

Painless Docker
Unlock the Power of Docker and its Ecosystem

Aymen El Amri @eon01

This book is for sale at http://leanpub.com/painless-docker

This version was published on 2023-12-03

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2023 Aymen El Amri @eon01

http://leanpub.com/painless-docker
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!
Please help Aymen El Amri @eon01 by spreading the word about this book on Twitter!

The suggested tweet for this book is:

Looking forward to read ”Painless Docker: Unlock The Power Of Docker + Its Ecosystem”

The suggested hashtag for this book is #PainlessDocker.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#PainlessDocker

http://twitter.com
https://twitter.com/intent/tweet?text=Looking%20forward%20to%20read%20%22Painless%20Docker:%20Unlock%20The%20Power%20Of%20Docker%20&%20Its%20Ecosystem%22
https://twitter.com/search?q=%23PainlessDocker
https://twitter.com/search?q=%23PainlessDocker

Also By Aymen El Amri @eon01
Saltstack For DevOps

OpenAI GPT For Python Developers

Cloud Native Microservices With Kubernetes

LLM Prompt Engineering For Developers

https://leanpub.com/u/eon01
https://leanpub.com/saltstackfordevops
https://leanpub.com/openaigptforpythondevelopers
https://leanpub.com/cloud-native-microservices-with-kubernetes
https://leanpub.com/LLM-Prompt-Engineering-For-Developers

Contents

Preface . 1
To Whom Is This Guide Addressed? . 2
How To Properly Enjoy This Guide . 3
Join the community . 4

The Missing Introduction to Containerization . 5
We Are Made by History . 5
Jails, Virtual Private Servers, Zones, Containers, and VMs: What’s the Difference Anyway? 14
OS Containers vs. App Containers . 16
Docker: Container or Platform? . 17
The Open Container Initiative: What is a Standard Container? 23
A Deep Dive into Container Prototyping with runC . 26
Industry Standard Container Runtimes . 33
containerd, shim and runC: How Everything Works Together 35
Adding a New Runtime to Docker . 36
Does CRI Mean the Death of Docker? . 38
The Moby Project . 41

Installing and Using Docker . 45
Installing Docker . 45
Docker CLI . 48

Docker Events . 52
Using Docker API To List Events . 55

Docker Containers . 60
Creating Containers . 61
Running Containers . 61
Restarting Containers . 62
Pausing and Unpausing Containers . 63
Stopping Containers . 63
Killing Containers . 64
Removing Containers . 65
Container Lifecycle . 66
Starting Containers Automatically . 66

CONTENTS

Accessing Containers Ports . 67
Running Docker In Docker . 68

Managing Containers Resources . 70
Memory Usage Reservations and Limits . 70
CPU Usage Reservations and Limits . 72

Docker Images . 74
What is an Image? . 74
Images are Layers . 74
Images, Intermediate Images & Dangling Images . 76
The Dockerfile and its Instructions . 81
The Base Image . 99
Extending the Base Image . 100
Exploring Images’ Layers . 102
Building an Image Using a Dockerfile . 105
Creating Images out of Containers . 106
Migrating a VM to a Docker Image . 107
Creating and Understanding the Scratch Image . 112

Docker Hub and Docker Registry . 114
Docker Hub, Public and Private Registries . 114
Docker Hub: The Official Docker Registry . 115
Using Docker Hub . 116
DockerHub Alternatives . 118
Creating a Private Docker Registry . 119

Optimizing Docker Images . 122
Less Layers = Faster Builds? . 122
Is There a Maximum Number of Layers? . 126
Optimizing Dockerfile Layer Caching for Dependency Management 128
The Multi-Stage Build . 129
Smaller Images . 132
Other Techniques: Squashing, Distroless, etc . 135

Docker Volumes . 137
What is a Docker Volume? . 137
Creating and Using Docker Volumes . 138
Listing and Inspecting Docker Volumes . 138
Named Volumes vs Anonymous Volumes . 139
Bind Mounts . 140
Data Propagation . 141
Dangling Volumes . 143
TMPFS Mounts . 144

CONTENTS

Docker Volume From Containers . 146

Docker Logging . 148
How Docker Logs Work . 148
Logging Best Practices and Recommendations . 149
Logging Drivers . 151
Docker Daemon Logging . 160

Docker Networks . 162
Docker Networks Types . 162
The (System) Bridge Network . 163
The (User) Bridge Network . 164
The Host Network . 167
The None Network . 167
The Macvlan Network . 168
The Overlay Network . 169
The Ingress Network . 172
Docker Links . 173

Docker Compose . 175
What is Docker Compose and Why Should I Care? . 175
Installing Docker Compose . 176
Understanding Docker Compose and How it Works . 176
Docker Compose Dependencies . 178
Creating Portable Docker Compose Stacks . 179
Docker Compose Logging . 182
Understanding Docker Compose Syntax . 182
Using Dockerfile with Docker Compose . 185
Docker Compose with Bind Mounts . 187
Creating Custom Networks . 187
Docker Compose Secrets . 189
Scaling Docker Compose Services . 193

Cleaning Docker . 195
Delete Volumes . 195
Delete Networks . 195
Delete Images . 196
Remove Docker Containers . 196
Cleaning Up Everything . 197

Docker Plugins . 198

Orchestration - Docker Swarm . 203
What is Docker Swarm? . 203

CONTENTS

Creating a Swarm Cluster . 204
Swarm Services and Tasks . 207
Networking in Docker Swarm . 208
Performing Operations on Nodes . 209
Multi-manager Docker Swarm . 212
Docker Swarm Environment Variables and Secrets . 214
Docker Swarm Volumes . 220
Deploying a WordPress Application on Docker Swarm . 222
Docker Swarm Global Services . 223
Docker Swarm Resouce Management . 224
Docker Swarm Stacks . 225
Docker Swarm Rolling Updates . 231
Using an External Load Balancer with Docker Swarm . 237
Using Traefik as a Front-End Load Balancer with Docker Swarm 239
Docker Swarm Logging . 246
Docker Swarm vs. Kubernetes . 247

Docker Desktop . 249
What is Docker Desktop? . 249
How to Install Docker Desktop . 249

Common Security Threats . 251
Docker vs. VMs: Which is more secure? . 251
Kernel Panic & Exploits . 252
Container Breakouts & Privilege Escalation . 252
Poisoned Images . 253
Denial-of-service Attacks . 254
Compromising secrets . 254
Application Level Threats . 254
Host System Level Treats . 254

Docker Security Best Practices . 255
Implement Security by Design . 255
setuid/setgid Binaries . 255
Control Resources . 256
Use Notary to Verify Image Integrity . 257
Scan Images . 261
Set Container Filesystem to Read Only . 261
Set Volumes to Read-Only . 262
Do Not Use the Root User . 262
Run the Docker Daemon in Rootless Mode . 263
Do Not Use Environment Variables For Sensitive Data . 263
Use Secret Management Tools . 264
Do Not Run Containers in the Privileged Mode . 264

CONTENTS

Turn Off Inter-Container Communication . 264
Only Install Necessary Packages . 265
Make Sure Docker is up to Date . 265
Security Through Obscurity . 266
Use Limited Linux Capabilities . 266
Use Seccomp . 268
Use AppArmor . 269
Use SELinux . 271

Docker API . 272
Docker SDKs . 272
Docker API: Hello World . 273
Prototyping a Log Collector Service . 279

Debugging And Troubleshooting . 282
Docker Daemon Logs . 282
Activating Debug Mode . 282
Debugging Docker Objects . 284
Troubleshooting Docker Using Sysdig . 285

The Ultimate Docker Cheat Sheet . 288
Installation . 288
Docker Registries & Repositories . 290
Running Containers . 291
Starting & Stopping Containers . 292
Getting Information about Containers . 293
Managing Images . 295
Networking . 297
Cleaning Docker . 298
Docker Swarm . 300
Docker Scout Suite . 301
Resources . 305

Afterword . 307
What’s next? . 307
Thank you . 307
About the author . 307
Join the community . 307
Feedback . 308

Preface
Docker is a powerful tool that can greatly enhance the management and optimization of your
production servers. However, without a proper understanding of some key concepts, it can quickly
become complex. In this guide, I will explain these concepts through theory and practical examples
to help you effectively use Docker in your development, testing, and production environments.

The rapidly changing ecosystem of containers can present challenges and confusion for operations
engineers and developers. As containerization technology continues to evolve, it is important to stay
up-to-date and adapt to these changes. This technology is transforming the way system engineering,
development, and release management have traditionally worked, making it a crucial aspect of
modern IT.

Google, a leading tech company, relies heavily on containerization technology. According to Google,
they use Linux containerization to run everything in their cloud, starting over two billion containers
per week. This efficient technology allows for the sharing of parts of a single operating system among
multiple isolated applications, making it ideal for massive distributed applications.

Initially, there was uncertainty surrounding the future of Docker. However, after testing and
experimenting with Docker, I made the decision to use it in production. This choice proved to be
invaluable. Recently, I created a self-service in my startup for developers - an internal scalable PaaS.
Docker played a significant role in achieving a 14x improvement in production metrics and meeting
my goal of a service with a 99% Appdex score and SLA.

Appdex score

Using Docker was not the sole factor in achieving success; it was part of a larger strategy.
Implementing Docker allowed for smoother operations and transformation of the entire stack. It

Preface 2

facilitated continuous integration, automation of routine tasks, and provided a solid foundation for
creating an internal PaaS.

Over time, computing has evolved from central processing units andmainframes to the emergence of
virtual machines. Virtual machines allowed for the emulation of multiple machines within a single
hardware environment. With the rise of cloud technologies, virtual machines transitioned to the
cloud, eliminating the need for extensive physical infrastructure investments.

As software development and cloud infrastructures continue to grow, new challenges arise. Con-
tainers have gained significant traction as they offer solutions to these challenges. For example,
maintaining consistent software environments across development, testing, and production is
crucial. Containers provide a lightweight and portable solution, enabling the distribution of identical
environments to R&D and QA teams.

Containers address the issue of unused libraries and unnecessary dependencies. By containing only
the necessary OS libraries and application dependencies, containers significantly reduce the size
of the application. A Node.js application that would take up 1.75 GB in a virtual machine can be
reduced to a fraction of that size using optimized containers. This allows for more efficient resource
utilization and the ability to run multiple applications per host.

Containers, particularly Docker, offer sophisticated solutions to modern IT challenges. Understand-
ing and effectively utilizing Docker can revolutionize the way you manage and optimize your
production servers.

To Whom Is This Guide Addressed?

To developers, system administrators, QA engineers, operation engineers, architects, and anyone
faced to work in one of these environments in collaboration with the other or simply in an
environment that requires knowledge in development, integration, and system administration.

Historically, the worlds of developers and sysadmins operated in parallel silos, each with its own
distinct mindset and set of challenges.

Developers were often driven by the mandate to innovate and deliver new features. They perceived
their role as one of creating code and applications tailored for optimal functionality. On the other
hand, system administrators were the gatekeepers of stability and security. Their primary objective
was to ensure thatmachines functioned efficiently and securely, a task that often requiredmeticulous
maintenance and optimization.

Yet, in many organizations, these differing priorities created an inherent tension:

From one side, sysadmins would sometimes view developers with skepticism, critiquing them for
producing code that is resource-intensive, potentially insecure, or ill-suited for the existing hardware
infrastructure.

Developers might feel stifled by system administrators, seeing them as overly cautious, resistant to
change, and perhaps even out-of-step with the rapid pace of technological advancement.

Preface 3

These divides were further exacerbated by communication barriers and the costs associated with
errors. In an environment without the cohesive tools and practices we see today, misunderstandings
were widespread, and system outages could lead to a blame game. Was it the new code that
caused the crash, or was it a misconfiguration on the system’s end? Such questions often remained
unanswered, fueling the divide.

In this landscape, the stage was set for the emergence of DevOps and containerization - a movement
and technology that would seek to bridge these gaps and foster a new era of collaboration.

No more mutual accusations, now with the evolution of software development, infrastructure, and
Agile engineering, the concept of DevOps was born.

DevOps is more a philosophy and a culture than a job (even if many of my previous roles were called
“DevOps”). By admitting this, this role seeks closer collaboration and a combination of different
roles involved in software development, such as the role of developer, responsible for operations,
and responsible for quality assurance. The software must be produced at a frenetic pace while at the
same time, the development in cascade seems to have reached its limits.

• If you are a fan of service-oriented architectures, automation, and the collaboration culture
• if you are a system engineer, a release manager or an IT administrator working on DevOps,
SysOps or WebOps

• If you are a developer seeking to join the new movement

No matter what your Docker level is, through this guide, you will first learn the basics of Docker
then move easily to more advanced concepts like Docker internals and real use cases.

I believe in learning led by practical, real-world examples, and you will be guided through all of this
guide by tested examples.

How To Properly Enjoy This Guide

This guide provides technical explanations and practical use cases. Each case includes an example
command or configuration to follow.

The explanations give you a general idea, and the accompanying code provides convenience and
helps you practice what you’re reading. It’s recommended to refer to both parts for a better
understanding.

When learning a new tool or programming language, it’s normal to encounter difficulties and con-
fusion, even after becoming more advanced. If you’re not accustomed to learning new technologies,
you may have a basic understanding while progressing through this guide. Don’t worry, everyone
has experienced this at least once.

To start, you can try skimming through the guide while focusing on the basic concepts. Then, attempt
the first practical manipulation on your server or laptop. Occasionally, return to this guide for further
reading on specific subjects or concepts.

Preface 4

This guide doesn’t cover every aspect of Docker, but it does present the most important parts to
learn and even master Docker and its rapidly expanding ecosystem. If you come across unfamiliar
words or concepts, take your time and conduct your own online research.

Learning is usually a sequential process, where understanding one topic requires understanding
another. Don’t lose patience. Youwill encounter chapters withwell-explained examples and practical
use cases.

As you progress, try to demonstrate your understanding through the examples. And don’t hesitate
to revisit previous chapters if you’re unsure or have doubts.

Lastly, be pragmatic and keep an open mind when facing problems. Finding a solution begins by
asking the right questions.

Join the community

FAUN is a vibrant community of developers, architects, and software engineers who are passionate
about learning and sharing their knowledge. If you are interested in joining FAUN, you can start by
subscribing to our newsletter at faun.dev/join¹.

¹https://faun.dev/join

https://faun.dev/join
https://faun.dev/join

The Missing Introduction to
Containerization
In recent years, starting in 2015, cloud and distributed computing skills have become increasingly
in demand. They have shifted from being niche skillsets to more prominent ones in the global
workforce.

Containerization technologies have remained highly popular in the cloud economy and IT ecosys-
tem.

The container ecosystem can be confusing at times. This guide aims to clarify some of the
confusing concepts surrounding Docker and containers. We will also dive into the evolution of the
containerization ecosystem and its current state.

We Are Made by History

Docker is currently one of the most well-known container platforms. Although it was released in
2013, the use of isolation and containerization started even before that.

Let’s rewind to 1979 when we first began using the Chroot Jail and explore other well-known
containerization technologies that emerged afterwards. This exploration will enhance our under-
standing of new concepts, not only in terms of their historical context but also in terms of technology.

The Missing Introduction to Containerization 6

Evolution of containers and isolation systems

It all started with the Chroot Jail. The Chroot system calls were introduced during the development
of Version 7 Unix² in 1979. The Chroot jail, short for “Change Root”, is considered one of the first
containerization technologies. It allows you to isolate a process and its children from the rest of the
operating system.

The chroot mechanism changes the root directory of a process, creating an apparently isolated
environment. However, it was not designed for security. Issues with chroot include the potential
for root processes to escape, inadequate isolation, potential misuse of device files, maintenance
complexities, and shared kernel vulnerabilities.While useful for specific tasks, it is not recommended
as the primary method for securing untrusted processes. Modern containerization or virtualization
solutions offer more robust security.

The FreeBSD Jail³ was introduced in the FreeBSD operating system⁴ in the year 2000, with the
intention of enhancing the security of the simple Chroot file isolation. Unlike Chroot, the FreeBSD
implementation also isolates processes and their activities to a specific view of the filesystem.

²https://en.wikipedia.org/wiki/Version_7_Unix
³https://wiki.freebsd.org/Jails
⁴https://www.freebsd.org/

https://en.wikipedia.org/wiki/Version_7_Unix
https://wiki.freebsd.org/Jails
https://www.freebsd.org/
https://en.wikipedia.org/wiki/Version_7_Unix
https://wiki.freebsd.org/Jails
https://www.freebsd.org/

The Missing Introduction to Containerization 7

Chroot jail

Linux VServer was introduced in 2001 when operating system-level virtualization capabilities
were added to the Linux kernel. It offers a more advanced virtualization solution by utilizing a
combination of a chroot-like mechanism, “security contexts”, and operating system-level virtualiza-
tion (containerization). With Linux VServer, you can run multiple Linux distributions on a single
distribution (VPS).

Initially, the project was developed by Jacques Gélinas. The implementation paper⁵ abstract states:

A soft partitioning concept based on Security Contexts which permits the creation of
many independent Virtual Private Servers (VPS) that run simultaneously on a single
physical server at full speed, efficiently sharing hardware resources. A VPS provides an
almost identical operating environment as a conventional Linux Server. All services, such
as ssh, mail, Web and databases, can be started on such a VPS, without (or in special cases
with only minimal) modification, just like on any real server. Each virtual server has its
own user account database and root password and is isolated from other virtual servers,
except for the fact that they share the same hardware resources.

⁵http://linux-vserver.org/Paper

http://linux-vserver.org/Paper
http://linux-vserver.org/Paper

The Missing Introduction to Containerization 8

Linux VServer logo

ℹ This project is not related to the Linux Virtual Server⁶ project, which implements
network load balancing and failover of servers.

In February 2004, Sun (acquired later by Oracle) released (Oracle) Solaris Containers, an
implementation of Linux-Vserver for X86 and SPARC processors.

ℹ SPARC is a RISC (reduced instruction set computing) architecture developed by Sun
Microsystems.

⁶http://www.linuxvirtualserver.org/

http://www.linuxvirtualserver.org/
http://www.linuxvirtualserver.org/

The Missing Introduction to Containerization 9

Oracle Sloaris 11.3

Similar to Solaris Containers, the first version of OpenVZ was introduced in 2005.

OpenVZ, like Linux-VServer, utilizes OS-level virtualization. It gained popularity among hosting
companies for isolating and selling VPSs. However, OS-level virtualization has limitations, as
containers share the same architecture and kernel version. This becomes a disadvantage when guests
require different kernel versions than the host.

Both Linux-VServer and OpenVZ require kernel patching to implement control mechanisms for
creating isolated containers. However, OpenVZ patches were not integrated into the Kernel.

The Missing Introduction to Containerization 10

OpenVZ Logo

In 2007, Google released cgroups, a mechanism that limits and isolates the resource usage (CPU,
memory, disk I/O, network, etc.) of a collection of processes. Unlike OpenVZ Kernel⁷, cgroups was
integrated into the Linux kernel in the same year.

In 2008, the first version of LXC (Linux Containers) was released. LXC is similar to OpenVZ,
Solaris Containers, and Linux-VServer, but it uses the existing cgroups mechanism implemented in
the Linux Kernel.

A few years later, in 2013, CloudFoundry introduced Warden, an API for managing isolated,
ephemeral, and resource-controlled environments. Initially, Warden⁸ utilized LXC.

⁷https://wiki.openvz.org/Download/kernel
⁸https://github.com/cloudfoundry-attic/warden

https://wiki.openvz.org/Download/kernel
https://github.com/cloudfoundry-attic/warden
https://wiki.openvz.org/Download/kernel
https://github.com/cloudfoundry-attic/warden

The Missing Introduction to Containerization 11

LXC Logo

At the time, even with the introduction of LXC, container usage was not widespread. The main
reason for this was the lack of a standard container format and runtime, as well as the absence of
a developer-friendly tool that could be used by both developers and system administrators. This is
where Docker came into the picture.

In 2013, the first version of Docker was introduced. Like OpenVZ and Solaris Containers, Docker
performs OS-level virtualization.

In 2014, Google introduced LMCTFY (Let me contain that for you), the open-source version of
Google’s container stack, which provides Linux application containers. Google engineers collabo-
rated with Docker on libcontainer⁹ and ported the core concepts and abstractions from LMCTFY to
libcontainer.

As we are going to see later, libcontainer project evolved to become runC. The Open Container
Initiative (OCI) was founded in June 2015 to create open industry standards around container
formats and runtimes by building on the contributions of Docker’s container format and runtime.
Among the projects donated to the OCI was runC, which was developed by Docker.

LMCTFY¹⁰, on the other hand, runs applications in isolated environments on the same Kernel
without patching it, using cgroups, Namespaces, and other Linux Kernel features. The project was
abandoned in 2015.

⁹https://github.com/docker-archive/libcontainer
¹⁰https://github.com/google/lmctfy

https://github.com/docker-archive/libcontainer
https://github.com/google/lmctfy
https://github.com/docker-archive/libcontainer
https://github.com/google/lmctfy

The Missing Introduction to Containerization 12

Front entrance to Google’s Headquarters in Dublin Ireland. Image courtesy of Outreach Pete, licensed under CC BY
2.0. via https://www.flickr.com/photos/182043990@N04/48077952638

It’s worth saying that Google is a leader in the container industry. Everything at Google runs on
containers. There are more than 2 billion containers¹¹ running on Google infrastructure every week.

In December 2014, CoreOS released and started to support rkt (initially released as Rocket) as
an alternative to Docker but with a different approach. rkt is a container runtime for Linux and is
designed to be secure, composable, and standards-based. However, rkt was abandoned¹².

¹¹https://speakerdeck.com/jbeda/containers-at-scale
¹²https://github.com/rkt/rkt/issues/4024

https://speakerdeck.com/jbeda/containers-at-scale
https://github.com/rkt/rkt/issues/4024
https://speakerdeck.com/jbeda/containers-at-scale
https://github.com/rkt/rkt/issues/4024

The Missing Introduction to Containerization 13

CoreOs Logo

In December 2015, Docker Inc. introduced containerd, a daemon designed to control runC.
This move was made as part of their effort to break Docker into smaller, reusable components.
containerd¹³, available on Linux and Windows, is an industry-standard container runtime that
prioritizes simplicity, robustness, and portability. It serves as a daemon that manages the entire
container lifecycle of its host system, including tasks such as image transfer and storage, container
execution and supervision, and low-level storage and network attachments.

While containerd addressed many of the container runtime requirements with its robust and
portable features, the expanding ecosystem saw the need for additional specialized runtimes tailored
for specific orchestrators such as Kubernetes. That why in 2017, CRIO-O was introduced as an
alternative to Docker runtime for Kubernetes. As stated in the CRI-O repository¹⁴:

CRI-O follows the Kubernetes release cycles with respect to its minor versions (1.x.y).
Patch releases (1.x.z) for Kubernetes are not in sync with those from CRI-O, because
they are scheduled for each month, whereas CRI-O provides them only if necessary. If
a Kubernetes release goes End of Life¹⁵, then the corresponding CRI-O version can be
considered in the same way.

As the container landscape continued to evolve rapidly, catering to diverse use-cases and enhancing
user flexibility became paramount. Red Hat developed a tool for managing OCI containers and pods
called Podman (for Pod Manager). The tool was released in 2018. Podman¹⁶ is a daemonless con-
tainer engine for developing, managing, and running OCI Containers on Linux System. Containers
can either be run as root or in rootless mode. Simply put: alias docker=podman. Podman was mainly
created to provide a Docker replacement for Linux users who want to avoid the daemon dependency
of Docker and access more flexible container runtimes.

¹³https://github.com/containerd/containerd
¹⁴https://github.com/cri-o/cri-o
¹⁵https://kubernetes.io/releases/patch-releases/
¹⁶https://github.com/containers/podman

https://github.com/containerd/containerd
https://github.com/cri-o/cri-o
https://kubernetes.io/releases/patch-releases/
https://github.com/containers/podman
https://github.com/containerd/containerd
https://github.com/cri-o/cri-o
https://kubernetes.io/releases/patch-releases/
https://github.com/containers/podman

The Missing Introduction to Containerization 14

Jails, Virtual Private Servers, Zones, Containers, and
VMs: What’s the Difference Anyway?

Technologies like Jails, Zones, VMs, and Containers aim for system and resource isolation. Specifi-
cally:

While Jails provide advanced chroot environments in FreeBSD, Zones offer isolated OS envi-
ronments in Solaris, VMs are emulated systems offering complete OS isolation and containers
encapsulate application code in isolated packages on the same OS kernel.

Among all of these methods to provide resource isolation and control, containers and VMs are
the most popular with VMs offering hardware-level virtualization and containers focusing on
application-level isolation.

I’m sure you saw this image before many times, but it’s worth mentioning again:

VM vs Containers

ℹ The Kernel is the core of the operating system, and it is responsible for managing the
system resources. The OS is the Kernel and the user space programs that run on top of it.
While containers such as Docker containers share the same kernel, VMs have their own
kernel.

Here is a table that summarizes the differences between Jails, Zones, VMs, and Containers:

Technology Description
Jails Advanced chroot environments in FreeBSD
Zones Isolated OS environments in Solaris
VMs Emulated systems offering complete OS isolation
Containers Encapsulate application code in isolated packages, sharing the same

OS kernel

Diving deeper into the world of virtual machines, it’s worth noting that VMs can be classified into
two primary categories:

• System Virtual Machines

The Missing Introduction to Containerization 15

• Process Virtual Machines

When we refer to VMs in common parlance, we’re typically alluding to “System Virtual Machines”.
These simulate the host hardware, allowing for the emulation of an entire operating system. On the
other hand, “Process Virtual Machines”, also known as “Application Virtual Machines”, emulate a
specific programming environment well-cut for executing singular processes. A classic example of
this is the Java Virtual Machine (JVM).

Furthermore, there’s a another specific type of virtualization called OS-level virtualization. This is
also known as containerization. Technologies such as Linux-VServer and OpenVZ can run multiple
(instances) operating systems while sharing the same architecture and kernel version and are prime
examples of this.

These instances coexist, leveraging the same underlying architecture and kernel version.

Leveraging a shared architecture and kernel presents certain limitations, especially when there’s a
need for guest instances to operate on different kernel versions than the host. However, it’s worth
considering: how often would you encounter this specific use case in your operations?

Different Types of Virtualization

This brings us to the modern landscape of OS-level virtualization, which has seen a surge in
popularity and utilization. Docker, Podman, and a set of other containerization technologies
have become the de facto standard for containerization especially with the work done by the
Open Container Initiative (OCI), the Cloud Native Computing Foundation (CNCF), and the Linux
Foundation.

The Missing Introduction to Containerization 16

CNCF container runtime landscape

Under the CNCF umbrella, notable container runtime projects include runC, containerd, CRI-O,
gVisor, Kata and Firecracker with a collective funding of $15.9M at the time of writing.

OS Containers vs. App Containers

OS-level virtualization, as seen, enables us to create containers that share the same architecture and
kernel version. Technologies such as OpenVZ and Docker use this type of isolation. In this context,
we have two subcategories of containers:

• OS Containers package the entire application stack along with the operating system. Tech-
nologies such as LXC, Linux VServer, and OpenVZ are examples of suitable technologies for
creating OS containers. Usually, OS containers run multiple applications and processes per
container. A LEMP stack (Linux, NGINX, MySQL, and PHP) is an example of an OS container.

• Application Containers typically run a single process per container. The application is
packaged with its dependencies and libraries. Docker is an example of a technology that can
be used to create application containers.

For the creation of a LEMP stack using App Containers while following the best practices, we need
to create three containers:

• PHP server (or PHP FPM).
• Web server (NGINX).
• MySQL.

Each container will run a single process.

The Missing Introduction to Containerization 17

OS Containers vs App Containers

Docker: Container or Platform?

There are many misconceptions about Docker. Some people believe that Docker is solely a container
runtime, while others consider it to be a container platform.

However, Docker can be seen as both a container and a platform, depending on the context.

When Docker was initially launched, it used LXC as its container runtime. The main idea behind
Docker was to create an API for managing the container runtime, isolating single processes running
applications, and supervising the container’s lifecycle and resource usage.

The Missing Introduction to Containerization 18

In early 2013, the Docker project aimed to establish a “standard container”, as outlined in this
manifesto¹⁷.

At its core, Docker introduced a technology to create and run containers as standalone, executable
packages that includes everything needed to run a piece of software, including the code, runtime,
system tools, and libraries.

Docker code (github.com)

The standard container manifesto was removed¹⁸ a few months later.
¹⁷https://github.com/moby/moby/commit/0db56e6c519b19ec16c6fbd12e3cee7dfa6018c5
¹⁸https://github.com/docker/docker/commit/eed00a4afd1e8e8e35f8ca640c94d9c9e9babaf7

https://github.com/moby/moby/commit/0db56e6c519b19ec16c6fbd12e3cee7dfa6018c5
https://github.com/docker/docker/commit/eed00a4afd1e8e8e35f8ca640c94d9c9e9babaf7
https://github.com/moby/moby/commit/0db56e6c519b19ec16c6fbd12e3cee7dfa6018c5
https://github.com/docker/docker/commit/eed00a4afd1e8e8e35f8ca640c94d9c9e9babaf7

The Missing Introduction to Containerization 19

Docker code (github.com)

Docker started to use its own container runtime called libcontainer to interface with Linux kernel
facilities like Control Groups and Namespaces.

The Missing Introduction to Containerization 20

Docker, Libcontainer and Linux Kernel Facilities

Docker started building a monolithic application with multiple features, from launching Cloud
servers to building and running images/containers. The goal was providing a comprehensive
ecosystem and platform that includes tools for building, storing, and managing container images
(like Docker Hub), orchestrating containers (like Docker Swarm), and a user-friendly CLI and GUI
(Docker Desktop) for interacting with containers.

The Missing Introduction to Containerization 21

Using Namespaces and cgroups to Isolate Containers in Practice

History aside, let’s dive into some introductory yet practical aspects of containerization. We will
begin by exploring the isolation mechanisms that Docker uses to create containers.

The objective here is to establish an isolated environment using namespaces and cgroups.

Make sure that cgoups v2 is enabled:

1 ls /sys/fs/cgroup/cgroup.controllers

If you don’t see any output, then you need to enable cgroups v2:

1 sudo mount -t cgroup2 none /sys/fs/cgroup

Next, create a new execution context using the following command:

1 sudo unshare --fork --pid --mount-proc bash

ℹ The execution context is the environment in which a process runs. It includes the process
itself and resources such as memory, file handles, and so on.

The unshare¹⁹ command disassociates parts of the process execution context

1 unshare() allows a process (or thread) to disassociate parts of its execution contex\

2 t that are currently being shared with other processes (or threads). Part of the ex\

3 ecution context, such as the mount namespace, is shared implicitly when a new proces\

4 s is created using fork(2) or vfork(2), while other parts, such as virtual memory, m\

5 ay be shared by explicit request when creating a process or thread using clone(2).

You can view the list of processes running in the current namespace using the following command:

1 ps aux

You will notice that the process list is different from the one on the host machine.

Now, using cgcreate we can create a Control Groups and define two controllers, one on memory
and the other on CPU:

¹⁹http://man7.org/linux/man-pages/man2/unshare.2.html

http://man7.org/linux/man-pages/man2/unshare.2.html
http://man7.org/linux/man-pages/man2/unshare.2.html

The Missing Introduction to Containerization 22

1 sudo cgcreate -a $USER:$USER -t $USER:$USER -g memory,cpu:mygroup

The -a option is used to define the user and group that will be used to own the created cgroup and
the -t option is used to define the user and group that will be used to own the tasks file in the created
cgroup.

You can view the created cgroup using the following command:

1 ls /sys/fs/cgroup/mygroup/

The next step is defining a limit for the memory and a limit for the CPU:

1 # We want to set a very low memory limit, for instance, 50M.

2 echo "50M" | sudo tee /sys/fs/cgroup/mygroup/memory.max

3 # We want to set a very low CPU weight, for instance, 50.

4 echo "50" | sudo tee /sys/fs/cgroup/mygroup/cpu.weight

ℹ CPU limits in cgroup v2 are set differently compared to cgroup v1. Instead of setting
explicit usage percentages, you set a “weight”. The default weight is 100, and the range is
from 1 to 10000.

Note that setting very low limits, especially for memory, can cause processes within a cgroup to be
terminated if they exceed the limit. In our case, we are experimenting with the limits and we are
not creating a production environment.

Let’s disable the swap memory:

1 sudo swapoff -a

Now let’s stress the isolated namespace we created with memory limits. We are going to use the
stress utility to stress the memory with 60M of memory for 10 seconds:

1 sudo apt install stress -y && stress --vm 1 --vm-bytes 60M --timeout 10s

We can notice that the execution is failed; you should see something like this:

1 stress: info: [232] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd

2 stress: FAIL: [232] (416) <-- worker 233 got signal 9

3 stress: WARN: [232] (418) now reaping child worker processes

4 stress: FAIL: [232] (452) failed run completed in 0s

Therefore, we know that the memory limit is working fine.

If you launch the same test on the host without the namespace, you will notice that the execution
is successful.

The Missing Introduction to Containerization 23

1 stress: info: [37596] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd

2 stress: info: [37596] successful run completed in 10s

Following these steps will help in understanding how Linux facilities like CGroups and other
resource control features can create and manage isolated environments in Linux systems.

libcontainer interfaces with these facilities to manage and run Docker containers.

The Open Container Initiative: What is a Standard
Container?

runC is basically a little command-line tool to leverage libcontainer directly, without going through
the Docker Engine.

runC logo

The goal behind runC is tomake standard containers available everywhere. This project was donated
to the Open Container Initiative (OCI) and the libcontainer repository has been archived. The fact
that Docker donated runC to the Open Container Initiative (OCI) solidified Docker’s commitment
to open standards and its willingness to collaborate with other industry players.

The Missing Introduction to Containerization 24

libcontainer repository

In reality, libcontainer was not abandoned, but it was moved to runC repository. We can understand
that the goal finally was allowing libcontainer (or a modified version of it) to be used without Docker
(through runC).

The Missing Introduction to Containerization 25

runC repository

But what is the Open Container Initiative (OCI)?

The OCI is a lightweight, open governance structure launched on 2015 by Docker, CoreOS, and other
leaders in the container industry.

The Missing Introduction to Containerization 26

The Open Container Initiative Logo

The Open Container Initiative aims to establish common standards for software containers in order
to avoid potential fragmentation and divisions inside the container ecosystem.

The main difference between libcontainer and runC is that libcontainer is a Go library, while runC
is a CLI tool. The latter wraps the former and provides a CLI interface to it. The CLI was built while
taking into consideration the OCI specifications.

These specifications are the result of the collaboration between Docker and other leaders in the
container industry. The result of this collaboration aims to establish common standards for software
containers. In other words, the OCI specifications answer the question: “What is a standard
container?”

You can find the specifications in four main repositories:

• runtime-spec²⁰: The Open Container Initiative develops specifications for standards on Oper-
ating System process and application containers.

• image-spec²¹: The OCI Image Format project creates and maintains the software shipping
container image format spec (OCI Image Format).

• distribution-spec²²: The OCI Distribution Spec project defines an API protocol to facilitate and
standardize the distribution of content.

A Deep Dive into Container Prototyping with runC

Let’s now dive into the runC project and see how it works.

Start by installing runC runtime:

1 sudo apt install runc -y

Let’s create a directory (/mycontainer) where we are going to export the content of the image
Busybox²³.

²⁰https://github.com/opencontainers/runtime-spec
²¹https://github.com/opencontainers/image-spec
²²https://github.com/opencontainers/distribution-spec
²³https://hub.docker.com/_/busybox

https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/distribution-spec
https://hub.docker.com/_/busybox
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/distribution-spec
https://hub.docker.com/_/busybox

The Missing Introduction to Containerization 27

ℹ At a disk size ranging from 1 to 5 Mb based on its version, BusyBox²⁴ serves as an
excellent component for creating compact distributions. BusyBox amalgamates miniatur-
ized versions of numerous standard UNIX tools into one compact executable. It offers
alternatives to many utilities typically found in GNU fileutils, shellutils, and the like.
While the utilities within BusyBox might offer fewer features than their complete GNU
versions, the provided features maintain their expected operations and closely mirror
their GNU analogs. For smaller or embedded systems, BusyBox ensures a relatively
comprehensive environment.

1 # Change to root user

2 sudo su

3 # Create the directory

4 mkdir -p /mycontainer && cd /mycontainer

5 # Create a rootfs directory

6 mkdir rootfs

7 # Export the busybox image

8 docker export $(docker create busybox) | tar -C rootfs -xvf -

9 ls -l rootfs

Create a spec file (config.json) that will be used by runC to run the container:

1 cd /mycontainer

2 runc spec

ℹ The spec file is a JSON file that contains the configuration of the container. It contains
the rootfs path, the hostname, the mounts, the namespaces, the process, and more.

Using runC command, we can run the busybox container that uses the extracted image and a spec
file (config.json).

1 runc run busybox

runc spec command initially creates this JSON file:

²⁴https://www.busybox.net/

https://www.busybox.net/
https://www.busybox.net/

The Missing Introduction to Containerization 28

1 {

2 "ociVersion": "1.0.2-dev",

3 "process": {

4 "terminal": true,

5 "user": {

6 "uid": 0,

7 "gid": 0

8 },

9 "args": [

10 "sh"

11],

12 "env": [

13 "PATH=..",

14 "TERM=xterm"

15],

16 "cwd": "/",

17 "capabilities": {

18 "bounding": [

19 "CAP_AUDIT_WRITE",

20 "CAP_KILL",

21 "CAP_NET_BIND_SERVICE"

22],

23 "effective": [

24 "CAP_AUDIT_WRITE",

25 "CAP_KILL",

26 "CAP_NET_BIND_SERVICE"

27],

28 "permitted": [

29 "CAP_AUDIT_WRITE",

30 "CAP_KILL",

31 "CAP_NET_BIND_SERVICE"

32],

33 "ambient": [

34 "CAP_AUDIT_WRITE",

35 "CAP_KILL",

36 "CAP_NET_BIND_SERVICE"

37]

38 },

39 "rlimits": [

40 {

41 "type": "RLIMIT_NOFILE",

42 "hard": 1024,

43 "soft": 1024

The Missing Introduction to Containerization 29

44 }

45],

46 "noNewPrivileges": true

47 },

48 "root": {

49 "path": "rootfs",

50 "readonly": true

51 },

52 "hostname": "runc",

53 "mounts": [

54 {

55 "destination": "/proc",

56 "type": "proc",

57 "source": "proc"

58 },

59 {

60 "destination": "/dev",

61 "type": "tmpfs",

62 "source": "tmpfs",

63 "options": [

64 "nosuid",

65 "strictatime",

66 "mode=755",

67 "size=65536k"

68]

69 },

70 {

71 "destination": "/dev/pts",

72 "type": "devpts",

73 "source": "devpts",

74 "options": [

75 "nosuid",

76 "noexec",

77 "newinstance",

78 "ptmxmode=0666",

79 "mode=0620",

80 "gid=5"

81]

82 },

83 {

84 "destination": "/dev/shm",

85 "type": "tmpfs",

86 "source": "shm",

The Missing Introduction to Containerization 30

87 "options": [

88 "nosuid",

89 "noexec",

90 "nodev",

91 "mode=1777",

92 "size=65536k"

93]

94 },

95 {

96 "destination": "/dev/mqueue",

97 "type": "mqueue",

98 "source": "mqueue",

99 "options": [

100 "nosuid",

101 "noexec",

102 "nodev"

103]

104 },

105 {

106 "destination": "/sys",

107 "type": "sysfs",

108 "source": "sysfs",

109 "options": [

110 "nosuid",

111 "noexec",

112 "nodev",

113 "ro"

114]

115 },

116 {

117 "destination": "/sys/fs/cgroup",

118 "type": "cgroup",

119 "source": "cgroup",

120 "options": [

121 "nosuid",

122 "noexec",

123 "nodev",

124 "relatime",

125 "ro"

126]

127 }

128],

129 "linux": {

The Missing Introduction to Containerization 31

130 "resources": {

131 "devices": [

132 {

133 "allow": false,

134 "access": "rwm"

135 }

136]

137 },

138 "namespaces": [

139 {

140 "type": "pid"

141 },

142 {

143 "type": "network"

144 },

145 {

146 "type": "ipc"

147 },

148 {

149 "type": "uts"

150 },

151 {

152 "type": "mount"

153 },

154 {

155 "type": "cgroup"

156 }

157],

158 "maskedPaths": [

159 "/proc/acpi",

160 "/proc/asound",

161 "/proc/kcore",

162 "/proc/keys",

163 "/proc/latency_stats",

164 "/proc/timer_list",

165 "/proc/timer_stats",

166 "/proc/sched_debug",

167 "/sys/firmware",

168 "/proc/scsi"

169],

170 "readonlyPaths": [

171 "/proc/bus",

172 "/proc/fs",

The Missing Introduction to Containerization 32

173 "/proc/irq",

174 "/proc/sys",

175 "/proc/sysrq-trigger"

176]

177 }

178 }

By using the generated specification JSON file, you have the ability to customize the runtime of the
container. For instance, you can modify the argument for the application to be executed.

Let’s compare the original config.json file with the updated version:

Differences between the original and the updated config.json

• Changed "terminal": true to "terminal": false to run the container in the background.
• Changed "args": ["sh"] to "args": ["sh", "-c", "i=1; while [$i -le 10]; do echo

$i; i=$((i+1)); sleep 1; done"] to run a command that prints the numbers from 1 to 10
and sleeps for 1 second between each number.

You can perform this by running the following command:

The Missing Introduction to Containerization 33

1 cd mycontainer/

2 # install jq: https://jqlang.github.io/jq/download/

3 sudo apt install jq -y

4 echo $(jq '.process.args=["sh", "-c", "i=1; while [$i -le 10]; do echo $i; i=$((i+\

5 1)); sleep 1; done"]' config.json) > config.json

You can view the new JSON using:

1 cd /mycontainer

2 jq . config.json

Now, let’s run the container again and observe how it sleeps for 10 seconds before exiting.

1 cd /mycontainer

2 runc run busybox

Another option for generating a customized spec config is to use oci-runtime-tool²⁵. The oci-runtime-tool
generate sub-command offers numerous options for customization.

Industry Standard Container Runtimes

Docker, known for its extensive set of features including image construction and management, as
well as a powerful API, has consistently been a leader in container technology. Beyond these well-
known capabilities, Docker also provides foundational tools that are suitable for reuse. One notable
feature is the ability to fetch images and store layers using a user-selected union file system, as
demonstrated in containerd.

ℹ Docker uses a union file system²⁶ to stack and manage changes in containers, with each
change saved as a separate layer; “containerd” demonstrates this layering technique.

containerd serves as a core daemon responsible for supervising containers and images, excluding
their construction. This unique role classifies containerd as a “container runtime,” while runC is
referred to as a “base-level container runtime.” The release of Docker Engine 1.11²⁷ was particularly
significant as it was built upon the foundations of runC and containerd. This release solidified
Docker’s position as a pioneer in deploying a runtime based on the Open Container Initiative
(OCI) technology. It highlighted Docker’s progress, especially sincemid-2015when its standardized
container format and runtime were entrusted to the Linux Foundation.

²⁵https://github.com/opencontainers/runtime-tools
²⁶https://en.wikipedia.org/wiki/UnionFS
²⁷https://www.docker.com/blog/docker-engine-1-11-runc/

https://github.com/opencontainers/runtime-tools
https://en.wikipedia.org/wiki/UnionFS
https://www.docker.com/blog/docker-engine-1-11-runc/
https://github.com/opencontainers/runtime-tools
https://en.wikipedia.org/wiki/UnionFS
https://www.docker.com/blog/docker-engine-1-11-runc/

The Missing Introduction to Containerization 34

The journey towards this integration began effectively in December 2015 when Docker introduced
containerd. This daemon was specifically designed to manage runC and represented a significant
step towards Docker’s vision of breaking down its extensive architecture into more modular and
reusable units. The foundation of Docker Engine 1.11 on containerd signifies that every interaction
with Docker is now an interaction with the OCI framework. This commitment to expanding the
scope of the OCI, in collaboration with over 40 members, emphasizes the collective effort to achieve
uniformity in container technology.

Since containers gained mainstream popularity, there has been a collective effort by various
stakeholders to establish standardization in this field. Standardization is essential as it allows for
automation and ensures the consistent application of best practices.

Data supports the positive trajectory of Docker’s adoption, highlighted by the move towards
standardization, seamless integration with platforms like Kubernetes, and the introduction of
modern technologies such as containerd. This upward trend is further illustrated by the following
data:

Year Pulls from Docker Hub Introduced Technologies
2014 -> 2015 1M -> 1B Introduction of libcontainer
2015 -> 2016 1B -> 6B Notary, runC, libnetwork
2016 -> 2017 6B -> 12B Hyperkit, VPNKit, DataKit, SwarmKit,

InfraKit, containerd, Linuxkit

While some might perceive these technological nuances as captivating juicy bit of news for casual
banter, the implications are profound. So, what does this mean for the end-user?

Immediately, the impact might seem negligible. However, the significance of this development is
undeniable. With Docker Engine undergoing one of its most rigorous technical metamorphoses, the
primary intent for the 1.11 version was a flawless amalgamation without perturbing the command-
line interface or the API. Yet, this transition is a sign of forthcoming user-centric enhancements that
hold immense promise.

This change made it easier and more standard for everyone to use and improve containers, paving
the way for new tools and ideas in the containerization landscape.

While donating the runC project to the OCI, Docker started using containerd in 2016, as a container
runtime that interface with the underlying low-level runtime runC.

There are actually different runtimes; each one acts at a different level.

1 docker info | grep -i runtime

containerd has full support for starting OCI bundles and managing their lifecycle. Containerd (as
well as other runtimes like cri-o) uses runC to run containers but also implements other high-level
features like image management and high-level APIs.

The Missing Introduction to Containerization 35

containerd integration with Docker & OCI runtimes

containerd, shim and runC: How Everything Works
Together

When you launch a container using Docker, you are actually utilizing several components. Contain-
erd is responsible for running the container, runC manages the container’s lifecycle and resources,
and containerd-shim keeps the file descriptors open.

runC is built on libcontainer, which was previously the container library used by Docker engine.

Before version 1.11, Docker engine handled the management of volumes, networks, containers, and
images. However, libcontainer was integrated directly into Docker before being split out as runC.

