platforms
	Project – getting started with AWS IoT Core

	How to scale your projects using the current hardware
	Home Assistant
	LAMP Server

	Summary

	Index
	Other Books You May Enjoy