Now, the Docker architecture consists of four components:

• Docker engine
• containerd
• containerd-shim
• runC

The corresponding binaries are docker, docker-containerd, docker-containerd-shim, and docker-
runc.

Now let’s go through the steps to run a container using the new architecture:

1. The user requests Docker to create a container using Docker CLI, which utilizes the Docker
API.

2. The Docker engine, listening to the API, creates the container from an image and passes it to
containerd.

3. containerd calls containerd-shim.
4. containerd-shim uses runC to run the container.
5. containerd-shim allows the runtime (runC in this case) to exit after starting the container.

The Missing Introduction to Containerization 36

This new architecture provides three advantages:

1. runC can exit once the container is started, eliminating the need to keep the entire runtime
processes running. In other words, individual containers can run without the main runtime
process persisting in memory.

2. containerd-shim keeps the file descriptors (stdin, stdout, stderr) open even if Docker and/or
containerd terminates.

3. This architecture allows for more modularity, enabling other projects and tools to interact with
or replace parts of the Docker ecosystem.

“Docker Architecture and OCI Runtimes”

Adding a New Runtime to Docker

Once you explore why Docker incorporated runC and containerd into its architecture, you’ll
understand that both serve as runtimes, although with different functionalities. So, why use two
runtimes? This question commonly arises when discussing the Docker architecture.

If you’ve been following along, you may have noticed references to both high-level and low-level
runtimes. This is the practical distinction between the two. While both can be considered “runtimes,”
they serve different purposes and offer unique features.

To maintain standardization in the containers ecosystem, low-level containers runtime only allows
the execution of containers. The low-level runtime (like runC) should be lightweight, fast, and
compatible with other higher levels of container management.

When you create a Docker container, it is actually managed by both runtimes: containerd and runC.

There are multiple container runtimes available, some of which are OCI standardized while others
are not. Some are low-level runtimes, while others are high-level runtimes. Some go beyond basic
runtimes and include additional tools for managing the container lifecycle, such as:

The Missing Introduction to Containerization 37

• Image transfer and storage
• Container execution and supervision
• Low-level storage
• Network attachments

The following table summarizes some of the most popular container runtimes and their levels:

Technology Level
LXC Low-level
runC Low-level
lmctfy Low-level
CRI-O High-level
containerd High-level
rkt High-level

To add a new runtime, you should start by installing it. For instance, if you want to install the nvidia
runtime, you can use the following command:

1 # Import the NVIDIA GPG key

2 curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | \

3 sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg

4

5 # Update the repository list with signing

6 curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-\

7 toolkit.list | \

8 sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-ke\

9 yring.gpg] https://#g' | \

10 sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

11

12 # Update packages and install the NVIDIA container toolkit

13 sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit

Then, you can add it to the configuration file /etc/docker/daemon.json:

1 # export the runtime name

2 export RUNTIME="nvidia"

3 # export the runtime path

4 export RUNTIME_PATH="/usr/bin/nvidia-container-runtime"

5 # Update the daemon.json file or create it if it doesn't exist

6 sudo tee /etc/docker/daemon.json <<EOF

7 {

8 "runtimes": {

9 "$RUNTIME": {

The Missing Introduction to Containerization 38

10 "path": "$RUNTIME_PATH"

11 }

12 }

13 }

14 EOF

15 # Restart Docker

16 sudo systemctl restart docker

You can also use a command-line option to add a runtime. Here is an example:

1 export RUNTIME="nvidia"

2 export RUNTIME_PATH="/usr/bin/nvidia-container-runtime"

3 sudo dockerd --add-runtime=$RUNTIME=$RUNTIME_PATH

4 sudo systemctl restart docker

Check that the runtime is added:

1 docker info | grep -i runtime

The installation and configuration options for a runtime are usually provided by the runtime
documentation. In this example, we used the NVIDIA container toolkit²⁸.

Does CRI Mean the Death of Docker?

You can’t run a standalone container in production. You need an orchestrator like Kubernetes or
Docker Swarm to manage the container lifecycle and resources.

Kubernetes is the most popular orchestration systems. With the evolving number of containers
runtime, kubernetes aims to be more extensible and interface with more containers runtimes other
than Docker. Originally, Kubernetes used Docker runtime to run containers, and it was still the
default runtime until Kubernetes version 1.20²⁹.

“Don’t panic”³⁰”, this was the title of a blog post published by the Kubernetes team to explain the
deprecation of Docker as a container runtime in Kubernetes. The authors of the blog post stated:

Docker as an underlying runtime is being deprecated in favor of runtimes that use the
Container Runtime Interface (CRI) created for Kubernetes. Docker-produced images will
continue to work in your cluster with all runtimes, as they always have. If you’re an end-
user of Kubernetes, not a whole lot will be changing for you. This doesn’t mean the death
of Docker, and it doesn’t mean you can’t, or shouldn’t, use Docker as a development tool
anymore. Docker is still a useful tool for building containers, and the images that result
from running docker build can still run in your Kubernetes cluster.

²⁸https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
²⁹https://kubernetes.io/blog/2020/12/08/kubernetes-1-20-release-announcement/
³⁰https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://kubernetes.io/blog/2020/12/08/kubernetes-1-20-release-announcement/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://kubernetes.io/blog/2020/12/08/kubernetes-1-20-release-announcement/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/

The Missing Introduction to Containerization 39

Is Docker dead? Absolutely not. Docker is still a great tool for building containers, and the images
that result from running docker build can still run in your Kubernetes cluster.

The same blog post explained the reasons behind this decision:

You see, the thing we call “Docker” isn’t actually one thing—it’s an entire tech stack, and
one part of it is a thing called “containerd,” which is a high-level container runtime by
itself. Docker is cool and useful because it has a lot of UX enhancements that make it
really easy for humans to interact with while we’re doing development work, but those
UX enhancements aren’t necessary for Kubernetes, because it isn’t a human.

As a result of this human-friendly abstraction layer, your Kubernetes cluster has to use
another tool called Dockershim to get at what it really needs, which is containerd. That’s
not great, because it gives us another thing that has to be maintained and can possibly
break. What’s actually happening here is that Dockershim is being removed from Kubelet
as early as v1.23 release, which removes support for Docker as a container runtime as a
result. You might be thinking to yourself, but if containerd is included in the Docker stack,
why does Kubernetes need the Dockershim?

Docker isn’t compliant with CRI, the Container Runtime Interface. If it were, we wouldn’t
need the shim, and this wouldn’t be a thing. But it’s not the end of the world, and you
don’t need to panic—you just need to change your container runtime from Docker to
another supported container runtime.

Essentially, instead of changing the kubernetes code base each time and creating a new Kubernetes
distribution when adding a new container runtime, Kubernetes upstream decided to create Con-
tainer Runtime Interface (CRI)³¹, which is a set of APIs and libraries that allows running different
containers runtime in Kubernetes.

As a result, any interaction between kubernetes core and a supported runtime is performed through
the CRI API.

³¹https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/

https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/

The Missing Introduction to Containerization 40

Docker and Kubernetes

It is worth noting that CRI only supports OCI-compliant runtimes. These are some of the implemen-
tations of the Container Runtime Interface (CRI) that are OCI-compliant:

• CRI-O: The first container runtime created for the Kubernetes CRI interface. CRI-O is
not meant to replace Docker, but it can be used as an alternative runtime specifically for
Kubernetes.

• CRI Containerd: With cri-containerd, users can run Kubernetes clusters using containerd as
the underlying runtime, without relying on Docker.

• gVisor CRI: A project developed by Google, which implements around 200 Linux system calls
in userspace to provide enhanced security compared to Docker containers running directly on
the Linux kernel with namespaces. The gVisor runtime integrates with Docker and Kubernetes,
making it easy to run sandboxed containers.

• CRI-O Kata Containers: Kata Containers is an open-source project that builds lightweight
virtual machines that integrate with the container ecosystem. CRI-O Kata Containers allows
running Kata Containers on Kubernetes instead of using the default Docker runtime.

The Missing Introduction to Containerization 41

Runtimes and Kubernetes

The Moby Project

When DotCloud launched Docker in 2013, it was a single monolithic project. The goal was to create
a single tool that can build, ship, and run containers. The project and the idea of building a single
monolithic Docker platform were abandoned and gave birth to the Moby project, where Docker is
now just one of the many components built on top of the Moby open-source framework,

The Missing Introduction to Containerization 42

The Moby Project in a nutshell: inside and outside by Solomon Hykes @solomonstre

Moby is a project that aims to organize and modularize the development of Docker. It provides an
ecosystem for both development and production purposes but regular Docker users will not notice
any difference.

The Missing Introduction to Containerization 43

The Moby Project in a nutshell: inside and outside by Solomon Hykes @solomonstre

This project provides a collection of components and a framework for building customized container-
based systems. It is useful for developing and running Docker CE and EE, asMoby serves as Docker’s
upstream. Additionally, it can be used to create development and production environments for other
runtimes and platforms.

Let’s take a look at some of the components of the Moby project:

• containerd: This is the industry-standard core container runtime for Docker.
• Linuxkit: A tool used to build secure, portable, and lightweight operating systems for
containers. It currently has support for local hypervisors like Hyper-V and VMware, as well
as cloud-based platforms such as AWS, GCP, and Azure. It also works on bare metal with
packet.net³².

• InfraKit: A toolkit designed for creating and managing declarative, immutable, and self-
healing infrastructures. InfraKit automates the setup and management of infrastructure to
support distributed systems and higher-level container orchestration systems. It is particularly

³²http://packet.net/

http://packet.net/
http://packet.net/

The Missing Introduction to Containerization 44

useful for scenarios like bootstrapping orchestration tools like Docker Swarm and Kubernetes,
or creating autoscaling clusters across public clouds like AWS using autoscaling groups.

• libnetwork: A native Go implementation for connecting containers. It enables the development
of network drivers and plugins, satisfying the need for “composable” networking in containers.

• Notary: A tool for publishing and managing trusted collections of content. It provides a
mechanism for signing and verifying content using digital signatures. It is particularly useful
for ensuring the integrity and authenticity of container images.

• SwarmKit: A native clustering system for Docker. It provides a native clustering solution for
Docker, which is a lightweight alternative to Kubernetes.

Installing and Using Docker
Installing Docker

Docker Engine is available on various Linux distros, macOS, and Windows 10 through Docker
Desktop, as well as through a static binary installation.

Docker is offered in three tiers:

• Docker Engine - Community: This tier includes the core container engine, along with built-in
orchestration, networking, and security features.

• Docker Engine - Enterprise: It consists of certified infrastructure, plugins, and ISV containers.
• Docker Enterprise: This tier includes image management, container app management, and
image security scanning features.

In this course, we will be installing and using the community edition of Docker.

The installation process is well-explained in the official Docker documentation³³. There are different
channels available, namely stable, test, and nightly. We will be installing and using the stable build.

For this guide, we will be using Ubuntu 22.04 LTS (Focal Fossa) as our host OS. If you are using
another distribution or another operating system, adapting commands should not be difficult.

Mac Users

If you are a Mac user, you can download Docker Desktop for Mac from Docker official website³⁴.

If your Mac has an Intel CPU, you need to have at least 4 GB of RAM and install VirtualBox prior
to version 4.3.30 must not be installed as it is not compatible with Docker Desktop.

If your Mac comes with an Apple silicon CPU, you need to install Rosetta³⁵ 2:

1 softwareupdate --install-rosetta

³³https://docs.docker.com/install/
³⁴https://docs.docker.com/desktop/install/mac-install/
³⁵https://en.wikipedia.org/wiki/Rosetta_(software)

https://docs.docker.com/install/
https://docs.docker.com/desktop/install/mac-install/
https://en.wikipedia.org/wiki/Rosetta_(software)
https://docs.docker.com/install/
https://docs.docker.com/desktop/install/mac-install/
https://en.wikipedia.org/wiki/Rosetta_(software)

Installing and Using Docker 46

Windows Users

If you are a Windows user, you can download Docker Desktop for Windows from Docker official
website³⁶.

You will need either WSL 2 (Windows Subsystem for Linux) or Hyper-V to run Docker Desktop for
Windows. In both cases, you will need to enable virtualization³⁷ on your machine.

Docker for Linux

It depends on your distribution, so if you are going to install Docker on a CentOS machine, follow
these instructions³⁸.

Check the requirements first. You need CentOS 7 or later like CentOS 8 (stream) or CentOS 9 (stream).
Archived versions aren’t supported or tested.

The centos-extras repository must be enabled. This repository is enabled by default, but if you
have disabled it, you need to re-enable it³⁹. The overlay2 storage driver is recommended.

Now, start by uninstalling any older version of Docker:

1 sudo yum remove docker \

2 docker-client \

3 docker-client-latest \

4 docker-common \

5 docker-latest \

6 docker-latest-logrotate \

7 docker-logrotate \

8 docker-engine

Then set up the repository:

1 sudo yum install -y yum-utils device-mapper-persistent-data lvm2

2 sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-c\

3 e.repo

Now install Docker:

1 sudo yum install docker-ce docker-ce-cli containerd.io

³⁶https://docs.docker.com/desktop/install/windows-install/
³⁷https://docs.docker.com/desktop/troubleshoot/topics/#virtualization
³⁸https://docs.docker.com/install/linux/docker-ce/centos/
³⁹https://wiki.centos.org/AdditionalResources/Repositories

https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/troubleshoot/topics/#virtualization
https://docs.docker.com/install/linux/docker-ce/centos/
https://wiki.centos.org/AdditionalResources/Repositories
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/troubleshoot/topics/#virtualization
https://docs.docker.com/install/linux/docker-ce/centos/
https://wiki.centos.org/AdditionalResources/Repositories

Installing and Using Docker 47

If you are using Ubuntu, follow these instructions⁴⁰.

You need the 64-bit version of one of Ubuntu Focal 20.04 (LTS) or later.

Uninstall all conflicting packages:

1 for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker conta\

2 inerd runc; do sudo apt-get remove $pkg; done

Install using APT:

1 # Add Docker's official GPG key:

2 sudo apt-get update

3 sudo apt-get install ca-certificates curl gnupg

4 sudo install -m 0755 -d /etc/apt/keyrings

5 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc\

6 /apt/keyrings/docker.gpg

7 sudo chmod a+r /etc/apt/keyrings/docker.gpg

8

9 # Add the repository to Apt sources:

10 echo \

11 "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] \

12 https://download.docker.com/linux/ubuntu \

13 "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \

14 sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

15

16 sudo apt-get update

17

18 # Install Docker Engine:

19 sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin dock\

20 er-compose-plugin

After installing Docker in any of the above ways, you need to start the Docker service:

1 sudo systemctl start docker

Verify the installation by running a container:

1 sudo docker run hello-world

Linux: Alternative Installation Method

Docker provides a script to install the latest version of Docker and it can faster than the first way:

⁴⁰https://docs.docker.com/install/linux/docker-ce/ubuntu/

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Installing and Using Docker 48

1 curl -fsSL https://get.docker.com -o get-docker.sh

2 sudo sh get-docker.sh

Linux: Using Docker as a Non-root User

Don’t forget to add your current user to the Docker users group to avoid using sudo each time you
want to run a Docker command:

1 # Create the docker group:

2 sudo groupadd docker

3 # Add your user to the docker group:

4 sudo usermod -aG docker $USER

5 # Log out and log back in so that your group

6 # membership is re-evaluated (or run `newgrp docker`):

7 newgrp docker

8 # Verify that you can run docker commands without sudo:

9 docker run hello-world

Docker CLI

When we tested the Docker installation, we used the docker run hello-world command.

1 sudo docker run hello-world

Running the above commands will pull the hello-world image from the Docker Hub and run it in a
container.

These are the steps that Docker followed to run the hello-world container (you can see them in the
output of the command):

1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the “hello-world” image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the executable that

produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it to your terminal.

In essence, this succinctly captures Docker’s container creation process. Diving into a detailed
reiteration would be redundant, especially considering the energy⁴¹ consumption Docker incurs
performing this operation.

⁴¹https://arxiv.org/pdf/1705.01176.pdf

https://arxiv.org/pdf/1705.01176.pdf
https://arxiv.org/pdf/1705.01176.pdf

Installing and Using Docker 49

General Information About Your Docker Installation

Docker is a highly active project, and its code undergoes frequent changes. To gain a better
understanding of this technology, I have been following the project on Github⁴² and referring to
its issues whenever I encountered problems or discovered bugs.

It is crucial to know the version of Docker you are using on your production servers. You can use
the command docker -v to check the version and build number.

1 docker -v

For more general information about the server/client version, architecture, Go version, and more,
you can use the command docker version.

Example:

1 docker version

Docker Help

You can view the Docker help using the command line:

1 docker --help

You will see different lists of commands and options:

Common commands:

1 run Create and run a new container from an image

2 exec Execute a command in a running container

3 ps List containers

4 build Build an image from a Dockerfile

5 pull Download an image from a registry

6 push Upload an image to a registry

7 images List images

8 login Log in to a registry

9 logout Log out from a registry

10 search Search Docker Hub for images

11 version Show the Docker version information

12 info Display system-wide information

Management commands:

⁴²https://github.com/moby/moby/issues

https://github.com/moby/moby/issues
https://github.com/moby/moby/issues

Installing and Using Docker 50

1 builder Manage builds

2 buildx Docker Buildx

3 compose Docker Compose

4 container Manage containers

5 context Manage contexts

6 image Manage images

7 manifest Manage Docker image manifests and manifest lists

8 network Manage networks

9 plugin Manage plugins

10 system Manage Docker

11 trust Manage trust on Docker images

12 volume Manage volumes

Swarm commands:

1 swarm Manage Swarm

And other commands:

1 attach Attach local standard input, output, and error streams to a running cont\

2 ainer

3 commit Create a new image from a container's changes

4 cp Copy files/folders between a container and the local filesystem

5 create Create a new container

6 diff Inspect changes to files or directories on a container's filesystem

7 events Get real time events from the server

8 export Export a container's filesystem as a tar archive

9 history Show the history of an image

10 import Import the contents from a tarball to create a filesystem image

11 inspect Return low-level information on Docker objects

12 kill Kill one or more running containers

13 load Load an image from a tar archive or STDIN

14 logs Fetch the logs of a container

15 pause Pause all processes within one or more containers

16 port List port mappings or a specific mapping for the container

17 rename Rename a container

18 restart Restart one or more containers

19 rm Remove one or more containers

20 rmi Remove one or more images

21 save Save one or more images to a tar archive (streamed to STDOUT by default)

22 start Start one or more stopped containers

23 stats Display a live stream of container(s) resource usage statistics

Installing and Using Docker 51

24 stop Stop one or more running containers

25 tag Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE

26 top Display the running processes of a container

27 unpause Unpause all processes within one or more containers

28 update Update configuration of one or more containers

29 wait Block until one or more containers stop, then print their exit codes

If you need more help about a specific command like cp or rmi , you need to type:

1 docker cp --help

2 docker rmi --help

In some cases, you have a 3rd level of help:

1 docker swarm init --help

Docker Events
To start this section, let’s run a MariaDB container and list Docker Events . For this manipulation,
you can use terminator⁴³ to split your screen into two and notice at the same time the event’s output
while typing the following command:

1 docker run --name mariadb -e MYSQL_ROOT_PASSWORD=password -v /data/db:/var/lib/mysql\

2 -d mariadb

The events launched by the last command can be seen using:

1 docker events

You will see a stream of events that are related to the image pulling and the container creation.

1 image pull <IMAGE_NAME>:<TAG> (name=<NAME>, org.opencontainers.image.authors=<AUTHOR\

2 S>, org.opencontainers.image.base.name=<BASE_IMAGE_NAME>, org.opencontainers.image.d\

3 escription=<DESCRIPTION>, org.opencontainers.image.documentation=<DOCUMENTATION_URL>\

4 , org.opencontainers.image.licenses=<LICENSE>, org.opencontainers.image.ref.name=<RE\

5 F_NAME>, org.opencontainers.image.source=<SOURCE_URL>, org.opencontainers.image.titl\

6 e=<TITLE>, org.opencontainers.image.url=<URL>, org.opencontainers.image.vendor=<VEND\

7 OR>, org.opencontainers.image.version=<VERSION>)

8

9 container create <CONTAINER_ID> (image=<IMAGE_NAME>, name=<CONTAINER_NAME>, org.open\

10 containers.image.authors=<IMAGE_AUTHORS>, org.opencontainers.image.base.name=<BASE_I\

11 MAGE_NAME>, org.opencontainers.image.description=<IMAGE_DESCRIPTION>, org.opencontai\

12 ners.image.documentation=<IMAGE_DOC_URL>, org.opencontainers.image.licenses=<IMAGE_L\

13 ICENSES>, org.opencontainers.image.ref.name=<IMAGE_REF_NAME>, org.opencontainers.ima\

14 ge.source=<IMAGE_SOURCE_URL>, org.opencontainers.image.title=<IMAGE_TITLE>, org.open\

15 containers.image.url=<IMAGE_URL>, org.opencontainers.image.vendor=<IMAGE_VENDOR>, or\

16 g.opencontainers.image.version=<IMAGE_VERSION>)

17

18 network connect <NETWORK_ID> (container=<CONTAINER_ID>, name=<NETWORK_NAME>, type=<N\

19 ETWORK_TYPE>)

20

21 container start <CONTAINER_ID> (image=<IMAGE_NAME>, name=<CONTAINER_NAME>, org.openc\

22 ontainers.image.authors=<IMAGE_AUTHORS>, org.opencontainers.image.base.name=<BASE_IM\

⁴³https://terminator-gtk3.readthedocs.io/en/latest/

https://terminator-gtk3.readthedocs.io/en/latest/
https://terminator-gtk3.readthedocs.io/en/latest/

Docker Events 53

23 AGE_NAME>, org.opencontainers.image.description=<IMAGE_DESCRIPTION>, org.opencontain\

24 ers.image.documentation=<IMAGE_DOC_URL>, org.opencontainers.image.licenses=<IMAGE_LI\

25 CENSES>, org.opencontainers.image.ref.name=<IMAGE_REF_NAME>, org.opencontainers.imag\

26 e.source=<IMAGE_SOURCE_URL>, org.opencontainers.image.title=<IMAGE_TITLE>, org.openc\

27 ontainers.image.url=<IMAGE_URL>, org.opencontainers.image.vendor=<IMAGE_VENDOR>, org\

28 .opencontainers.image.version=<IMAGE_VERSION>)

To understand line by line the event stream output:

• image pull: The image is pulled from the public repository by it identifierMariadb .
• container create: The container is created from the pulled image and it was given a Docker
identifier (CONTAINER_ID).

• network connect: The container is attached to a network called bridge having a unique
identifier. At this stage the container is not running yet.

• container start: The container at this stage is running on your host system with the same
identifier (CONTAINER_ID).

In total, there are over 50 distinct events, varying based on the specific object in question. By ‘objects,’
we’re referring to elements such as containers, images, plugins, volumes, networks, daemons,
services, nodes, secrets, and configs. It’s worth noting that while many of these events are tied
to the Docker engine itself, others are specifically associated with Docker’s orchestration solution,
Docker Swarm. Following is a list of the most common events:

• Docker containers report the following events:
– attach

– commit

– copy

– create

– destroy

– detach

– die

– exec_create

– exec_detach

– exec_die

– exec_start

– export

– health_status

– kill

– oom

– pause

Docker Events 54

– rename

– resize

– restart

– start

– stop

– top

– unpause

– update

• Docker images report the following events:
– delete

– import

– load

– pull

– push

– save

– tag

– untag

• Docker plugins report the following events:
– enable

– disable

– install

– remove

• Docker volumes report the following events:
– create

– destroy

– mount

– unmount

• Docker networks report the following events:
– create

– connect

– destroy

– disconnect

– remove

• Docker daemons report the following events:
– reload

• Docker services report the following events:
– create

– remove

– update

Docker Events 55

• Docker nodes report the following events:
– create

– remove

– update

• Docker secrets report the following events:
– create

– remove

– update

• Docker configs report the following events:
– create

– remove

– update

It is possible to filter the events by type using the --filter flag:

1 # List all events related to containers:

2 docker events --filter type=container

3 # List all events related to a specific container:

4 docker events --filter container=<CONTAINER_ID>

5 # List all events called "stop":

6 docker events --filter event=stop

7 # Using multiple filters:

8 docker events --filter event=stop --filter container=<CONTAINER_ID>

Using Docker API To List Events

One of the most important features of Docker is its API that makes it possible to interact with
Docker using HTTP requests. You can, in fact, use the same API to see Docker Events while using
the command line.

Start by installing curl⁴⁴ if it is not already installed on your system:

1 sudo apt install curl

Type the following command to see the Docker Events stream:

1 curl --unix-socket /var/run/docker.sock http://localhost/events

Open another terminal window (or a new tab) and type:

⁴⁴https://curl.haxx.se/

https://curl.haxx.se/
https://curl.haxx.se/

Docker Events 56

1 docker pull mariadb

2 docker rmi -f mariadb

3 docker pull mariadb

These are the 4 events reported by the 3 commands typed above:

• Pulling an image that already exists in the host:

1 {

2 "status":"pull",

3 "id":"mariadb:latest",

4 "Type":"image",

5 "Action":"pull",

6 "Actor":{

7 "ID":"mariadb:latest",

8 "Attributes":{

9 "name":"mariadb",

10 "org.opencontainers.image.authors":"MariaDB Community",

11 "org.opencontainers.image.base.name":"docker.io/library/ubuntu:jammy",

12 "org.opencontainers.image.description":"MariaDB Database for relational SQL\

13 ",

14 "org.opencontainers.image.documentation":"https://hub.docker.com/_/mariadb/\

15 ",

16 "org.opencontainers.image.licenses":"GPL-2.0",

17 "org.opencontainers.image.ref.name":"ubuntu",

18 "org.opencontainers.image.source":"https://github.com/MariaDB/mariadb-docke\

19 r",

20 "org.opencontainers.image.title":"MariaDB Database",

21 "org.opencontainers.image.url":"https://github.com/MariaDB/mariadb-docker",

22 "org.opencontainers.image.vendor":"MariaDB Community",

23 "org.opencontainers.image.version":"11.1.2"

24 }

25 },

26 "scope":"local",

27 "time":1698933573,

28 "timeNano":1698933573154066725

29 }

• Untagging and deleting the image:

Docker Events 57

1 {

2 "status":"untag",

3 "id":"sha256:f35870862d64d0e29598fba1d7f75cfefeb3f891cb22b3e2d4459c903e666554",

4 "Type":"image",

5 "Action":"untag",

6 "Actor":{

7 "ID":"sha256:f35870862d64d0e29598fba1d7f75cfefeb3f891cb22b3e2d4459c903e666554",

8 "Attributes":{

9 "name":"sha256:f35870862d64d0e29598fba1d7f75cfefeb3f891cb22b3e2d4459c903e66\

10 6554",

11 "org.opencontainers.image.authors":"MariaDB Community",

12 "org.opencontainers.image.base.name":"docker.io/library/ubuntu:jammy",

13 "org.opencontainers.image.description":"MariaDB Database for relational SQL\

14 ",

15 "org.opencontainers.image.documentation":"https://hub.docker.com/_/mariadb/\

16 ",

17 "org.opencontainers.image.licenses":"GPL-2.0",

18 "org.opencontainers.image.ref.name":"ubuntu",

19 "org.opencontainers.image.source":"https://github.com/MariaDB/mariadb-docke\

20 r",

21 "org.opencontainers.image.title":"MariaDB Database",

22 "org.opencontainers.image.url":"https://github.com/MariaDB/mariadb-docker",

23 "org.opencontainers.image.vendor":"MariaDB Community",

24 "org.opencontainers.image.version":"11.1.2"

25 }

26 },

27 "scope":"local",

28 "time":1698933584,

29 "timeNano":1698933584450460765

30 }

31

32 {

33 "status":"delete",

34 "id":"sha256:f35870862d64d0e29598fba1d7f75cfefeb3f891cb22b3e2d4459c903e666554",

35 "Type":"image",

36 "Action":"delete",

37 "Actor":{

38 "ID":"sha256:f35870862d64d0e29598fba1d7f75cfefeb3f891cb22b3e2d4459c903e666554",

39 "Attributes":{

40 "name":"sha256:f35870862d64d0e29598fba1d7f75cfefeb3f891cb22b3e2d4459c903e66\

41 6554"

42 }

43 },

Docker Events 58

44 "scope":"local",

45 "time":1698933584,

46 "timeNano":1698933584569420538

47 }

• Pulling the image

1 {

2 "status":"pull",

3 "id":"mariadb:latest",

4 "Type":"image",

5 "Action":"pull",

6 "Actor":{

7 "ID":"mariadb:latest",

8 "Attributes":{

9 "name":"mariadb",

10 "org.opencontainers.image.authors":"MariaDB Community",

11 "org.opencontainers.image.base.name":"docker.io/library/ubuntu:jammy",

12 "org.opencontainers.image.description":"MariaDB Database for relational SQL\

13 ",

14 "org.opencontainers.image.documentation":"https://hub.docker.com/_/mariadb/\

15 ",

16 "org.opencontainers.image.licenses":"GPL-2.0",

17 "org.opencontainers.image.ref.name":"ubuntu",

18 "org.opencontainers.image.source":"https://github.com/MariaDB/mariadb-docke\

19 r",

20 "org.opencontainers.image.title":"MariaDB Database",

21 "org.opencontainers.image.url":"https://github.com/MariaDB/mariadb-docker",

22 "org.opencontainers.image.vendor":"MariaDB Community",

23 "org.opencontainers.image.version":"11.1.2"

24 }

25 },

26 "scope":"local",

27 "time":1698933681,

28 "timeNano":1698933681839994581

29 }

Each event has a status (e.g.: pull, untag), a resource identifier (id) and a type (e.g.: image, container,
network), and other information like:

• Actor: The actor is the object that is the source of the event. It can be an image, a container, a
network, a volume, a plugin, a daemon, a service, a node, a secret, or a config.

Docker Events 59

• Scope: The scope is the type of the object that is the target of the event. It can be a local or a
swarm.

• Time: The time is the time when the event was generated.

Docker Containers
Docker is a popular platform that effectively addresses various issues in modern IT but in its core,
it is a containerization platform. Docker helps users manage volumes, images and networks and all
of this is done to create and run containers. So containers are the core of Docker and in this section,
we will learn how to create and manage containers.

A container is essentially an image that is running.

To create a container, you can use the docker create command but additional commands are used
to start, pause, stop, run, and delete containers.

A container has a lifecycle with various phases that correspond to defined events:

• attach

• commit

• copy

• create

• destroy

• detach

• die

• exec_create

• exec_detach

• exec_die

• exec_start

• export

• health_status

• kill

• oom

• pause

• rename

• resize

• restart

• start

• stop

• top

• unpause

• update

We will explore these commands and most of the lifecycle phases in this section.

Docker Containers 61

Creating Containers

To create a container, simply run a Docker image using the docker create command.

1 docker create [OPTIONS] IMAGE [COMMAND] [ARG...]

A simple example to start using this command is running:

1 docker create hello-world

Verify that the container was created by typing:

1 docker ps -a

or

1 docker ps --all

Docker would pick a random name for your container if you did not explicitly specify a name but
you can set a name:

1 docker create --name hello-world-container hello-world

Verify the creation of the container:

1 docker ps -a

The docker create command uses the specified image and add a new writable layer to create the
container and waits for the specified command to run inside the created container.

The container is created but not running yet. You can start it using the docker start command:

1 docker start web_server

In practice, the docker create command is not used as much as the docker run command which is
a combination of docker create and docker start commands.

In reality the docker run command is an alias for docker container run command which is an
alias for docker container create && docker container start commands.

Running Containers

The docker run command is used to create and start a container in one command.

Docker Containers 62

1 docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

The docker run command is used to create and start a container in one command.

1 docker run hello-world

Instead of using the following commands:

1 docker create --name web_server -it nginx

2 docker start web_server

You can use the docker run command:

1 # Remove the old container if it exists: docker rm web_server

2 docker run --name web_server nginx

Now if you want to run an interactive container, you can use the -it flag:

1 docker run -it ubuntu bash

2 # or

3 # docker run --interactive --tty ubuntu bash

By “interactive mode”, we mean that you can interact with the container using the terminal.
Therefore, you need to attach a terminal to the container. The -it flag is a combination of two
flags:

• i or interactive: Keep STDIN open even if not attached
• t or tty: Allocate a pseudo-TTY

By default, Docker launches a container and assumes that you want to attach to its STDIN, STDOUT,
and STDERR. If you want to run a container in the background, you can use the -d flag.

Additionally, we usually run containers in background mode using the -d flag:

1 docker run -d --name web_server nginx

The -d flag is short for --detach which means that the container will run in the background.

Restarting Containers

Let’s start this container:

Docker Containers 63

1 # Remove the old container if it exists: docker rm web_server

2 docker run -d --name web_server nginx

This will print an ID of the container.

Example:

1 5a9c835bb0ba1c3e3f61d351f7899622af51d169f4367c7dd65d58c04746366b

This is the long ID of the container. You can use the first 3 or 4 characters of the ID to reference the
container and restart it using the docker restart command:

1 docker restart 5a9

Or the short ID that you can see when you type docker ps. You can also use the name of the
container:

1 docker restart web_server

Referencing a container using the short/long ID, the first few characters of the ID, or the name of the
container is the same and it applies to all Docker commands that accept a container as an argument.

Pausing and Unpausing Containers

To pause/unpause the Nginx container you can use the following commands:

1 docker pause web_server

2 docker unpause web_server

You can verify the STATUS of the container using docker ps.

1 docker ps --filter "name=web_server" --format "{{.ID}}: {{.Status}}"

Stopping Containers

You can use the stop command in the following way to stop one or multiple containers:

Docker Containers 64

1 docker stop [OPTIONS] CONTAINER [CONTAINER...]

Example:

1 docker stop web_server

We can also stop a container after a specific number of seconds:

1 docker stop --time 20 web_server

The last command will wait 20 seconds before killing the container. The default number of seconds
is 10, so executing docker stop my_container will wait 10 seconds.

Executing the docker stop command asks nicely to stop the container..

Stopping a container is sending a SIGTERM signal to the root process (PID 1) in the container, but if
the process and if it has not exited within the timeout period (10 seconds), a SIGKILL signal will be
sent.

You can customize the signal to send using the --signal flag:

1 docker stop --signal=SIGKILL web_server

Killing Containers

The docker kill command is used to terminate containers and force them to exit. By default, the
command sends a SIGKILL signal to the containers, but this can be changed by using the --signal
option.

The signal can be specified either as SIG[NAME] or as a numeric value from the kernel’s syscall table.
It’s important to note that certain signals, like SIGHUP, may not necessarily stop the container
depending on its main process.

It’s worth mentioning that syscall numbers can differ across different architectures. For the x86_64
architecture, you can refer to syscall_64.tbl⁴⁵, and for the x86 architecture, you can refer to syscall_-
32.tbl⁴⁶.

Here is an example of how to use the docker kill command:

1 docker kill [OPTIONS] CONTAINER [CONTAINER...]

Docker’s kill command does not gracefully terminate the container process. By default, it sends a
SIGKILL signal, which is equivalent to using the kill -9 command in Linux. Alternatively, you can
use the SIGINT or SIGTERM signals to terminate the container process.

⁴⁵https://github.com/torvalds/linux/blob/v4.17/arch/x86/entry/syscalls/syscall_64.tbl#L11
⁴⁶https://github.com/torvalds/linux/blob/v4.17/arch/x86/entry/syscalls/syscall_32.tbl#L17

https://github.com/torvalds/linux/blob/v4.17/arch/x86/entry/syscalls/syscall_64.tbl#L11
https://github.com/torvalds/linux/blob/v4.17/arch/x86/entry/syscalls/syscall_32.tbl#L17
https://github.com/torvalds/linux/blob/v4.17/arch/x86/entry/syscalls/syscall_32.tbl#L17
https://github.com/torvalds/linux/blob/v4.17/arch/x86/entry/syscalls/syscall_64.tbl#L11
https://github.com/torvalds/linux/blob/v4.17/arch/x86/entry/syscalls/syscall_32.tbl#L17

Docker Containers 65

1 docker kill --signal=SIGINT web_server

2 docker kill --signal=SIGTERM web_server

A common example is using SIGHUP to reload the configuration of a process. For instance, if you
have an NGINX server running in a container and you want to reload its configuration, you can use
the following command:

1 docker kill --signal=SIGHUP web_server

There are three different approaches to reload the configuration of a process running in a container:

• The first approach is to send a signal to the container’s PID.
• The second option is to execute the kill command inside the container.
• The third way to do it is by using the docker kill command.

1 kill -SIGHUP [PID]

2 docker exec [CONTAINER] kill -SIGHUP 1 # The main process PID is 1

3 docker kill --signal=HUP [CONTAINER]

Removing Containers

To remove one or multiple containers, you can use the docker rm command.

1 docker rm [OPTIONS] CONTAINER [CONTAINER...]

To see this in action, run and remove a container:

1 docker run -it -d --name my_container nginx

2 container_id=$(docker ps -a --filter "name=my_container" --format "{{.ID}}")

3 docker rm $container_id

4 # or docker rm my_container

If the container is stopped, it will be removed. However, you cannot remove a running container. To
force the removal of a running container, you should add the -f or --force option:

1 docker rm -f $container_id

2 # or docker rm -f my_container

Adding the --force command is an alternative to executing two commands:

Docker Containers 66

1 docker stop my_container

2 docker rm my_container

Removal not only stops a running container but also erases all of its traces.

Container Lifecycle

A container may be in one of the following states:

• Created: The image is pulled, and the container is configured to run but not running yet.
• Running: Docker creates a new RW layer at the top of the pulled image and starts running the
container.

• Paused: Docker container is paused but ready to run again without any restart, just run the
unpause command.

• Stopped: The container is stopped and not running. You should start another new container if
you want to run the same application.

• Removed: A container could not be removed unless it is stopped. In this status, there is no
container at all (neither in the disk nor in the memory of the host machine).

To see the status of a container, you can use the docker ps command:

1 docker ps --format "{{.Names}} is {{.Status}}"

All of these states are part of the container lifecycle and can be achieved using the commands we
have learned so far:

• docker create

• docker start

• docker run

• docker pause

• docker unpause

• docker restart

• docker stop

• docker kill

• docker rm

Starting Containers Automatically

You have the option to automatically restart Docker containers in the following scenarios: when the
container stops, when it exits with an error code, or when the Docker daemon restarts (unless the
container was manually stopped). Alternatively, you can choose to deactivate automated restarts
altogether.

This table from the official documentation explains the different flags used to implement all of the
mentioned policies:

Docker Containers 67

Flag Description
no Do not automatically restart the container. (the

default)
on-failure[:max-retries] Restart the container if it exits due to an error, which

manifests as a non-zero exit code. Optionally, limit the
number of times the Docker daemon attempts to
restart the container using the :max-retries option.
The on-failure policy only prompts a restart if the
container exits with a failure. It doesn’t restart the
container if the daemon restarts.

always Always restart the container if it stops. If it is manually
stopped, it is restarted only when Docker daemon
restarts, or the container itself is manually restarted.
(See the second bullet listed in restart policy details⁴⁷)

unless-stopped Similar to always, except that when the container is
stopped (manually or otherwise), it is not restarted
even after Docker daemon restarts.

These are the various policies available for automatically restarting containers. You can use the
--restart=[POLICY] flag to specify the restart policy when creating or running a container.

1 # Always restart the container regardless of the exit status

2 docker run --restart=always nginx

3 # Restart the container unless it is explicitly stopped

4 docker run --restart=unless-stopped nginx

5 # Restart the container when there's an error

6 docker run --restart=on-failure nginx

7 # Restart the container when there's an error with a maximum of 10 restart attempts

8 docker run --restart=on-failure:10 nginx

Accessing Containers Ports

When you run a container, you can expose ports using the -p flag. This flag takes two arguments:
the port on the host machine and the port inside the container. For example, if you want to expose
port 80 on the host machine and port 80 inside the container, you can use the following command:

1 docker run -p 80:80 nginx

This means that any request to port 80 on the host machine will be forwarded to port 80 inside the
container.

However, three conditions must be met for this to work:

⁴⁷https://docs.docker.com/config/containers/start-containers-automatically/#restart-policy-details

https://docs.docker.com/config/containers/start-containers-automatically/#restart-policy-details
https://docs.docker.com/config/containers/start-containers-automatically/#restart-policy-details

Docker Containers 68

• The Dockerfile of the image powering the container (Nginx image in our case) should expose
the port that you want to forward traffic to (port 80 in our case).

• The application running inside the container should be listening on the port that is exposed
(Nginx listens on port 80 by default).

• The port on the host machine should not be used by another application.

Keep in mind that these 3 conditions should be met for the port forwarding to work. Later in the
following sections, we will explore these concepts in more detail.

It’s worth mentioning that:

• You can expose multiple ports using the -p flag. For example, if you want to expose ports 80 and
443 on the host machine and ports 80 and 443 inside the container, you can use the following
command:

1 docker run -d -p 80:80 -p 443:443 --name nginx_two_ports nginx

• You don’t have the have the same port on the host machine and inside the container. For
example, if you want to use port 8080 on the host machine and port 80 inside the container,
you can use the following command:

1 docker run -d -p 8080:80 --name nginx_different_ports nginx

• If you don’t specify the port in the host, Docker will pick a random port and forward traffic
to the specified port inside the container. For example, if you want to use port 80 inside the
container, you can use the following command:

1 docker run -d -p 80 --name nginx_random_port nginx

You can get the host port using:

1 docker port nginx_random_port

Running Docker In Docker

Suppose you are running your CI/CD pipeline using Jenkins. In this scenario, your Jenkins instance
is containerized using Docker. Now, within this Jenkins container, you want to execute Docker
commands. This situation is commonly referred to as Docker-in-Docker (DinD).

There are various methods to achieve Docker-in-Docker, but the most optimal approach is to bind-
mount the Docker socket into the currently running Jenkins container. This technique is different
from running a Docker container inside another Docker container, but it achieves the same result.

Let’s create a Dockerfile for our Jenkins container:

Docker Containers 69

1 cat <<EOF > Dockerfile

2 FROM jenkins/jenkins:lts

3 USER root

4 RUN curl -fsSL https://get.docker.com -o get-docker.sh && sh get-docker.sh

5 EOF

Build and run the container:

1 docker build -t jenkins-docker .

2 docker run -d -p 8080:8080 -p 50000:50000 --name jenkins -v /var/run/docker.sock:/va\

3 r/run/docker.sock jenkins-docker

Now, go inside the container and execute the docker ps command:

1 docker exec -it jenkins bash

2 docker ps

To view the list of containers running on the host machine, you can use the Docker dashboard. If
you need to launch Docker containers for testing purposes, CI/CD, etc., you can do so through the
Jenkins dashboard.

In his blog post “Using Docker-in-Docker for your CI or testing environment? Think twice”⁴⁸, Jérôme
Petazzoni suggests different methods for running Docker in Docker. He also mentions that the most
effective approach is to utilize the Docker API or mount the Docker socket.

⁴⁸https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/

https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/

Managing Containers Resources
When you create a container, it is associated with specific cgroups (Control Groups) that manage its
resources. cgroups allow you to set limits on resources such as memory, CPU, and block I/O for the
container, ensuring it does not consume more than its allocated resources.

Control Groups act as controllers that monitor and limit the resource usage of a process or group of
processes. If the container exceeds the allocated resources, the cgroup will terminate the process(es).

By default, when you start a container, it has no limitations. It can utilize as much CPU and memory
as permitted by the host’s kernel scheduler. You can restrict the resources available to a container
by specifying the maximum amount of memory and CPU it can use.

Similarly, you can allocate a reserved amount of memory and CPU for a container. This reserved
amount of resources is guaranteed to be available to the container.

Setting limits or reservations on available resources for a container is important. Not setting them
can result in a container using all available resources on the host or not having enough resources to
run.

By setting these limits and reservations, you can:

• Prevent other containers on the same host from being starved of resources.
• Predict the performance of a container.
• Enhance security by minimizing the impact of a compromised container.
• Manage costs by restricting the resources available to a container.
• Ensure a minimum level of resources for a container, preventing it from being terminated by
the kernel during memory pressure on the host.

• Avoid unexpected failures due to insufficient resources.
• Isolate containers from resource-intensive neighbors.

When using an orchestrator like Kubernetes, it is often unnecessary to set limits or reservations on
container resources as the orchestrator handles this for you. However, when running standalone
containers, it is good practice to set them for each container.

In the following sections, we will explore all of this in more detail.

Memory Usage Reservations and Limits

We are going to see the available options to manage memory usage for a container by following
some practical examples.

Managing Containers Resources 71

Note that in the following examples, you can use b, k, m, g, to indicate bytes, kilobytes, megabytes,
or gigabytes.

Setting the maximum amount of memory available to a container:

1 docker run -d --memory="512m" nginx

In the above example, we are setting the maximum amount of memory available to the container to
512 MB. If the container exceeds this limit, it will be terminated by the kernel. The minimum value
you can set is 6 MB.

Setting the amount of memory the container is allowed to swap to disk:

1 docker run -d --memory="512m" --memory-swap="1000m" nginx

In the above example, we are setting the amount of memory the container is allowed to swap to disk
to 1000 MB. The --memory must be set for the --memory-swap to work.

The configured swap represents the total amount of memory and swap that can be used by the
container. If the memory is set to 512 MB and the swap is set to 1000 MB, the container can use
512m from memory and 488m from swap (1000m - 512m). Therefore, the amount of swap should be
always greater than the amount of memory. Otherwise, the swap will be ignored.

If you want to use unlimited swap, you can set the --memory-swap to -1.

1 docker run -d --memory="512m" --memory-swap="-1" nginx

Setting the memory swappiness for a container:

1 docker run -d --memory-swappiness="10" nginx

Swappiness is a property for the Linux kernel that changes the balance between swapping out
runtime memory and it could be a number between 0 and 100. The lower the value, the less the
kernel will swap memory pages. The higher the value, the more the kernel will swap memory pages.
If you don’t set --memory-swappiness, the value is inherited from the host machine.

By setting the --memory-swappiness value to a lower number, like 10, for a specific Docker container,
you instruct the kernel to be less aggressive about swapping out the memory pages of that container.
This ensures that the container’s memory pages are swapped out only when necessary which
improves performance.

It’s worth noting that memory has a faster access time than swap. Therefore, it is better to keep the
memory pages in memory as much as possible.

Allocating a reserved amount of memory for a container:

Managing Containers Resources 72

1 docker run -d --memory-reservation="256m" nginx

The flag --memory-reservation is used to set the amount of memory that is guaranteed to be
available to a container. If the host is under memory pressure, the kernel will not reclaim thememory
reserved for the container. We call this a soft limit and it should be set lower than the --memory flag.

Setting the kernel memory limit for a container:

1 docker run -d --kernel-memory="256m" nginx

The flag --kernel-memory is used to set the maximum amount of kernel memory that can be used
by the container. This memory is used by the kernel for TCP/IP networking, the VFS cache, and
other kernel allocations.

The Kernel memory limits are expressed in terms of the memory allowed for the container. If you
start a container with a total memory limit of 1GB and set the kernel memory limit to 200MB, the
container has up to 1GB of total memory to use. Out of this, a maximum of 200MB can be used for
kernel-related tasks, and the remaining 800MB is available for user-space tasks.

These are some scenarios to better understand how the kernel memory limit works:

• Unlimited memory, unlimited kernel memory: The default setting.
• Unlimited memory, limited kernel memory: When there’s more total memory demand than
what’s available, you can limit only the memory used by the system tasks in containers. This
ensures system operations don’t exceed the host’s memory. If a container needs more memory,
it must wait.

• Limited memory, unlimited kernel memory: Only user memory is capped.
• Limited memory, limited kernel memory: Helps in troubleshooting memory issues by con-
straining both user and kernel memory.

Disabling the OOM Killer for a container:

1 docker run -d --oom-kill-disable nginx

When using the --oom-kill-disable flag, the kernel will not kill the container if it runs out of
memory. Instead, it will return an out-of-memory (OOM) error. This flag should only be used in
combination with the --memory option to avoid potential system-wide memory issues.

CPU Usage Reservations and Limits

We are going to see the available options to manage CPU usage for a container by following some
practical examples.

Specifying how much of the available CPU resources a container can use:

Use --cpus="1.5" to let a container use up to one and a half CPUs. For example:

Managing Containers Resources 73

1 docker run -d --cpus="1.5" nginx

Specifying the CPU CFS scheduler period and quota for a container:

CFS (Completely Fair Scheduler) is a process scheduler that selects which process to run next in
the Linux kernel. It is the default scheduler for Linux and is used on all Linux systems. The CFS
scheduler period is the amount of time in microseconds that a container can use the CPU before it
is throttled. The default value is 100000 microseconds (100 milliseconds).

While most users stick to --cpus, you can also use --cpu-period and --cpu-quota.

1 docker run -d --cpu-quota=50000 --cpu-period=100000 nginx

The CPU quote refers to the maximum allowed CPU time in microseconds during the period
specified by --cpu-period.

If you set --cpu-quota=50000 and --cpu-period=100000, the container can get up to 50,000
microseconds (or 50 milliseconds) of CPU time every 100,000 microseconds (or 100 milliseconds).
This equates to 50% of a single CPU core.

Limiting the specific CPUs or cores a container can use:

Decide which CPUs your container runs on. For instance, use 0-3 for the first four CPUs or 1,3 for
the second and fourth CPUs. For example:

1 docker run -d --cpuset-cpus="1,3" nginx

Setting the CPU shares for a container:

Alter the --cpu-shares value (default is 1024) to prioritize CPU usage between containers. This
doesn’t guarantee fixed CPU amounts but prioritizes access. For example:

1 docker run -d --cpu-shares="2048" nginx

If there’s competition for CPU, this container gets a higher preference because of the “2048” value
set for --cpu-shares and because the default value is 1024. This value is relative to the CPU shares
of other containers. If you want to give less priority to a container, you can set the --cpu-shares

value to a lower number.

1 docker run -d --cpu-shares="512" nginx

Docker Images
What is an Image?

Without images, we cannot run containers. Images are the building blocks of containers.

Imagine you’re in the kitchen, and you want to make a dish. You’d refer to a recipe book, right? In
the world of Docker, an image is like that recipe book. It has all the instructions (the “recipe”) for a
specific software or application (the “dish”). When you want to execute the software, you “cook” or
“prepare” it using the recipe, much like you would spin up a container from a Docker image.

But where do you get these recipe books?Well, there’s a grand library (the Docker registry) where all
these recipe books (Docker images) are stored. Some of these recipe books are publicly available for
anyone to use (public registry like Docker Hub), while some are private collections only accessible
to certain individuals or groups (private registry).

Now, in this grand library, you can “borrow” a recipe book (pulling an image), add your own twist to
the recipe and then “return” the updated version for others to use (pushing an image), or simply keep
your special recipe to yourself. And just like in a real library where books might undergo revisions
or updates, in the Docker world, images too can be tagged, updated, or even deleted.

Images are Layers

Imagine a Docker image as a multi-layered cake, where each layer represents a distinct piece of
the application or its environment. These layers come together to form the final product, but they
remain independent and can be reused across different cakes (or images).

In practice, each layer corresponds to a change in the filesystem. For example, if you install a package,
the layer will contain the filesystem changes made during the package installation. Similarly, if you
remove a file, the layer will capture the filesystem changes made by the file removal.

Every Docker image starts with a base layer, typically an operating system like Ubuntu or Alpine.
This foundational layer serves as the foundation for everything else. As we add instructions in our
Dockerfile, such as installing software packages or copying files, new layers are created. Each layer
records the changes or additions made by a specific instruction.

ℹ Dockerfile is a text file that contains all the commands a user could call on the command
line to assemble an image.

Docker Images 75

An important characteristic of these layers is that once created, they are immutable, meaning they
cannot be altered. However, when changes occur, Docker simply adds a new layer on top, preserving
the integrity and history of the previous layers.

When you run a container, Docker creates a new layer on top of the image layers. This layer is
known as the container layer. The container layer is temporary, meaning it will be deleted when the
container is deleted.

Image layers

Docker is an intelligent tool that optimizes the build process and storage usage when creating images.
It achieves this by checking if it has previously encountered a layer (a specific instruction and its
output) during image building. If it has, Docker reuses the existing layer instead of recreating it. This
not only speeds up the build process but also saves storage space.

Whenever a particular layer changes, all subsequent layers are rebuilt to ensure that the final image
remains up-to-date with the instructions in the Dockerfile.

Docker utilizes a special file system called UnionFS⁴⁹ to store andmanage images. UnionFS combines
multiple folders into a single view, allowing Docker to layer different images together. One of
the key features of this system is the Copy-on-Write (CoW) approach. Rather than creating a new
copy of data for each container, Docker enables multiple containers to share the same data. Only

⁴⁹https://unionfs.filesystems.org/

https://unionfs.filesystems.org/
https://unionfs.filesystems.org/

Docker Images 76

when a container needs to modify the data does Docker create a separate copy exclusively for that
container. This approach saves space and improves performance. When it comes to deleting files,
Docker doesn’t actually remove them from the base layer. Instead, it adds a special “whiteout” file
in the top layer, instructing Docker to ignore the original file while it still exists in the base layer.

Images, Intermediate Images & Dangling Images

If you type docker images, you will see that you have two images (or more if you have already used
Docker before):

• hello-world: This is the image that we pulled and ran in the previous section.
• mariadb: This is the image that we pulled and ran in the previous section.

1 docker images

2 # or docker image ls

You should see something like this:

1 REPOSITORY TAG IMAGE ID CREATED SIZE

2 <none> none 57ce8f25dd63 2 days ago 229.7 MB

3 scratch latest f02aa3980a99 2 days ago 0 B

4 xenial latest 7a409243b212 2 days ago 229.7 MB

5 <none> none 149b13361203 2 days ago 12.96 MB

Images called <none> are intermediate images. They are created during the build process. They are
not tagged and are not used by any container. They are just intermediate images that are used to
build the final image. To list all of them, type:

1 docker images --filter "dangling=true"

Other filters may be used:

1 - label=<key> or label=<key>=<value>

2 - before=(<image-name>[:tag]|<image-id>|<image@digest>)

3 - since=(<image-name>[:tag]|<image-id>|<image@digest>)

An image has a tag (e.g.: latest), an id (e.g.: 92495405fc36), a creation date (e.g.: 12 days ago), and
a size (e.g.: 356 MB).

You can get more information about an image by using the docker image inspect command:

Docker Images 77

1 docker image inspect mariadb

2 # or docker image inspect mariadb:latest

You can also print a custom output where you choose to view the ID and the size of the image:

1 docker images --format "{{.ID}}: {{.Size}}"

To view the repository, type:

1 docker images --format "{{.ID}}: {{.Repository}}"

In some cases, we just need to get IDs:

1 docker images -q

If you want to list all of them, then type:

1 docker images -a

or

1 docker images --all

In this list, you will see all of the images, even the intermediate ones.

1 REPOSITORY TAG IMAGE ID SIZE

2 my_app latest 7f49abaf7a69 1.093 MB

3 <none> <none> afe4509e17bc 225.6 MB

All of the <none>:<none> are intermediate images. These images will grow with the numbers of
images you download.

As youmay know, each docker image is composed of different layers with a parent-child hierarchical
relationship. These intermediate layers are a result of caching build operations, which decrease disk
usage and speed up builds. Every build step is cached; that’s why you may experience some disk
space problems after using Docker for a while.

All docker layers are stored in /var/lib/docker/overlay2 by default.

1 sudo ls -l /var/lib/docker/overlay2

You should see a list of directories with long identifiers. Each directory is a layer.

Searching for Images

If you type:

Docker Images 78

1 docker search busybox

You will get a list of images called Ubuntu that people shared publicly in the Docker Hub
(hub.docker.com⁵⁰).

1 NAME DESCRIPTION \

2 STARS OFFICIAL AUTOMATED

3 busybox Busybox base image. \

4 3122 [OK]

5 rancher/busybox \

6 0

7 openebs/busybox-client \

8 1

9 antrea/busybox \

10 1

11 hugegraph/busybox test image \

12 2

13 privatebin/chown Docker image providing busybox' chown, stat… \

14 1

15 yauritux/busybox-curl Busybox with CURL \

16 23

17 radial/busyboxplus Full-chain, Internet enabled, busybox made f… \

18 54 [OK]

19 vukomir/busybox busybox and curl \

20 1

21 arm64v8/busybox Busybox base image. \

22 5

23 odise/busybox-curl \

24 4 [OK]

25 amd64/busybox Busybox base image. \

26 1

27 busybox42/zimbra-docker-centos A Zimbra Docker image, based in ZCS 8.8.9 an… \

28 2 [OK]

29 joeshaw/busybox-nonroot Busybox container with non-root user nobody \

30 2

31 p7ppc64/busybox Busybox base image for ppc64. \

32 2

33 ppc64le/busybox Busybox base image. \

34 1

35 s390x/busybox Busybox base image. \

36 3

⁵⁰http://hub.docker.com/

http://hub.docker.com/
http://hub.docker.com/

Docker Images 79

37 busybox42/alpine-pod \

38 0

39 arm32v7/busybox Busybox base image. \

40 10

41 i386/busybox Busybox base image. \

42 3

43 prom/busybox Prometheus Busybox Docker base images \

44 2 [OK]

45 spotify/busybox Spotify fork of https://hub.docker.com/_/bus… \

46 1

47 arm32v5/busybox Busybox base image. \

48 0

49 busybox42/nginx_php-docker-centos This is a nginx/php-fpm server running on Ce… \

50 1 [OK]

51 concourse/busyboxplus \

52 0

As you can notice, there are images having automated builds, while others don’t have this feature
activated.

An automated build allows your image to be up-to-date with changes on your private and public git
(e.g.: Github, Bitbucket) code.

Notice that if you type the search command, you will get only a few images, and if you want more,
you could use the --limit option:

1 docker search --limit 100 busybox

To refine your search, you can filter it using the --filter option.

Let’s search for the best Mongodb images according to the community (images with more than 5
stars):

1 docker search --filter=stars=5 mongo

Images could be either official or unofficial. Just like any Open Source project, Docker public images
are made by anyone who may have access to the Dockerhub so consider double-checking images
before using them in your production servers.

Official images could be filtered in this way:

1 docker search --filter=is-official=true mongo

Pulling Images and the Latest Tag

If you want to pull latest tag of an image, you can simply type:

Docker Images 80

1 docker pull <image-name>

Or:

1 docker pull <image-name>:latest

In the following example, we will pull ubuntu:latest tag:

1 docker pull ubuntu

2 # or docker pull ubuntu:latest

The latest tag is the default tag, so if you don’t specify a tag, the latest tag will be pulled. However,
the latest tag is not always the latest version of the image.

Example: I can create two images:

• image:v1

• image:v2

If I pull image using docker pull image, I should get image:latest since I didn’t specify a tag.
However, even if image:v2 is the latest version, I will get an error if I try to pull image:latest
because I didn’t explicitly tag the v2 image as latest.

In essence, if I want image:v2 to be the default when pulling the image, I need to tag it as
image:latest. Otherwise, simply pulling the image will fetch whichever version is tagged as latest.
If no version is tagged as latest, the pull request for the image would result in an error.

Additionally, I can also tag image:v1 as image:latest. In this case, when users pull image, they will
get image:v1 because it is tagged as latest and not image:v2.

As a conclusion, the latest tag is not always the latest version of the image, don’t rely on it.

Removing Images

To remove an image, you can use the rmi command:

1 docker rmi <image-name>

Or

1 docker image rm <image-name>

If you want to remove all images (except the ones that are used by running containers), you can
type:

Docker Images 81

1 docker rmi $(docker images -q)

We can also safely remove only dangling images by typing:

1 docker rmi $(docker images -f "dangling=true" -q)

The Dockerfile and its Instructions

The Dockerfile is a text file that contains various instructive commands and arguments. These
commands and arguments describe how your base image will look at the end of the build process.

While it is possible to run an image directly without building it, such as a public or private image
pulled from Docker Hub or another registry, creating a Dockerfile for your application is a good
starting point if you want to customize and build your own images. It also allows you to organize
your deployments and distribute the same image to different teams.

The first rule is that a Dockerfile (should) always start with the FROM instruction.

Creating aDockerfile follows a simple and explicit syntax thatmust be followed exactly. For example,
if you need to execute commands beyond what the Docker instructions permit, you can use the RUN
command or use CMD and ENTRYPOINT to run scripts, executables, binaries, or any other command.

We will examine the different instructions and their variations in detail. By using these instructions,
you should be able to create a Dockerfile.

This is a basic example of a container that launches an Apache web server with a simple “Hello,
World!” message.

Start by creating the Dockerfile:

1 cat <<EOF > Dockerfile

2 FROM ubuntu:latest

3 MAINTAINER Aymen EL Amri - @eon01

4 RUN apt-get update && apt-get install -y apache2 && apt-get clean

5 RUN echo "Hello, World!" > /var/www/index.html

6 EXPOSE 80

7 CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

8 EOF

Build the Docker image:

1 docker build -t my-apache2 .

Run the container:

Docker Images 82

1 docker run -d -p 8000:80 my-apache2

Test the container:

1 curl localhost:8000

Later, we will explore more examples, including creating custom images but for now, let’s focus on
the instructions that we can use in a Dockerfile to enrich and customize our images.

In the following examples, you will have to make some abstractions since there are many concepts
that we haven’t covered yet. We will cover them in the next sections.

FROM

In a Dockerfile, the foundational step begins with the FROM instruction, specifying which base image
you want to use.

If you’re aiming to create a multi-stage build⁵¹, where one image is used as a base for another, you
can actually incorporate multiple FROM instructions within a single Dockerfile.

1 FROM <image>:<tag>

Example:

1 FROM ubuntu:14.04

Should you omit the tag, Docker will default to fetching the image tagged as latest.

MAINTAINER

The MAINTAINER line in a Dockerfile isn’t a functional instruction in the same sense as others. Instead,
it provides metadata about the individual or organization responsible for the image. It can include
the name, email, or even a website.

1 MAINTAINER <name>

Example:

1 MAINTAINER Aymen EL Amri - @eon01

RUN

In a Dockerfile, the RUN instruction allows you to execute commands, just as you would on the
command line. There are two syntax forms for the RUN instruction: the shell form and the exec
form.

Shell Form:
⁵¹https://docs.docker.com/build/building/multi-stage/

https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/

Docker Images 83

1 RUN <command>

For Linux-based containers, this command runs with the /bin/sh -c shell, and for Windows, it uses
the cmd /S /C shell.

Example:

1 RUN ls -l

When building the Docker image, you’ll witness the output of this command:

1 Step 4 : RUN ls -l

2 ---> Running in b3e87d26c09a

3 total 64

4 ... [trimmed output]

5 drwxr-xr-x 13 root root 4096 Oct 13 21:13 var

6 drwxr-xr-x 2 root root 4096 Oct 13 21:13 sbin

7 drwxr-xr-x 2 root root 4096 Oct 13 21:13 media

8 ... [trimmed output]

Exec Form:

1 RUN ["<executable>", "<param>", "<param1>", ... ,"<paramN>"]

In this form, the command and its parameters are specified as a JSON array.

Example:

1 RUN ["/bin/sh", "-c", "ls", "-l"]

The shell form is more commonly used due to its simplicity, while the exec form is more versatile
and is often chosen for more complex scenarios.

CMD

The CMD instruction in a Dockerfile specifies what command you want to run when the container
starts. Unlike the RUN instruction which executes commands during the image build process, CMD sets
the command for the running container.

There are three forms to use the CMD instruction:

Shell Form:

Docker Images 84

1 CMD command param1 param2 ... paramN

In this form, the command runs in a shell, which by default is /bin/sh -c on Linux.

Example:

1 CMD echo "Hello, World!"

Exec Form:

1 CMD ["executable", "param1", "param2", ..., "paramN"]

This form is recommended for CMD because it avoids shell string munging, and allows for the
container to run an executable directly.

Example:

1 CMD ["ls", "-l"]

As Default Parameters to ENTRYPOINT:

1 CMD ["param1", "param2", ... , "paramN"]

In this case, CMD provides default parameters which can be overridden by the command line
arguments when the container runs. This form is often used in combination with the ENTRYPOINT

instruction.

Example:

If your Dockerfile has:

1 ENTRYPOINT ["echo"]

2 CMD ["Hello, World!"]

Running the container without any arguments will print “Hello,World!”. But if you run the container
with a different argument, like docker run <image> Hi, it will print “Hi”.

LABEL

The LABEL instruction allows you to attach metadata to your Docker image. This metadata is
represented as key-value pairs. This can be beneficial for storing additional information about the
image, such as version numbers, contact details, or licensing information.

Syntax:

Docker Images 85

1 LABEL key1=value1 key2=value2 ... keyN=valueN

Example:

1 LABEL version="1.0" maintainer="John Doe <johndoe@example.com>"

It’s important to note that not only Docker images can utilize labels. In the Docker ecosystem, labels
can be attached to:

• Docker Containers: Running instances of a Docker image
• Docker Daemons: The background service running on the host that manages building,
running, and managing Docker containers

• Docker Volumes: The storage volumes associated with containers
• Docker Networks: Networks that connect containers, aiding in communication
• Docker Swarm Nodes: Individual machines, VMs, or physical computers that are members of
a Swarm

• Docker Swarm Services: A Swarm-specific term representing a group of tasks (or containers)
to ensure designated workloads run in a specified state

Using labels, you can organize, manage, and track resources better in a Docker environment.

EXPOSE

When running an application or service inside a Docker container, there’s often a need for the
container to communicate with the outside world. For this, we expose and publish ports.

Consider you have a PHP/MySQL web application on a host. You’ve created two containers:

• A MySQL container
• An Apache (webserver) container

Currently, neither the database (DB) server can communicate with the webserver, nor can the
webserver query the database. Moreover, both servers are not accessible from outside the host.

To allow communication, you first need to expose the necessary ports in each container’s Dockerfile:

MySQL Dockerfile:

1 EXPOSE 3306

Apache Dockerfile:

Docker Images 86

1 EXPOSE 80 443

Inter-communication between containers

Although the ports are exposed, only the webserver port should be made publicly accessible. The
database container should remain accessible solely from the webserver.

The EXPOSE instruction lets the web server communicate with the DB server when they’re on the
same Docker network.

Exposing ports in a Dockerfile doesn’t make them accessible from the host. To do that, you need to
map the exposed ports to the host’s ports using the Docker CLI. You can use the -p or -P flags:

• -p: Maps a container port to a host port
• -P: Maps all exposed ports to random ports on the host

For better control, it’s recommended to use -p to map ports individually.

Example :

Docker Images 87

1 docker run -it -p 80:80 nginx

If needed, you can map the container port to a different host port:

1 docker run -it -p 8000:80 nginx

Mapping hosts to containers

To expose a range of ports, use the following format:

1 EXPOSE 3000-4000

ENV

The ENV instruction in a Dockerfile is used to set environment variables. It’s akin to the export

command in Linux. It uses a <key>/<value> pair format. You can set environment variables in two
ways:

One variable per line:

Docker Images 88

1 ENV variable1 value1

2 ENV variable2 value2

Multiple variables in a single line:

1 ENV variable1="value1" variable2="value2"

If you’re familiar with building Docker images, you might have encountered this line that tells the
container usign Debian-based distributions to run in non-interactive mode (i.e., no prompts):

1 ENV DEBIAN_FRONTEND noninteractive

However, setting DEBIAN_FRONTEND with the ENV instruction is not recommended because this
environment variable will persist beyond the build, which might not be desirable in many cases.

A better approach is to use the ARG instruction:

1 ARG DEBIAN_FRONTEND=noninteractive

By using ARG, the environment variable won’t persist after the build process.

ARG

The ARG instruction in a Dockerfile allows you to define variables that can be used during the
build process. These variables don’t persist after the build, making them suitable for temporary
configurations or values you don’t want to embed in the final image.

The general syntax for ARG is:

1 ARG <argument_name>[=<default_value>]

You can declare the argument without a default value:

1 ARG time

Or, you can specify a default value directly in the Dockerfile:

1 ARG time=3s

Variables declared with ARG can be overridden during the build process. You can do this using
the docker build command and the --build-arg flag. We will dive into this in more detail in a
subsequent section.

Docker Images 89

WORKDIR

The WORKDIR instruction is used to set the working directory for any subsequent commands in the
Dockerfile. This becomes especially handy to streamline and simplify the paths used in subsequent
instructions like RUN, CMD, ENTRYPOINT, COPY, and ADD.

Here’s the general way to use the WORKDIR instruction:

1 WORKDIR <path>

Consider a scenario where you want to copy an index.html file into the /var/www directory. Instead
of specifying the full path in the ADD instruction like:

1 ADD index.html /var/www

You can set the working directory first using WORKDIR and then simplify the ADD command:

1 WORKDIR /var/www

2 ADD index.html .

If the directory specified in the WORKDIR instruction doesn’t already exist, Docker will create it for
you. This ensures that subsequent instructions always have a valid directory to work within.

ADD

The ADD instruction is primarily used to copy files or directories from the host system to the
container’s filesystem. It offers some added functionality beyond the capabilities of the COPY

instruction, such as remote file retrieval and on-the-fly tar extraction.

The ADD instruction can be written in two forms:

The most common form:

1 ADD <src>... <dest>

If your path contains spaces, use the following format:

1 ADD ["<src>",... "<dest>"]

The ADD instruction supports wildcard characters like * and ?:

• * matches all files in a directory.

Docker Images 90

1 # Copy all files from /var/www/ to /var/www/

2 ADD /var/www/* /var/www/

• ? matches any single character.

1 # Copy files named index.html and index.htm from /var/www/ to /var/www/

2 ADD /var/www/index.htm? /var/www/

You can also use ADD to directly fetch files from remote URLs:

1 ADD https://github.com/twbs/bootstrap/raw/main/dist/js/bootstrap.js /var/www/static/\

2 js/

The above command downloads the specified file and copies it into the container’s filesystem.

ADD is intuitive when it comes to compressed files. If a recognized archive format (e.g., gzip, bzip2,
or xz) is provided as a source, Docker will automatically unpack it into the specified directory:

1 ADD source_data.tar.gz /destination_directory/

For the above command, the source_data.tar.gz archive is extracted to /destination_directory/

within the container.

COPY

The COPY instruction is an essential tool in Dockerfiles, allowing users to copy files or directories
from a source on the host to the container’s filesystem. While similar to the ADD instruction, COPY is
simpler and doesn’t handle archive extraction or URL fetching.

Standard format:

1 COPY <src>... <dest>

Format for paths containing spaces:

1 COPY ["<src>",... "<dest>"]

For instance:

Docker Images 91

1 COPY ["/home/eon01/Painless Docker.html", "/var/www/index.html"]

• The * wildcard is useful to match all files in a directory:

1 COPY /var/www/* /var/www/

• The ? wildcard matches any single character. Given a set of files named chapter1, chapter2,
…, chapter9, you can copy them all with:

1 COPY /home/eon01/painlessdocker/chapter? /var/www

If the WORKDIR instruction sets the working directory to /var/www/, you can shorten your paths:

Instead of:

1 COPY index.html /var/www/

You can use:

1 WORKDIR /var/www/

2 COPY index.html .

However, take note that relative paths that move up a directory (like ../index.html) are not
supported.

As a reminder:

1. COPY does not handle archive extraction.
2. COPY cannot fetch files from URLs.

ENTRYPOINT

The ENTRYPOINT instruction in Docker answers the question: “What should happen when a container
starts?” It specifies a command that will always be executed when the container is run.

Suppose you want to launch a Python or Node.js server. You could use commands like:

Docker Images 92

1 python -m SimpleHTTPServer

or

1 node app.js

Without a defined ENTRYPOINT, the container might start and then immediately stop because it lacks
an ongoing task. Essentially, a Docker container without a running process will exit quickly.

To ensure that the container stays up and running, you can use the ENTRYPOINT instruction to
specify a command that will run when the container starts. There are two forms of the ENTRYPOINT
instruction:

Exec form (recommended):

1 ENTRYPOINT ["<executable>", "<param1>", "<param2>", ... "<paramN>"]

Shell form:

1 ENTRYPOINT <command> <param1> <param2> ... <paramN>

Example:

1 ENTRYPOINT ["node", "app.js"]

Consider a simple Python script that prints “Hello World”:

1 print("Hello World")

You’d want this script to run when the container starts. Using the instructions FROM, COPY, and
ENTRYPOINT, you can craft the following Dockerfile:

1 FROM python:3.7

2 COPY app.py .

3 ENTRYPOINT ["python", "app.py"]

This Dockerfile communicates:

• The base image python:3.7 is sourced from Docker Hub
• The script “app.py” is copied into the container
• When the container starts, it will execute python app.py

To get this container running build the Docker image!

Docker Images 93

1 docker build -t <image-name> <path-to-dockerfile>

Then, run the container:

1 docker run <image-name>

Crucially, notince that the ENTRYPOINT is executed only during the container’s runtime, not during
its build.

VOLUME

The VOLUME instruction designates a specified directory in the container as a mount point and
potentially mounts an external volume to it. Another Docker container can use any external volume
mounted using this instruction.

The syntax for the VOLUME instruction comes in several forms:

Single Directory:

1 VOLUME ["/path/to/directory"]

Multiple Directories:

1 VOLUME /path/to/directory1 /path/to/directory2 ... /path/to/directoryN

JSON Array (similar to the first form):

1 VOLUME ["/path/to/directory1", "/path/to/directory2", ... "/path/to/directoryN"]

Volumes have several use cases and benefits:

• Persistence: Docker containers are inherently ephemeral. Volumes ensure data persistence
across container restarts, stops, or terminations

• Host Access: Containers, by default, don’t expose their data to the host. Volumes bridge this
gap, permitting the host system to access container data

• Inter-container Communication: Containers, even if they reside on the same host, don’t
naturally share data. Docker volumes facilitate data sharing between containers, allowing
multiple containers to access shared files.

It’s crucial to establish the permissions or ownership of a volume before introducing the VOLUME

instruction in a Dockerfile.

The following sequence is incorrect:

Docker Images 94

1 VOLUME /app

2 ADD app.py /app/

3 RUN chown -R foo:foo /app

Instead, permissions should be set as demonstrated in this corrected Dockerfile:

1 RUN mkdir /app

2 ADD app.py /app/

3 RUN chown -R foo:foo /app

4 VOLUME /app

This ensures that the volume ownership is correctly set before designating /app as a volume.

USER

When executing commands inside a container using the RUN instruction, there may be instances
where you want to run the command as a different user instead of the default user (which is root).
In such cases, the USER instruction comes into play.

The USER instruction is used in the following manner:

1 USER <username>

By default, Docker operates as the root user and possesses complete access to the host system.
Therefore, utilizing the USER instruction can also be seen as a security measure.

For security reasons, it’s a best practice to avoid running containers as the root user, as this could
introduce potential vulnerabilities if the container is compromised. Instead, you should create a new
user and run the container as that user.

For example:

1 USER my_user

However, in situations where you need to execute a specific command as root, you can temporarily
switch users, run the command, and then revert back:

1 USER root

2 RUN <command to be run as root>

3 USER my_user

The USER instruction influences subsequent RUN, CMD, and ENTRYPOINT instructions. This means any
command executed by these instructions will be associated with the specified user

Docker Images 95

ONBUILD

To facilitate the automatic building of applications, Docker introduced the ONBUILD instruction. This
special instruction acts as a trigger that only executes when the current image is used as the base
for another image.

The ONBUILD instruction is written in the following format:

1 ONBUILD <Docker Instruction>

The trigger activates during the downstream build, behaving as if it was placed immediately
following the FROM instruction in the new image’s Dockerfile.

The ONBUILD instruction has been available in Docker since version 0.8.

To clarify its functionality, let’s define a child image:

Consider an image A that has an ONBUILD instruction. If another image B is built using image A as
its base (to add more instructions and layers), then image B becomes a child image of image A.

Here’s the Dockerfile for image A:

1 FROM ubuntu:18.04

2 ONBUILD RUN echo "This will be executed automatically in the child image."

Now, the Dockerfile for image B:

1 FROM imageA

When you build image A, the ONBUILD instruction remains dormant - the RUN echo "..." command
doesn’t execute. However, during the construction of image B, this command is invoked right after
the FROM instruction.

Here’s a sample output from building image B, demonstrating the automatic execution of the ONBUILD
trigger:

1 Uploading context 4.51 kB

2 Uploading context

3 Step 0 : FROM imageA

4

5 # Executing 1 build triggers

6 Trigger 0, onbuild-0 : RUN echo "This will be executed automatically in the child im\

7 age."

8

9 ---> Running in acefe7b39c5

10 This will be executed automatically in the child image.

Docker Images 96

STOPSIGNAL

The STOPSIGNAL instruction allows you to specify the system call signal that will be dispatched to
the container to initiate its termination.

The STOPSIGNAL instruction is written in the following format:

1 STOPSIGNAL <signal>

The provided signal can either be a valid unsigned number, such as 9, or one of the established signal
names like SIGTERM, SIGKILL, SIGINT, etc.

By default, Docker utilizes SIGTERM. This is functionally analogous to executing the kill <pid>

command.

To illustrate, consider the following example where we set the stop signal to SIGINT (the same signal
dispatched when pressing Ctrl-C):

1 FROM ubuntu:18.04

2 STOPSIGNAL SIGINT

HEALTHCHECK

Introduced in Docker version 1.12, the HEALTHCHECK instruction provides the capability to monitor
the health status of containers.

The instruction comes in two primary forms:

To ascertain the health of a container by executing a specified command within it:

1 HEALTHCHECK [OPTIONS] CMD <command>

To disable any existing health checks (this includes any checks inherited from a base image):

1 HEALTHCHECK NONE

The HEALTHCHECK instruction offers three configurable options before the CMD command:

• --interval=<interval duration>:

This specifies the frequency at which the health check will be conducted. By default, this interval is
set to 30 seconds.

Docker Images 97

1 --interval=1m

• --timeout=<timeout duration>:

If the health check does not complete within this duration, it is deemed to have failed. The default
timeout is 30 seconds.

1 --timeout=3s

• --retries=N:

Defines the number of consecutive failures that are tolerated before considering the container as
unhealthy. By default, Docker allows 3 consecutive failures.

1 --retries=3

To demonstrate, consider the following example where a health check is initiated every 1 minute.
The check has a 3-second timeout, and by not explicitly defining the retry count, it defaults to 3. If
the health check command fails 3 times in a row, the container is marked as unhealthy:

1 HEALTHCHECK --interval=1m --timeout=3s CMD curl -f http://localhost/ || exit 1

SHELL

In Docker, the default shell that interprets and executes commands is /bin/sh -c. As a result, when
the CMD ls -l instruction is given, it is effectively executed within the container as:

1 /bin/sh -c ls -l

For Windows containers, the default shell is:

1 cmd /S /C

To customize the shell, you can use the SHELL instruction in the Dockerfile. However, this instruction
must be specified in JSON array format:

Docker Images 98

1 SHELL ["<executable>", "<parameters>"]

This customization becomes particularly handy for Windows users who might want to toggle
between cmd and powershell.

For instance:

1 SHELL ["powershell", "-command"]

2 SHELL ["cmd", "/S", "/C"]

In Unix-based systems, other shells such as bash, zsh, csh, and tcsh are available. For example, to
switch to bash:

1 SHELL ["/bin/bash", "-c"]

ENTRYPOINT VS CMD

The CMD and ENTRYPOINT instructions in Docker serve to specify a command that will be
executed when a container is started. While they share similarities, their use cases and combinations
offer flexibility.

Recalling our discussion on the CMD instruction, when used in the following format:

1 CMD ["<param1>", "<param2>", ..., "<paramN>"]

it provides default parameters for the ENTRYPOINT instruction.

Consider this simple Dockerfile:

1 FROM python:2.7

2 COPY app.py .

3 ENTRYPOINT ["python", "app.py"]

One might think that an equivalent Dockerfile could be:

1 FROM python:2.7

2 COPY app.py .

3 ENTRYPOINT ["python"]

4 CMD ["app.py"]

However, when you attempt to run the container using the above Dockerfile, it will produce an error.
To fix it, the ENTRYPOINT should have the full path to the python executable:

Docker Images 99

1 FROM python:2.7

2 COPY app.py .

3 ENTRYPOINT ["/usr/bin/python"]

4 CMD ["app.py"]

To summarize:

1 ENTRYPOINT ["python", "app.py"]

can also be represented as:

1 ENTRYPOINT ["/usr/bin/python"]

2 CMD ["app.py"]

Both CMD and ENTRYPOINT can be used independently or in combination, but it’s important to
include at least one of them. Failing to use either CMD or ENTRYPOINTwill result in the container’s
execution failing.

You can find the same table in the official Docker documentation⁵², and this is the best way to
understand all of the possibilities:

No
ENTRYPOINT

ENTRYPOINT
exec_entry
p1_entry

ENTRYPOINT
[“exec_entry”,
“p1_entry”]

No CMD error, not allowed /bin/sh -c
exec_entry
p1_entry

exec_entry
p1_entry

CMD
[“exec_cmd”,
“p1_cmd”]

exec_cmd p1_cmd /bin/sh -c
exec_entry
p1_entry

exec_entry
p1_entry
exec_cmd p1_cmd

CMD [“p1_cmd”,
“p2_cmd”]

p1_cmd p2_cmd /bin/sh -c
exec_entry
p1_entry

exec_entry
p1_entry p1_cmd
p2_cmd

CMD exec_cmd
p1_cmd

/bin/sh -c
exec_cmd p1_cmd

/bin/sh -c
exec_entry
p1_entry

exec_entry
p1_entry /bin/sh -c
exec_cmd p1_cmd

The Base Image

If a Dockerfile has a single instruction, it would most likely be the FROM instruction. This instruction
specifies the base image from which a new image is derived. Every valid Dockerfile must start with
(or at least include) a FROM instruction.

⁵²https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact

https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact
https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact

Docker Images 100

1 FROM <BASE_IMAGE>

Docker requires a base image to run. Without an image, there can be no container. The base image
serves as the foundation upon which you add additional layers to create a new image that contains
your application. Each layer contributes to the overall image, and the FROM <BASE_IMAGE> instruction
is essential for creating a child image.

Here is an example of a Dockerfile that utilizes the FROM instruction exclusively:

1 cat <<EOF > Dockerfile

2 FROM tutum/hello-world

3 EOF

Build and run the container:

1 docker build -t my-hello-world .

2 docker run -p 8001:80 my-hello-world

Test the container:

1 curl localhost:8001

2 # or visit http://localhost:8001

Extending the Base Image

Let’s consider this example where we use the FROM instruction with golang:1.21.3-alpine3.17 as
the base image:

1 # Use the specified image as the base

2 FROM golang:1.21.3-alpine3.17

We also have our Go application in the same directory as the Dockerfile:

Docker Images 101

1 cat <<EOF > main.go

2 package main

3

4 import "fmt"

5

6 func main() {

7 fmt.Println("Hello, World!")

8 }

9 EOF

We want to copy the Go application into the container and build it. To do this, we can use the COPY
instruction:

1 # Set the working directory inside the container

2 WORKDIR /app

3 # Copy the local package files to the container's workspace

4 ADD . /app

Then we need to build the application:

1 # Build the Go app

2 RUN go mod init my-golang-app

3 RUN go build -o main .

Finally, we can run the application:

1 # Run the binary program produced by `go build`

2 CMD ["/app/main"]

The final Dockerfile can be created using the following command:

1 cat << 'EOF' > Dockerfile

2 # Use the specified image as the base

3 FROM golang:1.21.3-alpine3.17

4 # Set the working directory inside the container

5 WORKDIR /app

6 # Copy the local package files to the container's workspace

7 ADD . /app

8 # Build the Go app

9 RUN go mod init my-golang-app

10 RUN go build -o main .

11 # Run the binary program produced by `go build`

12 CMD ["/app/main"]

13 EOF

Docker Images 102

Build and run the container:

1 # Build using the image name and tag

2 docker build -t my-golang-app:v1 .

3 # Run the container

4 docker run my-golang-app:v1

You should see the following output:

1 Hello, World!

Congratulations! You have successfully created a Docker image that builds and runs a Go application.

Exploring Images’ Layers

Using dive⁵³, we can visualize the layers of an image:

1 # Install dive (adapt the command for your OS)

2 export DIVE_VERSION=$(curl -sL "https://api.github.com/repos/wagoodman/dive/releases\

3 /latest" | grep '"tag_name":' | sed -E 's/.*"v([^"]+)".*/\1/')

4 curl -OL https://github.com/wagoodman/dive/releases/download/v${DIVE_VERSION}/dive_$\

5 {DIVE_VERSION}_linux_amd64.deb

6 sudo apt install ./dive_${DIVE_VERSION}_linux_amd64.deb

7 # Show the layers of the image

8 dive <IMAGE_NAME>

Let’s take the example of tutum/hello-world that you can find on the Docker Hub website just by
concatenating:

1 base_url="https://hub.docker.com/r"

2 image_name="tutum/hello-world"

3 echo "${base_url}/${image_name}"

The Dockerfile of this image⁵⁴ is the following:

⁵³https://github.com/wagoodman/dive
⁵⁴https://hub.docker.com/r/tutum/hello-world/Dockerfile

https://github.com/wagoodman/dive
https://hub.docker.com/r/tutum/hello-world/Dockerfile
https://github.com/wagoodman/dive
https://hub.docker.com/r/tutum/hello-world/Dockerfile

Docker Images 103

1 FROM alpine

2 MAINTAINER support@tutum.co

3 RUN apk --update add nginx php-fpm && \

4 mkdir -p /var/log/nginx && \

5 touch /var/log/nginx/access.log && \

6 mkdir -p /tmp/nginx && \

7 echo "clear_env = no" >> /etc/php/php-fpm.conf

8 ADD www /www

9 ADD nginx.conf /etc/nginx/

10 EXPOSE 80

11 CMD php-fpm -d variables_order="EGPCS" && (tail -F /var/log/nginx/access.log &) && e\

12 xec nginx -g "daemon off;"

To visualize the layers of this image, you can use dive tutum/hello-world.

The base image is Alpine⁵⁵, a lightweight Linux distribution based on musl⁵⁶ and Busybox⁵⁷. This
image is only 5 MB in size and consists of 5 layers.

This image, which is 18 MiB in size, has 7 unique layers. The largest layer in this image is 12 MB.

⁵⁵https://hub.docker.com/_/alpine
⁵⁶https://musl.libc.org/
⁵⁷https://busybox.net/

https://hub.docker.com/_/alpine
https://musl.libc.org/
https://busybox.net/
https://hub.docker.com/_/alpine
https://musl.libc.org/
https://busybox.net/

Docker Images 104

Images layers

Let’s take another image but this time, we are going to use the history command which is a Docker
command that shows you the history of an image and its different layers.

1 docker pull nginx

2 docker history nginx

You can see more information with human-readable output about an image by using :

Docker Images 105

1 docker history --no-trunc -H nginx

You can also customize the display using the --format option to specify which fields you’re
interested in:

1 docker history --no-trunc -H --format "{{.CreatedBy}}" nginx

Building an Image Using a Dockerfile

We have learned about various instructions that can assist us in creating a Dockerfile. To have a
complete image, we need to build it using the docker build command.

Example:

1 # Create a directory for the Dockerfile

2 mkdir -p nginx

3 cd nginx

4 echo "Hello, World!" > index.html

5 # Create the Dockerfile

6 cat <<EOF > Dockerfile

7 FROM nginx

8 COPY index.html /var/www/index.html

9 EOF

10 # Build the image

11 docker build .

The . specifies the build context, which is the path to a directory containing all the files and folders
that should be sent to the Docker daemon in order to construct the Docker image. In our case, the
build context is the current directory that contains the index.html file.

1 docker build -f /path/to/the/Dockerfile .

If your Dockerfile is not in the same directory where you are executing the build command, you can
use the f option to specify the path to the Dockerfile.

1 docker build -f /path/to/the/Dockerfile/TheDockerfile /path/to/the/context/

Example:

If your Dockerfile is located in the “/tmp” directory and your configuration and code files are in the
“/app” directory, the command should be:

Docker Images 106

1 docker build -f /tmp/Dockerfile /app

Creating Images out of Containers

Docker images are comprised of multiple layers, each representing a set of file changes or
instructions. Image layers are instantiated to create containers, turning the static image into a
runnable environment.

So the Dockerfile is the representation of the image, and the image is the representation of the
container.

A running container when restarted (for a reason or another) will always start from the same state,
the same image, and the same layers. Therefore, any state saved in the container will be lost.

However, using the docker commit command, you can save the state of a container as a new image.
This new image will be based on the previous one, and it will contain all the changes that happened
in the container.

To see this in action, let’s create this Dockerfile:

1 cat <<EOF > Dockerfile

2 FROM alpine

3 RUN apk update && apk add nginx

4 EOF

Build and run the container in the background:

1 docker build -t my-nginx .

2 docker run -it -d --name my-nginx my-nginx

Execute a command inside the container:

1 docker exec -it my-nginx /bin/sh -c "echo 'Hello World' > /var/www/index.html"

We created a file called “index.html” in the “/var/www” directory. This file will be lost if we remove
the container.

Docker Images 107

1 # remove the container

2 docker rm -f my-nginx

3 # start a new container

4 docker run -it -d --name my-nginx my-nginx

5 # check if the file exists

6 docker exec -it my-nginx ls /var/www/index.html > /dev/null 2>&1 && echo "File exist\

7 s" || echo "File does not exist"

Recreate the file:

1 docker exec -it my-nginx /bin/sh -c "echo 'Hello World' > /var/www/index.html"

We can save the state of the container as a new image using the docker commit command:

1 docker commit my-nginx my-nginx:v1

Now if you remove the container and start a new one, the file will still exist:

1 # remove the container

2 docker rm -f my-nginx

3 # start a new container using the new image

4 docker run -it -d --name my-nginx my-nginx:v1

5 # check if the file exists

6 docker exec -it my-nginx ls /var/www/index.html > /dev/null 2>&1 && echo "File exist\

7 s" || echo "File does not exist"

The file has the same content that we created in the previous container:

1 docker exec -it my-nginx cat /var/www/index.html

Migrating a VM to a Docker Image

The most common way of creating Docker images is by using a Dockerfile. However, you can also
create an image from an existing container like we did in the previous section.

Another less common way is to create an image from an existing VM. This is useful if you have a
VM that you want to migrate to a Docker image. It is not a best practice since you will end up with
a large image, but it is possible. We are going to discover how through some examples.

Docker Images 108

Creating a Docker Image from an ISO File

ISO or optical disc image, from the ISO 9660⁵⁸ file system used with CD-ROMmedia, is a disk image
that contains everything that would be written to an optical disc, disk sector by disc sector, including
the optical disc file system.

This format is typically used as virtual disks for virtual machines like VirtualBox⁵⁹ or VMware⁶⁰.

First, we need to create a directory named iso in the home directory and navigate into it.

1 mkdir -p iso && cd iso

We’ll download the ISO file for Ubuntu 23.10 using the wget command.

1 wget https://releases.ubuntu.com//mantic/ubuntu-23.10-live-server-amd64.iso

Next, let’s create two directories, rootfs and unsquashfs. The rootfs directory will be used for
mounting the ISO, and unsquashfs will be used to extract the filesystem.

1 mkdir -p rootfs unsquashfs

Now, we’ll mount the downloaded ISO into the rootfs directory.

1 sudo mount -o loop ubuntu-23.10-live-server-amd64.iso rootfs

We need to find the ubuntu-server-minimal.squashfs file inside the mounted ISO.

ℹ Squashfs is a highly compressed read-only filesystem for Linux.

1 squashfs_file=$(sudo find rootfs -name ubuntu-server-minimal.squashfs)

Using the unsquashfs command, we’ll extract the files from the squashfs filesystem into the
unsquashfs directory.

1 sudo unsquashfs -f -d unsquashfs $squashfs_file

We’ll compress the unsquashfs directory and then import it into Docker to create an image labeled
my_iso_image:v1.

⁵⁸https://en.wikipedia.org/wiki/ISO_9660
⁵⁹https://www.virtualbox.org/
⁶⁰https://www.vmware.com/

https://en.wikipedia.org/wiki/ISO_9660
https://www.virtualbox.org/
https://www.vmware.com/
https://en.wikipedia.org/wiki/ISO_9660
https://www.virtualbox.org/
https://www.vmware.com/

Docker Images 109

1 sudo tar -C unsquashfs -c . | docker import - my_iso_image:v1

To ensure that our image was created correctly, we’ll run a test command (ls) inside a container
spawned from the my_iso_image:v1 image.

1 docker run --rm -it my_iso_image:v1 ls

After testing, we’ll unmount the ISO from rootfs and then remove the rootfs and unsquashfs

directories, as well as the downloaded ISO file.

1 sudo umount rootfs

2 sudo rm -rf rootfs unsquashfs ubuntu-23.10-live-server-amd64.iso

Finally, let’s list all the Docker images present on our system to verify our new image’s presence.

1 docker image ls | grep my_iso_image

Creating a Docker Image from a VMDK File

VMDK (Virtual Machine Disk) is a file format that describes containers for virtual hard disk drives
to be used in virtual machines like VMware Workstation⁶¹ or VirtualBox⁶².

In this example, we’ll use a VMDK file that contains a virtual machine with Ubuntu 23.10 installed.

Set up a directory for VMDK operations:

1 mkdir -p vmdk && cd vmdk

Download the VMDK file from SourceForge:

1 wget https://sourceforge.net/projects/osboxes/files/v/vm/55-U--u/23.04/64bit.7z/down\

2 load

Install the necessary tools to extract 7z archives and extract the downloaded file:

1 sudo apt install -y p7zip-full

2 7z x download

Install required tools to convert VMDK files into Docker images:

⁶¹https://www.vmware.com/products/workstation-pro.html
⁶²https://www.virtualbox.org/

https://www.vmware.com/products/workstation-pro.html
https://www.virtualbox.org/
https://www.vmware.com/products/workstation-pro.html
https://www.virtualbox.org/

Docker Images 110

1 apt install -y libguestfs-tools qemu qemu-kvm libvirt-clients libvirt-daemon-system \

2 virtinst bridge-utils

Move and rename the VMDK image to a more accessible name:

1 mv "64bit/64bit/Ubuntu 23.04 64bit.vmdk" image.vmdk

Convert the VMDK image into a tar archive:

1 virt-tar-out -a image.vmdk / my_vmdk_archive.tar

Import the tar archive as a Docker image:

1 docker import my_vmdk_archive.tar my_vmdk_image:v1

Test the newly created Docker image:

1 docker run --rm -it my_vmdk_image:v1 ls

Clean up by removing the downloaded and intermediate files:

1 rm -rf image.vmdk download my_vmdk_archive.tar 64bit

List the available Docker images to confirm the operation:

1 docker image ls

Creating a Docker Image Using Debian’s Debootstrap

Debootstrap is a tool that allows you to install a Debian-based Linux distribution into a subdirectory
of another, already installed Linux distribution. It can be used to create a Debian base system from
scratch, without requiring the availability of dpkg or apt.

Let’s see how to use it to create a Docker image.

Start by creating a directory for the Docker image:

1 mkdir -p debootstrap && cd debootstrap

Install the debootstrap package:

Docker Images 111

1 sudo apt install -y debootstrap

Create a temporary directory for the Debian installation:

1 sudo debootstrap --variant=minbase bookworm ./bookworm

Create a tar archive from the temporary directory:

1 sudo tar -C bookworm/ -c . | docker import - my_debootstrap_image:v1

Test the newly created Docker image:

1 # List the files in the image

2 docker run --rm -it my_debootstrap_image:v1 ls

3 # Get the OS version

4 docker run --rm -it my_debootstrap_image:v1 /bin/bash -c 'cat /etc/os-release'

You can see that the image was created and you can find it using the docker image ls command.

1 docker image ls my_debootstrap_image

Clean up by removing the temporary directory:

1 sudo rm -rf bookworm

Docker Images out of VMs and the 6 R’s of Migration

As you may have noticed, the previous two examples are very similar. The only difference is the
format of the image. In the first example, we used an ISO file, and in the second example, we used a
VMDK file. In both cases, we always end up with a tar archive that we import into Docker to create
an image.

In other words, converting a VM image to a Docker image is fundamentally about extracting the
filesystem from the VM and packaging it in a way that Docker understands (tar archive). The process
can vary depending on the type of VM image format you’re starting with (ISO, VMDK, QCOW2,
etc.), but the general approach remains the same.

It is worth mentioning that VMs are full-blown virtual machines with their kernels, while containers
share the host’s kernel. Some software configured to run on a VM might not run out of the box in a
container environment. Proper testing and validation are crucial after the conversion.

If you’re moving to the cloud or an orchestrator, you are most likely going to use one of the 6 R’s of
migration:

Docker Images 112

• Rehosting (Lift and Shift): This strategy involves moving applications without any modifica-
tion, often to an Infrastructure as a Service (IaaS) platform. It’s essentially moving from an
on-premises environment to a cloud environment.

• Redeployment: Migrating to a cloud provider’s infrastructure, potentially leveraging cloud-
native features but not necessarily altering the application code itself.

• Repackaging: Taking existing applications and placing them into containers or into a PaaS
(Platform as a Service) environment. The application might undergo some modification to fit
into the new environment, but not a complete overhaul.

• Refactoring (Re-architecting): This involves reimagining how the application is architected
and developed, using cloud-native features. It’s the most involved and requires changes to the
application code.

• Repurchasing: Switching to a different product altogether. This might involve moving from a
traditional CRM to a cloud solution like Salesforce.

• Retiring: Deciding that certain parts of the IT portfolio are no longer necessary and can be shut
down, saving costs.

• Retaining: Keeping certain components of the IT portfolio in their current state. This might
be used for legacy systems that are critical to business operations but not suitable for cloud
migration.

So, when you’re moving a VM to a container, you’re essentially taking an existing application,
potentially making some minor adjustments, and then “packaging” it in a new format suitable for
container orchestration platforms like Kubernetes or Docker Swarm. This approach is consistent
with the repackaging strategy.

Creating and Understanding the Scratch Image

In Docker, there’s a special image called the scratch image. It essentially represents a blank image
with no layers. Though you typically don’t need to create a scratch image yourself (because it is
already available in Docker), it’s useful to understand how it works.

A scratch image is conceptually equivalent to an image built using an empty tar archive.

To illustrate, you can effectively “create” a scratch image like this:

1 tar cv --files-from /dev/null | docker import - scratch

However, again, it’s worth noting that Docker provides scratch by default, so you rarely, if ever, need
to execute the above command.

Here’s a practical example of how you might use the scratch image in a Dockerfile, as you’d see in
Docker’s official repositories:

Docker Images 113

1 FROM scratch

2 ADD hello /

3 CMD ["/hello"]

Scratch image is useful when you want to create a statically compiled binary. This is a binary that
is compiled to run on a specific operating system and CPU architecture. It does not depend on any
shared libraries.

When you run a container, you are using an image that is based on a base image. This base image is
based on another base image, and so on. But when does it stop? It stops when you reach the scratch
image. This image is the base image of all base images.

Docker Hub and Docker Registry
Docker Hub, Public and Private Registries

When you run an Nginx container, for example, the Docker engine will look for the image locally,
and if it doesn’t find it, it will pull it from a remote registry.

Let’s try this:

1 # Remove any existing Nginx image

2 docker rmi nginx:latest

3 # Run Nginx

4 docker run --name nginx -d nginx

You should see something like this:

1 Unable to find image 'nginx:latest' locally

2 latest: Pulling from library/nginx

3 578acb154839: Pull complete

4 e398db710407: Pull complete

5 85c41ebe6d66: Pull complete

6 7170a263b582: Pull complete

7 8f28d06e2e2e: Pull complete

8 6f837de2f887: Pull complete

9 c1dfc7e1671e: Pull complete

10 Digest: sha256:86e53c4c16a6a276b204b0fd3a8143d86547c967dc8258b3d47c3a21bb68d3c6

11 Status: Downloaded newer image for nginx:latest

12 fa097d42c051a4b1eef64ab3f062578ace630b433acb6e4202bd3d90aeaccbad

The Docker engine is informing us that it couldn’t find the image nginx:latest locally, so it fetched
it from library/nginx.

In reality, what the docker run command did was:

• docker pull nginx:latest to fetch the image from the remote registry
• docker create to create a container based on the image
• docker start to start the container

Docker Hub and Docker Registry 115

The actual pull command is docker pull nginx:latest, but behind the scenes, it executes the full
command docker pull docker.io/library/nginx:latest.

The docker.io part represents the default registry that Docker uses when a specific registry is not
specified.

The default remote registry is known as Docker Hub⁶³. This is where official images can be found.
Docker Hub is a public registry that is accessible to everyone. It offers both free and paid accounts.
The free account allows you to create public repositories, while the paid account allows you to create
private repositories.

However, Docker Hub is not the only available registry. You can also use other registries such as
Quay⁶⁴ or Google Container Registry⁶⁵, or even host your own private registry.

In general, think of Docker Hub and Docker registry as a GIT repository for Docker images. It allows
you to push, pull, store, share, and tag images based on your requirements.

Docker Hub: The Official Docker Registry

Docker Hub is a cloud registry service provided by Docker Inc. It allows you to store and share
Docker images.

Docker enables you to package code, artifacts, and configurations into a single image. These images
can be reused by you, your colleagues, your customers, or anyone else who has access to your
registry.

When you want to share your code, you typically use a git repository like GitHub or Bitbucket.
Similarly, when you want to share your Docker images, you can use Docker Hub.

Docker Hub is a public Docker repository, and it also offers a paid version that provides private
repositories and additional features such as security scanning.

Docker Hub offers the following capabilities:

• Access to community, official, and private image libraries
• Public or paid private image repositories where you can push and pull your images to/from
your servers

• Creation and building of new images with different tags when the source code inside your
container changes

• Creation and configuration of webhooks to trigger actions after a successful push to a
repository

• Integration with GitHub and Bitbucket

You can also:
⁶³https://hub.docker.com/
⁶⁴https://quay.io/
⁶⁵https://cloud.google.com/container-registry/

https://hub.docker.com/
https://quay.io/
https://cloud.google.com/container-registry/
https://hub.docker.com/
https://quay.io/
https://cloud.google.com/container-registry/

Docker Hub and Docker Registry 116

• Create and manage teams and organizations
• Create a company
• Enforce sign-in
• Set up SSO and SCIM
• Use Group mapping
• Carry out domain audits
• Turn on Registry Access Management

Automated builds of images from GitHub or Bitbucket repositories, automated security scanning,
and triggering of automatic actions using Docker Hub webhooks can be used in a CI/CD pipeline to
automate the deployment of your applications.

To use Docker Hub, visit hub.docker.com⁶⁶ and create an account. Then, using the CLI, you can
authenticate to it using the following command:

1 docker login

In reality, the command docker login is just a shortcut for docker login docker.io where
docker.io is the address of the default registry (Docker Hub).

Using Docker Hub

We will be tagging an image and pushing it to your Docker Hub account. Follow these steps:

• Create an account on Docker Hub.
• Authenticate to Docker Hub on your local machine by executing the command docker login.

Next, let’s pull the MariaDB image from Docker Hub and run it:

1 docker run --name mariadb -e MYSQL_ROOT_PASSWORD=password -d mariadb

To see the list of images, type docker images:

1 docker images ls

You should see the MariaDB image:

Example:

⁶⁶https://hub.docker.com/

https://hub.docker.com/
https://hub.docker.com/

Docker Hub and Docker Registry 117

1 mariadb latest f35870862d64 3 weeks ago 404MB

To push the same image to your repository, tag it using the following command:

1 export DOCKER_ID="YOUR_DOCKER_ID"

2 export IMAGE_ID=docker.io/$DOCKER_ID/mariadb:latest

3 docker tag mariadb $IMAGE_ID

Replace YOUR_DOCKER_ID with your Docker ID. For example, if your Docker ID is foo, the final
command should be:

1 docker tag mariadb docker.io/foo/mariadb:latest

After listing the images again using docker images, you will notice a new image in the list:

1 foo/mariadb latest f35870862d64 3 weeks ago 404MB

2 mariadb latest f35870862d64 3 weeks ago 404MB

Both images have the same ID because they are the same image with different tags.

Now you can push it:

1 docker push $IMAGE_ID

Visit this URL:

1 echo https://hub.docker.com/r/$DOCKER_ID/mariadb

You can also tag the image in a different way (commonly used):

1 export DOCKER_ID="YOUR_DOCKER_ID"

2 export IMAGE_ID=$DOCKER_ID/mariadb:latest

3 docker tag mariadb $IMAGE_ID

The difference is that we didn’t specify the registry. In this case, the default registry, which is Docker
Hub, is used.

The final command, if your Docker ID is foo, should be:

Docker Hub and Docker Registry 118

1 # Instead of docker.io/foo/mariadb:latest use:

2 docker tag mariadb foo/mariadb:latest

The same way of tagging images destined for Docker Hub is used when you build images from a
Dockerfile.

Example:

1 export DOCKER_ID="YOUR_DOCKER_ID"

2 docker build -t $DOCKER_ID/mariadb:latest .

3 docker push $DOCKER_ID/mariadb:latest

DockerHub Alternatives

Docker Hub is not the only registry available. You can use other registries or you can host your own
private registry.

A private Docker Registry is a server-side application conceived to be an “on-premise Docker Hub”.

Just like Docker Hub, it helps you push, pull, and distribute your images publicly and privately.

Docker has developed an open-source under-Apache-license registry called Distrubution⁶⁷ (formerly
known as Docker Registry). It is a highly scalable server-side application that stores and lets you
distribute Docker images. Docker Registry could also be a cloud-based solution.

Other alternatives are:

• Quay⁶⁸: A registry for storing and building container images as well as distributing other OCI
artifacts.

• Google Artifact Registry⁶⁹: Artifact Registry provides a single location for storing and man-
aging your packages and Docker container images. You can: Integrate Artifact Registry with
Google Cloud CI/CD services or your existing CI/CD tools. Store artifacts from Cloud Build.

• Amazon Elastic Container Registry⁷⁰: An AWS managed container image registry service that
is secure, scalable, and reliable.

• Azure Container Registry⁷¹: A registry of Docker and Open Container Initiative (OCI) images,
with support for all OCI artifacts.

• JFrog Artifactory⁷²: A repository manager that supports all available software package types,
enabling automated continous integration and delivery.

• Harbor⁷³: An open source trusted cloud native registry project that stores, signs, and scans
content.

⁶⁷(https://hub.docker.com/_/registry)
⁶⁸https://quay.io
⁶⁹https://cloud.google.com/artifact-registry
⁷⁰https://aws.amazon.com/ecr/
⁷¹https://azure.microsoft.com/en-us/services/container-registry/
⁷²https://jfrog.com/artifactory/
⁷³https://goharbor.io/

(https://hub.docker.com/_/registry)
https://quay.io/
https://cloud.google.com/artifact-registry
https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/services/container-registry/
https://jfrog.com/artifactory/
https://goharbor.io/
(https://hub.docker.com/_/registry)
https://quay.io/
https://cloud.google.com/artifact-registry
https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/services/container-registry/
https://jfrog.com/artifactory/
https://goharbor.io/

Docker Hub and Docker Registry 119

Creating a Private Docker Registry

Docker Registry can be run in a Docker container and deployed on a server or cluster managed by
Kubernetes, Docker Swarm, or any other container orchestration tool. The Docker image for Docker
Registry is available here⁷⁴.

To create a registry, simply pull and run the image using the following command:

1 docker run -d -p 5000:5000 --restart=always --name registry registry:2.7.1

Let’s test the registry by pulling an image from Docker Hub, tagging it, and pushing it to our own
registry:

1 docker pull eon01/infinite

Tag the image:

1 docker tag eon01/infinite:latest localhost:5000/infinite:latest

Push it to the local repository:

1 docker push localhost:5000/infinite:latest

Now re-pull it:

1 docker pull localhost:5000/infinite:latest

As you can see, we have successfully pushed and pulled an image from our local registry. The registry
is running on port 5000 on the same machine where Docker is running, which is why we used
localhost:5000. When tagging an image, make sure to include the registry host name or IP address:

1 docker tag [IMAGE_ID] [REGISTRY_HOST]:[REGISTRY_PORT]/[IMAGE_NAME]:[TAG]

When you build an image from a Dockerfile, you should also follow the same rule:

1 docker build -t [REGISTRY_HOST]:[REGISTRY_PORT]/[IMAGE_NAME]:[TAG] .

Persisting the Registry Data

Since Docker images are stored inside the registry under “/var/lib/registry”, you canmount a volume
to this directory to persist the images.

⁷⁴https://hub.docker.com/_/registry/

https://hub.docker.com/_/registry/
https://hub.docker.com/_/registry/

Docker Hub and Docker Registry 120

1 docker run -d -p 5000:5000 --restart=always --name registry -v /data/registry:/var/l\

2 ib/registry registry:2.7.1

Configuring the Registry

If you want to setup an authentication mechanism, you can use basic authentication, token
authentication or other options documented here⁷⁵.

Let’s see how to use basic authentication. First, create a password file using “htpasswd”:

1 # Remove the old registry

2 docker rm -f registry

3 # Install htpasswd

4 apt-get install -y apache2-utils

5 # Create the password file

6 cd $HOME

7 mkdir /root/auth

8 export USERNAME=admin

9 export PASSWORD=admin

10 # Use -B for bcrypt, -n for no newline and -b for basic auth

11 htpasswd -Bbn $USERNAME $PASSWORD > /root/auth/htpasswd

Make sure to change the username and password to your own values. Now launch the registry using
the following command:

1 docker run -d \

2 -p 5000:5000 \

3 --restart=always \

4 --name registry \

5 -v /root/auth:/root/auth \

6 -e "REGISTRY_AUTH=htpasswd" \

7 -e "REGISTRY_AUTH_HTPASSWD_REALM=Registry Realm" \

8 -e REGISTRY_AUTH_HTPASSWD_PATH=/root/auth/htpasswd \

9 registry:2.7.1

To test it, tag an image and push it to the registry but before that, you need to login:

⁷⁵https://distribution.github.io/distribution/

https://distribution.github.io/distribution/
https://distribution.github.io/distribution/

Docker Hub and Docker Registry 121

1 docker login localhost:5000

2 docker tag eon01/infinite:latest localhost:5000/infinite:latest

3 docker push localhost:5000/infinite:latest

You can check the repositories and tags using the following command:

1 # Check the repositories

2 curl -u $USERNAME:$PASSWORD -X GET http://localhost:5000/v2/_catalog

3 # Check the tags

4 curl -u $USERNAME:$PASSWORD -X GET http://localhost:5000/v2/infinite/tags/list

Other Options

There are many other options that you can use to configure the registry, for example, you can enable
TLS, configure the storage driver, and more. You can find them in the official documentation here⁷⁶.

⁷⁶https://distribution.github.io/distribution/

https://distribution.github.io/distribution/
https://distribution.github.io/distribution/

Optimizing Docker Images
You can find many public images of the same application, but not all of them are optimized.

• Some images can be quite large, leading to longer build and network transfer times. These
heavy images can also increase deployment time.

• Other images may have many layers, which can lead to slower build times.
• Other images may contain unnecessary tools and packages that are not required to run the
application. This can lead to security issues and increase the attack surface.

• etc.

Optimizing Docker images involves more than just reducing their size. It also includes managing
how layers are built, managing dependencies, using multi-stage builds, and selecting the appropriate
base image.

The main reasons for optimizing Docker images are:

• Faster build, deployment, and startup times
• Faster network transfer
• Reduced disk, memory, and network usage
• Lower CPU usage

All of the above contribute to faster development and deployment cycles, cost reduction, and
ensuring quality - the ultimate goal of any DevOps engineer.

In the following sections, we will discuss some best practices for optimizing Docker images.

Less Layers = Faster Builds?

The build time depends on the number of layers in the image. The more layers there are, the longer
it takes to build the image. This is because Docker needs to create a container for each layer and
then copy the files from the previous layer to the current layer. Theoritically and logically, this is
true but let’s test and see if this is true in practice.

Let’s test this by creating two Dockerfiles. The first one consists of 5 lines:

Optimizing Docker Images 123

1 cat <<EOF > Dockerfile

2 FROM ubuntu

3 RUN apt-get update -y

4 RUN apt-get install python3 -y

5 RUN apt-get install python3-pip -y

6 RUN pip3 install flask

7 EOF

Build the image while measuring the build time:

1 time docker build -t my-python-app:v1 --no-cache .

1 docker images my-python-app:v1 --format "{{.Repository}} {{.Tag}} {{.Size}}"

This one consists of only two lines:

1 cat <<EOF > Dockerfile

2 FROM ubuntu

3 RUN apt-get update -y && \

4 apt-get install python3 -y && \

5 apt-get install python3-pip -y && \

6 pip3 install flask

7 EOF

Build the image and measure the build time:

1 time docker build -t my-python-app:v2 --no-cache .

My results are:

1 # The first Dockerfile

2 real 0m25,260s \

3

4 user 0m0,157s

5 sys 0m0,071s

6 # The second Dockerfile

7 real 0m25,160s \

8

9 user 0m0,113s

10 sys 0m0,088s

Optimizing Docker Images 124

Based on the results, the second Dockerfile is faster. The “real” time (wall-clock time) for the second
Dockerfile is indeed slightly shorter (by 0.1 seconds) than the first Dockerfile. The difference in
execution time is minimal (only a tenth of a second), so in practical terms, the performance difference
might not be significant for many use cases.

Both images are installing Python and using the Ubuntu base image. They may have the same size
(or a slightly different size), but the second image is built faster because it has fewer layers.

1 # Check that the size of the images is the same

2 docker images my-python-app --format "{{.Repository}} {{.Tag}} {{.Size}}"

Let’s try another example. This time, we will compare two Dockerfiles:

First Dockerfile:

1 FROM busybox

2 RUN echo This is the 1st command > 1 && rm -f 1

3 RUN echo This is the 2nd command > 2 && rm -f 2

4 RUN echo This is the 3rd command > 3 && rm -f 3

5 RUN echo This is the 4th command > 4 && rm -f 4

6 [...]

7 RUN echo This is the 20th command > 20 && rm -f 20

Second Dockerfile:

1 RUN echo This is the 1st command > 1 && \

2 rm -f 1 && \

3 echo This is the 2nd command > 2 && \

4 rm -f 2 && \

5 echo This is the 3rd command > 3 && \

6 rm -f 3 && \

7 echo This is the 4th command > 4 && \

8 rm -f 4 && \

9 [...]

10 rm -f 19 && \

11 echo This is the 20th command > 20 && \

12 rm -f 20

This script will create twoDockerfiles, build andmeasure the build time. Create it using the following
command:

Optimizing Docker Images 125

1 cat << 'REALEND' > build_and_measure.sh

2 #!/bin/bash

3

4 # Generate the first Dockerfile

5 cat > Dockerfile_1 <<EOF

6 FROM busybox

7 EOF

8 for i in $(seq 1 20); do

9 echo "RUN echo This is the ${i}th command > ${i} && rm -f ${i}" >> Dockerfile_1

10 done

11

12 # Start generating the Dockerfile_2

13 echo "FROM busybox" > Dockerfile_2

14 # Append the RUN command with automation for the repeated pattern

15 echo "RUN \\" >> Dockerfile_2

16 for i in $(seq 1 19); do # Loop until the 19th command

17 echo " echo This is the ${i}th command > ${i} && \\" >> Dockerfile_2

18 echo " rm -f ${i} && \\" >> Dockerfile_2

19 done

20 # Append the 20th command without a trailing `&& \`

21 echo " echo This is the 20th command > 20 && \\" >> Dockerfile_2

22 echo " rm -f 20" >> Dockerfile_2

23

24 # Build the first Dockerfile and measure the time

25 echo "Building the first image..."

26 start_time1=$(date +%s%N)

27 docker build -t image_1 -f Dockerfile_1 --no-cache .

28 end_time1=$(date +%s%N)

29 elapsed_time1=$((($end_time1 - $start_time1)/1000000))

30

31 # Build the second Dockerfile and measure the time

32 echo "Building the second image..."

33 start_time2=$(date +%s%N)

34 docker build -t image_2 -f Dockerfile_2 --no-cache .

35 end_time2=$(date +%s%N)

36 elapsed_time2=$((($end_time2 - $start_time2)/1000000))

37

38 # Print the results

39 echo "First image build time: $elapsed_time1 milliseconds"

40 echo "Second image build time: $elapsed_time2 milliseconds"

41 REALEND

Run the script:

Optimizing Docker Images 126

1 chmod +x build_and_measure.sh && ./build_and_measure.sh

This is the output I got:

1 First image build time: 7798 milliseconds

2 Second image build time: 540 milliseconds

There’s a difference of 7.258 seconds between the two images which is significant.

Let’s check the size of the images:

1 docker images image_* --format "{{.Repository}} {{.Tag}} {{.Size}}"

It should be the same - there’s no difference in size when using the RUN command in a single line or
multiple lines.

1 image_1 latest 4.26MB

2 image_2 latest 4.26MB

So what should we understand from this? Should we always try to reduce the number of layers?
The answer, as you can see, is not always. The more layers there are, the longer it takes to build
the image. However, the difference in execution time might not be significant when the number of
layers is small.

The final answer is: it depends. But I’d say that you should try to reduce the number of layers as
much as possible. It’s a good practice to follow.

The number of layers is not the only factor that may affect the build time. Other factors should be
considered when building Docker images. We are going to discuss some of them in the following
sections.

Is There a Maximum Number of Layers?

The maximum number of layers that can exist in an image’s history (127 layers) is not documented⁷⁷,
but this seems to be a limitation imposed by AUFS⁷⁸.

Linux has a restriction that does not accept more than 127 layers, which can be raised in modern
kernels but is not the default.

ℹ AUFS is a union filesystem. The aufs storage driver was previously the default storage
driver used for managing images and layers on Docker for Ubuntu, and for Debian
versions prior to Stretch. It was deprecated in favor of overlay2.

⁷⁷https://github.com/docker/docs/issues/8230
⁷⁸https://en.wikipedia.org/wiki/Aufs

https://github.com/docker/docs/issues/8230
https://en.wikipedia.org/wiki/Aufs
https://github.com/docker/docs/issues/8230
https://en.wikipedia.org/wiki/Aufs

Optimizing Docker Images 127

The overlay2 storage driver, which is the default storage drivers used by Docker now, has also
limitation on the number of layers it supports. With the overlay2 driver, there’s a maximum of 128
lower OverlayFS layers. However, this limit doesn’t count the upper writable layer, so you can think
of it as having a total of 129 layers, including the upper writable layer.

Let’s test this limitation by creating a Dockerfile:

1 # Define the base image

2 echo "FROM busybox" > Dockerfile_test

3

4 # We add 128 layers here.

5 for i in $(seq 1 128); do

6 echo "RUN touch /file${i} && rm /file${i}" >> Dockerfile_test

7 done

8

9 # Add one more to exceed the limit of 128 layers.

10 echo "RUN touch /limit_exceeded && rm /limit_exceeded" >> Dockerfile_test

It it worth noting that the effective limit is 129 layers, including the upper writable layer (the layer
where the container’s filesystem is mounted). The base image is not counted as a layer in the limit.

Build the image:

1 docker build -t test-overlay2-layers -f Dockerfile_test .

The build should fail with a message similar to this:

1 => ERROR [130/130] RUN touch /limit_exceeded && rm /limit_exceeded 0.0s

2 ------

3 > [130/130] RUN touch /limit_exceeded && rm /limit_exceeded:

4 ------

5 Dockerfile_test:130

6 --------------------

7 128 | RUN touch /file127 && rm /file127

8 129 | RUN touch /file128 && rm /file128

9 130 | >>> RUN touch /limit_exceeded && rm /limit_exceeded

10 131 |

11 --------------------

12 ERROR: failed to solve: failed to prepare vbpizlnaw1zjd46noaaivf6o2 as m8yxsz8tkmygp\

13 7vth18esd2ru: max depth exceeded

Optimizing Docker Images 128

Optimizing Dockerfile Layer Caching for Dependency
Management

Usually, when running an application, you will need to install some dependencies. Here are some
examples:

• When using Python, you can install libraries using pip install

• When using Node.js, you can install libraries using npm install

• When using Java, you can install libraries using mvn install

Let’s assume we need to install libraries using pip install from a requirements.txt file.

1 cat <<EOF > Dockerfile

2 FROM alpine

3 # Copy the requirements file

4 COPY requirements.txt .

5 # Install Python and the dependencies

6 RUN apk add python3 py3-pip && pip3 install -r requirements.txt

7 # Run the application

8 CMD ["python3", "app.py"]

9 EOF

In the above example, we followed the best practice of combining the apk add and pip install

commands into a single RUN instruction. This reduces the number of layers in the image. However,
in this particular example, the “requirements.txt” file may change while the apk add command does
not. If the requirements file is modified, all layers will be rebuilt, and the RUN instruction will be
executed again due to this change. This means that both the apk add and pip install commands
will be executed again, even though we only need to execute the pip install command to update
the Python dependencies. This is not optimal.

To avoid this, we can optimize the Dockerfile by restructuring our instructions. One common
approach is to separate the installation of system packages (which typically change less frequently)
from the installation of Python packages.

Optimizing Docker Images 129

1 cat <<EOF > Dockerfile

2 FROM alpine

3 # Install system dependencies (not subject to change frequently)

4 RUN apk add python3 py3-pip

5 # Copy the requirements file and install Python dependencies (subject to change freq\

6 uently)

7 COPY requirements.txt .

8 RUN pip3 install -r requirements.txt

9 # Run the application

10 CMD ["python3", "app.py"]

11 EOF

Splitting the commands allows Docker to use the cached layer for system packages installation (apk
add python3 py3-pip) if the “requirements.txt” file remains unchanged. It will only rebuild the
layer where Python packages are installed (pip3 install -r requirements.txt) when there are
changes in Python dependencies. This approach speeds up the build process when only the Python
dependencies are modified.

The Multi-Stage Build

Let’s reconsider this Dockerfile as an example:

1 # Use the specified image as the base

2 FROM golang:1.21.3-alpine3.17

3 # Set the working directory inside the container

4 WORKDIR /app

5 # Copy the local package files to the container's workspace

6 ADD . /app

7 # Build the Go app

8 RUN go mod init my-golang-app

9 RUN go build -o main .

10 # Run the binary program produced by `go build`

11 CMD ["/app/main"]

This Dockerfile is not optimized. It creates a large image that includes the Go compiler and other
unnecessary tools. To optimize it, we can use a multi-stage build.

In the first stage, we build the application using the golang:1.21.3-alpine3.17 image, which
contains the Go compiler and other tools that are not required to run the application. We name
this stage builder.

Optimizing Docker Images 130

1 # Build stage

2 FROM golang:1.21.3-alpine3.17 AS builder

3

4 # Set the working directory inside the container

5 WORKDIR /app

6

7 # Copy the local package files to the container's workspace

8 COPY . .

9

10 # Initialize a module and build the Go app

11 RUN go mod init my-golang-app

12 RUN go build -o main .

In the second stage, we copy the binary from the first stage to a smaller base image (alpine:3.17)
to run the application.

1 # Final stage

2 FROM alpine:3.17

3

4 # Set the working directory

5 WORKDIR /app

6

7 # Copy the binary from the build stage

8 COPY --from=builder /app/main .

9

10 # Run the binary program produced by `go build`

11 CMD ["./main"]

To create the final Dockerfile, you can use the following script:

1 cat <<'EOF' > Dockerfile

2 # Build stage

3 FROM golang:1.21.3-alpine3.17 AS builder

4 # Set the working directory inside the container

5 WORKDIR /app

6 # Copy the local package files to the container's workspace

7 COPY . .

8 # Initialize a module and build the Go app

9 RUN go mod init my-golang-app

10 RUN go build -o main .

11 ##

12 # Final stage

Optimizing Docker Images 131

13 FROM alpine:3.17

14 # Set the working directory

15 WORKDIR /app

16 # Copy the binary from the build stage

17 COPY --from=builder /app/main .

18 # Run the binary program produced by `go build`

19 CMD ["./main"]

20 EOF

To build the image, run the following command:

1 docker build -t my-golang-app:v2 .

You can compare the size of the final image (my-golang-app:v2) with the previous one (my-golang-app:v1)
using the docker images command:

1 docker images my-golang-app --format "{{.Repository}} {{.Tag}} {{.Size}}"

Using numbers instead of stage names is also possible. Here’s an alternative Dockerfile using
numbers:

1 cat <<'EOF' > Dockerfile

2 FROM golang:1.21.3-alpine3.17

3 WORKDIR /app

4 COPY . .

5 RUN go mod init my-golang-app

6 RUN go build -o main .

7 ##

8 FROM alpine:3.17

9 WORKDIR /app

10 COPY --from=0 /app/main .

11 CMD ["./main"]

12 EOF

In this case, we use COPY --from=0 /app/main . instead of COPY --from=builder /app/main .. The
first stage is 0, and the second stage is 1.

Additionally, we can further optimize the Dockerfile by using a smaller base image called Scratch⁷⁹.
The Scratch image is empty, containing no files or packages, and is only 0.5 MB in size.

Here’s the final Dockerfile using the Scratch image:

⁷⁹https://hub.docker.com/_/scratch

https://hub.docker.com/_/scratch
https://hub.docker.com/_/scratch

Optimizing Docker Images 132

1 cat <<'EOF' > Dockerfile

2 # Build stage

3 FROM golang:1.21.3-alpine3.17 AS builder

4 # Set the working directory inside the container

5 WORKDIR /app

6 # Copy the local package files to the container's workspace

7 COPY . .

8 # Initialize a module and build the Go app

9 RUN go mod init my-golang-app

10 RUN go build -o main .

11 ##

12 # Final stage

13 FROM scratch

14 WORKDIR /app

15 COPY --from=builder /app/main .

16 CMD ["./main"]

17 EOF

To build the image:

1 docker build -t my-golang-app:v4 .

You can compare the size of the final image (my-golang-app:v4) with the previous ones (my-golang-app:v1,
my-golang-app:v2, and my-golang-app:v3) using the docker images command:

1 docker images my-golang-app --format "{{.Repository}} {{.Tag}} {{.Size}}"

my-golang-app:v1 is 248 MB in size, my-golang-app:v2 and my-golang-app:v3 are the same image
and are 8.86 MB in size, and my-golang-app:v4 is only 1.82 MB in size.

1 my-golang-app v4 1.8MB

2 my-golang-app v2 8.86MB

3 my-golang-app v3 8.86MB

4 my-golang-app v1 248MB

Smaller Images

Many Docker images weigh more than 1GB. How do they become so heavy? Do they really need to
be this large? Can we make them smaller without sacrificing functionality? The answer is yes.

Let’s reconsider this Dockerfile as an example:

Optimizing Docker Images 133

1 FROM ubuntu

2 RUN apt-get update -y && \

3 apt-get install python3 -y && \

4 apt-get install python3-pip -y && \

5 pip3 install flask

Instead of using Ubuntu here, you can use smaller base images like Alpine⁸⁰. The Alpine image is
only 5 MB in size while Ubuntu is 77.8 MB.

Let’s create a simple Dockerfile that installs Python on Alpine.

1 cat <<EOF > Dockerfile

2 FROM alpine

3 RUN apk add python3 py3-pip && pip3 install flask

4 EOF

Build the image:

1 docker build -t my-python-app:alpine .

Check the size of the image:

1 docker images my-python-app:alpine --format "{{.Repository}} {{.Tag}} {{.Size}}"

Compared to the Ubuntu-based image, the Alpine-based image is much smaller:

1 my-python-app alpine 77.6MB

2 my-python-app v2 476MB

3 my-python-app v1 477MB

Next, we are going to explore a list of images that are small and that you can use as a base image
for your Docker images.

Scratch

The smallest and initial image you can use is the “scratch” image. This image is not derived from
any other image; it is essentially empty. It is particularly useful for creating base images (like debian
and busybox) or extremely minimal images (containing only a single binary and its dependencies,
like hello-world). It is small, fast, secure, and free of bugs. In essence, it is a completely empty image.

⁸⁰https://hub.docker.com/_/alpine

https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine

Optimizing Docker Images 134

BusyBox

BusyBox is a software that runs in various POSIX environments such as Linux, Android, and
FreeBSD. Although it is designed to work with interfaces provided by the Linux kernel, it can be
utilized in other environments as well. It was specifically developed for embedded operating systems
that have limited resources. The authors often refer to it as “The Swiss Army knife of Embedded
Linux” because its single executable replaces the functionality of more than 300 common commands.
BusyBox is released under the GNU General Public License v2, making it free software.

In essence, BusyBox provides a collection of stripped-down Unix tools packaged in a single
executable file. For example, the ls command can be executed using BusyBox.

1 /bin/busybox ls

BusyBox is the winner for having the smallest images (somewhere between 1 and 5 Mb in on-
disk size) that can be used with Docker. Executing a docker pull busybox command will take
approximately 1 second.

1 time docker pull busybox

2 Using default tag: latest

3 latest: Pulling from library/busybox

4 Digest: sha256:3fbc632167424a6d997e74f52b878d7cc478225cffac6bc977eedfe51c7f4e79

5 Status: Image is up to date for busybox:latest

6 docker.io/library/busybox:latest

7

8 real 0m1,086s

9 user 0m0,009s

10 sys 0m0,012s

While there are advantages to the minimal size of BusyBox, there are also some drawbacks.
BusyBox comes with a minimalistic package manager called opkg. However, the version of BusyBox
commonly found in Docker images may not have opkg installed by default, as BusyBox is often
configured to be as lightweight as possible.

To view the list of binaries included in BusyBox, you can run the busybox executable from Docker.

1 docker run busybox busybox

Unfortunately, this tiny distribution does not have a proper package manager, which can be quite
inconvenient. However, Alpine is an excellent alternative if you require a package manager.

Optimizing Docker Images 135

Alpine Linux

Alpine Linux is a lightweight Linux distribution that prioritizes security. It is based on “musl libc”
and BusyBox. Alpine Linux is highly favored for Docker images due to its small size of only 5.5MB.
It also includes a package manager called apk⁸¹.

Alpine has also one of the fastest boot times of any operating system.

Considering its features, Alpine Linux is an excellent choice as a base image for your Docker images
and is widely used in embedded devices and routers.

Phusion Baseimage / Baseimage-docker / Passenger-docker

Phusion Baseimage, also known as Baseimage-docker, is a minimal Ubuntu base image that has been
modified to be Docker-friendly.

According to the authors, it consumes only 8.3 MB of RAM and is more powerful than Busybox or
Alpine.

In addition to being Ubuntu, it includes:

• Modifications specifically designed for Docker-friendliness.
• Administration tools that are particularly useful in the context of Docker.
• Mechanisms for easily running multiple processes without conflicting with the Docker philos-
ophy.

You can find more detailed information in the official GitHub repository⁸².

The team behind this project has also created a base image for running Ruby, Python, Node.js, and
Meteor web apps called passenger-docker⁸³.

Passenger-docker is a set of Docker images meant to serve as good bases for Ruby, Python,
Node.js and Meteor web app images. In line with Phusion Passenger’s goal, passenger-
docker’s goal is to make Docker image building for web apps much easier and faster.
(source: phusion/passenger-docker⁸⁴.)

Other Techniques: Squashing, Distroless, etc

There are other techniques that can be used to reduce the size of Docker images. For example, you
can use tools like docker-squash⁸⁵ to reduce the size of Docker images by removing intermediate
layers. You can also use tools like docker-slim⁸⁶ to optimize and secure your Docker containers.

⁸¹https://wiki.alpinelinux.org/wiki/Alpine_Package_Keeper
⁸²https://github.com/phusion/baseimage-docker
⁸³https://github.com/phusion/passenger-docker
⁸⁴https://github.com/phusion/passenger-docker
⁸⁵https://github.com/goldmann/docker-squash
⁸⁶https://github.com/slimtoolkit/slim

https://wiki.alpinelinux.org/wiki/Alpine_Package_Keeper
https://github.com/phusion/baseimage-docker
https://github.com/phusion/passenger-docker
https://github.com/phusion/passenger-docker
https://github.com/goldmann/docker-squash
https://github.com/slimtoolkit/slim
https://wiki.alpinelinux.org/wiki/Alpine_Package_Keeper
https://github.com/phusion/baseimage-docker
https://github.com/phusion/passenger-docker
https://github.com/phusion/passenger-docker
https://github.com/goldmann/docker-squash
https://github.com/slimtoolkit/slim

Optimizing Docker Images 136

There’s also a technique called Distroless⁸⁷ that can be used to create container images that contain
only your application and its runtime dependencies. This technique is recommended by Google.

Another technique is reducing the size of your dependencies. For example, if you are developing
a Python application and don’t need the full Python runtime, you can use PyInstaller⁸⁸ to create a
single executable file that contains your application and its dependencies. This will reduce the size
of your Docker image.

If you’re building a Python container for production, you can use Pex⁸⁹ to create a single executable
file that contains your application and its dependencies. PEX files have been used by Twitter to
deploy Python applications to production since 2011 and this helped them reduce the size of their
images.

While we are talking about Python, you can also use MicroPython⁹⁰ when needed. MicroPython is
a lean and efficient implementation of the Python 3 programming language that includes a small
subset of the Python standard library and is optimised to run on microcontrollers and in constrained
environments.

I mentioned Python here as an example, but if you are using another programming language, you
can search for similar tools and techniques to reduce the size of your Docker images and adapt them
to your needs.

⁸⁷https://github.com/GoogleContainerTools/distroless
⁸⁸https://www.pyinstaller.org/
⁸⁹https://pex.readthedocs.io/en/stable/
⁹⁰https://micropython.org/

https://github.com/GoogleContainerTools/distroless
https://www.pyinstaller.org/
https://pex.readthedocs.io/en/stable/
https://micropython.org/
https://github.com/GoogleContainerTools/distroless
https://www.pyinstaller.org/
https://pex.readthedocs.io/en/stable/
https://micropython.org/

Docker Volumes
What is a Docker Volume?

If we run the following container:

1 docker run --name nginx -d nginx

We are able to add a file inside the container:

1 docker exec -it nginx bash -c "echo 'Hello World' > /usr/share/nginx/html/index.html"

We can check that the file is inside the container:

1 docker exec -it nginx bash -c "cat /usr/share/nginx/html/index.html"

When we remove the container, relaunch it, and check the file, we see that the file is not there
anymore:

1 docker rm -f nginx

2 docker run --name nginx -d nginx

3 docker exec -it nginx bash -c "cat /usr/share/nginx/html/index.html"

A container is a process that runs in isolation.Whenwe remove the container, we remove the process
and all the data that was inside the container.

Is there a solution to keep the data of a container when we remove it? Yes, we can use Docker
volumes.

Docker volumes are directories (or files) that are outside the default Union File System and exist
as normal directories and files on the host filesystem. This is why they are not removed when the
container is removed and this is why they are a solution to the problem we just saw (ephemeral
containers).

Volumes are also used to share data between containers but most commonly they are used in stateful
applications (databases, key-value stores, etc.).

Docker volumes report the following events: create, mount, unmount, destroy.

We can use the docker events command to see the events related to volumes when we create, delete,
or mount them:

Docker Volumes 138

1 docker events --filter 'type=volume'

Creating and Using Docker Volumes

Volumes are usually created and managed by Docker (but you can also create them manually).
When you create a volume, Docker creates a directory under /var/lib/docker/volumes/ on the
host machine and mounts it inside the container under the mount point:

1 /var/lib/docker/volumes/<volume-name-or-id>/_data

Let’s see how to create a volume:

1 docker volume create my-vol

This command will create a volume called my-vol and mount it inside the container under
/var/lib/docker/volumes/my-vol/_data.

In order to use the volumes in a real application, we need to mount them inside the container. We
can do this using the -v flag:

1 docker run --name nginx -v my-vol:/usr/share/nginx/html -d nginx

When we add a file inside the container, we can see it on the host:

1 docker exec -it nginx bash -c "echo 'Hello World' > /usr/share/nginx/html/index.html"

2 sudo ls -l /var/lib/docker/volumes/my-vol/_data

When we remove the container, the volume is not removed:

1 docker rm -f nginx

2 sudo ls -l /var/lib/docker/volumes/my-vol/_data

Listing and Inspecting Docker Volumes

We can list the volumes using the docker volume ls command:

Docker Volumes 139

1 docker volume ls

We can use filters such as dangling to list only dangling volumes:

1 docker volume ls -f dangling=true

We are going to understand what dangling volumes are in the next section.

To format the output, we can use the --format flag:

1 docker volume ls --format "{{.Name}}"

2 # or

3 docker volume ls --format "{{.Name}} {{.Driver}}"

4 # or

5 docker volume ls --format "table {{.Name}}\t{{.Driver}}\t{{.Mountpoint}}"

To have more information about a volume, we can use the docker volume inspect command:

1 docker volume inspect my-vol

The output is a JSON containing information about the volume:

• CreatedAt: The date and time the volume was created.
• Driver: The driver used by the volume.
• Labels: The labels associated with the volume.
• Mountpoint: The mount point of the volume on the host.
• Name: The name of the volume.
• Options: The driver specific options used when creating the volume.
• Scope: The scope of the volume.

Named Volumes vs Anonymous Volumes

When we created the volume my-vol, we used the command:

1 docker volume create my-vol

This is called a named volume. We can also create anonymous volumes. Anonymous volumes are
volumes that are not given a specific name. They are created when we use the -v flag without
specifying a name:

Docker Volumes 140

1 docker run --name nginx_with_anonymous_volume -v /usr/share/nginx/html -d nginx

If you inspect the container to get the volume name, you will see that it is a random string:

1 # use the following command to get the volume name

2 docker inspect nginx_with_anonymous_volume --format "{{range .Mounts}}{{.Name}}{{end\

3 }}"

Note that a container may have multiple volumes, in this case you will get multiple volume names
when you run the above command.

The expected output is the identifier of the volume and not a real name. This is because anonymous
volumes are not given a name but a random identifier.

You can inspect the volume to get more information about it like the mount point (where it is stores
files on the host):

1 vol_id=$(docker inspect nginx_with_anonymous_volume --format "{{range .Mounts}}{{.Na\

2 me}}{{end}}")

3 docker volume inspect $vol_id

Bind Mounts

A bind mount is a file or directory located anywhere on the host filesystem that is mounted into a
container. It is defined by its source path and the container path to which it is mounted. However,
bind mounts are not the ideal solution for creating volumes because they are not portable. This lack
of portability arises from their reliance on the host filesystem. Additionally, bind mounts are not
managed by Docker itself, but rather by the user.

This is an example:

1 # start by creating the folder files

2 mkdir files

3 # create a file inside the folder files

4 echo "Hello World" > files/index.html

5 # run a container and mount the folder files inside the container

6 docker run -d --name nginx_with_bind_mount -v "$(pwd)"/files:/usr/share/nginx/html n\

7 ginx

8 # test that the file is inside the container

9 docker exec -it nginx_with_bind_mount bash -c "cat /usr/share/nginx/html/index.html"

Docker Volumes 141

Data Propagation

When you attach an empty volume to a container directory that already has files, those files are
copied into the volume. If you start a container and specify a volume that hasn’t been created,
Docker will initialize an empty one for you. This can be useful for sharing data between containers.

Let’s say we have a Docker image with a directory /app/data that contains a file named “sample.txt”.

Now, when we run a container from this image and mount an empty volume to /app/data, the
“sample.txt” will be copied to the volume.

1 # Run a container with an empty volume attached to /app/data

2 docker run -d -v myvolume:/app/data my_image

If you inspect the contents of myvolume, you’ll find the “sample.txt” file in it.

What if the volume already has content? Let’s see what happens when we mount a volume that
already has content to a container directory that also has files.

1 # Create a volume and add some content to it

2 docker volume create my_test_volume

3 echo "Test from the volume" > /var/lib/docker/volumes/my_test_volume/_data/index.html

4 # Create a Dockerfile that updates the index.html file

5 cat > Dockerfile <<EOF

6 FROM nginx

7 RUN echo "Test from the container" > /usr/share/nginx/html/index.html

8 EOF

9 # Build the image and run a container from it that uses the volume

10 docker build -t my_image .

11 docker run --name container -d -v my_test_volume:/usr/share/nginx/html my_image

12 # Inspect the contents of the volume

13 docker exec -it $(docker ps -lq) bash -c "cat /usr/share/nginx/html/index.html"

The last command should show:

1 Test from the volume

This means that the volume’s content “overshadowed the container’s original files. Think of it like
putting a sticker on a printed page. Even if the page has text or images on it, the sticker will cover
and hide whatever’s beneath it.

The same thing happens when you use bind mounts instead of volumes.

To summarize, this is what happens when you mount a volume to a container:

Docker Volumes 142

Volume Status Container Status Result
Empty Has Data Data from the container is copied into the

volume.
Empty Empty Volume remains empty.
Has Data Empty Container directory displays the data from the

volume.
Has Data Has Data Container’s original data is overshadowed by

the volume data.

Another scenario that could be intresting to explore is when a container with a volume is running,
then we update the volume from the host. What happens to the container? Will the container see
the changes? The answer is no, unless we restart the container.

Let’s see this in action:

1 # Create a volume

2 docker volume create my_volume_1

3 # Create a container that uses the volume

4 docker run --name my_nginx_1 -v my_volume_1:/usr/share/nginx/html -d nginx

5 # Update the volume from the host

6 echo "Hello World" > /var/lib/docker/volumes/my_volume_1/_data/index.html

7 # Checl if the container sees the changes

8 docker exec -it my_nginx_1 bash -c "cat /usr/share/nginx/html/index.html"

You will see that the container does not see the changes. To make the container see the changes, we
need to restart it:

1 docker restart my_nginx_1

2 docker exec -it my_nginx_1 bash -c "cat /usr/share/nginx/html/index.html"

What should we understand from this? Volumes are not updated automatically when we update
them from the host. We need to restart the container to make it see the changes. Changes will not
propagate from the host to the container automatically which is a good thing because we don’t want
to break our application by updating the volume from the host. However, if you use bind mounts
instead of volumes, changes will propagate from the host to the container automatically.

Docker Volumes 143

1 # Remove the container

2 docker rm -f my_nginx_1

3 # Run the container again but this time use a bind mount instead of a volume

4 docker run --name my_nginx_1 -v /nginx/:/usr/share/nginx/html -d nginx

5 # Update the volume from the host

6 echo "Hello World!" > /nginx/index.html

7 # Check if the container sees the changes

8 docker exec -it my_nginx_1 bash -c "cat /usr/share/nginx/html/index.html"

You will see that the container sees the changes without the need to restart it.

Dangling Volumes

A dangling volume is a volume that is not associated with any container. This happens when we
remove a container that uses a volume without removing the volume. The volume will still exist on
the host but it will not be associated with any container.

To show dangling volumes, we can use the following command:

1 docker volume ls -f dangling=true

Dangling volumes are not removed automatically but we can clean them and this is what we are
going to see in one of the next sections. However, for now, let’s see how to calculate the size of a
dangling volume. We can use the following script:

1 #!/bin/bash

2

3 total_size=0

4

5 # Loop through each dangling volume

6 for volume in $(docker volume ls -qf dangling=true); do

7 # Get the mountpoint of the volume

8 mountpoint=$(docker volume inspect $volume --format '{{ .Mountpoint }}')

9 # Calculate the size of the volume using du

10 size_with_unit=$(du -sh $mountpoint | cut -f1)

11 size=$(echo $size_with_unit | awk '{print int($1)}')

12 unit=${size_with_unit: -1}

13

14 echo "Volume: $volume Size: $size_with_unit"

15

16 # Convert all sizes to KB for aggregation

17 case $unit in

Docker Volumes 144

18 K)

19 total_size=$((total_size + size))

20 ;;

21 M)

22 total_size=$((total_size + size*1024))

23 ;;

24 G)

25 total_size=$((total_size + size*1024*1024))

26 ;;

27 *)

28 echo "Unknown unit: $unit. Skipping volume $volume in aggregation."

29 ;;

30 esac

31 done

32

33 echo "Total size of all dangling volumes in KB: $total_size KB"

TMPFS Mounts

If you need to persist data between the host machine and containers, you should use Docker volumes
or bind mounts. However, in cases where you don’t need to write files to the container’s writable
layers, TMPFS mounts can be a suitable option. TMPFS mounts store data in the host’s memory,
and when the container stops, the TMPFS data is completely removed. This approach is useful
for scenarios like passing sensitive files to containers where persistence isn’t required, due to the
ephemeral nature of these files. Let’s explore creating a TMPFS volume for an Nginx container.
There are two different methods to achieve this.

1) Use the --mount flag.

1 docker run -d \

2 -it \

3 --name nginx_with_tmpfs_volume_1 \

4 --mount type=tmpfs,destination=/secrets \

5 nginx

2) Use the --tmpfs flag.

Docker Volumes 145

1 docker run -d \

2 -it \

3 --name nginx_with_tmpfs_volume_2 \

4 --tmpfs /secrets \

5 nginx

When creating a TMPFS, you can specify options like tmpfs-size and tmpfs-mode.

Option Description
tmpfs-size Size of the tmpfs mount in bytes. Unlimited by default.
tmpfs-mode File mode of the tmpfs in octal. For instance, 700 or 0770. Defaults to

1777 or world-writable.

This is an example:

1 docker run -d \

2 -it \

3 --name tmpfs_volume \

4 --mount type=tmpfs,destination=/secrets,tmpfs-mode=700 \

5 nginx

A real-world example where using a TMPFS mount is particularly useful is for a web application
that handles sensitive data, such as session tokens or temporary encryption keys, which should not
be persisted on disk or exposed outside the container’s lifecycle.

In this scenario, you can use a TMPFS mount to create a temporary in-memory storage for these
sensitive files. The data stored in this TMPFS mount will be lost when the container is stopped,
thereby ensuring that sensitive information does not persist on the host system.

Here’s an example using a Docker container that might be running a web application:

1 docker run -d \

2 -it \

3 --name secure_web_app \

4 --mount type=tmpfs,destination=/app/secrets \

5 my_web_app_image

Your application should write these tokens or data to “/app/secrets”.

This ensures that:

• The sensitive data is kept away from potentially persistent storage layers.
• The data is automatically cleaned up and not left behind after the container’s lifecycle ends.

Using a TMPFS mount in such scenarios enhances the security of the application.

Docker Volumes 146

Docker Volume From Containers

The --volumes-from flag in Docker is used to mount volumes from one container into another
container. This allows you to share data between containers without binding the data to the host
machine. When you use --volumes-from, the new container gains access to all the volumes defined
in the source container (the one you’re referencing).

This is an example:

1 docker run -d --name container1 -v /data some-image

2 docker run -d --name container2 --volumes-from container1 another-image

In this example, container2 will have access to the “/data” volume created in container1.

This flag is useful when you want to share data between containers without binding the data to the
host machine. It’s also useful if you want perform backups of your data by mounting a volume from
a container that has the data you want to backup.

Let’s see a real-world example. Let’s say we have a database container that stores data in a volume.
We want to backup this data to another container. We can do this using the --volumes-from flag.

This is the first container:

1 docker run -d \

2 --name original_mysql \

3 -e MYSQL_ROOT_PASSWORD=my-secret-pw \

4 -v mysql_data:/var/lib/mysql \

5 mysql:5.7

mysql_data is the name of the Docker volume where the MySQL data is stored in the example above.

Next, create a backup of your MySQL data. You’ll use a new container and mount the volume from
the original MySQL container.

1 docker run --rm \

2 --volumes-from original_mysql \

3 -v $(pwd):/backup \

4 ubuntu \

5 tar cvf /backup/mysql_backup.tar /var/lib/mysql

If you type ls in the current directory, you’ll see the “mysql_backup.tar” file.

Now, to start a new MySQL container using the same volume therefor the same data, you can use
the following command:

Docker Volumes 147

1 docker run -d \

2 --name new_mysql \

3 -e MYSQL_ROOT_PASSWORD=my-secret-pw \

4 -v mysql_data:/var/lib/mysql \

5 mysql:5.7

The new_mysql container uses the same named volume mysql_data to ensure it has access to the
same data as the original container.

Docker Logging
How Docker Logs Work

When we say “Docker logs”, we are referring to the logs that Docker “generates for containers”.
In reality, Docker does not generate logs for containers. Instead, it captures the standard output
(stdout) and standard error (stderr) streams generated by a container and writes them to a file.
By default, Docker writes the logs to the JSON file /var/lib/docker/containers/<container_-

id>/<container_id>-json.log.

Let’s see an example. First start a container from the nginx image and map port 8080 on the host to
port 80 on the container:

1 docker run --name my_container -d -p 8080:80 nginx

Then send multiple requests to the container:

1 for i in {1..10}; do curl --silent localhost:8080; done

Get the container ID (long version):

1 container_id=$(docker inspect --format='{{.Id}}' my_container)

Check the file where Docker writes the logs:

1 tail /var/lib/docker/containers/$container_id/$container_id-json.log

In practice, instead of checking the file where Docker writes the logs, you can use the docker logs

command to view the logs:

1 docker logs my_container

You can use the --tail option to limit the number of lines returned:

1 docker logs --tail 5 my_container

You can use the --since option to limit the number of lines returned to those that have been
generated since a given timestamp:

Docker Logging 149

1 docker logs --since 2023-08-01T00:00:00 my_container

You can use the --until option to limit the number of lines returned to those that have been
generated until a given timestamp:

1 docker logs --until 2023-08-01T00:00:00 my_container

You can use the --follow option to follow the logs:

1 docker logs --follow my_container

2 # Or use the short version

3 docker logs -f my_container

You can use the --timestamps option to include timestamps in the logs:

1 docker logs --timestamps my_container

You can also use the --details option to include extra details in the logs:

1 docker logs --details my_container

Finally, you can combine multiple options to get the desired output.

Logging Best Practices and Recommendations

Docker containers are ephemeral, does not store logs inside the container, and should not.

When you create an image for a container, you should not include a logging system inside the
container and you should not store the logs inside the container. You don’t want to make the image
bigger than it needs to be and your image should be portable. Therefore, you should always send
the logs to the standard output (stdout) and standard error (stderr) streams.

Let’s see an example. Create a Dockerfile with the following content:

1 cat > Dockerfile <<EOF

2 FROM ubuntu:latest

3 RUN apt-get update && apt-get install -y nginx

4 CMD ["nginx", "-g", "daemon off;"]

5 EOF

Build and run the image:

Docker Logging 150

1 docker build -t my_image .

2 # Remove the old container if it already exists

3 docker rm -f my_container &>/dev/null || true

4 docker run --name my_container -d -p 8080:80 my_image

Make some curl tests:

1 for i in {1..10}; do curl --silent localhost:8080; done

Check the logs:

1 docker logs my_container

If you are expecting to see the access logs, you will be disappointed. The access logs are being
written to the regular files inside the container, however, they since they are not being redirected to
the standard output (stdout) or standard error (stderr) streams, Docker does not capture them.

You can check the files using the following command:

1 docker exec my_container cat /var/log/nginx/access.log

In order to help Docker capture Nginx logs, we should redirect the access log to the standard output
(stdout) stream and the error log to the standard error (stderr) stream. We can do that by updating
the configuration of Nginx but a simpler and more common way is to add the following lines to the
Dockerfile:

1 RUN ln -sf /dev/stdout /var/log/nginx/access.log \

2 && ln -sf /dev/stderr /var/log/nginx/error.log

This is a common practice and you will find it in many Dockerfiles.

Let’s recreate the Dockerfile, build, run, make some tests and see if logs are being captured:

1 # Create the new Dockerfile

2 cat > Dockerfile <<EOF

3 FROM ubuntu:latest

4 RUN apt-get update && apt-get install -y nginx

5 RUN ln -sf /dev/stdout /var/log/nginx/access.log \

6 && ln -sf /dev/stderr /var/log/nginx/error.log

7 CMD ["nginx", "-g", "daemon off;"]

8 EOF

9 # Remove the old container, build and run

10 docker rm -f my_container &>/dev/null || true

Docker Logging 151

11 docker build -t my_image .

12 docker run --name my_container -d -p 8080:80 my_image

13 # Make some curl tests

14 for i in {1..10}; do curl --silent localhost:8080; done

15 # Check the logs

16 docker logs my_container

You should see the access logs now.

What we saw here is specific to Nginx, however, the same applies to other applications. You should
always find the best way for you to redirect the logs to the standard output (stdout) and standard
error (stderr) streams.

So, at this point, we have a container that is streaming logs outside the container and every line of
logs is stored in “/var/lib/docker/containers/<container_id>/<container_id>-json.log”.

1 # Get the container ID (long version)

2 container_id=$(docker inspect --format='{{.Id}}' my_container)

3 # Check the file where Docker writes the logs

4 tail /var/lib/docker/containers/$container_id/$container_id-json.log

When we remove the container, the folder inside “/var/lib/docker/containers” that contains the logs
for that container is removed.

1 docker rm -f my_container

2 ls /var/lib/docker/containers/$container_id

If you think that storing logs on the host is a good idea, you are wrong. Unless you don’t need logs,
you should always send them to a centralized logging system. We will see more about this in the
next section.

Logging Drivers

Logging drivers are tools and mechanisms that make the collection of log data from running
containers and services easy. Each Docker daemon already have a default logging driver, typically
the “json-file” driver, which stores logs as JSON. Containers use this default unless configured
otherwise, and users have the option to install and use other logging tools and drivers or implement
custom logging driver plugins.

You can check the logging driver used by the Docker daemon using the following command:

Docker Logging 152

1 docker info --format '{{.LoggingDriver}}'

If you have not changed the default logging driver, you should see “json-file”. If youwant to configure
this driver, you should create a file called “daemon.json” in “/etc/docker” and add your configuration
there. For example, if you want to limit the size of the log files to 100MB and keep only 10 files, you
can add the following lines to “daemon.json”:

1 cat >> /etc/docker/daemon.json <<EOF

2 {

3 "log-driver": "json-file",

4 "log-opts": {

5 "max-size": "100m",

6 "max-file": "10"

7 }

8 }

9 EOF

To start a container with a different logging driver, you can use the --log-driver option. Here, for
example, we are starting a container with the “none” logging driver which disables any logging:

1 # Remove the old container if it already exists

2 docker rm -f my_container &>/dev/null || true

3 docker run --name my_container -p 8080:80 -d --log-driver none nginx

You can check the logging driver used by a container using the following command:

1 docker inspect --format='{{.HostConfig.LogConfig.Type}}' my_container

Until now, we have seen two logging drivers: “json-file” and “none”. There are many other logging
drivers available. Here is a list of the most common and also natively supported logging drivers:

Name Description Documentation
none Disables any logging.
json-file Writes JSON messages to file. json-file⁹¹
local Writes messages to local storage

as they are.
local⁹²

syslog Writes messages to the syslog
facility.

syslog⁹³

journald Writes messages to the systemd
journal.

journald⁹⁴

⁹¹https://docs.docker.com/config/containers/logging/json-file/
⁹²https://docs.docker.com/config/containers/logging/local/
⁹³https://docs.docker.com/config/containers/logging/syslog/
⁹⁴https://docs.docker.com/config/containers/logging/journald/

https://docs.docker.com/config/containers/logging/json-file/
https://docs.docker.com/config/containers/logging/local/
https://docs.docker.com/config/containers/logging/syslog/
https://docs.docker.com/config/containers/logging/journald/
https://docs.docker.com/config/containers/logging/json-file/
https://docs.docker.com/config/containers/logging/local/
https://docs.docker.com/config/containers/logging/syslog/
https://docs.docker.com/config/containers/logging/journald/

Docker Logging 153

Name Description Documentation
gelf Writes messages to a GELF

endpoint like Graylog or
Logstash.

gelf⁹⁵

fluentd Writes messages to a Fluentd
endpoint.

fluentd⁹⁶

awslogs Writes messages to Amazon
CloudWatch Logs.

awslogs⁹⁷

splunk Writes messages to Splunk using
the HTTP Event Collector.

splunk⁹⁸

etwlogs Writes messages as ETW events. etwlogs⁹⁹
gcplogs Writes messages to Google Cloud

Logging.
gcplogs¹⁰⁰

logentries Writes messages to Rapid7
Logentries.

logentries¹⁰¹

Logging Using Loki and Grafana

There are also many third-party logging drivers available. For example, if you are a Grafana user,
you can use Loki¹⁰².

This is how to do it, first, install the Loki driver:

1 docker plugin install grafana/loki-docker-driver:2.9.1 --alias loki --grant-all-perm\

2 issions

Check the installed plugins:

1 docker plugin ls

Now let’s start a Grafana instance using this Docker Compose file¹⁰³:

⁹⁵https://docs.docker.com/config/containers/logging/gelf/
⁹⁶https://docs.docker.com/config/containers/logging/fluentd/
⁹⁷https://docs.docker.com/config/containers/logging/awslogs/
⁹⁸https://docs.docker.com/config/containers/logging/splunk/
⁹⁹https://docs.docker.com/config/containers/logging/etwlogs/
¹⁰⁰https://docs.docker.com/config/containers/logging/gcplogs/
¹⁰¹https://docs.docker.com/config/containers/logging/logentries/
¹⁰²https://grafana.com/oss/loki/
¹⁰³https://github.com/grafana/loki/blob/main/production/docker-compose.yaml

https://docs.docker.com/config/containers/logging/gelf/
https://docs.docker.com/config/containers/logging/fluentd/
https://docs.docker.com/config/containers/logging/awslogs/
https://docs.docker.com/config/containers/logging/splunk/
https://docs.docker.com/config/containers/logging/etwlogs/
https://docs.docker.com/config/containers/logging/gcplogs/
https://docs.docker.com/config/containers/logging/logentries/
https://grafana.com/oss/loki/
https://github.com/grafana/loki/blob/main/production/docker-compose.yaml
https://docs.docker.com/config/containers/logging/gelf/
https://docs.docker.com/config/containers/logging/fluentd/
https://docs.docker.com/config/containers/logging/awslogs/
https://docs.docker.com/config/containers/logging/splunk/
https://docs.docker.com/config/containers/logging/etwlogs/
https://docs.docker.com/config/containers/logging/gcplogs/
https://docs.docker.com/config/containers/logging/logentries/
https://grafana.com/oss/loki/
https://github.com/grafana/loki/blob/main/production/docker-compose.yaml

Docker Logging 154

1 # Create a new folder

2 mkdir -p ~/loki

3 # Create the docker-compose.yml file

4 cat > ~/loki/docker-compose.yml <<EOF

5 version: "3"

6

7 networks:

8 loki:

9

10 services:

11 loki:

12 image: grafana/loki:2.9.2

13 ports:

14 - "3100:3100"

15 command: -config.file=/etc/loki/local-config.yaml

16 networks:

17 - loki

18

19 promtail:

20 image: grafana/promtail:2.9.2

21 volumes:

22 - /var/log:/var/log

23 command: -config.file=/etc/promtail/config.yml

24 networks:

25 - loki

26

27 grafana:

28 environment:

29 - GF_PATHS_PROVISIONING=/etc/grafana/provisioning

30 - GF_AUTH_ANONYMOUS_ENABLED=true

31 - GF_AUTH_ANONYMOUS_ORG_ROLE=Admin

32 entrypoint:

33 - sh

34 - -euc

35 - |

36 mkdir -p /etc/grafana/provisioning/datasources

37 cat <<EOF > /etc/grafana/provisioning/datasources/ds.yaml

38 apiVersion: 1

39 datasources:

40 - name: Loki

41 type: loki

42 access: proxy

43 orgId: 1

Docker Logging 155

44 url: http://loki:3100

45 basicAuth: false

46 isDefault: true

47 version: 1

48 editable: false

49 EOF

50 /run.sh

51 image: grafana/grafana:latest

52 ports:

53 - "3000:3000"

54 networks:

55 - loki

56 EOF

Start the Grafana instance:

1 cd ~/loki

2 docker-compose up -d

Visit your machine IP on the port 3000 and login to Grafana using the default credentials (username:
admin, password: admin). Let’s keep the default login and password as they are for now.

Now, let’s configure the driver to send the logs to Loki:

1 # Export the environment variables

2 export LOKI_INSTANCE_HOST=localhost

3 export LOKI_INSTANCE_PORT=3100

4 export LOKI_INSTANCE_USERNAME=admin

5 export LOKI_INSTANCE_PASSWORD=admin

6 # Create the daemon.json file

7 cat > /etc/docker/daemon.json <<EOF

8 {

9 "log-driver": "loki",

10 "log-opts": {

11 "loki-url": "http://$LOKI_INSTANCE_USERNAME:$LOKI_INSTANCE_PASSWORD@$LOKI_INSTAN\

12 CE_HOST:$LOKI_INSTANCE_PORT/loki/api/v1/push"

13 }

14 }

15 EOF

If your Loki instance is running on a different machine, a different port, or you have changed the
default credentials, you should export the correct values for the environment variables. Here we

Docker Logging 156

are using the login “admin” and the password “admin” because we have not changed the default
credentials.

Restart the Docker daemon to apply the changes:

1 systemctl restart docker

Start a new Nginx container

1 # Remove the old container if it already exists

2 docker rm -f my_container &>/dev/null || true

3 # Start a new container with the Loki driver

4 docker run --name my_container -p 8080:80 -d --log-driver loki nginx

Now, let’s make some curl tests:

1 for i in {1..10}; do curl --silent localhost:8080; done

Visit your Grafana instance, create a new dashboard, configure the source to be “Loki”, and add a
new query with the following content:

1 {container_name="my_container"}

Click on “Run query” and you should see the logs. Select the Table as the visualization type and you
should see something like this:

Loki

Docker Logging 157

Logging Using AWS CloudWatch

If you are an AWS user, then you CloudWatch may be a good option for you.

Amazon CloudWatch, as described by AWS, is a service that monitors applications, responds to
performance changes, optimizes resource use, and provides insights into operational health. By
collecting data across AWS resources, CloudWatch gives visibility into system-wide performance
and allows users to set alarms, automatically react to changes, and gain a unified view of operational
health.

CloudWatch Logo

In our context, AWS CloudWatch can be used to collect Docker logs and centralize them in one
place.

In order to use CloudWatch, you should first create a new IAM user with the following permissions:

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:PutLogEvents

• logs:DescribeLogStreams

This is an example of a policy that you can use:

Docker Logging 158

1 {

2 "Version": "2012-10-17",

3 "Statement": [

4 {

5 "Effect": "Allow",

6 "Action": [

7 "logs:CreateLogGroup",

8 "logs:CreateLogStream",

9 "logs:PutLogEvents",

10 "logs:DescribeLogStreams"

11],

12 "Resource": [

13 "arn:aws:logs:*:*:*"

14]

15 }

16]

17 }

Go to AWS console / CloudWatch, create a log group and call it my-group. Click on the created group
and create a new stream, call it my-stream.

You should create a new file where you store your AWS credentials:

1 mkdir -p /etc/systemd/system/docker.service.d/

2 touch /etc/systemd/system/docker.service.d/aws-credentials.conf

Export your AWS credentials:

1 export AWS_ACCESS_KEY_ID=[YOUR_AWS_ACCESS_KEY_ID]

2 export AWS_SECRET_ACCESS_KEY=[YOUR_AWS_SECRET_ACCESS_KEY]

Now add these lines:

1 cat <<EOF > /etc/systemd/system/docker.service.d/aws-credentials.conf

2 [Service]

3 Environment="AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID"

4 Environment="AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY"

5 EOF

Now restart Docker:

Docker Logging 159

1 sudo systemctl daemon-reload && sudo service docker restart

Let’s create a new container and use the AWS logging driver:

1 # Remove the old container if it already exists

2 docker rm -f webserver;

3

4 # Create a new container with the AWS logging driver

5 docker run -it --log-driver="awslogs" \

6 --log-opt awslogs-region="eu-central-1" \

7 --log-opt awslogs-group="my-group" \

8 --log-opt awslogs-stream="my-stream" \

9 -p 8000:80 -d --name webserver nginx

Execute curl http://0.0.0.0:8000 and go back to the AWS console; you should see a new logline:

“Container logs on AWS CloudWatch”

If you want to use AWS logging driver with all of the other containers, you should start the Docker
daemon using --log-driver=awslogs:

1 dockerd --log-driver=awslogs

You can also use awslogs driver or any other log driver in a Docker Compose file:

Docker Logging 160

1 version: "3.9"

2 services:

3 web:

4 image: nginx

5 ports:

6 - "8000:80"

7 logging:

8 driver: "awslogs"

9 options:

10 awslogs-region: "eu-central-1"

11 awslogs-group: "my-group"

12 awslogs-stream: "my-stream"

Docker Daemon Logging

The Docker daemon logs information about its operations. These logs are essential for troubleshoot-
ing, monitoring, and ensuring the smooth running of Docker containers and services. The nature
and location of these logs can vary based on the operating system and Docker configurations. The
following shows the default log locations for the Docker daemon on different operating systems:

Linux: Use journalctl -xu docker.service. Alternatively, check the following directories depend-
ing on the Linux distribution:

• /var/log/syslog

• /var/log/daemon.log -/var/log/messages

macOS (dockerd logs): ∼/Library/Containers/com.docker.docker/Data/log/vm/dockerd.log

macOS (containerd logs): ‘∼/Library/Containers/com.docker.docker/Data/log/vm/containerd.log

Windows (WSL2) (dockerd logs): %LOCALAPPDATA%\Docker\log\vm\dockerd.log

Windows (WSL2) (containerd logs): %LOCALAPPDATA%\Docker\log\vm\containerd.log

Windows (Windows containers): Logs are available in the Windows Event Log.

We are using Ubuntu in this guide, so we can check the logs using the following command:

1 journalctl -xu docker.service

Sometimes, you may want to increase the log level of the Docker daemon. You can do that by
updating the “daemon.json” file. For example, if you want to set the log level to “debug”, you can
add the following lines to “daemon.json”:

Docker Logging 161

1 cat > /etc/docker/daemon.json <<EOF

2 {

3 "log-level": "debug"

4 }

5 EOF

Reload the Docker daemon to apply the changes:

1 systemctl reload docker

2 # or sudo kill -SIGHUP $(pidof dockerd)

Debugging can be very useful, however, you should not keep the log level to “debug” all the time. It
will generate a lot of logs and it may slow down the Docker daemon. You should only increase the
log level when you need to debug something and then set it back to “info” or “warn”.

Docker Networks
Like virtual machines (VMs), a Docker container can be attached to one or more networks. This
allows containers to communicate with each other, as well as with external systems.

After installing Docker, you might notice a new network interface on your host machine. You can
view this using the ifconfig (or ip a on newer systems) command:

1 ifconfig

You should see a new interface named docker0. This is the default bridge network interface that
Docker creates when you install it.

1 docker0 Link encap:Ethernet HWaddr 02:42:ef:e0:98:84

2 inet addr:172.17.0.1 Bcast:0.0.0.0 Mask:255.255.0.0

3 UP BROADCAST MULTICAST MTU:1500 Metric:1

4 RX packets:5 errors:0 dropped:0 overruns:0 frame:0

5 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

6 collisions:0 txqueuelen:0

7 RX bytes:356 (356.0 B) TX bytes:0 (0.0 B)

By default, Docker provides three network types: bridge, host, and none. You can list these using the
docker network ls command:

1 docker network ls

Docker’s network system generates several events which can be useful for monitoring or trou-
bleshooting. These events include create, connect, destroy, disconnect, and remove.

Docker Networks Types

When you type the following command, you will see the list of networks that Docker has created
on your system:

1 docker network ls

You should see the following output (the output may vary depending on your system but the network
names will be the same):

Docker Networks 163

1 NETWORK ID NAME DRIVER SCOPE

2 62a68d83996b bridge bridge local

3 16edb70ec4c9 host host local

4 4f24136a4691 none null local

The above 3 networks are the default networks that Docker creates when you install it.

In the next sections, we will see what each network type is and how to use it.

The (System) Bridge Network

The bridge network, as said, is created by default when you install Docker. It is a private internal
network created by Docker on the host and is used for communication between containers on the
same host.

When you run a container, it is attached to the bridge network by default:

1 # Run a container

2 docker run -d --name nginx_server nginx

3 # Check the networks that the container is attached to

4 docker inspect nginx_server -f "{{json .NetworkSettings.Networks }}" | jq

We used jq command to format the output. If you don’t have jq installed, you can remove it from
the command or install it¹⁰⁴.

The output should show the list of networks that the container is attached to and here we should
see one network that is the bridge network.

This is an example:

1 {

2 "bridge": {

3 "IPAMConfig": null,

4 "Links": null,

5 "Aliases": null,

6 "NetworkID": "7af5d7cbd0c102cb55f7f0c62dca694ccfc6ab1f2c7602177119a17eb3b6b1ab",

7 "EndpointID": "7a9187f8a5feaf19aa46544d4ed3fe189e4475341e74f2d5b92846e09e52d828",

8 "Gateway": "172.17.0.1",

9 "IPAddress": "172.17.0.2",

10 "IPPrefixLen": 16,

11 "IPv6Gateway": "",

12 "GlobalIPv6Address": "",

¹⁰⁴https://jqlang.github.io/jq/download/

https://jqlang.github.io/jq/download/
https://jqlang.github.io/jq/download/

Docker Networks 164

13 "GlobalIPv6PrefixLen": 0,

14 "MacAddress": "02:42:ac:11:00:02",

15 "DriverOpts": null

16 }

17 }

The default bridge mode allows containers to communicate with each other using IP addresses.

1 # create two containers busybox1 and busybox2 that are attached to the default bridg\

2 e network

3 docker run -it -d --name busybox1 busybox

4 docker run -it -d --name busybox2 busybox

5 # Get the IP of busybox1 and busybox2

6 IP_BUSYBOX1=$(docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{\

7 end}}' busybox1)

8 IP_BUSYBOX2=$(docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{\

9 end}}' busybox2)

10 # Ping busybox1 from busybox2 and vice versa using the IP address

11 docker exec -it busybox2 ping -c1 $IP_BUSYBOX1

12 docker exec -it busybox1 ping -c1 $IP_BUSYBOX2

13 # Ping busybox1 from busybox2 and vice versa using the container name

14 docker exec -it busybox1 ping -c1 busybox2

15 docker exec -it busybox2 ping -c1 busybox1

Pinging using the address should work but pinging using the container name should fail.

The (User) Bridge Network

In addition to the default bridge network that I called the system bridge network, you can create
your own bridge network and attach containers to it (user bridge network).

To create a bridge network, you can use the following command:

1 docker network create --driver bridge my_bridge_network

2 # or docker network create -d bridge my_bridge_network

3 # or docker network create my_bridge_network (bridge is the default driver)

Make sure the network name is unique. You can list the networks using the docker network ls

command.

Now update the busybox1 and busybox2 containers to attach them to the new bridge network:

Docker Networks 165

1 docker network connect my_bridge_network busybox1

2 docker network connect my_bridge_network busybox2

Try to ping the containers using the container name:

1 docker exec -it busybox1 ping -c1 busybox2

2 docker exec -it busybox2 ping -c1 busybox1

You should see that the ping command works fine. What should we conclude from this?

The user bridge network allows containers to communicate with each other using the container
name as well as the IP address (you can test this) unlike the system bridge network that allows
containers to communicate with each other using the IP address only.

To get more information about the user bridge network, you can use the docker network inspect

command:

1 docker network inspect my_bridge_network

This is an example of an output:

1 [

2 {

3 "Name": "my_bridge_network",

4 "Id": "93b80b38b3e749d7aa448d60661c9ce3e21be2413b5ebe30231eb3f8e5e9fdf6",

5 "Created": "2023-11-08T08:49:56.110636436Z",

6 "Scope": "local",

7 "Driver": "bridge",

8 "EnableIPv6": false,

9 "IPAM": {

10 "Driver": "default",

11 "Options": {},

12 "Config": [

13 {

14 "Subnet": "172.18.0.0/16",

15 "Gateway": "172.18.0.1"

16 }

17]

18 },

19 "Internal": false,

20 "Attachable": false,

21 "Ingress": false,

22 "ConfigFrom": {

Docker Networks 166

23 "Network": ""

24 },

25 "ConfigOnly": false,

26 "Containers": {},

27 "Options": {},

28 "Labels": {}

29 }

30]

You can see different information about this bridge network like:

• The IP address range that the bridge network uses: 172.18.0.0/16. This subnet notation means
that the network can accommodate IP addresses from 172.18.0.0 to 172.18.255.255.

• The default gateway for the containers connected to this bridge network: 172.18.0.1.

You can also check the same interface using the ifconfig command:

1 ifconfig

You will see one or more network interfaces named br-<network_id> (e.g., br-93b80b38b3e7). This
interface acts as the default gateway for the containers connected to that bridge network. In other
words, containers use this gateway IP to communicate with the outside world. When a container
wants to send traffic outside its own network (e.g., to the internet or another network), it sends the
traffic to this gateway.

Docker allows customizing the IP address range and the gateway IP address when creating a bridge
network. For example, you can create a bridge network with the following command:

1 docker network create --driver bridge --subnet=192.168.1.0/24 --gateway=192.168.1.1 \

2 my_custom_network

Create the network, then create this container using the image tutum/dnsutils:

1 docker run -it -d --network my_custom_network --name test_container tutum/dnsutils

From the container, try to check the IP address and the default gateway:

1 docker exec -it test_container ifconfig

2 docker exec -it test_container ip route

You will find that the IP address of the container is in the range 192.168.1.0/24 and the default
gateway is 192.168.1.1.

Docker Networks 167

The Host Network

When you use the host network, any container attached to it will use the host’s network directly.
This means that the container will not have its own IP address and it will use the host’s IP address
directly. If there’s a port exposed on the container, it will be opened on the host as well.

Let’s see this through an example. First, create a container attached to the host network:

1 docker run -it -d --name nginx_host_network --network host nginx

Notice that we didn’t specify the port mapping. This is because the container will use the host’s
network directly.

Now, check the ports that are opened on the host:

1 sudo netstat -tulpn | grep "/nginx:"

You should see an output similar to this:

1 tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 1292\

2 4/nginx: master

3 tcp6 0 0 :::80 :::* LISTEN 1292\

4 4/nginx: master

Or this if you don’t have IPv6 enabled:

1 tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 1292\

2 4/nginx: master

Test the connection to the container:

1 curl localhost:80

You should see the default nginx page.

The None Network

Some containers don’t need to be attached to any network since they are, for instance, used to run
a script or a command, process data or some background tasks, etc.

In this specific case, it is better to attach the container to the none network. This will prevent the
container from accessing the network and it will be isolated from other containers and the host.

This is an example of a container that runs a script to print the size of the storage used by dangling
volumes:

Docker Networks 168

1 docker run \

2 --network none \

3 --rm \

4 -v /var/run/docker.sock:/var/run/docker.sock \

5 -v /var/lib/docker/volumes/:/var/lib/docker/volumes/ \

6 eon01/dvsc:latest

The executed script has no need to access other containers, the host network or the internet, it has
no need to be accessible from other containers, the host or the internet. Therefore, it is better to
attach it to the none network.

The Macvlan Network

Docker’s Macvlan network allows a Docker container to have its own MAC address and IP address
on your network, just as if it were a physical device plugged into your network. This makes the
container appear and function as a regular device on the network, separate from the host.

Imagine you have a physical room with various devices: computers, printers, etc. Each device has
its own unique identity (MAC address) and can be given its own address (IP address) in the room.
Now, think of the Macvlan network as giving a Docker container its very own identity and address
in that room, even though it’s technically running inside one of the computers. The other devices in
the room see this container just like any other device.

Let’s see this with an example. We want to create a Docker Macvlan network so that our containers
can get their own IP addresses from our local network and appear just like any other physical device
on the network.

To do this, start by identifying the physical network interface on your Docker host through which
the traffic will pass. This is often “eth0”, but it might differ depending on your setup. You can use
the ifconfig command to list your network interfaces.

Now create a Macvlan network:

1 docker network create \

2 --driver macvlan \

3 --subnet=192.168.3.0/24 \

4 --gateway=192.168.3.1 \

5 -o parent=eth0 \

6 pub_net

• The --subnet=192.168.3.0/24 specifies the IP range that the containers will use. It should be
aligned with your local network range.

Docker Networks 169

• The --gateway=192.168.3.1 is the gateway that containers will use to access external networks.
Typically, this would be your router’s IP address.

• The -o parent=eth0 is the network interface on the Docker host that this Macvlan network
will use to send and receive packets. If your host uses a different interface (like “ens33” or
“wlp0s20f3”), replace “eth0” with that.

• pub_net is the name of the network.

Now you can run a container attached to the Macvlan network:

1 docker run --network=pub_net -it ubuntu /bin/bash

Inside the container, you can use the ifconfig command to see the IP address that the container has
received from the local network:

1 apt update

2 apt install net-tools

3 ifconfig

The Overlay Network

Overylay networks are used to connect multiple Docker daemons together. Two standalone
containers on different Docker daemons (usually different hosts) can be connected using an overlay
network. This network type uses VXLAN technology to encapsulate OSI layer 2 Ethernet frames
within layer 4 UDP datagrams, allowing the creation of layer 2 overlay networks across multiple
physical hosts.

This strategy removes the need to do OS-level routing between these containers.

Docker Networks 170

overlay network

It is usually used with Docker Swarm to enable swarm services to communicate with each other.
You can also use overlay networks to facilitate communication between a swarm service and a
standalone container.

We have seen Docker Swarm yet, but we will see it in one of the next sections. In the example we’ll
use Swarm to create an overlay network and attach containers to it.

You need to have two machines (at least) to create an overlay network:

• machine1
• machine2

You can use two virtual machines.

Docker should be installed on both machines.

On the fist machine, initialize the swarm:

1 docker swarm init --advertise-addr [MACHINE1_IP]

Docker Networks 171

Change [MACHINE1_IP] with the IP address of the first machine. If both machines are on the same
network (which is the recommended case), you can use the local IP address instead of the public IP
address.

You should see an output similar to this:

1 docker swarm join --token [TOKEN] [MACHINE1_IP]:2377

Copy the output and run it on the second machine to join the swarm.

Go back to the first machine and create an overlay network:

1 docker network create --driver overlay --attachable my_overlay_network

ℹ Usually, when we run a Swarm cluster, we run services and not containers. However,
in our case, we will run standalone containers to see how overlay networks work. That’s
why we created an attachable overlay network (--attachable). In this case, we can attach
standalone containers that are managed by us and not by Swarm to the overlay network
that is managed by Swarm.

Now, run containers attached to the overlay network:

1 # Run a container attached to the overlay network

2 docker run -it -d --name busybox1 --network my_overlay_network busybox

3 docker run -it -d --name busybox2 --network my_overlay_network busybox

4 # Ping busybox1 from busybox2 and vice versa using the container name

5 docker exec -it busybox1 ping -c1 busybox2

6 docker exec -it busybox2 ping -c1 busybox1

You should see that the ping command works fine.

Now, on machine2, run the following command to create a third container attached to the overlay
network:

1 docker run -it -d --name busybox3 --network my_overlay_network busybox

Ping busybox1 and busybox2 from busybox3 and vice versa:

Docker Networks 172

1 # On machine2

2 docker exec -it busybox3 ping -c1 busybox1

3 docker exec -it busybox3 ping -c1 busybox2

4 # On machine1

5 docker exec -it busybox1 ping -c1 busybox3

6 docker exec -it busybox2 ping -c1 busybox3

You should see that the ping command works fine even of the containers are on different machines.
Through the overlay network, the containers can communicate with each other as if they were on
the same machine and this is the main purpose of the overlay network.

Usually, we use overlay networks with Docker Swarm services instead of standalone containers. But
the example above shows how overlay networks work.

Swarm Service Networking

The Ingress Network

The ingress network is a special network that is automatically created when you initialize a swarm.
However, there’s a difference between the ingress network and the other overlay networks that you
create.

The ingress handles the routing of incoming traffic to the appropriate service within the swarm
cluster.

Docker Networks 173

Load Balancing In Swarm Cluster

One of the key features of the ingress network is the routing mesh. With this, if a service’s port is
published (like port 80), you can make a request to any node in the swarm on that port, and Docker
will route the request to an active container of the service, even if that container is not on the node
you initially connected to. This provides a level of abstraction and ensures high availability.

These concepts will be clearer when we see Docker Swarm.

Docker Links

Docker links are a legacy feature of Docker. They are used to connect two containers together.
However, they are not recommended to be used anymore. Instead, you should use user-defined
networks.

Let’s see an example of how to use Docker links.

First, create a container named alpine1:

1 docker run -it -d --name alpine1 alpine

Now, create a second container named alpine2 and link it to alpine1:

Docker Networks 174

1 docker run -it -d --name alpine2 --link alpine1 alpine

Now, check the environment variables of alpine2:

1 docker exec -it alpine2 env

You should see an output similar to this:

1 [...]

2 ALPINE1_NAME=/alpine2/alpine1

3 [...]

The ALPINE1_NAME environment variable is created automatically by Docker and it contains the name
of the linked container.

Now, try to ping alpine1 from alpine2:

1 docker exec -it alpine2 ping -c1 alpine1

You should see that the ping command works fine even if the containers are not attached to a user-
defined bridge network.

As a reminder, containers by default are attached to the default bridge network which doesn’t allow
containers to communicate with each other using the container name. However, Docker links are a
workaround to this limitation.

Docker Compose
What is Docker Compose and Why Should I Care?

Running containers individually has its merits, but consider a scenario where we want to orchestrate
a LAMP or LEMP stack. Instead of manually starting a PHP container and then initializing the
webserver container to link them, there’s a more streamlined approach.

Enter Docker Compose: a tool that allows us to define and run multi-container applications. By
defining a declarative YAML file, commonly referred to as a Compose file, we can specify our entire
stack configuration. With just one command, Docker Compose enables us to effortlessly spin up
multiple interconnected containers, making the deployment of linked services like a LAMP or LEMP
stack easier than ever.

In addition to being a mini orchestration tool, Docker Compose also provides a convenient
environment for local development. By defining our application’s configuration in a Compose file, a
developer can spin up a local environment that matches the production stack with a single command.
This allows us to test our application in a production-like environment without having to deploy it
to a production environment.

When you are developing an application in a Docker container, apart from the fact that you need
to test it in an environment that is as close as possible to the production environment, you need to
have an auto-reload feature that will reload the application when a change is detected. This is where
Docker Compose comes in handy.

Imagine you are developing a PHP application running inside an Apache container, you need to
have a way to reload the application when a change is detected. You may think of creating a volume
that will be mounted to the container, then on the host, you will open your IDE and start editing the
files, but this is not the best way to do it. The problem with this approach is that you need to restart
the container every time you make a change, and this is not very practical.

Therefore, you need to have a way to automatically reload the application when a change is detected
without restarting the container. This is where Docker Compose comes in handy.

Additionally, Docker Compose offers several benefits. It enables you to version and share your
application, collaborate with other developers, run it on various environments, and distribute it.

To summarize, Docker Compose is a user-friendly tool that allows you to define your application
using a YAML file. With a single command, you can create and start all the services based on
your configuration. It also provides an auto-reload feature, making it convenient for running your
application in a development environment.

Docker Compose 176

Installing Docker Compose

In the official documentation, Docker recommends installing Docker Compose by installing Docker
Desktop. This tool is available for Windows, Mac, and Linux.

However, there’s an alternative way to install Docker Compose on Linux systems (docker-compose-
plugin). This is a plugin that allows you to install Docker Compose as a Docker plugin.

Example, if you are using Ubuntu or Debian, you can install Docker Compose using the following
command:

1 apt-get install docker-compose-plugin

Other distributions are supported, you can check the official documentation¹⁰⁵ for more details.

In the next sections, we are going to learn Docker Compose by example.

Before proceeding, make sure that you quit the Swarm mode (activated in one of the previous
chapters). Let’s also remove all the containers to start with a clean environment:

1 # Remove all containers

2 docker rm -f $(docker ps -qa)

3 # Quit swarm mode

4 docker swarm leave --force

Understanding Docker Compose and How it Works

Let’s start by creating a new folder and a new file called docker-compose.yml:

1 # Create a new folder

2 mkdir wordpress && cd wordpress

3 # Create a new file called docker-compose.yml

4 cat << EOF > docker-compose.yml

5 version: '3.9'

6

7 services:

8 db:

9 image: mysql:5.7

10 volumes:

11 - db_data:/var/lib/mysql

12 restart: always

¹⁰⁵https://docs.docker.com/compose/install/linux/#install-using-the-repository

https://docs.docker.com/compose/install/linux/#install-using-the-repository
https://docs.docker.com/compose/install/linux/#install-using-the-repository

Docker Compose 177

13 environment:

14 MYSQL_ROOT_PASSWORD: mypassword

15 MYSQL_DATABASE: wordpress

16 MYSQL_USER: user

17 MYSQL_PASSWORD: mypassword

18

19 wordpress:

20 image: wordpress:latest

21 ports:

22 - "8000:80"

23 restart: always

24 environment:

25 WORDPRESS_DB_HOST: db:3306

26 WORDPRESS_DB_USER: user

27 WORDPRESS_DB_PASSWORD: mypassword

28 volumes:

29 db_data:

30 EOF

Notice that we are using the version 3.9 of Docker Compose specification (the latest version at the
time of writing this article). There is a difference between Docker Compose versions which is the
version of the package¹⁰⁶ used, the version of the specification which refers to the syntax of the
docker-compose.yml file and the Docker Engine version. You can check the compatibility matrix¹⁰⁷
for more details.

Now, let’s start the application:

1 # Make sure you are in the wordpress folder

2 docker-compose up

You should start seeing the logs of the containers:

• db
• wordpress

The two containers are linked together, so the wordpress container can access the db container using
the hostname db.

In reality, db and wordpress are the names of the services, not the containers. If you run docker ps,
you will see that the names of the containers are:

• wordpress_db_1

¹⁰⁶https://github.com/docker/compose/releases
¹⁰⁷https://docs.docker.com/compose/compose-file/compose-versioning/#compatibility-matrix

https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://docs.docker.com/compose/compose-file/compose-versioning/#compatibility-matrix
https://github.com/docker/compose/releases
https://docs.docker.com/compose/compose-file/compose-versioning/#compatibility-matrix

Docker Compose 178

• wordpress_wordpress_1

This is the format: foldername_servicename_number. The same format is used for any other resources
created by Docker Compose (networks, volumes, …etc).

When we use Docker Compose, we are no longer using just containers, we are using services. A
service is a set of 1 or more containers that are managed by Docker Compose. A service can have
multiple containers, but in our case, we have one container per service.

Note that the file defining the services is called docker-compose.yml. This is the default name, but
you can use any name you want. If you want to use a different name, you can use the -f option:

1 docker-compose -f mydocker-compose.yml up

If you want to pause the stack, use docker-compose pause. This will pause all the containers in the
stack. If you want to pause a specific service, use docker-compose pause servicename.

If you want to unpause the stack, use docker-compose unpause or docker-compose start. This will
unpause all the containers in the stack. If you want to unpause a specific service, use docker-compose
unpause servicename or docker-compose start servicename.

We can also use docker-compose stop to stop the stack. This will stop all the containers in the stack.
If you want to stop a specific service, use docker-compose stop servicename.

Finally, we can remove everything using docker-compose down. This will stop and remove all the
containers in the stack and delete their data.

Docker Compose Dependencies

In the previous example, we have two services: db and wordpress. The wordpress service, in reality,
depends on the db service. This means that the wordpress service cannot start until the db service
is up and running. If we start the wordpress service without starting the db service, we will get an
error.

Therefor, we need to start the db service first, then start the wordpress service. In Docker Compose,
we can do this using the depends_on option:

Docker Compose 179

1 cat << EOF > docker-compose.yml

2 version: '3.9'

3

4 services:

5 db:

6 image: mysql:5.7

7 volumes:

8 - db_data:/var/lib/mysql

9 restart: always

10 environment:

11 MYSQL_ROOT_PASSWORD: mypassword

12 MYSQL_DATABASE: wordpress

13 MYSQL_USER: user

14 MYSQL_PASSWORD: mypassword

15

16 wordpress:

17 depends_on:

18 - db

19 image: wordpress:latest

20 ports:

21 - "8000:80"

22 restart: always

23 environment:

24 WORDPRESS_DB_HOST: db:3306

25 WORDPRESS_DB_USER: user

26 WORDPRESS_DB_PASSWORD: mypassword

27 volumes:

28 db_data:

29 EOF

Creating Portable Docker Compose Stacks

Docker Compose allows you to create portable stacks. This means that you can create a stack on your
local machine and run it on another machine without any changes. However, the words “portable”
and “without any changes” are not 100% accurate. There are some things that you need to consider
when creating a portable stack.

Consider a Django application that needs two configurations:

• Database configuration: this includes the database host, the database name, the database user,
and the database password..etc.

• Allowed hosts: this is a list of hosts that are allowed to access the application.

Docker Compose 180

These configurations are usually defined in a file called settings.py. These configurations can be
different from one environment to another (development, staging, production, …etc). In order to
make the application portable, we need to make sure that these configurations are defined in the
docker-compose.yml file and not in the settings.py file.

This is how to do it:

• Use environment variables to define the database configuration. This is what we did in the
previous example.

• Use environment variables to define the allowed hosts.
• Consume these environment variables in the settings.py file.

If you have other configurations of the same type, you need to do the same thing.

This is an example:

Start by creating a new folder, install the required packages and create a new Django project:

1 mkdir django && cd django && apt install python3-pip -y && pip install Django==3.2.4\

2 && django-admin startproject mysite && cd mysite && cat << EOF > requirements.txt

3 Django==3.2.4

4 psycopg2==2.8.6

5 EOF

Create the Dockerfile:

1 cat << EOF > Dockerfile

2 FROM python:3.9

3 ENV PYTHONDONTWRITEBYTECODE=1

4 ENV PYTHONUNBUFFERED=1

5 WORKDIR /code

6 COPY requirements.txt .

7 RUN pip install -r requirements.txt

8 COPY . .

9 CMD ["python", "manage.py", "runserver", "0.0.0.0:8000"]

10 EOF

Then the Docker Compose file:

Docker Compose 181

1 cat << EOF > docker-compose.yml

2 version: '3.9'

3

4 services:

5 web:

6 build: .

7 ports:

8 - "8000:8000"

9 volumes:

10 - .:/code

11 environment:

12 - POSTGRES_DB=postgres

13 - POSTGRES_USER=postgres

14 - POSTGRES_PASSWORD=postgres

15 - ALLOWED_HOSTS=*

16 depends_on:

17 - db

18 db:

19 image: postgres

20 environment:

21 - POSTGRES_DB=postgres

22 - POSTGRES_USER=postgres

23 - POSTGRES_PASSWORD=postgres

24 EOF

Add the following content at the end of the mysite/settings.py file:

1 cat << EOF >> mysite/settings.py

2 import os

3 DATABASES = {

4 'default': {

5 'ENGINE': 'django.db.backends.postgresql',

6 'NAME': os.environ.get('POSTGRES_DB'),

7 'USER': os.environ.get('POSTGRES_USER'),

8 'PASSWORD': os.environ.get('POSTGRES_PASSWORD'),

9 'HOST': 'db',

10 'PORT': 5432,

11 }

12 }

13 ALLOWED_HOSTS = os.environ.get('ALLOWED_HOSTS').split(' ')

14 EOF

Start the application:

Docker Compose 182

1 docker compose up --build

Whenever you need to change the allowed hosts or a database configuration, all you need to do is
to change the docker-compose.yml file and restart the application.

In summary, environment variables can be used to make the application portable. However, there
are other ways to make the application portable. For example, you can use a configuration file that
will be mounted to the container. This file can be different from one environment to another. You
can also use a secret management tool such as HashiCorp Vault.

Docker Compose Logging

Docker containers tend to redirect their logs to the standard output (stdout) and standard error
(stderr). This is the same behavior for Docker Compose. If you run docker-compose up, you will see
the logs of the containers in the terminal.

However, we usually need to run Docker Compose services in the background (detached mode). In
this case, we need to use the -d option:

1 docker compose up -d

In this case, we will not see the logs of the containers. To see the logs, we need to use the logs

command:

1 # Check the logs of all the containers

2 docker compose logs

3 # Follow the logs of all the containers

4 docker compose logs -f

5 # Check the logs of a specific container

6 docker compose logs db

7 # Check the logs of a specific container and follow the logs

8 docker compose logs -f db

9 # Show the last 10 lines of the logs of a specific container

10 docker compose logs --tail=10 db

Understanding Docker Compose Syntax

If we want to run aWordpress site using Docker, we need to run two containers: one for the database
and one for the Wordpress application. We can do this using the following commands:

Docker Compose 183

1 # Create a network for the containers

2 docker network create wordpress

3

4 # Create a volume for the database

5 docker volume create db_data

6

7 # Create a container for the database

8 docker run -d \

9 --name db \

10 -v db_data:/var/lib/mysql \

11 -e MYSQL_ROOT_PASSWORD=mypassword \

12 -e MYSQL_DATABASE=wordpress \

13 -e MYSQL_USER=user \

14 -e MYSQL_PASSWORD=mypassword \

15 --restart always \

16 --network wordpress \

17 mysql:5.7

18

19 # Create a container for the Wordpress application

20 docker run -d \

21 --name wordpress \

22 -p 8000:80 \

23 -e WORDPRESS_DB_HOST=db:3306 \

24 -e WORDPRESS_DB_USER=user \

25 -e WORDPRESS_DB_PASSWORD=mypassword \

26 --restart always \

27 --network wordpress \

28 wordpress:latest

As you can see, we need to run 4 commands to create the two containers. The idea of is to simplify
this process by allowing us to define the configuration of the containers in a YAML file.

What a user should do here is “translate” the commands above to a YAML file.

Let’s start by the first command:

1 docker network create wordpress

Here, we are creating a network called wordpress. In Docker Compose, there is no need to define a
network, it will be created automatically. All services in a single Compose file will be connected to
the same network that will be created automatically.

Now, let’s move to the second command:

Docker Compose 184

1 docker volume create db_data

Here, we are creating a volume called db_data. In Docker Compose, to define a volume, we need to
use volumes:

1 volumes:

2 db_data:

Under the name of the volume, we can add other options such as the driver, the driver options, …etc.
In our case, we are using the default driver, so we don’t need to specify it.

Now, let’s move to the third and fourth commands. Both create containers, so we need to use
services:

1 services:

2

3 # Database service definition

4 db:

5 # Use MySQL version 5.7 as the base image

6 image: mysql:5.7

7

8 # Mount the named volume 'db_data' to persist the database data

9 volumes:

10 - db_data:/var/lib/mysql

11

12 # Always restart the container if it stops

13 restart: always

14

15 # Set environment variables used by the MySQL image

16 environment:

17 # Password for the root user

18 MYSQL_ROOT_PASSWORD: mypassword

19 # Name of the default database to be created

20 MYSQL_DATABASE: wordpress

21 # Create a new user with the name 'user'

22 MYSQL_USER: user

23 # Password for the newly created 'user'

24 MYSQL_PASSWORD: mypassword

25

26 # WordPress service definition

27 wordpress:

28

29 # This service depends on the db service

Docker Compose 185

30 depends_on:

31 - db

32

33 # Use the latest version of WordPress as the base image

34 image: wordpress:latest

35

36 # Map port 8000 on the host to port 80 inside the container

37 ports:

38 - "8000:80"

39

40 # Always restart the container if it stops

41 restart: always

42

43 # Set environment variables used by the WordPress image

44 environment:

45 # Database host. The name corresponds to the db service and port 3306.

46 WORDPRESS_DB_HOST: db:3306

47 # Database user. This should match the user created in the db service.

48 WORDPRESS_DB_USER: user

49 # Database password. This should match the password set for the user in the d\

50 b service.

51 WORDPRESS_DB_PASSWORD: mypassword

Now, we have a docker-compose.yml file that defines the same services as the commands above.

The configurations used in Docker Compose do not exactly look the options used when creating
and running standalone containers but they are not very different. For example, when we create a
container, we use the -p option to map a port on the host to a port inside the container. In Docker
Compose, we use the ports option. The same applies to other options such as -e and environment,
-v and volumes, …etc.

We are going to see more examples in the next sections and understand the syntax of Docker
Compose.

Using Dockerfile with Docker Compose

In the previous example, we used the wordpress image to create the wordpress service. However,
we can use a Dockerfile to build a custom image and use it in Docker Compose.

Let’s see an example. Start by creating a folder called apache_1 and a new file called Dockerfile:

Docker Compose 186

1 # Create a new folder

2 mkdir apache_1 && cd apache_1

3 # Create a new file called Dockerfile

4 cat << EOF > Dockerfile

5 FROM ubuntu:20.04

6 ARG DEBIAN_FRONTEND=noninteractive

7 RUN apt-get update && apt-get install -y apache2

8 RUN echo "Hello World. I'm Apache" > /var/www/html/index.html

9 EXPOSE 80

10 CMD apachectl -D FOREGROUND

11 EOF

Create the Docker Compose file:

1 cat << EOF > app12/docker-compose.yml

2 version: '3.9'

3

4 services:

5 web:

6 build: .

7 ports:

8 - "80:80"

9 EOF

Ad you can see, instead of using the image option, we are using the build option. This option takes
the path to the Dockerfile as a value.

To run the application, use the following command:

1 docker compose build

Or, build without using the cache:

1 docker compose --build --no-cache

Now, start the application:

1 docker compose up -d

We could also use the following command to start the application and build the image in the same
command:

Docker Compose 187

1 docker compose up -d --build

To force the full recreation of the containers, use the --force-recreate option:

1 docker compose up -d --force-recreate

Docker Compose with Bind Mounts

It is common to use bind mounts when developing an application. This is an example:

1 version: '3.9'

2

3 services:

4 web:

5 build: .

6 ports:

7 - "80:80"

8 volumes:

9 - ./html:/var/www/html

The developer will create a folder called html and put the files of the application inside it. When the
container starts, the files will be copied to the /var/www/html folder inside the container. There is no
need to edit files inside the container, the developer will edit the files on the host and the changes
will be reflected inside the container automatically.

Creating Custom Networks

By default a network is created for all the services in a single Compose file. However, we can create
a custom network and use it in the Compose file.

1 version: '3.9'

2

3 services:

4 frony:

5 image: front-image

6 networks:

7 - mynet

8 networks:

9 my_net_1:

Docker Compose 188

Adding networks created by users can be useful when you want to connect services from different
Compose files. For example, you can create a network in one Compose file and use it in another
Compose file.

Let’s say you have 2 apps: FRONT and API. Both are launched using a Docker Compose file.

We will use the first example:

1 version: '3.9'

2

3 services:

4 frony:

5 image: front-image

6 networks:

7 - frontend

8 networks:

9 frontend:

The second stack will look like this:

1 version: '3.9'

2

3 services:

4 api:

5 image: api-image

6 networks:

7 - mynet

8 db:

9 image: postgres

10 networks:

11 - backend

12 networks:

13 backend:

We want to connect FRONT to API knowing that both are running in different Docker Compose
stacks.

To connect the two stacks, we need to create a third network and use it in both stacks. These are the
new stacks with the third network:

Docker Compose 189

1 version: '3.9'

2

3 services:

4 frony:

5 image: front-image

6 networks:

7 - frontend

8 - my_net_external

9 networks:

10 frontend:

11 my_net_external:

12 external: true

The second stack:

1 version: '3.9'

2

3 services:

4 api:

5 image: api-image

6 networks:

7 - backend

8 - my_net_external

9 db:

10 image: postgres

11 networks:

12 - backend

13 networks:

14 backend:

15 my_net_external:

16 external: true

Docker Compose Secrets

In one of the previous examples, we used environment variables to define the database configuration.
This is not the best way to do it. The problem with this approach is that the environment variables
are stored in plain text in the docker-compose.yml file. This is not very secure.

Docker Compose 190

1 version: '3.9'

2

3 services:

4 db:

5 image: mysql:5.7

6 volumes:

7 - db_data:/var/lib/mysql

8 restart: always

9 environment:

10 MYSQL_ROOT_PASSWORD: mypassword

11 MYSQL_DATABASE: wordpress

12 MYSQL_USER: user

13 MYSQL_PASSWORD: mypassword

14

15 wordpress:

16 depends_on:

17 - db

18 image: wordpress:latest

19 ports:

20 - "8000:80"

21 restart: always

22 environment:

23 WORDPRESS_DB_HOST: db:3306

24 WORDPRESS_DB_USER: user

25 WORDPRESS_DB_PASSWORD: mypassword

26 volumes:

27 db_data:

WORDPRESS_DB_PASSWORD is stored in plain text in the docker-compose.yml file. Docker Compose
provides a better way to define secrets. This is how to do it:

1 cat << EOF > docker-compose.yml

2 version: '3.9'

3

4 services:

5 db:

6 image: mysql:5.7

7 volumes:

8 - db_data:/var/lib/mysql

9 restart: always

10 secrets:

11 - db_root_password

12 - db_user

Docker Compose 191

13 - db_password

14 environment:

15 MYSQL_ROOT_PASSWORD_FILE: /run/secrets/db_root_password

16 MYSQL_DATABASE: wordpress

17 MYSQL_USER_FILE: /run/secrets/db_user

18 MYSQL_PASSWORD_FILE: /run/secrets/db_password

19

20 wordpress:

21 depends_on:

22 - db

23 image: wordpress:latest

24 ports:

25 - "8000:80"

26 restart: always

27 secrets:

28 - db_user

29 - db_password

30 environment:

31 WORDPRESS_DB_HOST: db:3306

32 WORDPRESS_DB_USER_FILE: /run/secrets/db_user

33 WORDPRESS_DB_PASSWORD_FILE: /run/secrets/db_password

34

35 secrets:

36 db_root_password:

37 file: ./db_root_password.txt

38 db_user:

39 file: ./db_user.txt

40 db_password:

41 file: ./db_password.txt

42

43 volumes:

44 db_data:

45 EOF

As you can see, we are using the secrets option to define the secrets. Then, we are using the _FILE
suffix to define the path to the secret file.

The _FILE environment variable is used by the Docker image to read the secret from the file. For
example, the MYSQL_ROOT_PASSWORD_FILE environment variable is used by the MySQL image to
read the root password from the file /run/secrets/db_root_password. This is a convention used
by Docker images to read secrets from files. Some images may not apply this convention, so you
need to check the documentation of the image to see how to read secrets from files.

What we need to do now is to create the secret files. We can do this using the echo command:

Docker Compose 192

1 echo mypassword > ./db_root_password.txt

2 echo user > ./db_user.txt

3 echo mypassword > ./db_password.txt

The MySQL image supports reading the password from a file using the MYSQL_ROOT_PASSWORD_FILE
environment variable. However, not all images support this. If you want to use a secret with an
image that doesn’t support reading the password from a file, you can use a script at the entrypoint
of the container to read the secret from the file and set it as an environment variable.

1 cat << EOF > entrypoint.sh

2 #!/bin/bash

3

4 # Define the target directory where secrets are stored

5 secrets_dir="/run/secrets"

6

7 # List all secret files in the secrets directory

8 secret_files=$(ls -1 "$secrets_dir")

9

10 # Loop through each secret file and export it as an environment variable

11 for secret_file in $secret_files; do

12 secret_name=$(basename "$secret_file")

13 secret_value=$(cat "$secrets_dir/$secret_file")

14 export "$secret_name=$secret_value"

15 done

16 EOF

The secret name will be the name of the file and the secret value will be the content of the file. So
if you want to use MYSQL_ROOT_PASSWORD instead of MYSQL_ROOT_PASSWORD_FILE, you should create
a file called MYSQL_ROOT_PASSWORD and put the password in it.

1 echo "secret" > MYSQL_ROOT_PASSWORD

Now, you need to create a Dockerfile that uses this script as the entrypoint:

1 FROM mysql:5.7

2 COPY entrypoint.sh /entrypoint.sh

3 ENTRYPOINT ["/entrypoint.sh"]

4 CMD ["mysqld"]

Docker Compose 193

Scaling Docker Compose Services

Docker Compose provides a seamless way to orchestrate multi-container applications. A powerful
feature it offers is the ability to scale services. Let’s take an example: imagine you’re running an
application that uses PHP and you’ve anticipated higher traffic. Instead of running a single PHP
container, you want to run 5 of them behind an NGINX web server. Docker Compose lets you do
this with a simple command: docker compose alpha scale php=5. By executing this, you’d have a
total of 5 PHP containers up and running. And because NGINX is linked to this PHP service, it can
seamlessly load-balance between these PHP instances.

However, a challenge arises when you consider scaling services like NGINX in this setup. If you
recall, the NGINX service maps its internal port 80 to the host’s port 8000. This is a 1-to-1 mapping.
So, if you tried to scale NGINX, the newly spawned container would also attempt to bind to the
host’s port 8000, resulting in a conflict. This is because a host port can only be bound to by one
service at a time. As a result, in Docker Compose, scaling a service that uses port mapping directly
to the host can introduce issues.

Now, keeping this in mind, let’s discuss the following Docker Compose setup:

1 version: '3.9'

2

3 services:

4 db:

5 image: mysql:5.7

6 volumes:

7 - db_data:/var/lib/mysql

8 restart: always

9 environment:

10 MYSQL_ROOT_PASSWORD: mypassword

11 MYSQL_DATABASE: wordpress

12 MYSQL_USER: user

13 MYSQL_PASSWORD: mypassword

14

15 wordpress:

16 depends_on:

17 - db

18 image: wordpress:latest

19 ports:

20 - "8000:80"

21 restart: always

22 environment:

23 WORDPRESS_DB_HOST: db:3306

24 WORDPRESS_DB_USER: user

Docker Compose 194

25 WORDPRESS_DB_PASSWORD: mypassword

26

27 volumes:

28 db_data:

In this setup, we’re running a WordPress service that depends on a MySQL database. If you wanted
to scale the WordPress service, you’d face the same challenge as discussed earlier with NGINX.
The WordPress service is mapping its internal port 80 to the host’s port 8000. If you tried to scale
this service, you’d encounter a port conflict on the host. Therefore, when designing applications
using Docker Compose, it’s essential to consider these constraints, especially when planning to scale
services with port mappings.

Note that the scaling feature is only available in the alpha version of Docker Compose:

1 # Download the install script

2 wget https://get.docker.com/ -O install-docker.sh

3 # Install from the test channel (alpha)

4 sudo sh install-docker.sh --channel test

Essentially, scaling up and down is a production feature and Docker Compose is not meant to be
used in production. In reality, if you are running a small application that is not mission-critical, you
can use Docker Compose in production - even if it is not really recommended - alternatively, you
should use other tools such as Docker Swarm or Kubernetes.

Cleaning Docker
With time, Docker will accumulate unused images, containers, volumes, and networks. Here are
some commands to clean up Docker.

Delete Volumes

Delete all unused volumes:

1 docker volume prune

Delete specific volumes:

1 docker volume rm <volume_name> <volume_name>

Delete dangling volumes:

1 docker volume ls -qf dangling=true

Delete dangling volumes (alternative):

1 docker volume rm $(docker volume ls -qf dangling=true)

2 docker volume ls -qf dangling=true | xargs -r docker volume rm

Delete Networks

Delete all unused networks:

1 docker network prune

Delete specific networks:

1 docker network rm <network_name> <network_name>

Delete all networks:

Cleaning Docker 196

1 docker network rm $(docker network ls -q)

Delete all networks from a specific driver:

1 export DOCKER_NETWORK_DRIVER=bridge

2 docker network ls | grep "$DOCKER_NETWORK_DRIVER" | awk '/ / { print $1 }' | xargs -\

3 r docker network rm

Delete Images

Delete all unused images:

1 docker image prune

Delete specific images:

1 docker image rm <image_name> <image_name>

Delete dangling images:

1 docker image ls -qf dangling=true

Delete dangling images (alternative):

1 docker image rm $(docker image ls -qf dangling=true)

2 docker image ls -qf dangling=true | xargs -r docker image rm

Delete all images:

1 docker image rm $(docker image ls -q)

Remove Docker Containers

Remove a container:

1 docker rm <container_name>

Force remove a container:

Cleaning Docker 197

1 docker rm -f <container_name>

Remove all exited containers:

1 docker rm $(docker ps -qa --no-trunc --filter "status=exited")

Cleaning Up Everything

Delete all unused data:

1 docker system prune

Remove all unused images not just dangling ones:

1 docker system prune -a

Prune volumes:

1 docker system prune --volumes

Docker Plugins
Docker plugins are an exciting feature because they allow Docker to be extended with third-party
plugins, such as those for networking or storage. These plugins operate independently of Docker
processes and provide webhook-like functionality that the Docker daemon uses to send HTTP POST
requests.

There are three types of plugins:

• Network plugins like Weave Network Plugin¹⁰⁸
• Volume plugins like docker-volume-netshare¹⁰⁹
• Authorization plugins like docker-casbin-plugin¹¹⁰

These plugins are maintained by specific vendors and/or a developers community, however with
the rise of orchestration tools like Kubernetes, Docker Swarm, and Mesos, the need for plugins is
decreasing and many of these plugins are no longer maintained.

This is a non-exhaustive overview of available plugins that you can also find in the official
documentation:

• Contiv Networking¹¹¹: An open-source network plugin to provide infrastructure and security
policies for a multi-tenant microservices deployment while providing integration to physical
network for the non-container workload. Contiv Networking implements the remote driver
and IPAM API s available in Docker 1.9 onwards.

• Kuryr Network Plugin¹¹²: A network plugin is developed as part of the OpenStack Kuryr project
and implements the Docker networking (libnetwork) remote driver API by utilizing Neutron,
the OpenStack networking service. It includes an IPAM driver as well.

• Weave Network Plugin¹¹³: A network plugin that creates a virtual network that connects your
Docker containers - across multiple hosts or clouds and enables automatic discovery of applica-
tions. Weave networks are resilient, partition tolerant, secure and work in partially connected
networks, and other adverse environments - all configured with delightful simplicity.

• Azure File Storage plugin¹¹⁴: Lets you mount Microsoft Azure File Storage¹¹⁵shares to Docker
containers as volumes using the SMB 3.0 protocol. Learn more¹¹⁶.

¹⁰⁸https://www.weave.works/docs/net/latest/introducing-weave/
¹⁰⁹https://github.com/ContainX/docker-volume-netshare
¹¹⁰https://github.com/casbin/docker-casbin-plugin
¹¹¹https://github.com/contiv/netplugin
¹¹²https://github.com/openstack/kuryr
¹¹³https://www.weave.works/docs/net/latest/introducing-weave/
¹¹⁴https://github.com/Azure/azurefile-dockervolumedriver
¹¹⁵https://azure.microsoft.com/blog/azure-file-storage-now-generally-available/
¹¹⁶https://azure.microsoft.com/blog/persistent-docker-volumes-with-azure-file-storage/

https://www.weave.works/docs/net/latest/introducing-weave/
https://github.com/ContainX/docker-volume-netshare
https://github.com/casbin/docker-casbin-plugin
https://github.com/contiv/netplugin
https://github.com/openstack/kuryr
https://www.weave.works/docs/net/latest/introducing-weave/
https://github.com/Azure/azurefile-dockervolumedriver
https://azure.microsoft.com/blog/azure-file-storage-now-generally-available/
https://azure.microsoft.com/blog/persistent-docker-volumes-with-azure-file-storage/
https://www.weave.works/docs/net/latest/introducing-weave/
https://github.com/ContainX/docker-volume-netshare
https://github.com/casbin/docker-casbin-plugin
https://github.com/contiv/netplugin
https://github.com/openstack/kuryr
https://www.weave.works/docs/net/latest/introducing-weave/
https://github.com/Azure/azurefile-dockervolumedriver
https://azure.microsoft.com/blog/azure-file-storage-now-generally-available/
https://azure.microsoft.com/blog/persistent-docker-volumes-with-azure-file-storage/

Docker Plugins 199

• Blockbridge plugin¹¹⁷: A volume plugin that provides access to an extensible set of container-
based persistent storage options. It supports single and multi-host Docker environments with
features that include tenant isolation, automated provisioning, encryption, secure deletion,
snapshots, and QoS.

• Contiv Volume Plugin¹¹⁸: An open-source volume plugin that provides multi-tenant, persistent,
distributed storage with intent-based consumption. It has support for Ceph and NFS.

• Convoy plugin¹¹⁹: A volume plugin for a variety of storage back-ends, including device-mapper
and NFS. It’s a simple standalone executable written in Go and provides the framework to
support vendor-specific extensions such as snapshots, backups, and restore.

• DRBD plugin¹²⁰: A volume plugin that provides highly available storage replicated by
• DRBD¹²¹. Data written to the docker volume is replicated in a cluster of DRBD nodes.
• Flocker plugin¹²²: A volume plugin that provides multi-host portable volumes for Docker,
enabling you to run databases and other stateful containers and move them around across
a cluster of machines.

• gce-docker plugin¹²³: A volume plugin able to attach, format and mount Google Compute
persistent-disks¹²⁴.

• GlusterFS plugin¹²⁵: A volume plugin that provides multi-host volumes management for
Docker using GlusterFS.

• Horcrux Volume Plugin¹²⁶: A volume plugin that allows on-demand, version-controlled access
to your data. Horcrux is an open-source plugin, written in Go, and supports SCP, Minio¹²⁷ and
Amazon S3.

• HPE 3Par Volume Plugin¹²⁸: A volume plugin that supports HPE 3Par and StoreVirtual iSCSI
storage arrays.

• IPFS Volume Plugin¹²⁹: An open-source volume plugin that allows using an ipfs¹³⁰filesystem
as a volume.

• Keywhiz plugin¹³¹: A plugin that provides credentials and secret management using Keywhiz
as a central repository.

• Local Persist Plugin¹³²: A volume plugin that extends the default local driver’s functionality
by allowing you specify a mount-point anywhere on the host, which enables the files to always
persist , even if the volume is removed via docker volume rm.

¹¹⁷https://github.com/blockbridge/blockbridge-docker-volume
¹¹⁸https://github.com/contiv/volplugin
¹¹⁹https://github.com/rancher/convoy
¹²⁰https://www.drbd.org/en/supported-projects/docker
¹²¹https://www.drbd.org/
¹²²https://clusterhq.com/docker-plugin/
¹²³https://github.com/mcuadros/gce-docker
¹²⁴https://cloud.google.com/compute/docs/disks/persistent-disks
¹²⁵https://github.com/calavera/docker-volume-glusterfs
¹²⁶https://github.com/muthu-r/horcrux
¹²⁷https://www.minio.io/
¹²⁸https://github.com/hpe-storage/python-hpedockerplugin/
¹²⁹http://github.com/vdemeester/docker-volume-ipfs
¹³⁰https://ipfs.io/
¹³¹https://github.com/calavera/docker-volume-keywhiz
¹³²https://github.com/CWSpear/local-persist

https://github.com/blockbridge/blockbridge-docker-volume
https://github.com/contiv/volplugin
https://github.com/rancher/convoy
https://www.drbd.org/en/supported-projects/docker
https://www.drbd.org/
https://clusterhq.com/docker-plugin/
https://github.com/mcuadros/gce-docker
https://cloud.google.com/compute/docs/disks/persistent-disks
https://github.com/calavera/docker-volume-glusterfs
https://github.com/muthu-r/horcrux
https://www.minio.io/
https://github.com/hpe-storage/python-hpedockerplugin/
http://github.com/vdemeester/docker-volume-ipfs
https://ipfs.io/
https://github.com/calavera/docker-volume-keywhiz
https://github.com/CWSpear/local-persist
https://github.com/blockbridge/blockbridge-docker-volume
https://github.com/contiv/volplugin
https://github.com/rancher/convoy
https://www.drbd.org/en/supported-projects/docker
https://www.drbd.org/
https://clusterhq.com/docker-plugin/
https://github.com/mcuadros/gce-docker
https://cloud.google.com/compute/docs/disks/persistent-disks
https://github.com/calavera/docker-volume-glusterfs
https://github.com/muthu-r/horcrux
https://www.minio.io/
https://github.com/hpe-storage/python-hpedockerplugin/
http://github.com/vdemeester/docker-volume-ipfs
https://ipfs.io/
https://github.com/calavera/docker-volume-keywhiz
https://github.com/CWSpear/local-persist

Docker Plugins 200

• NetApp Plugin¹³³(nDVP): A volume plugin that provides direct integration with the Docker
ecosystem for the NetApp storage portfolio. The nDVP package supports the provisioning and
management of storage resources from the storage platform to Docker hosts, with a robust
framework for adding additional platforms in the future.

• Netshare plugin¹³⁴: A volume plugin that provides volume management for NFS 3/4 , AWS EFS
and CIFS file systems.

• OpenStorage Plugin¹³⁵: A cluster-aware volume plugin that provides volume management for
file and block storage solutions. It implements a vendor-neutral specification for implementing
extensions such as CoS , encryption, and snapshots. It has example drivers based on FUSE , NFS,
NBD, and EBS, to name a few.

• Portworx Volume Plugin¹³⁶: A volume plugin that turns any server into a scale-out converged
compute/storage node, providing container granular storage and highly available volumes
across any node, using a shared-nothing storage backend that works with any docker scheduler.

• Quobyte Volume Plugin¹³⁷: A volume plugin that connects Docker to Quobyte¹³⁸’s data center
file system, a general-purpose scalable and fault-tolerant storage platform.

• REX-Ray plugin¹³⁹: A volume plugin which is written in Go and provides advanced storage
functionality for many platforms including VirtualBox, EC2, Google Compute Engine, Open-
Stack, and EMC .

• Virtuozzo Storage and Ploop plugin¹⁴⁰: A volume plugin with support for Virtuozzo Storage
distributed cloud file system as well as ploop devices.

• VMware vSphere Storage Plugin¹⁴¹: Docker Volume Driver for vSphere enables customers to
address persistent storage requirements for Docker containers in vSphere environments.

• Twistlock AuthZ Broker¹⁴²: A basic extendable authorization plugin that runs directly on the
host or inside a container. This plugin allows you to define user policies that it evaluates during
authorization. Basic authorization is provided if Docker daemon is started with the –tlsverify
flag (username is extracted from the certificate common name).

Docker Engine’s plugin system allows you to install, start, stop, and remove plugins using Docker
Engine.

For example, to install a plugin, you can use the following command:

1 docker plugin install [PLUGIN_NAME]

To list all installed plugins, you can use the following command:

¹³³https://github.com/NetApp/netappdvp
¹³⁴https://github.com/ContainX/docker-volume-netshare
¹³⁵https://github.com/libopenstorage/openstorage
¹³⁶https://github.com/portworx/px-dev
¹³⁷https://github.com/quobyte/docker-volume
¹³⁸http://www.quobyte.com/containers
¹³⁹https://github.com/emccode/rexray
¹⁴⁰https://github.com/virtuozzo/docker-volume-ploop
¹⁴¹https://github.com/vmware/docker-volume-vsphere
¹⁴²https://github.com/twistlock/authz

https://github.com/NetApp/netappdvp
https://github.com/ContainX/docker-volume-netshare
https://github.com/libopenstorage/openstorage
https://github.com/portworx/px-dev
https://github.com/quobyte/docker-volume
http://www.quobyte.com/containers
https://github.com/emccode/rexray
https://github.com/virtuozzo/docker-volume-ploop
https://github.com/vmware/docker-volume-vsphere
https://github.com/twistlock/authz
https://github.com/NetApp/netappdvp
https://github.com/ContainX/docker-volume-netshare
https://github.com/libopenstorage/openstorage
https://github.com/portworx/px-dev
https://github.com/quobyte/docker-volume
http://www.quobyte.com/containers
https://github.com/emccode/rexray
https://github.com/virtuozzo/docker-volume-ploop
https://github.com/vmware/docker-volume-vsphere
https://github.com/twistlock/authz

Docker Plugins 201

1 docker plugin ls

This is an example:

1 docker plugin install weaveworks/net-plugin:latest_release

Configure the plugin based on the prompts. The plugin is installed and enabled.

To enable a plugin, you can use the following command:

1 docker plugin enable [PLUGIN_NAME]

Example:

1 # Plugin already enabled but this is how you would enable it

2 docker plugin enable weaveworks/net-plugin:latest_release

To upgrade it, you can use the following commands:

1 # Disable the plugin first

2 docker plugin disable [PLUGIN_NAME]

3 # Upgrade the plugin

4 docker plugin upgrade [PLUGIN_NAME]

Example:

1 docker plugin disable weaveworks/net-plugin:latest_release

2 docker plugin upgrade weaveworks/net-plugin:latest_release

Once installed and enabled, you can create networks that use the Weave plugin.

1 # Restart the docker daemon

2 sudo systemctl restart docker

3 # Re-enable the plugin if needed

4 docker plugin enable weaveworks/net-plugin:latest_release

5 # Create a network using the plugin

6 docker network create --driver=weaveworks/net-plugin:latest_release my_weave_network

You can inspect the plugin using the following command:

Docker Plugins 202

1 docker plugin inspect [PLUGIN_NAME]

Example:

1 docker plugin inspect weaveworks/net-plugin:latest_release

The output for this plugin includes the following information:

• Plugin configuration
• Environment variables
• Interface information
• Linux capabilities
• Mount information
• Network information
• Plugin status
• Plugin settings

The rootfs section and SHA digest (diff_ids) represent the plugin’s root filesystem layers, which
are used by Docker to manage the plugin’s images.

The output confirms that the plugin is properly configured, active, and ready to be used with its
default settings. If you need to customize any configurations, such as adjusting the LOG_LEVEL or
providing a WEAVE_PASSWORD for encryption, you can use the docker plugin set command to modify
these environment variables accordingly.

1 # Remove the network

2 docker network rm my_weave_network

3 # Disable the plugin

4 docker plugin disable weaveworks/net-plugin:latest_release

5 # Change the configuration. Example: Set the log level to debug

6 docker plugin set weaveworks/net-plugin:latest_release LOG_LEVEL=debug

7 # Enable the plugin

8 docker plugin enable weaveworks/net-plugin:latest_release

9 # Recreate a network using the plugin

10 docker network create --driver=weaveworks/net-plugin:latest_release my_weave_network

Orchestration - Docker Swarm
What is Docker Swarm?

Docker Swarm is the container orchestration platform developed and maintained by Docker, Inc.

It is specifically designed to simplify the deployment, management, and scalability of containerized
applications at scale. Swarm allows users to create and manage a cluster of Docker hosts as a single
virtual system - a feature referred to as container orchestration. This makes it easier to distribute
containerized applications across multiple nodes.

Docker Swarm comes with important key features such as service discovery, load balancing, scaling,
rolling updates, high availability, security, integration with Docker, and more.

Service Abstraction

Docker Swarm introduced the concept of services, which represent a group of containers that
perform the same task.

When you work with a standalone container, you can use the docker run command to start it.
However, when you work with a service, you use the docker service create command to specify
the desired state of the service. This transition from transactional to declarative commands is a key
feature of Docker Swarm.

With a service, you can define the desired number of replicas, and Docker Swarm ensures that the
specified number of containers are running across the cluster. If one of the containers in a service
fails, Docker Swarm automatically restarts it to match the desired state.

Load Balancing

Swarm includes an integrated load balancer that distributes incoming requests across containers
within a service. This load balancer runs on every node in the cluster and ensures that requests are
routed to the appropriate containers, regardless of which node they are running on.

Scalability

You can easily adjust the number of replicas of a service to accommodate changes in load or
application requirements. However, to automatically scale a service based on CPU usage, you would
need to utilize third-party tools such as Prometheus or cAdvisor, along with custom scripts or other
tools.

Orchestration - Docker Swarm 204

High Availability

Swarm provides high availability by automatically rescheduling containers in the event of node
failures. This ensures that services remain accessible and reliable.

Let’s consider a scenario where you have 5 containers forming a service and initially, you have 3
nodes in your cluster. When you deploy the service, Swarm will distribute the containers across the
nodes, running the service on all 3 nodes.

If one of the nodes fails due to system, network, or hardware failure, Swarm will automatically
reschedule the containers on the remaining nodes. As a result, the service will continue to run
smoothly without any downtime.

Rolling Updates

Swarm supports rolling updates, which enable you to update a service without causing any
downtime. It gradually replaces old containers with new ones to minimize any impact on the service.

Security

Docker Swarm provides security features such as mutual TLS (Transport Layer Security) to encrypt
communication between nodes, role-based access control (RBAC), and secrets management.

Integration with Docker

Since Docker Swarm is part of the Docker ecosystem, it integrates with Docker Compose. First,
create a docker-compose.yml file that defines the services comprising your application. Then, use
the docker stack deploy command to deploy the stack to the Swarm cluster.

Creating a Swarm Cluster

In this section, we will be using 3 machines:

• The “manager” machine: This machine will serve as the manager of the Swarm cluster. Its
responsibilities include managing the cluster and scheduling containers on the worker nodes.

• The “worker01” machine: This machine will function as a worker node within the Swarm
cluster. It will be responsible for running containers.

• The “worker02” machine: Similar to “worker01”, this machine will also serve as a worker node
within the Swarm cluster and run containers.

To ensure proper functionality, the following ports should be open on all machines:

Orchestration - Docker Swarm 205

• Port 2377 TCP: This port is used for communication between manager nodes.
• Port 7946 TCP/UDP: It facilitates overlay network node discovery.
• Port 4789 UDP: This port is essential for overlay network traffic.

Additionally, Docker must be installed on all machines. Since this tutorial focuses on Ubuntu 22.04,
you can install Docker using the following commands:

1 curl -fsSL https://get.docker.com -o get-docker.sh

2 sudo sh get-docker.sh

After installing Docker, the Docker service should be running. You can check its status using the
following command:

1 sudo systemctl status docker

If the service is not running, you can start it using the following commands:

1 sudo systemctl enable docker

2 sudo systemctl start docker

Our cluster is not ready yet. We need to initialize the Swarm cluster and add the worker nodes to it.

Initializing the Swarm

On the manager node, we need to create and initialize the Swarm using a command similar to the
following:

1 docker swarm init --advertise-addr <MANAGER-IP>

The manager IP refers to the IP address of the manager node. It is crucial to use the private IP of
the manager node, as it will be used for communication between the manager node and the worker
nodes.

To execute the command, run:

1 export MANAGER_IP=<MANAGER-IP>

2 docker swarm init --advertise-addr $MANAGER_IP

This will show the output similar to the following:

Orchestration - Docker Swarm 206

1 Swarm initialized: current node (9i91nnzwypfbqfzjamtyucndy) is now a manager.

2

3 To add a worker to this swarm, run the following command:

4

5 docker swarm join --token SWMTKN-1-2o2julopgcjvmgt95p3eaqwp7evyy6xsqgj9fplqqdd6v\

6 332e0-77zt8cv7ea22m9igrl2tkuhp8 10.135.0.6:2377

7

8 To add a manager to this swarm, run 'docker swarm join-token manager' and follow the\

9 instructions.

The output displays the command that needs to be executed on the worker nodes in order to add
them to the cluster.

Copy the command and navigate to each of your worker nodes to run it. The command should be
similar to the following:

1 docker swarm join --token <Token> <Manager-IP>:2377

You should see the following output on each worker node:

1 This node joined a swarm as a worker.

Run the following command on the manager node to see the nodes in the cluster:

1 docker node ls

You should see the following output:

1 ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS E\

2 NGINE VERSION

3 9i91nnzwypfbqfzjamtyucndy * manager Ready Active Leader 2\

4 4.0.6

5 dxs15h0utix51cpeam9nboa0x worker01 Ready Active 2\

6 4.0.6

7 rk06f3dtfo55i8yqvu56zt0fl worker02 Ready Active 2\

8 4.0.6

If you see this output, it means that the Swarm cluster is ready.

Installing Docker Swarm Visualizer

Docker Swarm Visualizer is a tool that visually represents the Swarm cluster. It displays the nodes
within the cluster and the services running on each node.

To install Docker Swarm Visualizer, execute the following command on the manager node:

Orchestration - Docker Swarm 207

1 docker service create \

2 --name=viz \

3 --publish=8080:8080/tcp \

4 --constraint=node.role==manager \

5 --mount=type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \

6 dockersamples/visualizer

You can now access the visualizer using the following URL:

1 echo "http://$MANAGER_IP:8080"

You can use this tool to visualize the Swarm nodes and services.

Adding New Nodes to the Cluster

To add new nodes to the cluster, we need to run the following command on the manager node:

1 docker swarm join-token worker

This will show the command that we need to run on the new node to add it to the cluster.

Swarm Services and Tasks

In this section, we are going to create a service that runs a web server. We will use the nginx image
to create the service.

To create the service, run the following command on the manager node:

1 docker service create --name webserver -p 80:80 nginx

This will create a service called webserver that runs the nginx image. It will also expose port 80 on
the host machine.

To see the services running on the cluster, run the following command on the manager node:

1 docker service ls

To see the tasks running on the cluster, run the following command on the manager node:

Orchestration - Docker Swarm 208

1 docker service ps webserver

A task is a running container that is part of a service.

To see the logs of a task, run the following command on the manager node:

1 docker service logs webserver

Scaling a Service

To scale a service, we need to run the following command on the manager node:

1 docker service scale webserver=3

This will start three containers that are part of the webserver service. Alternatively, we could have
specified the number of replicas when creating the service using the --replicas option:

1 docker service create --name webserver -p 80:80 --replicas 3 nginx

Networking in Docker Swarm

When initially creating a Swarm cluster, Docker automatically creates a network called ingress. This
network is utilized for inter-node communication and functions as the load balancer for distributing
incoming requests among containers within a service.

When creating a service, you have the option to specify which network it will use. If no network is
specified, the service will default to using the ingress network.

To view all the default networks on the master node, use the following command:

1 docker network ls

You will see the following 4 default networks:

• bridge: This is the default network used when you run a container without specifying a
network.

• docker_gwbridge: Connects the individual Docker daemon to other daemons participating in
the swarm.

• host: This is the network used when you run a container in host mode.
• none: This is the network used when you run a container without a network.

When you run a service, you can specify the network it will use using the --network option. For
example, let’s create a service called webserver that runs the nginx image and uses the bridge

network.

To begin, create the network:

Orchestration - Docker Swarm 209

1 docker network create --driver overlay webserver-network

Now, you have two choices:

• Remove the service and recreate it using the -network option.
• Update the service using the -network option.

Let’s proceed with removing the service and recreating it using the --network option.

1 docker service rm webserver

2 docker service create --name webserver -p 80:80 --network webserver-network nginx

The second option can be done using the following command:

1 docker service update --network-add webserver-network webserver

Now you can inspect the service and see that it is using the webserver-network network:

1 docker service inspect webserver --pretty | grep -i network

You can also inspect the network and see that the service is using it. Run this on each node to see
how the network is distributed across the cluster:

1 docker network inspect webserver-network

You will notice that there are two containers running within the network:

• Replica Containers: These containers are responsible for executing the tasks specified by the
service. In our case, this refers to the Nginx container that serves your web application.

• Endpoint Containers: These containers serve as the network endpoint for the service. Their
role is to direct incoming network traffic to the replica containers. The endpoint container acts
as a load balancer, distributing requests among the individual replicas.

Performing Operations on Nodes

Sometimes, you may need to perform certain operations on a node, such as:

• Pausing a node
• Draining a node
• Removing a node
• Promoting a node
• Demoting a node

Let’s explore how these operations can be performed and what they entail.

Orchestration - Docker Swarm 210

Pausing a Node

When a node is paused, Docker Swarmwill halt the scheduling of new tasks on that node and instead
reschedule any future tasks on other nodes.

To pause a node, execute the following command on the manager node:

1 export NODE_HOSTNAME=worker01

2 docker node update --availability pause $NODE_HOSTNAME

Then launch a new service and see that the tasks are not scheduled on the paused node.

1 docker service create --name webserver-test --replicas 5 -p 8081:80 nginx

Check where the tasks are running using the following command:

1 docker service ps webserver-test

To check the status of the node, run the following command on the manager node:

1 docker node ls

You should see that the node is paused (AVAILABILITY column).

To resume the node, run the following command on the manager node:

1 docker node update --availability active $NODE_HOSTNAME

Try scaling the service and see that the tasks are scheduled on the node again.

1 docker service scale webserver-test=10

2 docker service ps webserver-test

Draining a Node

Draining a node in Docker Swarm means that new tasks will no longer be scheduled on the node.
Additionally, any existing tasks on the node will be rescheduled to other nodes.

To drain a node, you need to run the following command on the manager node:

Orchestration - Docker Swarm 211

1 export NODE_HOSTNAME=worker01

2 docker node update --availability drain $NODE_HOSTNAME

Now you can check the status of the node using the following command:

1 docker node ls

Check that all the tasks are running on all nodes except the drained node:

1 docker service ps --filter desired-state=Running $(docker service ls -q)

To resume the node, run the following command on the manager node:

1 docker node update --availability active $NODE_HOSTNAME

Scale any service to refresh the tasks and see that the tasks are scheduled on the node again.

1 docker service scale webserver-test=15

2 docker service ps --filter desired-state=Running $(docker service ls -q)

Removing a Node

To remove a node from the cluster, we need to run the following command on the manager node:

1 export NODE_HOSTNAME=worker01

2 docker node update --availability drain $NODE_HOSTNAME

3 docker node rm $NODE_HOSTNAME --force

To complete this operation, we need to run the following command on the removed node:

1 docker swarm leave

If you want to add the node back to the cluster, you need to run the following command on the
manager node:

1 docker swarm join-token worker

This will show the command that we need to run on the removed node to make it join the cluster
again.

Orchestration - Docker Swarm 212

Promoting and Demoting Nodes

Promoting a node means that Docker Swarm will designate it as a manager node.

In our cluster, we have 3 nodes. One of them is already a manager node (named “manager”), while
the other two are worker nodes (named “worker01” and “worker02”). If you want to promote one of
the worker nodes to a manager node, you need to execute the following command on the current
manager node:

1 export NODE_HOSTNAME=worker01

2 docker node promote $NODE_HOSTNAME

We currently have two manager nodes. To list the manager nodes, use the following command:

1 docker node ls --filter role=manager

To demote a manager node, we need to run the following command on the manager node:

1 export NODE_HOSTNAME=worker01

2 docker node demote $NODE_HOSTNAME

Multi-manager Docker Swarm

We previously created a Swarm cluster with one manager node. Then, we promoted one of the
worker nodes to a manager node. But what is the difference between these two types of nodes?
Additionally, what is the difference between a single-manager cluster and a multi-manager cluster?
This section will provide the answers.

Firstly, there are two types of nodes in a Swarm cluster:

• Manager nodes: These nodes are responsible for managing the cluster, including scheduling
containers on worker nodes and maintaining the cluster state. Only manager nodes can run
the docker swarm commands.

• Worker nodes: These nodes are responsible solely for running containers and do not participate
in managing the cluster.

When you start a service, the manager node will schedule containers on all nodes, including the
manager nodes themselves. This means that manager nodes can also run containers. Therefore, there
are no differences between manager nodes and worker nodes except that manager nodes have the
additional responsibility of managing the entire cluster.

If desired, you can prevent the scheduling of containers on manager nodes. This is useful when you
want to dedicate manager nodes solely to managing the cluster and not running containers. There
are two options to achieve this:

Option 1: You can simply drain the manager nodes like we did in the previous section:

Orchestration - Docker Swarm 213

1 export NODE_HOSTNAME=manager

2 docker node update --availability drain $NODE_HOSTNAME

Option 2: You can use the constraint option when you create the service to specify that the service
should not run on the manager nodes:

This is an example:

1 docker service create --name webserver-another-test -p 8002:80 --constraint node.rol\

2 e==worker --replicas 10 nginx

Now check where the new service is running:

1 docker service ps webserver-another-test --format "table {{.Name}}\t{{.Node}}"

You should see that the service is not running on the manager nodes.

Let’s now understand the difference between a single-manager cluster and a multi-manager cluster.

In a single-manager cluster, if the manager node fails, the entire cluster will fail. This is because the
manager node is responsible for managing the cluster. As a result, a single-manager cluster lacks
high availability. However, if you have multiple manager nodes, the cluster is more likely to survive
the failure of one of the manager nodes. In practice, the more manager nodes you have, the more
resilient your cluster will be. However, it’s important to note that you need to have an odd number
of manager nodes.

It is recommended to have an odd number of manager nodes for fault tolerance, with a maximum of
7 (as recommended by Docker documentation). However, it’s important to understand that adding
more managers doesn’t increase scalability or performance. Stability is different from scalability.

In Docker swarm mode, manager nodes use the Raft Consensus Algorithm to ensure consistent
cluster states, enabling any manager to take over in case of failure. Raft tolerates failures but requires
a majority of nodes to agree on values, which can impact task scheduling when a node is unavailable.
This implementation in swarm mode aligns with key properties of distributed systems, such as
fault tolerance, mutual exclusion through leader election, cluster membership management, and
globally consistent object sequencing. Simply put, manager nodes use a voting system to reach
agreements, which can impact workload assignment if some managers are down. It’s like a team
where most members need to agree before taking action. This teamwork ensures smooth operation
and alignment among all managers.

Imagine you have a team of managers in charge of a big project. They need to ensure everyone is
informed about the project’s progress and that it continues to run smoothly, even if one of them
becomes ill or is unable to work. They use a special voting system called Raft to achieve this. This
system ensures that all managers agree on the project’s status and tasks. If one manager is unable to
continue, another manager can step in because they all have the same information. However, there’s

Orchestration - Docker Swarm 214

a condition: to make a decision, they need the majority of the managers to agree. It’s like requiring
at least half of them to say “yes” before proceeding.

Similarly, Raft is effective at handling a certain number of unavailable managers. However, if too
manymanagers are out of commission, important decisions cannot bemade andworkload balancing
becomes ineffective. Specifically, Raft can tolerate up to (N-1)/2 failures and requires a majority of
(N/2)+1 members to agree on values. For example, if you have three managers, you can tolerate one
failure. If you have five managers, you can tolerate two failures. If you have seven managers, you
can tolerate three failures. And so on.

The following table shows the number of managers that can fail in a cluster of different sizes:

Number of Managers Number of Failures
1 0
3 1
5 2
7 3

Docker Swarm Environment Variables and Secrets

Before we start, let’s set back the cluster to its initial state. On the manager node, run:

1 docker node demote worker01

2 docker node update --availability active manager

Let’s also remove all the previous services we created:

1 docker service rm $(docker service ls -q)

If you want to run MySQL as a standalone container using the official MySQL image¹⁴³, you can
use the following command:

1 docker run --name mysql -e MYSQL_DATABASE=wordpress -e MYSQL_USER=wordpress -e MYSQL\

2 _ROOT_PASSWORD=secret -d mysql:5.7

This will create a MySQL container with the following configuration read from environment
variables:

• MYSQL_DATABASE: This is the name of the database that will be created.
• MYSQL_USER: This is the username of the database user.
• MYSQL_PASSWORD: This is the password of the database user.

To do the same thing in a Docker Swarm cluster, we need to create a service using the following
command:
¹⁴³https://hub.docker.com/_/mysql

https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql

Orchestration - Docker Swarm 215

1 docker service create --name mysql -e MYSQL_DATABASE=wordpress -e MYSQL_USER=wordpre\

2 ss -e MYSQL_ROOT_PASSWORD=secret -d mysql:5.7

The problem here is that the password is stored in plain text in the command. You can see it if you
run the following command:

1 docker service inspect mysql --format "{{json .Spec.TaskTemplate.ContainerSpec.Env}}"

Or:

1 docker service inspect mysql --pretty | grep Env

A good practice is to avoid storing sensitive information in plain text. This is where Docker secrets
come in.

Docker Secrets

Docker secrets are used to store sensitive information such as passwords, SSH keys, API keys,
authentication tokens, and more. They are securely stored in an encrypted format on disk and in
memory, and are only accessible to the services that require them.

To create a secret, we need to run the following command on the manager node:

1 echo "secret" | docker secret create mysql_root_password -

You can also store the secret in a file and create the secret using the following command:

1 echo "secret" > mysql_root_password.txt

2 docker secret create mysql_root_password mysql_root_password.txt

To show the secret, run the following commands on the manager node:

1 docker secret ls

2 docker secret inspect mysql_root_password

To use the secret in a service, we need to run the following command:

Orchestration - Docker Swarm 216

1 # remove the previous service

2 docker service rm mysql

3 # create the new service with the secret

4 docker service create --name mysql \

5 --secret mysql_root_password \

6 -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/mysql_root_password \

7 -e MYSQL_DATABASE=wordpress \

8 -e MYSQL_USER=wordpress \

9 -d mysql:5.7

When you create a secret, it is stored in the in-memory filesystem of the container. The path to the
secret is /run/secrets/[SECRET_NAME]. To check the content of the secret on the manager node, use
the following command:

1 docker exec -it $(docker ps -q -f name=mysql) cat /run/secrets/mysql_root_password

Only MySQL containers have access to the secret. If you attempt to access the secret from another
container, you will receive an error.

1 docker service create --name webserver -p 80:80

2 docker exec -it $(docker ps -q -f name=webserver) cat /run/secrets/mysql_root_passwo\

3 rd

You should see the following error:

1 cat: /run/secrets/mysql_root_password: No such file or directory

The MySQL image allows you to read the password from a file by utilizing the MYSQL_ROOT_-

PASSWORD_FILE environment variable. It’s important to note that not all images support this feature.
In case you need to use a secret with an image that doesn’t support reading the password from a
file, you can employ a script at the container’s entrypoint. This script can read the secret from the
file and set it as an environment variable.

Orchestration - Docker Swarm 217

1 #!/bin/bash

2

3 # Define the target directory where secrets are stored

4 secrets_dir="/run/secrets"

5

6 # List all secret files in the secrets directory

7 secret_files=$(ls -1 "$secrets_dir")

8

9 # Loop through each secret file and export it as an environment variable

10 for secret_file in $secret_files; do

11 secret_name=$(basename "$secret_file")

12 secret_value=$(cat "$secrets_dir/$secret_file")

13 export "$secret_name=$secret_value"

14 done

The secret name will be the name of the file, and the secret value will be the content of the file. So,
if you want to use MYSQL_ROOT_PASSWORD instead of MYSQL_ROOT_PASSWORD_FILE, you should create
a file called MYSQL_ROOT_PASSWORD and put the password in it.

1 echo "secret" > MYSQL_ROOT_PASSWORD

Now, you need to create a Dockerfile that uses this script as the entrypoint:

1 FROM mysql:5.7

2 COPY entrypoint.sh /entrypoint.sh

3 ENTRYPOINT ["/entrypoint.sh"]

4 CMD ["mysqld"]

You can also use a simpler script:

1 #!/bin/bash

2

3 # Read the secret from a file and export it as an environment variable

4 export SECRET_VALUE=$(cat /run/secrets/my_secret)

5

6 # Execute the main command of the container

7 exec "$@"

It is important to note that exporting sensitive information as environment variables is not a
recommended practice. This is because environment variables can be accessed by any process
running on the system.

Orchestration - Docker Swarm 218

The use of Docker secrets and storing them in files instead of environment variables is not about
making the container completely secure, but rather about reducing the exposure of secrets in less
secure components of the Docker ecosystem.

In Docker Swarm, secrets are securely encrypted both during transmission and while at rest,
ensuring that they can only be accessed by explicitly authorized services. These secrets are only
accessible to designated services and only for the duration of their active tasks.

There are alternative methods to use secrets with images that do not support reading passwords
from files, such as modifying your application’s code to directly read the secret from the file located
at /run/secrets/.

If your company uses a secret management system like HashiCorp Vault, AWS Secret Manager, or
Azure Key Vault, you are not limited to using Docker secrets. You can continue using these tools
without needing the Swarm secret management system.

Docker Configs

To make a Docker image as generic as possible, you can utilize Docker configs to store configuration
files. Docker configs serve as an alternative to setting up environment variables. While a Docker
config is similar to a secret, it is not encrypted at rest and is directly mounted into the container’s
filesystem without utilizing RAM disks.

There are differences between environment variables and configs, but the primary advantage of
using configs is that managing them is more practical compared to managing environment variables,
as they can be managed using the Docker CLI.

Furthermore, configs are immutable, meaning they cannot be modified once created. This is benefi-
cial for security purposes, as it prevents unauthorized changes to your application’s configuration.

Config files can have restricted read permissions, ensuring only the application user has access to
them. In contrast, environment variables may potentially be accessed by subprocesses or anyone
accessing your container.

Let’s start an Nginx server with a custom “index.html” file. First, create the “index.html” file:

1 echo "Hello World" > index.html

Then create the config:

1 docker config create nginx_index index.html

Check the config:

Orchestration - Docker Swarm 219

1 docker config ls

2 docker config inspect nginx_index

Now you can use the config in a service:

1 docker service create \

2 --name webserver \

3 -p 8004:80 \

4 --config source=nginx_index,target=/usr/share/nginx/html/index.html \

5 nginx

Find out where the Nginx container is running:

1 docker service ps webserver

Then check the content of the index.html file from the right worker:

1 docker exec -it $(docker ps -q -f name=webserver) cat /usr/share/nginx/html/index.ht\

2 ml

You should be able to see that the content of the file is Hello World.

Note that we can also set the file permissions when we create the config. For example, we can set
the file permissions to 0440 using the following command:

1 docker service create \

2 --name webserver \

3 -p 8004:80 \

4 --config source=nginx_index,target=/usr/share/nginx/html/index.html,mode=0440 \

5 nginx

The permissions are set to 0440, which means that only the owner and the group can read the file
and not the others.

We can also rotate the config using the following command:

Orchestration - Docker Swarm 220

1 # create a new index.html file

2 echo "Hello World v2" > index.html

3 # create a new config

4 docker config create nginx_index_v2 index.html

5 # update the service to use the new config and remove the old one

6 docker service update \

7 --config-rm nginx_index \

8 --config-add source=nginx_index_v2,target=/usr/share/nginx/html/index.html \

9 webserver

Now check the content of the index.html file from the right worker:

1 docker exec -it $(docker ps -q -f name=webserver) cat /usr/share/nginx/html/index.ht\

2 ml

You should be able to see that the content of the file is Hello World v2.

Docker Swarm Volumes

Since containers are ephemeral, the data stored inside them can be lost when the container is
removed. The same principle applies to services in Docker Swarm, as they are composed of
containers.

When running stateful applications such as databases, it is important to persist the data. This is
where Docker volumes come into play.

Now, let’s remove the previous MySQL service:

1 docker service rm mysql

To create a volume, we need to run the following command on the manager node:

1 docker volume create mysql_data

To use the volume in a service, we need to run the following command:

Orchestration - Docker Swarm 221

1 docker service create --name mysql \

2 --secret mysql_root_password \

3 -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/mysql_root_password \

4 -e MYSQL_DATABASE=wordpress \

5 -e MYSQL_USER=wordpress \

6 --mount type=volume,source=mysql_data,target=/var/lib/mysql \

7 -d mysql:5.7

When you run a service with a volume, the volume is created on the node where the container is
running. You can check the volume using the following command:

1 docker volume ls

Since we have launched a single instance of MySQL, the command above should be executed on the
node where the container is running. To determine the location of the container, run the following
command:

1 docker service ps mysql

If the MySQL container is moved to another node, the volume will not be moved along with it. This
is because the volume is created on the node where the container is currently running.

To overcome this challenge, we can use constraints to ensure that the container always runs on the
same node. To do this, execute the following command:

1 # choose the node where you want to run the MySQL service

2 export NODE_HOSTNAME=worker01

3 # remove the old service and the old volume

4 docker service rm mysql

5 docker volume rm mysql_data

6 # create the new volume on the right node (e.g: worker01)

7 docker volume create mysql_data

8 # create the new service with the constraint

9 docker service create --name mysql \

10 --secret mysql_root_password \

11 -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/mysql_root_password \

12 -e MYSQL_DATABASE=wordpress \

13 -e MYSQL_USER=wordpress \

14 --mount type=volume,source=mysql_data,target=/var/lib/mysql \

15 --constraint node.hostname==$NODE_HOSTNAME \

16 -d mysql:5.7

Now check the volume using the following command:

Orchestration - Docker Swarm 222

1 docker volume ls

MySQL data is now stored on the host machine (worker01 in our case) and not on the container. You
can find the data in the following directory:

1 ls /var/lib/docker/volumes/mysql_data/_data/

The decision to force MySQL to run on a specific node resolved the issue of data persistence, but it
introduced another problem: what happens if the node fails? In that case, the service will become
unavailable.

Additionally, if we want to scale up our database or set up a high availability (HA) MySQL system
with masters and replicas, it is not possible with a single MySQL instance.

Swarm Mode itself does not handle the scalability of stateful applications like databases, so it is the
responsibility of the user to address this. To tackle this challenge, we can utilize a distributed file
system such as NFS or GlusterFS to store the data, or opt for a managed service like Amazon EFS.

Deploying a WordPress Application on Docker Swarm

Let’s utilize what we have learned so far to deploy a WordPress application on Docker Swarm.

Before moving forward, let’s delete all the previous services we created:

1 docker service rm $(docker service ls -q)

The Wordpress application will utilize a MySQL database, so we need to create a MySQL service as
well. Both services should be in the same network to enable communication between them.

Let’s begin by creating the network:

1 export network_name=wordpress-network

2 docker network create --driver overlay $network_name

Create Docker secrets for MySQL and WordPress:

1 echo "your_db_root_password" | docker secret create db_root_password -

2 echo "your_db_wordpress_password" | docker secret create db_wordpress_password -

Create the MySQL service:

Orchestration - Docker Swarm 223

1 docker service create --name mysql \

2 --network $network_name \

3 --secret db_root_password \

4 --secret db_wordpress_password \

5 -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/db_root_password \

6 -e MYSQL_USER=wordpress \

7 -e MYSQL_PASSWORD_FILE=/run/secrets/db_wordpress_password \

8 -e MYSQL_DATABASE=wordpress \

9 mysql:5.7

Create a WordPress service:

1 docker service create --name wordpress \

2 --network $network_name \

3 --secret db_wordpress_password \

4 -e WORDPRESS_DB_HOST=mysql \

5 -e WORDPRESS_DB_USER=wordpress \

6 -e WORDPRESS_DB_PASSWORD_FILE=/run/secrets/db_wordpress_password \

7 -e WORDPRESS_DB_NAME=wordpress \

8 -p 80:80 \

9 --replicas 3 \

10 wordpress:latest

Now visit one of the nodes public IPs on port 80 and you should see the WordPress installation page.

Docker Swarm Global Services

A global service is a service that runs one task on each node in the cluster. This mode is also referred
to as the global mode.

Let’s say you want to run a logging agent on every node in the cluster to collect logs from all the
containers. To achieve this, you need to ensure two things:

• The logging agent should run on all nodes.
• Only one instance of the logging agent should be running on each node.

In the following example, we will be using Fluentd as the logging agent. To create a global service,
run the following command on the manager node and include the --mode global option:

Orchestration - Docker Swarm 224

1 docker service create \

2 --name logging-agent \

3 --mode global \

4 fluent/fluentd:v1.3-debian-1

You should be able to see that the service is running on all nodes and that the total number of tasks
is equal to the number of nodes in the cluster:

1 docker service ps logging-agent

Docker Swarm Resouce Management

Like with standalone containers, we can configure services with resource reservations and limits.
This is useful if you want to control the amount of resources that a service can use.

Let’s start with this example:

1 # remove old services

2 docker service rm $(docker service ls -q)

3 # create the service

4 docker service create \

5 --name webserver \

6 --replicas 3 \

7 --reserve-memory 100m \

8 --limit-memory 300m \

9 --reserve-cpu 0.5 \

10 --limit-cpu 1 \

11 -p 80:80 \

12 nginx

As you can see we used the following options:

• --reserve-memory: This option is used to reserve memory for the service. In our example, we
reserved 100MiB of memory for the service (MiB stands for Mebibyte).

• --limit-memory: This option is used to limit the memory that the service can use. In our
example, we limited the memory to 300MiB.

• --reserve-cpu: This option is used to reserve CPU for the service. In our example, we reserved
0.5 CPU for the service.

• --limit-cpu: This option is used to limit the CPU that the service can use. In our example, we
limited the CPU to 1.

You can see how Docker converts the values to the format it uses internally using the following
command:

Orchestration - Docker Swarm 225

1 docker service inspect --format "{{ json .Spec.TaskTemplate.Resources }}" webserver

You should see this:

1 {"Limits":{"NanoCPUs":1000000000,"MemoryBytes":314572800},"Reservations":{"NanoCPUs"\

2 :500000000,"MemoryBytes":104857600}}

ℹ Docker uses different units for CPU and memory. Here is how Docker converts the
values:

A CPU core is equal to 1e9 (1,000,000,000) nanocores (or nanocpus). So 0.5 CPU is equal
to 500,000,000 nanocores and 1 CPU is equal to 1,000,000,000 nanocores.

1 Mebibyte is equal to 1.04858 Megabytes which is equal to 1,048,576 bytes. So 100MiB is
equal to 104,857,600 bytes and 300MiB is equal to 314,572,800 bytes.

Note that each container in the service will have the same resource reservations and limits defined
in the service. You can check the resources of a container using the following command:

1 docker inspect --format "{{ json .HostConfig.Resources }}" $(docker ps -q -f name=we\

2 bserver)

Docker Swarm Stacks

A stack is a group of interrelated services that share dependencies and can be orchestrated and scaled
together. Here are some examples:

• A WordPress stack that includes a WordPress service, Apache, and a MySQL service.
• A web application stack that includes a web application service, a caching service like Redis,
and a database service like PostgreSQL.

• A monitoring stack that includes Prometheus, Loki, and Grafana services.
• …and so on.

One of the main advantages of Docker Swarm is its ability to deploy using a docker-compose file.
In the context of Docker Swarm, this file is referred to as a stack.

Let’s start with a basic example. Create a file named docker-compose.yml for a WordPress stack:

Orchestration - Docker Swarm 226

1 cat <<EOF > docker-compose.yml

2 version: '3.9'

3

4 services:

5 db:

6 image: mysql:latest

7 volumes:

8 - db_data:/var/lib/mysql

9 environment:

10 MYSQL_ROOT_PASSWORD_FILE: /run/secrets/db_root_password

11 MYSQL_DATABASE: wordpress

12 MYSQL_USER: wordpress

13 MYSQL_PASSWORD_FILE: /run/secrets/db_password

14 secrets:

15 - db_root_password

16 - db_password

17 networks:

18 - wordpress-network

19

20 wordpress:

21 depends_on:

22 - db

23 image: wordpress:latest

24 ports:

25 - "8000:80"

26 environment:

27 WORDPRESS_DB_HOST: db:3306

28 WORDPRESS_DB_USER: wordpress

29 WORDPRESS_DB_PASSWORD_FILE: /run/secrets/db_password

30 secrets:

31 - db_password

32 networks:

33 - wordpress-network

34

35 networks:

36 wordpress-network:

37 driver: overlay

38

39 secrets:

40 db_password:

41 file: .password.txt

42 db_root_password:

43 file: .root_password.txt

Orchestration - Docker Swarm 227

44

45 volumes:

46 db_data:

47 EOF

Remove all the previous services to free up resources and ports:

1 docker service rm $(docker service ls -q)

Create the secrets:

1 echo "your_db_root_password" > .root_password.txt

2 echo "your_db_wordpress_password" > .password.txt

Now, if you were working in your development environment, you could run the following command
to start the stack:

1 docker compose up -d

But since our goal is to deploy the stack on a Docker Swarm cluster, we need to run the following
command:

1 docker stack deploy -c docker-compose.yml my-stack

Now, we can check the services:

1 docker service ls

You should see that both my-stack_db and my-stack_wordpress are running.

That’s it! You have successfully deployed your first stack on Docker Swarm.

Now, let’s learn how to add constraints to the services. For instance, if we want to deploy the
WordPress service on the worker nodes and the MySQL service on the manager node, we need
to add the following constraints to the services:

• WordPress: node.role==worker
• MySQL: node.role==manager

Here is the updated docker-compose.yml file:

Orchestration - Docker Swarm 228

1 cat <<EOF > docker-compose.yml

2 version: '3.9'

3

4 services:

5 db:

6 image: mysql:latest

7 volumes:

8 - db_data:/var/lib/mysql

9 environment:

10 MYSQL_ROOT_PASSWORD_FILE: /run/secrets/db_root_password

11 MYSQL_DATABASE: wordpress

12 MYSQL_USER: wordpress

13 MYSQL_PASSWORD_FILE: /run/secrets/db_password

14 secrets:

15 - db_root_password

16 - db_password

17 networks:

18 - wordpress-network

19 deploy:

20 placement:

21 constraints:

22 - node.role==manager

23

24 wordpress:

25 depends_on:

26 - db

27 image: wordpress:latest

28 ports:

29 - "8000:80"

30 environment:

31 WORDPRESS_DB_HOST: db:3306

32 WORDPRESS_DB_USER: wordpress

33 WORDPRESS_DB_PASSWORD_FILE: /run/secrets/db_password

34 secrets:

35 - db_password

36 networks:

37 - wordpress-network

38 deploy:

39 placement:

40 constraints:

41 - node.role==worker

42

43 networks:

Orchestration - Docker Swarm 229

44 wordpress-network:

45 driver: overlay

46

47 secrets:

48 db_password:

49 file: .password.txt

50 db_root_password:

51 file: .root_password.txt

52

53 volumes:

54 db_data:

55 EOF

To update the stack, use the following command:

1 docker stack deploy -c docker-compose.yml my-stack

Check where the services are running:

1 docker service ps my-stack_db

2 docker service ps my-stack_wordpress

You should verify that the WordPress service is running on the worker nodes as intended, and the
MySQL service is running on the manager node.

Next, we need to add memory and CPU reservations and limits to the services, and run 3 replicas
of the WordPress service. Here is the updated docker-compose.yml file:

1 cat <<EOF > docker-compose.yml

2 version: '3.9'

3

4 services:

5 db:

6 image: mysql:latest

7 volumes:

8 - db_data:/var/lib/mysql

9 environment:

10 MYSQL_ROOT_PASSWORD_FILE: /run/secrets/db_root_password

11 MYSQL_DATABASE: wordpress

12 MYSQL_USER: wordpress

13 MYSQL_PASSWORD_FILE: /run/secrets/db_password

14 secrets:

15 - db_root_password

Orchestration - Docker Swarm 230

16 - db_password

17 networks:

18 - wordpress-network

19 deploy:

20 placement:

21 constraints:

22 - node.role==manager

23 resources:

24 limits:

25 cpus: '1'

26 memory: 800M

27 reservations:

28 cpus: '0.5'

29 memory: 500M

30

31 wordpress:

32 depends_on:

33 - db

34 image: wordpress:latest

35 ports:

36 - "8000:80"

37 environment:

38 WORDPRESS_DB_HOST: db:3306

39 WORDPRESS_DB_USER: wordpress

40 WORDPRESS_DB_PASSWORD_FILE: /run/secrets/db_password

41 secrets:

42 - db_password

43 networks:

44 - wordpress-network

45 deploy:

46 placement:

47 constraints:

48 - node.role==worker

49 replicas: 3

50 resources:

51 limits:

52 cpus: '1'

53 memory: 800M

54 reservations:

55 cpus: '0.5'

56 memory: 500M

57

58 networks:

Orchestration - Docker Swarm 231

59 wordpress-network:

60 driver: overlay

61

62 secrets:

63 db_password:

64 file: .password.txt

65 db_root_password:

66 file: .root_password.txt

67

68 volumes:

69 db_data:

70 EOF

Each time we have a new version of the docker-compose.yml file, we need to update the stack using
the following command:

1 docker stack deploy -c docker-compose.yml my-stack

So there is no need to remove the stack and create it again.

Docker Swarm Rolling Updates

In the previous example, we updated the stack by executing the docker stack deploy command.
However, how canwe achieve the same operationwhile minimizing downtime? This is where rolling
updates come into play.

A rolling update is a deployment strategy that involves updating the services one by one.

Let’s see how to accomplish this. First, we need to modify the docker-compose.yml file to use the
rolling update strategy:

1 cat <<EOF > docker-compose.yml

2 version: '3.9'

3

4 services:

5 db:

6 image: mysql:latest

7 volumes:

8 - db_data:/var/lib/mysql

9 environment:

10 MYSQL_ROOT_PASSWORD_FILE: /run/secrets/db_root_password

11 MYSQL_DATABASE: wordpress

Orchestration - Docker Swarm 232

12 MYSQL_USER: wordpress

13 MYSQL_PASSWORD_FILE: /run/secrets/db_password

14 secrets:

15 - db_root_password

16 - db_password

17 networks:

18 - wordpress-network

19 deploy:

20 placement:

21 constraints:

22 - node.role==manager

23 resources:

24 limits:

25 cpus: '1'

26 memory: 800M

27 reservations:

28 cpus: '0.5'

29 memory: 500M

30 update_config:

31 parallelism: 1

32 delay: 10s

33 order: start-first

34

35 wordpress:

36 depends_on:

37 - db

38 image: wordpress:latest

39 ports:

40 - "8000:80"

41 environment:

42 WORDPRESS_DB_HOST: db:3306

43 WORDPRESS_DB_USER: wordpress

44 WORDPRESS_DB_PASSWORD_FILE: /run/secrets/db_password

45 secrets:

46 - db_password

47 networks:

48 - wordpress-network

49 deploy:

50 placement:

51 constraints:

52 - node.role==worker

53 replicas: 3

54 resources:

Orchestration - Docker Swarm 233

55 limits:

56 cpus: '1'

57 memory: 800M

58 reservations:

59 cpus: '0.5'

60 memory: 500M

61 update_config:

62 parallelism: 1

63 delay: 10s

64 order: start-first

65

66 networks:

67 wordpress-network:

68 driver: overlay

69

70 secrets:

71 db_password:

72 file: .password.txt

73 db_root_password:

74 file: .root_password.txt

75

76 volumes:

77 db_data:

78 EOF

This is what we added to the docker-compose.yml file:

• update_config: This is used to configure the rolling update strategy.
• parallelism: This is used to specify the number of containers that can be updated in parallel.
In our example, we set it to 1.

• delay: This is used to specify the delay between updates. In our example, we set it to 10 seconds.
• order: This is used to specify the order of the updates. In our example, we set it to start-first
whichmeans that the new containers will be started before the old ones are stopped. The default
value is stop-first which means that the old containers will be stopped before the new ones
are started.

Now, we need to update the stack using the following command:

1 docker stack deploy -c docker-compose.yml my-stack

To make our deployment more stable, we can also add other configurations like the healthcheck,
restart policy and the the failure action to the docker-compose.yml file:

Orchestration - Docker Swarm 234

1 cat <<EOF > docker-compose.yml

2 version: '3.9'

3

4 services:

5 db:

6 image: mysql:latest

7 volumes:

8 - db_data:/var/lib/mysql

9 environment:

10 MYSQL_ROOT_PASSWORD_FILE: /run/secrets/db_root_password

11 MYSQL_DATABASE: wordpress

12 MYSQL_USER: wordpress

13 MYSQL_PASSWORD_FILE: /run/secrets/db_password

14 secrets:

15 - db_root_password

16 - db_password

17 networks:

18 - wordpress-network

19 deploy:

20 placement:

21 constraints:

22 - node.role==manager

23 resources:

24 limits:

25 cpus: '1'

26 memory: 800M

27 reservations:

28 cpus: '0.5'

29 memory: 500M

30 update_config:

31 parallelism: 1

32 delay: 10s

33 order: start-first

34 restart_policy:

35 condition: any

36 delay: 5s

37 max_attempts: 3

38 window: 120s

39

40 wordpress:

41 depends_on:

42 - db

43 image: wordpress:latest

Orchestration - Docker Swarm 235

44 ports:

45 - "8000:80"

46 environment:

47 WORDPRESS_DB_HOST: db:3306

48 WORDPRESS_DB_USER: wordpress

49 WORDPRESS_DB_PASSWORD_FILE: /run/secrets/db_password

50 secrets:

51 - db_password

52 networks:

53 - wordpress-network

54 healthcheck:

55 test: ["CMD", "curl", "-f", "http://localhost:80"]

56 interval: 1m30s

57 timeout: 10s

58 retries: 3

59 deploy:

60 placement:

61 constraints:

62 - node.role==worker

63 replicas: 3

64 resources:

65 limits:

66 cpus: '1'

67 memory: 800M

68 reservations:

69 cpus: '0.5'

70 memory: 500M

71 update_config:

72 parallelism: 1

73 delay: 10s

74 order: start-first

75 failure_action: rollback

76 rollback_config:

77 parallelism: 0

78 order: stop-first

79 restart_policy:

80 condition: any

81 delay: 5s

82 max_attempts: 3

83 window: 120s

84

85 networks:

86 wordpress-network:

Orchestration - Docker Swarm 236

87 driver: overlay

88

89 secrets:

90 db_password:

91 file: .password.txt

92 db_root_password:

93 file: .root_password.txt

94

95 volumes:

96 db_data:

97 EOF

Here is what we added so far:

First, we added the restart_policy. This is used to configure the restart policy. In our example, we
set the condition to any which means that the container will be restarted regardless of the exit code.
We also set the delay to 5 seconds, the max attempts to 3 and the window to 120 seconds.

The condition can be set to one of the following values:

• none

• on-failure

• any: This is the default value.

The delay is the time to wait between restart attempts. The max_attempts is the maximum number
of attempts to restart a container. The window is the time window to evaluate the restart policy.

The window specifies how long to wait before deciding if a restart has succeeded.

We also added the rollback_config which is used to configure the rollback strategy.

In our example, we set the parallelism to 0 which means that all containers will rollback simulta-
neously. We also set the order to stop-first which means that the old containers will be stopped
before the new ones are started.

In the Wordpress service, we configured the healthcheck. In our example, we set the test to ["CMD",

"curl", "-f", "http://localhost:80"] which means that the healthcheck will run the command
curl -f http://localhost:80 every 1 minute and 30 seconds. If the command fails, the healthcheck
will be retried 3 times with a timeout of 10 seconds. When a container is considered unhealthy, it
will be stopped and replaced with a new one. During the deployment, an unhealthy container will
not receive any traffic.

We also added the failure_action which is used to configure the behavior when a task fails to
update. In our example, we set it to rollback which means that the deployment will be rolled back
when a task fails to update.

Now, we need to update the stack using the following command:

Orchestration - Docker Swarm 237

1 docker stack deploy -c docker-compose.yml my-stack

Using an External Load Balancer with Docker Swarm

Usually, a cluster resides in a private network and is not accessible from the outside world. This is
a common and good practice as it adds an extra layer of security. It is not recommended to expose
all the nodes of your cluster to the outside world. Therefore, it is common to use a front-end load
balancer.

For instance, you can use an AWS Application Load Balancer (ALB), Traefik, HAProxy, or Nginx as
a front-end load balancer. In this guide, we will focus on setting up an HAProxy load balancer.

To begin, create a newmachine outside the cluster that is part of the same local network as the cluster.
We will refer to this machine as “loadbalancer” and use Ubuntu 22.04 as the operating system.

Next, you need to install HAProxy on the loadbalancer machine:

1 sudo apt update

2 sudo apt install -y haproxy

Now, let’s configureHAProxy.We need to add the following configuration to the /etc/haproxy/haproxy.cfg
file:

1 # export Wordpress service port

2 export PORT=8000

3 export MANAGER_IP=<MANAGER_IP>

4 export WORKER01_IP=<WORKER01_IP>

5 export WORKER02_IP=<WORKER02_IP>

6

7 # create HAProxy configuration file

8 cat <<EOF >> /etc/haproxy/haproxy.cfg

9 # Configure HAProxy to listen on port 80

10 frontend lb

11 bind *:80

12 stats uri /haproxy?stats

13 default_backend wordpress

14

15 # Route to all nodes in the cluster on port 8000 to reach the wordpress application

16 backend wordpress

17 balance roundrobin

18 server manager $MANAGER_IP:$PORT check

19 server worker01 $WORKER01_IP:$PORT check

20 server worker02 $WORKER02_IP:$PORT check

21 EOF

Orchestration - Docker Swarm 238

Make sure to change the values of MANAGER_IP, WORKER01_IP and WORKER02_IP with the right values.
Now, restart HAProxy:

1 sudo systemctl restart haproxy

Now, you should be able to access the WordPress application from the load balancer IP. It will be
listening on port 80 and redirecting traffic to the WordPress service on port 8000 using the round
robin algorithm. This ensures that traffic is evenly distributed among the nodes. If desired, you can
change the algorithm to use another method, such as leastconn, where HAProxy sends traffic to the
node with the fewest number of connections.

The HAProxy configuration in the provided example is static, meaning it needs to be manually
updated for any changes in the Docker Swarm, such as adding or removing nodes or services. Not
only is this error-prone in dynamic environments, but updating the HAProxy configuration file itself
is also a manual process. To overcome this challenge, we can use an Ingress instead of a simple load
balancer.

To continue using HAProxy, it is recommended to incorporate a service discovery tool like Consul.
Consul is a service discovery tool that enables the discovery of services within a cluster. Additionally,
it can automatically update the HAProxy configuration file. For more information, refer to the
HAProxy and Consul with DNS for Service Discovery blog post¹⁴⁴ and the official Consul website¹⁴⁵.

There are also other alternatives like Traefik¹⁴⁶, which is amodernHTTP reverse proxy, load balancer,
and service mesh. It supports multiple backends such as Docker Swarm, Kubernetes, Amazon ECS,
Rancher, and more. Traefik natively integrates with Docker Swarm and can automatically discover
services, react to changes in the Swarm, and adjust its routing rules dynamically without needing to
restart or reconfigure. Traefik is particularly well-suited for Docker Swarm environments due to its
seamless integration, automatic service discovery, and ease of configuration, especially in dynamic
and frequently changing environments.

There are other alternatives like:

• Docker Flow Proxy: A project aimed at creating a reconfigurable proxy for Docker Swarm.
It works in conjunction with Docker Flow Swarm Listener to automatically reconfigure itself
when services are scaled up or down.

• Swarm-Router: 1 “zero config” ingress router for Docker swarm mode deployments, based on
the mature and superior haproxy library and a little of golang offering unique advantages

• Envoy Proxy: Although not specifically designed for Docker Swarm, Envoy Proxy can be used
within a Swarm setup. Envoy is a high-performance distributed proxy designed for cloud-
native applications.

• Caddy-Docker-Proxy: A plugin that enables Caddy¹⁴⁷ to be used as a reverse proxy for Docker
containers via labels.

¹⁴⁴https://www.haproxy.com/blog/haproxy-and-consul-with-dns-for-service-discovery
¹⁴⁵https://www.consul.io/
¹⁴⁶https://traefik.io/
¹⁴⁷https://caddyserver.com/

https://www.haproxy.com/blog/haproxy-and-consul-with-dns-for-service-discovery
https://www.consul.io/
https://traefik.io/
https://caddyserver.com/
https://www.haproxy.com/blog/haproxy-and-consul-with-dns-for-service-discovery
https://www.consul.io/
https://traefik.io/
https://caddyserver.com/

Orchestration - Docker Swarm 239

Let’s see an example of how to use Traefik with Docker Swarm in the next section.

Using Traefik as a Front-End Load Balancer with
Docker Swarm

Let’s start with a basic example. Create a network and two stacks:

• A network called whoami that will be used by the whoami service and Traefik.
• A Traefik stack that contains a Traefik service.
• A sample stack that contains a whoami service.

Traefik has to access to the Docker Swarm API which is only available on manager nodes. This is
why we need to deploy Traefik on a manager node.

When Traefik receives a request, it will check the routing rules and forward the request to the
right service. In our example, we will use the following routing rule: Host(whoami.$MANAGER_NODE_-
IP.nip.io). Thismeans that Traefikwill forward the request to thewhoami servicewhen the request
is sent to whoami.$MANAGER_NODE_IP.nip.io.

nip.io¹⁴⁸ is a DNS service that provides wildcard DNS for any IP address. This will allow us to access
the whoami service using the following URL: whoami.$MANAGER_NODE_IP.nip.io.

If we need to deploy more services and need to expose them to the outside world, we can use other
routing rules: domains, subdomains, paths, etc.

How Traefik works

It is also worth noting that our setup is a cluster with 1 manager and 1 worker.

1 # create the traefik stack

2 cd $HOME && mkdir -p traefik && cd traefik && cat <<EOF > docker-compose.yml

3 # Docker Compose version

4 version: '3.9'

5 # Define services

6 services:

7 # Reverse proxy service using Traefik

8 reverse-proxy:

9 # Use Traefik version 2.10 image

10 image: traefik:v2.10

11 # Traefik command-line options

¹⁴⁸https://nip.io

https://nip.io/
https://nip.io/

Orchestration - Docker Swarm 240

12 command:

13 # Enable insecure API (for testing purposes)

14 - "--api.insecure=true"

15 # Enable Docker as a provider

16 - "--providers.docker"

17 # Enable Docker Swarm mode

18 - "--providers.docker.swarmMode=true"

19 # Enable access log

20 - "--accesslog=true"

21 # Set log level to DEBUG

22 - "--log.level=DEBUG"

23 # Set log format to JSON

24 - "--log.format=json"

25 # Expose ports for HTTP traffic and the Traefik dashboard

26 ports:

27 # Expose port 80 for HTTP traffic

28 - "80:80"

29 # Expose port 8080 for the Traefik dashboard

30 - "8080:8080"

31 # Mount the Docker socket for dynamic configuration

32 volumes:

33 - /var/run/docker.sock:/var/run/docker.sock

34 deploy:

35 labels:

36 # Disable Traefik for this service

37 traefik.enable: "False"

38 placement:

39 constraints:

40 # Deploy this service only on manager nodes in Docker Swarm

41 - node.role == manager

42 networks:

43 # Connect this service to the 'whoami' external network

44 - whoami

45 # Define external networks

46 networks:

47 # External network named 'whoami'

48 whoami:

49 external: true

50 EOF

51

52 # make sure to change MANAGER_NODE_IP by the external IP of the manager node

53 export MANAGER_NODE_IP=<MANAGER_NODE_IP>

54

Orchestration - Docker Swarm 241

55 # create the whoami stack

56 cd $HOME && mkdir -p whoami && cd whoami && cat <<EOF > docker-compose.yml

57 version: '3.9'

58 services:

59 # Service named 'whoami' using the containous/whoami image

60 whoami:

61 image: containous/whoami

62 deploy:

63 # Deploy 2 replicas of the 'whoami' service

64 replicas: 2

65 labels:

66 # Enable Traefik for this service

67 traefik.enable: "True"

68 # Configure the Traefik routing rule

69 # Change [MANAGER_NODE_IP] by the external IP of the manager node

70 traefik.http.routers.whoami.rule: Host(\`whoami.$MANAGER_NODE_IP.nip.io\`)

71 # Use the 'http' entrypoint for routing

72 traefik.http.routers.whoami.entrypoints: http

73 # Set the load balancer port to 80

74 traefik.http.services.whoami.loadbalancer.server.port: 80

75 networks:

76 # Connect this service to the 'whoami' network

77 - whoami

78 # Define external networks

79 networks:

80 # External network named 'whoami'

81 whoami:

82 external: true

83 EOF

After creating the above resources, we need to execute the following commands:

1 # create the network

2 docker network create --driver overlay --attachable whoami

3 # create the traefik stack

4 cd $HOME && docker stack deploy -c traefik/docker-compose.yml traefik

5 # create the whoami stack

6 cd $HOME && docker stack deploy -c whoami/docker-compose.yml whoami

Now, you should be able to access the whoami service using the following URL: whoami.<manager_-
node_ip>.nip.io.

Now, if you want to do the same thing for the Wordpress stack that we created in the previous
section, you need to adapt your compose file by adding the right labels to the WordPress service.

Orchestration - Docker Swarm 242

Let’s see the full docker-compose.yml file:

1 # create the folder wordpress

2 cd $HOME && mkdir -p wordpress

3 # add the secrets

4 echo "your_db_root_password" > wordpress/.root_password.txt

5 echo "your_db_wordpress_password" > wordpress/.password.txt

6

7 # export MANAGER_NODE_IP

8 MANAGER_NODE_IP=<MANAGER_NODE_IP>

9

10 # create the network

11 docker network create --driver overlay --attachable wordpress

12

13 # create the yaml file

14 # make sure to change [MANAGER_NODE_IP] by the external IP of the manager node

15 cd $HOME && cat <<EOF > wordpress/docker-compose.yml

16 version: '3.9'

17 services:

18 db:

19 image: mysql:latest

20 volumes:

21 - db_data:/var/lib/mysql

22 environment:

23 MYSQL_ROOT_PASSWORD_FILE: /run/secrets/db_root_password

24 MYSQL_DATABASE: wordpress

25 MYSQL_USER: wordpress

26 MYSQL_PASSWORD_FILE: /run/secrets/db_password

27 secrets:

28 - db_root_password

29 - db_password

30 networks:

31 - internal

32 deploy:

33 placement:

34 constraints:

35 - node.role==manager

36 resources:

37 limits:

38 cpus: '1'

39 memory: 800M

40 reservations:

41 cpus: '0.5'

Orchestration - Docker Swarm 243

42 memory: 500M

43 update_config:

44 parallelism: 1

45 delay: 10s

46 order: start-first

47 restart_policy:

48 condition: any

49 delay: 5s

50 max_attempts: 3

51 window: 120s

52 wordpress:

53 depends_on:

54 - db

55 image: wordpress:latest

56 # comment the ports

57 # Traefik will handle the routing to the WordPress service on port 80.

58 #ports:

59 # - "8000:80"

60 environment:

61 WORDPRESS_DB_HOST: db:3306

62 WORDPRESS_DB_USER: wordpress

63 WORDPRESS_DB_PASSWORD_FILE: /run/secrets/db_password

64 secrets:

65 - db_password

66 networks:

67 - wordpress

68 - internal

69 healthcheck:

70 test: ["CMD", "curl", "-f", "http://localhost:80"]

71 interval: 1m30s

72 timeout: 10s

73 retries: 3

74 deploy:

75 # add labels

76 labels:

77 # Enable Traefik for this service

78 traefik.enable: "True"

79 # Configure the Traefik routing rule

80 # Change [MANAGER_NODE_IP] by the external IP of the manager node

81 traefik.http.routers.wordpress.rule: Host(\`wordpress.$MANAGER_NODE_IP.nip.i\

82 o\`)

83 # Use the 'http' entrypoint for routing

84 traefik.http.routers.wordpress.entrypoints: http

Orchestration - Docker Swarm 244

85 # Set the load balancer port to 80 of the WordPress service

86 # By default, Traefik uses the first exposed port of a container unless you \

87 specify the port.

88 traefik.http.services.wordpress.loadbalancer.server.port: 80

89 placement:

90 constraints:

91 - node.role==worker

92 replicas: 3

93 resources:

94 limits:

95 cpus: '1'

96 memory: 800M

97 reservations:

98 cpus: '0.5'

99 memory: 500M

100 update_config:

101 parallelism: 1

102 delay: 10s

103 order: start-first

104 failure_action: rollback

105 rollback_config:

106 parallelism: 0

107 order: stop-first

108 restart_policy:

109 condition: any

110 delay: 5s

111 max_attempts: 3

112 window: 120s

113 networks:

114 wordpress:

115 external: true

116 internal:

117 driver: overlay

118 secrets:

119 db_password:

120 file: .password.txt

121 db_root_password:

122 file: .root_password.txt

123 volumes:

124 db_data:

125 EOF

You need to update the Traefik configuration to add the new network:

Orchestration - Docker Swarm 245

1 # create the traefik stack

2 cd $HOME && mkdir -p traefik && cat <<EOF > traefik/docker-compose.yml

3 # Docker Compose version

4 version: '3.9'

5 # Define services

6 services:

7 # Reverse proxy service using Traefik

8 reverse-proxy:

9 # Use Traefik version 2.10 image

10 image: traefik:v2.10

11 # Traefik command-line options

12 command:

13 # Enable insecure API (for testing purposes)

14 - "--api.insecure=true"

15 # Enable Docker as a provider

16 - "--providers.docker"

17 # Enable Docker Swarm mode

18 - "--providers.docker.swarmMode=true"

19 # Enable access log

20 - "--accesslog=true"

21 # Set log level to DEBUG

22 - "--log.level=DEBUG"

23 # Set log format to JSON

24 - "--log.format=json"

25 # Expose ports for HTTP traffic and the Traefik dashboard

26 ports:

27 # Expose port 80 for HTTP traffic

28 - "80:80"

29 # Expose port 8080 for the Traefik dashboard

30 - "8080:8080"

31 # Mount the Docker socket for dynamic configuration

32 volumes:

33 - /var/run/docker.sock:/var/run/docker.sock

34 deploy:

35 labels:

36 # Disable Traefik for this service

37 traefik.enable: "False"

38 placement:

39 constraints:

40 # Deploy this service only on manager nodes in Docker Swarm

41 - node.role == manager

42 networks:

43 - whoami

Orchestration - Docker Swarm 246

44 - wordpress

45 # Define external networks

46 networks:

47 # External network named 'whoami'

48 whoami:

49 external: true

50 # External network named 'wordpress'

51 wordpress:

52 external: true

53 EOF

Deploy the wordpress stack and update the traefik one:

1 cd $HOME/wordpress && docker stack deploy -c docker-compose.yml wordpress

2 cd $HOME/traefik && docker stack deploy -c docker-compose.yml traefik

We have deployed the WordPress stack, the Whoami stack and the Traefik stack. Now, we should
be able to:

• access theWordPress application using the followingURL: wordpress.<manager_node_ip>.nip.io.
• access the Whoami application using the following URL: whoami.<manager_node_ip>.nip.io.

Here, we can change the nip.io service to a real domain name and use a DNS provider like Cloudflare
to manage the DNS records. We could also use two subdomains for both services or use paths instead
of subdomains.

Example:

1 rule = "Host(`example.com`) || (Host(`example.org`) && Path(`/wordpress`))"

Docker Swarm Logging

Docker Swarm has a built-in logging system that allows you to see logs from all the services in the
cluster. However, logs are not stored and should be sent to an external logging system like ELK or
Loki.

This is how to see the logs of a service:

Orchestration - Docker Swarm 247

1 export service_name=my-stack_wordpress

2 docker service logs $service_name

To follow the logs, use the following command:

1 docker service logs -f $service_name

2 # or docker service logs --follow $service_name

You can see logs since a specific time using the --since option:

1 docker service logs --since 10m $service_name

2 # or docker service logs --since=2023-10-01T00:00:00 $service_name

Other options are available:

• --tail: This is used to show the last N lines of the logs. The default value is all.
• --details: This is used to show extra details provided to logs.
• --no-trunc: This is used to show the full logs instead of truncating them.
• --timestamps: This is used to show timestamps.

Docker Swarm vs. Kubernetes

Although Kubernetes is the most popular container orchestration tool, Docker Swarm remains a
viable choice for many use cases. Here are some advantages of Docker Swarm over Kubernetes:

• Docker Swarm is easier to set up and use compared to Kubernetes.
• Docker Swarm is more lightweight than Kubernetes.
• Docker Swarm is more accessible than Kubernetes.
• Docker Swarm is built-in to Docker Engine.
• Docker Swarm scales faster than Kubernetes.
• Docker Swarm provides automatic load balancing between containers of the same service.

Creating a Swarm cluster can be as simple as running the following command:

1 docker swarm init

Creating a Kubernetes cluster requires more steps and extensive configuration compared to Swarm.
However, Swarm’s simplicity comes with limitations, including the lack of support for multiple
clusters (federation), multiple runtimes, automatic scaling, and fewer integrations compared to
Kubernetes.

Orchestration - Docker Swarm 248

Despite these differences, there are many shared features between Swarm and Kubernetes. Both are
open source, declarative, self-healing, highly available, scalable, portable, and extensible. Concepts
like load balancing, ingress, and service discovery are also common to both platforms.

Docker Swarm is a suitable choice for small and medium projects, as well as projects that prioritize
a simple setup and don’t require advanced features like federation, multiple runtimes, or automatic
scaling.

While Kubernetes is more widely adopted than Docker Swarm, it’s worth noting that some users
may be over-engineering their projects by using Kubernetes when it is not necessary. Kubernetes
is better suited for larger projects, and some teams are even using both Swarm and Kubernetes to
benefit from the advantages of both platforms.

Additionally, Swarm can serve as a starting point for projects that may be migrated to Kubernetes
in the future.

Docker Desktop
What is Docker Desktop?

Docker Desktop is a user-friendly, one-click-install application designed for Mac, Linux, and Win-
dows environments. With Docker Desktop, you can build, share, and run containerized applications
and microservices.

This tool provides a Graphical User Interface that simplifies container management, application
deployment, and image handling directly on your local machine. You have the flexibility to use
Docker Desktop on its own or in conjunction with the command-line interface (CLI).

According to Docker inc., Docker Desktop reduces the time spent on complex setups so you can focus
on writing code. It takes care of port mappings, file system concerns, and other default settings, and
is regularly updated with bug fixes and security updates.

These are some of the features that Docker Desktop offers:

• Docker Engine: The core Docker technology that enables container creation and management
• Docker CLI client: The command-line interface that allows you to interact with Docker Engine
• Docker Scout (paid): A tool that helps you find and fix vulnerabilities in your Docker images
• Docker Buildx: A CLI plugin that extends the Docker CLI with the full support of the features
provided by Moby BuildKit builder toolkit

• Docker Extensions: A set of tools that extend the functionality of Docker Desktop
• Docker Compose: A tool for defining and running multi-container Docker applications
especially useful in development environments

• Docker Content Trust: A feature that provides the ability to use digital signatures for data sent
to and received from remote Docker registries

• Kubernetes: An open-source container orchestration system for automating deployment,
scaling, and management of containerized applications

• Credential Helper: A suite of programs to use native stores to keep Docker credentials safe.

How to Install Docker Desktop

Docker Desktop works on Mac, Linux, and Windows. The installation process is straightforward
and can be completed in a few minutes.

The following sections provide instructions for installing Docker Desktop on Ubuntu 22.04. Mac
users should follow the instructions in this page¹⁴⁹, andWindows users should follow the instructions
in this page¹⁵⁰. Other Linux distributions like Fedora, Debian-based and Arch-based distributions are
¹⁴⁹https://docs.docker.com/desktop/install/mac-install/
¹⁵⁰https://docs.docker.com/desktop/windows/install/

https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/windows/install/

Docker Desktop 250

also supported. You can find the installation instructions for these distributions here¹⁵¹.

For Ubuntu, you can install Docker Desktop using the following steps:

For non-Gnome Desktop environments, start by installing the Gnome terminal:

1 sudo apt install gnome-terminal

Uninstall any previous versions of Docker Desktop:

1 rm -r $HOME/.docker/desktop

2 sudo rm /usr/local/bin/com.docker.cli

3 sudo apt purge docker-desktop

Install Docker Desktop:

1 sudo apt-get update

2 # docker-desktop-4.24.2 is the latest version at the time of writing this guide

3 wget https://desktop.docker.com/linux/main/amd64/docker-desktop-4.24.2-amd64.deb

4 sudo apt install ./docker-desktop-4.24.2-amd64.deb

You can now start Docker Desktop from the Applications menu or by running the following
command:

1 systemctl --user start docker-desktop

To enable Docker Desktop to start on login use the following command:

1 systemctl --user enable docker-desktop

To stop Docker Desktop use the following command:

1 systemctl --user stop docker-desktop

¹⁵¹https://docs.docker.com/desktop/install/linux-install/

https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/

Common Security Threats
Docker vs. VMs: Which is more secure?

Docker containers are often compared to virtual machines for pedagogical purposes. Many Docker
introductions highlight the advantages of Docker containers, such as being lighter, faster, and not
requiring a hypervisor or guest OS. However, it is important to consider security when comparing
Docker containers to virtual machines.

Let’s examine some common differences between Docker containers and virtual machines in terms
of security.

Virtual Machines:

(-) Virtual machines run a full guest OS, which increases the attack surface.

(+) Virtual machines provide strong isolation by running each VM as a separate guest OS on top
of the host OS, managed by the hypervisor. This hardware-level isolation can offer better security
against certain types of attacks.

(+) Virtualization technology has been around for a long time and is well understood and mature,
whereas Docker is still catching up.

Docker Containers:

(-) Containers share the same kernel as the host OS, meaning that a compromised container could
potentially compromise the host OS.

(-) Containerization is a relatively new technology compared to virtualization, so it is not as mature
in terms of security.

(+) Docker containers are more lightweight than VMs, resulting in a smaller attack surface.

(+) Containers are lighter and have less overhead, making it faster and easier to patch them compared
to VMs.

(+) Docker containers are immutable, meaning they cannot be changed once built. This makes it
easier to detect changes and potential security breaches.

Conclusion: It is important to note that there is no definitive conclusion when comparing VMs and
Docker containers in terms of security. In most cases, Docker users do not use Docker containers as
a replacement for VMs, but rather in conjunction with them. Docker containers are used for running
applications, improving portability, breaking applications into microservices, creating development
environments, etc., while VMs are used to run Docker containers. Therefore, both technologies are
used together.

Common Security Threats 252

Docker is neither more nor less secure than a VM, and the VM vs. Docker security discussions are
addressing the wrong question. Many problems, especially in the security field, are often PEBCAK
problems (PEBCAK: Problem Exists Between Chair And Keyboard). Thus, a more constructive
question would be: “How can I enhance the security of my Docker containers?”.

Next, we will explore common security threats to be aware of when using Docker and introduce
best practices to enhance the security of your Docker containers.

Kernel Panic & Exploits

A container is a process that runs on top of the host OS and has direct access to the Kernel. However,
this direct access, which is one of Docker’s strengths, can also lead to serious damages. If a container
triggers a Kernel panic, it can potentially bring down both the host and other containers.

Consider a scenario where a Docker container is running an application that requires access to low-
level system or kernel resources, such as network operations. If there is a bug in the application or
the kernel module providing access to these resources, the container can crash the kernel and cause
the entire host to go down.

Container Breakouts & Privilege Escalation

If you start the container “X” with the user “Y”, container “X” will have the same privileges on the
host system as the user “Y”. This poses a risk when a process breaks out of the container. In such
cases, if you were root in the container, you would also have root access on the host system.

Container breakout can lead to unauthorized access across containers, hosts, and even data centers.

The Dirty COW vulnerability (CVE-2016-5195)¹⁵² provides a clear example of how kernel vulnera-
bilities can be exploited in container environments through privilege escalation.

Below is a basic example demonstrating how to gain access to the root user of the host system from
within a container:

1 # Create a hidden file containing the line to add to /etc/passwd

2 # The output of the command is redirected to /.hidden

3 # The hidden file will contain something like: myroot:1mysalt$mypassword:0:0:root:\

4 /root:/bin/bash

5 echo "myroot:$(openssl passwd -1 -salt mysalt mypassword):0:0:root:/root:/bin/bash" \

6 > /.hidden

7 # Start a container and add the hidden file content to /etc/passwd

8 docker run -ti -v /:/mnt/ --name container alpine sh -c "cat /mnt/.hidden >> /mnt/et\

9 c/passwd"

¹⁵²https://github.com/scumjr/dirtycow-vdso

https://github.com/scumjr/dirtycow-vdso
https://github.com/scumjr/dirtycow-vdso

Common Security Threats 253

10 # Now you have access to the root user of the host system

11 su - myroot

12 whoami

Another example of a DoS attack is the CVE-2019-5736¹⁵³ vulnerability. It enables attackers to
overwrite the host runc binary¹⁵⁴ and gain root-level code execution on the host. This vulnerability
was discovered by Adam Iwaniuk and Borys Popławski and has been patched in runc v1.0.0-rc6.

Poisoned Images

It is possible that you download and use a Docker image that runs malware (e.g., scanning the
network for sensitive data, downloading malware from a distant host, executing harmful actions,
cryptojacking¹⁵⁵ .. etc.). An attacker can also get access to your data if you are using his poisoned
image.

In 2019, just a few years after the release of the first Docker release, Unit 42 researchers¹⁵⁶ discovered
the first-ever cryptojacking worm on Docker Hub. The worm, dubbed Graboid, was hidden in a
Docker image that was downloaded more than 10000 times. The worm was able to spread to other
containers and mine Monero cryptocurrency. This is how the worm worked:

• The attacker targets an unsecured Docker host and remotely commands it to download and
deploy the malicious Docker image pocosow/centos:7.6.1810. This image contains a Docker
client tool for communicating with other Docker hosts.

• The container’s entry point script, “/var/sbin/bash”, downloads four shell scripts from a Com-
mand and Control (C2) server: “live.sh”, “worm.sh”, “cleanxmr.sh”, and “xmr.sh”, executing
them sequentially.
1. “live.sh”: Reports the number of available CPUs on the compromised host back to the C2

server.
2. “worm.sh”: Downloads a list of over 2000 IP addresses, which are hosts with unsecured

Docker API endpoints. It then randomly selects an IP from this list and uses the Docker
client tool to remotely deploy the pocosow/centos container on the chosen host.

3. “cleanxmr.sh”: Selects a vulnerable host from the IP list and stops cryptojacking containers
running on it, including gakeaws/nginx and other containers based on xmrig.

4. “xmr.sh”: Picks a host from the IP list and deploys the gakeaws/nginx image on it. This
image contains a disguised xmrig binary, masquerading as nginx, for cryptojacking.

Through this process, repeated over and over again on every host, Graboid spreads from host to host,
stopping competitors’ cryptojacking operations and initiating its own, leveraging the computational
resources of the compromised hosts (CPUs and GPUs) for Monero mining.

¹⁵³https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5736
¹⁵⁴https://asciinema.org/a/226969
¹⁵⁵https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/
¹⁵⁶https://unit42.paloaltonetworks.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5736
https://asciinema.org/a/226969
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/
https://unit42.paloaltonetworks.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5736
https://asciinema.org/a/226969
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/
https://unit42.paloaltonetworks.com/

Common Security Threats 254

Denial-of-service Attacks

All containers on the same host share the same Kernel as the host system. Consequently, if a
container monopolizes the Kernel resources, it can cause other containers to be deprived. These
“poisoned” containers can consume CPU time and memory resources, potentially causing other
containers and even the host system to crash.

Compromising secrets

A Docker container has the potential to contain or transmit sensitive data. This data can be
vulnerable to being viewed and stolen by attackers during transit or when at rest. The same security
threats apply to microservices architecture, but there are effective solutions available to mitigate
these risks.

In 2023, researchers at RWTH Aachen University in Germany conducted a study where they
analyzed 337,171 images from Docker Hub and private registries. The study revealed that 8.5% of
these images contained sensitive information, such as private keys and API secrets. Alarmingly,
many of these exposed keys were actively being used for malicious purposes. This resulted in the
exposure of 52,107 valid private keys and 3,158 distinct API secrets across 28,621 Docker images on
Docker Hub.

Application Level Threats

A container is primarily designed for building, shipping, and running applications. However, even
if the host and container are secured, the application layer can still be vulnerable to attacks.

Some common threats at the application level include:

• XSS vulnerabilities and SQL injection
• Insecure deserialization
• Broken authentication and session management
• Exposure of sensitive data
• Broken access control
• Security misconfiguration
• Insecure direct object references
• Use of components with known vulnerabilities
• … and so on.

Host System Level Treats

If the host system is not up to date, you may have security threats such as Heartbleed, Shellshock
(Bashdoor), and other vulnerabilities.

Docker Security Best Practices
Implement Security by Design

Designing a system to be secure from the start is a good practice, just like with any other security
threat. The application layer, containerization layer, host system, software, and cloud architecture,
among others, are all components of the same running stack. Any of these elements could potentially
be the weakest link in your system.

Security should not be an afterthought. It should be incorporated into the development process right
from the beginning. A common mistake is adding security measures at the end of the development
process, which is not advisable. Instead, security should be integrated into the CI/CD pipeline using
a DevSecOps approach.

By designing a system to be secure from the outset, you can mitigate the damage in the event of a
container breakout.

setuid/setgid Binaries

In Linux, every file and program has permissions that determine who can read, write, or execute
them. Normally, when you run a program, it operates with your user permissions. However, there
are times when a program needs to perform actions that require higher permissions than those of a
regular user. This is where setuid (Set User ID) and setgid (Set Group ID) come into play.

In simple terms, setuid and setgid are special settings that allow regular users to temporarily
execute specific programs with elevated permissions. These settings utilize a specific bit in the file’s
permissions to grant temporary elevated privileges. With setuid, the user’s privileges are elevated
to those of the file’s owner, while setgid elevates them to the group level.

Here’s a common example using the passwd command, which typically has the setuid bit set:

1 ls -l /usr/bin/passwd

The output will be something like:

1 -rwsr-xr-x 1 root root 59976 Nov 24 2022 /usr/bin/passwd

Notice the “s” in the permissions part (-rwsr-xr-x). This “s” indicates that the setuid bit is set.

The setuid and setgid bits, if compromised by an attacker, can be used to gain elevated privileges.

We can find these binaries using the following command:

Docker Security Best Practices 256

1 find / -perm +6000 -type f -exec ls -ld {} \; 2>/dev/null

We can also remove the setuid and setgid bits from all binaries using the following command
inside the Dockerfile:

1 RUN find / -perm +6000 -type f -exec chmod a-s {} \; || true

This is a prevention from some privilege escalation threats and it will typically be applied to files
like:

1 /sbin/unix_chkpwd

2 /usr/bin/chage

3 /usr/bin/passwd

4 /usr/bin/mail-touchlock

5 /usr/bin/mail-unlock

6 /usr/bin/gpasswd

7 /usr/bin/crontab

8 /usr/bin/chfn

9 /usr/bin/newgrp

10 /usr/bin/sudo

11 /usr/bin/wall

12 /usr/bin/mail-lock

13 /usr/bin/expiry

14 /usr/bin/dotlockfile

15 /usr/bin/chsh

16 /usr/lib/eject/dmcrypt-get-device

17 /usr/lib/pt_chown

18 /bin/ping6

19 /bin/su

20 /bin/ping

21 /bin/umount

22 /bin/mount

However, this approach is quite aggressive as it will remove the setuid and setgid bits from many
system files. This could potentially break some applications. For instance, the “ping” command
requires setuid to function properly, as it needs access to raw network sockets.

Control Resources

By default, when multiple containers are running on a Docker host without specific resource limits,
they share the CPU and memory resources of the host in an unrestricted manner. Here’s a general
overview of how this works:

Docker Security Best Practices 257

• Docker uses completely fair scheduling (CFS) under the Linux kernel to distribute CPU time
among containers. This means that if no specific CPU limits are set for containers, they can
use the CPU as needed, competing equally for CPU time.

• Memory is also shared among containers. By default, there’s no hard limit on how much
memory a container can use, unless specified.

In environments where multiple containers are running, and if some of them are resource-intensive,
this can lead to resource contention. Containers may compete for CPU and memory, potentially
degrading performance. Therefore, it’s important to control the resources used by each container.
Docker provides flags to control the resources used by a container. This helps avoid DoS attacks and
limit damage in the case of a container breakout.

Here’s an example command that demonstrates how to set resource limits when running a Docker
container:

1 docker run -d --name my_container --memory=512m --cpus=1.5 ubuntu:latest

• --memory=512m: Limits the container’s memory usage to 512 megabytes. This prevents the
container from using excessive memory, which could impact other containers or the host
system.

• --cpus=1.5: Limits the container to use a maximum of 1.5 CPUs. This means the container can
use one full CPU and half of another.

Use Notary to Verify Image Integrity

Be cautious when pulling or using images from public repositories. Always verify the integrity of
the images you use. You can use the docker trust inspect command to check the image’s integrity.
This command verifies the image’s signature and the publisher’s identity.

To avoid security issues, only use images from trusted sources. You can also use the docker trust

sign command to sign images you build yourself.

Additionally, use images from automated builds with linked source code, official images, and trusted
sources. A more secure approach is to build your own base images from scratch¹⁵⁷.

Let’s take a look at an example of how to verify the integrity of an image. We will use Notary,
a tool that provides trust over any content. Notary is built on the TUF (The Update Framework)
specification and is part of the CNCF (Cloud Native Computing Foundation).

The TUF specification is a framework that offers a flexible solution to software update security. It
is designed to be integrated into existing software development and publishing workflows. TUF
provides a set of libraries and tools to secure software update systems against various attacks. It

¹⁵⁷https://hub.docker.com/_/scratch

https://hub.docker.com/_/scratch
https://hub.docker.com/_/scratch

Docker Security Best Practices 258

ensures that the software running on your system is the expected software and has not beenmodified
by a malicious attacker.

Here’s how the TUF specification works:

• The client developer sets up a TUF server and publishes the public keys to the client.
• When there’s a new update, the developer signs the files with their keys. This signature is then
added to the metadata.

• The client downloads the metadata and verifies the signature. If the signature is valid, the client
downloads the update.

One notable early adoption of the TUF specification in the open-source community was by Docker
Content Trust, which is an implementation of the Notary project from Docker. Notary, built on the
TUF framework, serves two purposes:

1. It helps Docker publishers sign their images and verify their identity.
2. It helps Docker users verify the integrity of the images they use.

When you pull a signed image, Docker CLI communicates with the Notary server to verify the
image’s signature and the publisher’s identity. If the image is signed and the signature is valid, the
image is pulled. Otherwise, the pull operation fails.

Now, let’s see how to sign and verify an image using Notary in practice. Since this is a development
environment, we will use a self-signed certificate, and both the client and the server are on the same
machine.

First, install Notary on the client side (the host you use to pull the image):

1 wget --no-check-certificate -O /usr/local/bin/notary https://github.com/docker/notar\

2 y/releases/download/v0.6.1/notary-Linux-amd64 && chmod a+x /usr/local/bin/notary

Then, you need to create a Notary repository on the server side:

1 # clone the notary repository

2 cd /

3 git clone https://github.com/theupdateframework/notary.git

4 # generate own certificates

5 cd /notary/fixtures

6 ./regenerateTestingCerts.sh

7 # build and start the notary server and the notary signer

8 cd /notary/

9 docker compose build

10 docker compose up -d

11 # if you are testing on your localhost, add the following line to /etc/hosts

12 echo "127.0.0.1 notaryserver" >> /etc/hosts

Now, test the Notary server:

Docker Security Best Practices 259

1 # remove the default certificate file

2 rm -f /etc/ssl/certs/root-ca.pem

3 # make the notray server certificate known to the machine

4 cp /notary/fixtures/intermediate-ca.crt /usr/local/share/ca-certificates/intermediat\

5 e-ca.crt && update-ca-certificates

Create an alias for the Notary client:

1 mkdir -p ~/.docker/trust

2 alias notary="notary -s https://notaryserver:4443 -d ~/.docker/trust --tlscacert /us\

3 r/local/share/ca-certificates/intermediate-ca.crt"

On the client, generate a trusted user key:

1 # generate a trusted user key

2 export DOCKER_USER=admin

3 docker trust key generate $DOCKER_USER --dir ~/.docker/trust

Adapt the DOCKER_USER variable to your needs.

We are going to use DockerHub as a registry, so you need to login to DockerHub:

1 docker login

Now let’s see how to sign an image:

1 # update this variable with your DockerHub username

2 export DOCKERHUB_USERNAME=[YOUR_DOCKERHUB_USERNAME]

3 # pull an image

4 docker pull alpine:latest

5 # tag the image

6 docker tag alpine:latest $DOCKERHUB_USERNAME/alpine:signtest

7 # switch to Docker trusted mode

8 export DOCKER_CONTENT_TRUST=1

9 export DOCKER_CONTENT_TRUST_SERVER=https://notaryserver:4443

10 # sign the image

11 docker trust sign $DOCKERHUB_USERNAME/alpine:signtest

12 # push the image

13 docker push $DOCKERHUB_USERNAME/alpine:signtest

The image is now signed and pushed to DockerHub. The metadata is also automatically uploaded
to the Notary server at the same time. Let’s see how to verify the image:

Docker Security Best Practices 260

1 # remove the local image

2 docker rmi $DOCKERHUB_USERNAME/alpine:signtest

3 # pull the image

4 docker pull $DOCKERHUB_USERNAME/alpine:signtest

5 # check the signature

6 docker trust inspect --pretty $DOCKERHUB_USERNAME/alpine:signtest

If you want to add a second publisher, you can do it like this:

1 # generate a second trusted user key

2 export DOCKER_USER=another-admin

3 docker trust key generate $DOCKER_USER --dir ~/.docker/trust

4 # add the second publisher

5 docker trust signer add --key ~/.docker/trust/$DOCKER_USER.pub $DOCKER_USER $DOCKERH\

6 UB_USERNAME/alpine:signtest

7 # sign the image with the second publisher

8 docker trust sign $DOCKERHUB_USERNAME/alpine:signtest

9 # push the image

10 docker push $DOCKERHUB_USERNAME/alpine:signtest

Let’s see the result of the verification:

1 # remove the local image

2 docker rmi $DOCKERHUB_USERNAME/alpine:signtest

3 # pull the image

4 docker pull $DOCKERHUB_USERNAME/alpine:signtest

5 # check the signature

6 docker trust inspect --pretty $DOCKERHUB_USERNAME/alpine:signtest

At this step, the client can only pull images signed by the first and second publishers. Only these
users will be able to update the signed image.

If you have another Docker environment where you want to ensure that only trusted images are
used, you need to enable Docker Content Trust. This can be done by setting an environment variable
that instructs Docker to only pull signed images. Here’s how to set it up:

1 export DOCKER_CONTENT_TRUST=1

Next, you need to inform Docker about the location of your Notary server. The Notary server stores
the metadata and signatures for your trusted images. Share the URL of your Notary server with your
Docker clients. For instance, if your Notary server’s URL is notaryserver.com, you would use:

Docker Security Best Practices 261

1 export DOCKER_CONTENT_TRUST_SERVER=https://notaryserver.com:4443

To establish trust between Docker and the Notary server, especially when using a self-signed
certificate, you must install the server’s certificate on each Docker client machine. Obtain the
certificate file, usually located at “fixtures/intermediate-ca.crt” on the server, and transfer it to the
client machine.

Then, add the certificate to the list of trusted certificates on the client machine:

1 # intermediate-ca.crt was copied from the server to the client

2 # copy the certificate to the trusted certificates directory

3 sudo cp intermediate-ca.crt /usr/local/share/ca-certificates/

4 # update the trusted certificates

5 sudo update-ca-certificates

Scan Images

Scanning images is a good practice to detect security problems, vulnerabilities, and best practice
violations. There are many tools that can help you to scan your images. Some of them are:

• Docker Scout¹⁵⁸: A tool by Docker to scan images for vulnerabilities and SBOM discovery.
• Clair¹⁵⁹: An open-source project for the static analysis of vulnerabilities in application contain-
ers.

• Anchore¹⁶⁰: A tool to protect cloud-native workloads with continuous vulnerability scanning
for container images.

• Trivy¹⁶¹: A tool by Aqua to find vulnerabilities & IaC misconfigurations, SBOM discovery,
Cloud scanning, Kubernetes security risks,and more.

• Dagda¹⁶²: Atool to perform static analysis of known vulnerabilities, trojans, viruses, malware
& other malicious threats in docker images/containers and to monitor the docker daemon and
running docker containers for detecting anomalous activities

• Docker Bench for Security¹⁶³: A script that checks for dozens of common best-practices around
deploying Docker containers in production.

Set Container Filesystem to Read Only

Unless you need to modify files in your container, make its filesystem read-only.

¹⁵⁸https://docs.docker.com/scout/
¹⁵⁹https://github.com/quay/clair
¹⁶⁰https://anchore.com/container-vulnerability-scanning/
¹⁶¹https://trivy.dev/
¹⁶²https://github.com/eliasgranderubio/dagda
¹⁶³https://github.com/docker/docker-bench-security

https://docs.docker.com/scout/
https://github.com/quay/clair
https://anchore.com/container-vulnerability-scanning/
https://trivy.dev/
https://github.com/eliasgranderubio/dagda
https://github.com/docker/docker-bench-security
https://docs.docker.com/scout/
https://github.com/quay/clair
https://anchore.com/container-vulnerability-scanning/
https://trivy.dev/
https://github.com/eliasgranderubio/dagda
https://github.com/docker/docker-bench-security

Docker Security Best Practices 262

1 docker run --read-only alpine touch /tmp/killme

If a hacker manages to breach a container, their first objective is usually to modify the filesystem. By
making the filesystem read-only, it becomes resistant to such modifications. However, this approach
is not foolproof and comes with certain limitations. For instance, commands like docker exec for
running commands within the container or docker cp for copying files to and from the container
cannot be used. Additionally, if the application requires write access to the filesystem, it will be
unable to do so.

Set Volumes to Read-Only

If you don’t need to modify files in the attached volumes, make them read-only.

1 mkdir /folder

2 docker run -v /folder:/folder:ro --name container alpine touch /folder/killme

Do Not Use the Root User

By default, Docker containers run as the root user. Running a container as root means that it has the
same privileges on the host system as the root user, increasing the risk of a container breakout.

If root privileges are not necessary, it is recommended to run the container as a non-root user. This
helps mitigate the potential damage in the event of a container breakout.

Here is an example of a Dockerfile that runs the container as a non-root user:

1 # Use an official Python runtime as a parent image

2 FROM python:3.8-slim

3 # Set the working directory in the container

4 WORKDIR /app

5 # Copy the current directory contents into the container at /app

6 COPY . /app

7 # Install any needed packages specified in requirements.txt

8 RUN pip install --no-cache-dir -r requirements.txt

9 # Create a user and group

10 RUN groupadd -r appuser && useradd -r -g appuser appuser

11 # Switch to the non-root user

12 USER appuser

13 # Make port 5000 available to the world outside this container

14 EXPOSE 5000

15 # Run app.py when the container launches

16 CMD ["python", "app.py"]

Docker Security Best Practices 263

Adding nologin to the user in a Docker container is generally considered a good security practice.
This approach restricts the user’s ability to log into the container, which can help mitigate the risks
if an attacker gains access to the container.

1 # Create a user and group with no login shell

2 RUN groupadd -r appuser && useradd -r -g appuser -s /usr/sbin/nologin appuser

Run the Docker Daemon in Rootless Mode

Rootless Docker allows running Docker containers without requiring root access on the Docker host.
This approach enhances security, as any issues with a container are less likely to impact the entire
Docker host.

To achieve this, Rootless Docker utilizes Linux user namespaces¹⁶⁴. User namespaces alter user IDs
in a manner that distinguishes the root user within Docker from the root user of the host system.
Consequently, even if a container breaches its boundaries, it will not have root access to the host
system.

1 # install uidmap

2 apt-get install uidmap -y

3 # install rootless docker

4 curl -fsSL https://get.docker.com/rootless | sh

5 # run the following command to add PATH and DOCKER_HOST to your .bashrc

6 cat <<EOT >> ~/.bashrc

7 export PATH=/home/$USER/bin:\$PATH

8 export DOCKER_HOST=unix:///run/user/$UID/docker.sock

9 EOT

10 # reload .bashrc

11 source ~/.bashrc

12 # start rootless Docker

13 systemctl --$USER start docker

14 # run the following command to check if rootless docker is working

15 docker run --rm hello-world

USER is the username of the user that you want to install Docker for. UID is its user ID.

Do Not Use Environment Variables For Sensitive Data

Sensitive data should not be shared using the ENV instruction. Doing so could expose the data to child
processes, other linked containers, Docker inspection output, and other potential vulnerabilities.

¹⁶⁴https://man7.org/linux/man-pages/man7/user_namespaces.7.html

https://man7.org/linux/man-pages/man7/user_namespaces.7.html
https://man7.org/linux/man-pages/man7/user_namespaces.7.html

Docker Security Best Practices 264

Use Secret Management Tools

Kubernetes and Docker both provide their own secret management tools. If you need to store
sensitive data or transfer it between services, it is recommended to use these tools. For example,
Docker Secret is recommended for Swarm mode. Alternatively, you can utilize other tools such as
Amazon SSM or HashiCorp Vault.

Do Not Run Containers in the Privileged Mode

When you run a container with the --privileged flag, it grants the container all capabilities,
allowing it to access all devices on the host and configure AppArmor or SELinux settings. The
container will have nearly the same level of access to the host as a regular process running directly
on the host, without being confined within a container.

Here is an example of running a container in privileged mode, demonstrating how to gain access to
the host’s root filesystem:

1 # create a container running in the privileged mode

2 docker run --privileged -it -d --name evil ubuntu

3 # get access to the host's root filesystem

4 docker exec -it evil bash

5 # inside the container, mount the host's root filesystem

6 mount /dev/sda1 /mnt

7 # modify the host's root filesystem

8 echo 'malicious code' >> /mnt/etc/passwd # Modify system files

9 # change kernel modules

10 modprobe malicious_module

11 # disable apparmor

12 aa-disable /etc/apparmor.d/profile_name

13 # disable SELinux

14 setenforce 0

15 # ..etc

Turn Off Inter-Container Communication

By default, all containers in a host can communicate with each other using the docker0 bridge. If
you do not require this functionality, you can disable it by setting the icc flag to false.

Docker Security Best Practices 265

1 # start the docker daemon with the icc flag set to false

2 dockerd --icc=false

You can also set the icc flag to false in theDocker daemon configuration file /etc/docker/daemon.json:

1 cat <<EOF >> /etc/docker/daemon.json

2 {

3 "icc": false

4 }

5 EOF

This will disable inter-container communication for all containers on the host. If you want to enable
inter-container communication for a specific container, you can use Docker links.

1 docker run -d --name container1 ubuntu

2 docker run -d --name container2 --link container1:container1 ubuntu

Only Install Necessary Packages

Inside the container, only install the necessary packages and avoid installing unnecessary ones. This
will help reduce the attack surface. To view the list of installed packages in a container, use the
appropriate package manager and run the following command:

1 export CONTAINER_ID=[YOUR_CONTAINER_ID]

2 # Debian/Ubuntu

3 docker exec -it $CONTAINER_ID apt list --installed

4 # RedHat/CentOS

5 docker exec -it $CONTAINER_ID rpm -qa

6 # Alpine

7 docker exec -it $CONTAINER_ID apk info

8 # ..etc

Make Sure Docker is up to Date

Docker has a thriving community, and frequent security updates are released. From a security stand-
point, it is advisable to always have the latest version of Docker in your production environments.

Docker Security Best Practices 266

Properly Configure Your Docker Registry Access Control

Vine Docker images were hacked because their private registry was publicly accessible¹⁶⁵.

Security Through Obscurity

If docker.vineapp.com were 1xoajze313kjaz.vineapp.com, it is likely that the hacker would have
a harder time discovering the private registry, or it would at least take more time. While this may
not be the best example to demonstrate security through obscurity, we should not underestimate the
power of obscurity.

Some examples of obscurity include using uncommon names for images, containers, networks, and
volumes, as well as running applications on non-standard ports.

1 docker run -p 7639:6793 --name x479x --network x479x image-xz12o

Use Limited Linux Capabilities

When limiting the Linux capabilities of a container, the host system is protected even if a hacker
gains access to the container. Docker, by default, starts containers with a restricted set of capabilities.

Linux capabilities are a subset of the traditional superuser (root) privileges. They can be enabled or
disabled independently for different processes. Managing capabilities is a security mechanism in the
Linux kernel that helps ensure the confinement of execution for applications running on the system.
This mechanism refines the application of the principle of least privilege. Capabilities are divided
into distinct units, and here are some common ones:

• CAP_CHOWN: Allows making arbitrary changes to file UIDs and GIDs.
• CAP_NET_BIND_SERVICE: Enables binding a socket to Internet domain privileged ports (port
numbers less than 1024).

• CAP_DAC_OVERRIDE: Permits bypassing file read, write, and execute permission checks.

You can view the full list by typing:

1 man capabilities

Capabilities can be assigned to executables using commands like setcap and can be queried using
getcap. For example, to grant an executable the ability to bind to low-numbered ports without giving
it full root privileges, you can use the following command:

¹⁶⁵https://docker.vineapp.com:443/library/vinewww

https://docker.vineapp.com/library/vinewww
https://docker.vineapp.com/library/vinewww

Docker Security Best Practices 267

1 setcap 'cap_net_bind_service=+ep' /usr/bin/python3.8

The --privileged flag grants all capabilities to the container. However, you can use the --cap-add
and --cap-drop flags to add or drop specific capabilities.

Let’s examine the default capabilities of a container:

1 docker run -it --rm --name test-capabilities ubuntu

2 # inside the container

3 docker exec -it test-capabilities bash

4 # install libcap2-bin

5 apt-get update && apt-get install libcap2-bin -y

6 # check the capabilities of the bash process

7 capsh --print

These are the default capabilities that a container has:

1 Current: cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_se\

2 tuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit\

3 _write,cap_setfcap=ep

Start a new container while dropping the CAP_NET_RAW capability:

1 docker run -it --rm --cap-drop=NET_RAW --name test-no-net-raw ubuntu

2 # inside the container

3 docker exec -it test-no-net-raw bash

4 # install libcap2-bin

5 apt-get update && apt-get install libcap2-bin -y

6 # check the capabilities of the bash process

7 capsh --print

As you can see, the CAP_NET_RAW capability is not present in the list of capabilities:

1 Current IAB: !cap_dac_read_search,!cap_linux_immutable,!cap_net_broadcast,!cap_net_a\

2 dmin,!cap_net_raw,!cap_ipc_lock,!cap_ipc_owner,!cap_sys_module,!cap_sys_rawio,!cap_s\

3 ys_ptrace,!cap_sys_pacct,!cap_sys_admin,!cap_sys_boot,!cap_sys_nice,!cap_sys_resourc\

4 e,!cap_sys_time,!cap_sys_tty_config,!cap_lease,!cap_audit_control,!cap_mac_override,\

5 !cap_mac_admin,!cap_syslog,!cap_wake_alarm,!cap_block_suspend,!cap_audit_read,!cap_p\

6 erfmon,!cap_bpf,!cap_checkpoint_restore

The ! symbol indicates that a capability is dropped.

By dropping the CAP_NET_RAW capability, you prevent any process inside the container from using
raw sockets. This limits the attacker’s ability to perform certain network attacks, such as packet
sniffing or crafting custom packets, if they compromise the container. However, ensure that you do
not drop any capabilities that are required by your application.

Docker Security Best Practices 268

Use Seccomp

Seccomp is a Linux kernel feature that allows you to restrict the system calls that a process can make.
It is commonly used to restrict the actions available within a container. Here are some common
system calls:

• open(): Opens a file.
• read(): Reads data from a file descriptor.
• write(): Writes data to a file descriptor.
• _exit(): Terminates the calling process.

By default, a container has around 44 disabled system calls¹⁶⁶ out of 300+. The remaining 270 calls
that are still open may be susceptible to attacks. For a high level of security, you can set Seccomp
profiles individually for containers. However, it is important to understand each system call and its
impact on your application.

Here is an example of how to create a container with a Seccomp profile:

1 # create a Seccomp profile

2 cat <<EOF >> profile.json

3 {

4 "defaultAction": "SCMP_ACT_ALLOW",

5 "syscalls": [

6 {

7 "names": ["mkdir", "rmdir", "unlink", "unlinkat"],

8 "action": "SCMP_ACT_ERRNO"

9 }

10]

11 }

12 EOF

13 # create a container with a Seccomp profile

14 docker run -d -it --security-opt seccomp=profile.json --name seccomp-container ubuntu

The above profile will block the mkdir, rmdir, unlink, and unlinkat calls. If any of these calls are
made, the SCMP_ACT_ERRNO action will return an error message. You can test it using the following
method:

¹⁶⁶https://github.com/docker/docker/blob/master/profiles/seccomp/default.json

https://github.com/docker/docker/blob/master/profiles/seccomp/default.json
https://github.com/docker/docker/blob/master/profiles/seccomp/default.json

Docker Security Best Practices 269

1 # start a bash session inside the container

2 docker exec -it seccomp-container bash

3 # run the mkdir command

4 mkdir test

You will get an error message:

1 mkdir: cannot create directory 'test': Operation not permitted

To obtain the comprehensive list of system calls that can be managed using seccomp in Linux, you
can install and utilize auditd.

1 apt update && apt install auditd -y

2 ausyscall --dump

Use AppArmor

AppArmor is a Linux kernel security module that enables you to restrict the actions available within
a container. It provides AppArmor profiles for numerous popular Linux applications, and you can
also create custom profiles.

Here is a brief example of creating a container with an AppArmor profile:

1 # install apparmor-profiles

2 sudo apt install apparmor-profiles -y

3 # create a profile for the container

4 cat <<EOF >> /etc/apparmor.d/docker-seccomp

5 #include <tunables/global>

6 profile docker-nginx flags=(attach_disconnected,mediate_deleted) {

7 #include <abstractions/base>

8 network inet tcp,

9 network inet udp,

10 network inet icmp,

11 deny network raw,

12 deny network packet,

13 file,

14 umount,

15 deny /bin/** wl,

16 deny /boot/** wl,

17 deny /dev/** wl,

18 deny /etc/** wl,

Docker Security Best Practices 270

19 deny /home/** wl,

20 deny /lib/** wl,

21 deny /lib64/** wl,

22 deny /media/** wl,

23 deny /mnt/** wl,

24 deny /opt/** wl,

25 deny /proc/** wl,

26 deny /root/** wl,

27 deny /sbin/** wl,

28 deny /srv/** wl,

29 deny /tmp/** wl,

30 deny /sys/** wl,

31 deny /usr/** wl,

32 audit /** w,

33 /var/run/nginx.pid w,

34 /usr/sbin/nginx ix,

35 deny /bin/dash mrwklx,

36 deny /bin/sh mrwklx,

37 deny /usr/bin/top mrwklx,

38 capability chown,

39 capability dac_override,

40 capability setuid,

41 capability setgid,

42 capability net_bind_service,

43 deny @{PROC}/* w, # deny write for all files directly in /proc (not in a subdir)

44 # deny write to files not in /proc/<number>/** or /proc/sys/**

45 deny @{PROC}/{[^1-9],[^1-9][^0-9],[^1-9s][^0-9y][^0-9s],[^1-9][^0-9][^0-9][^0-9]*}\

46 /** w,

47 deny @{PROC}/sys/[^k]** w, # deny /proc/sys except /proc/sys/k* (effectively /pro\

48 c/sys/kernel)

49 deny @{PROC}/sys/kernel/{?,??,[^s][^h][^m]**} w, # deny everything except shm* in\

50 /proc/sys/kernel/

51 deny @{PROC}/sysrq-trigger rwklx,

52 deny @{PROC}/mem rwklx,

53 deny @{PROC}/kmem rwklx,

54 deny @{PROC}/kcore rwklx,

55 deny mount,

56 deny /sys/[^f]*/** wklx,

57 deny /sys/f[^s]*/** wklx,

58 deny /sys/fs/[^c]*/** wklx,

59 deny /sys/fs/c[^g]*/** wklx,

60 deny /sys/fs/cg[^r]*/** wklx,

61 deny /sys/firmware/** rwklx,

Docker Security Best Practices 271

62 deny /sys/kernel/security/** rwklx,

63 }

64 EOF

65 # reload apparmor

66 sudo apparmor_parser -r /etc/apparmor.d/docker-seccomp

67 # create a container with an AppArmor profile

68 docker run -d -it --security-opt apparmor=docker-seccomp --name apparmor-container n\

69 ginx

70 # test the profile

71 docker exec -it apparmor-container bash

72 # inside the container test the ping command

73 ping google.com

The ping command will not work because the profile blocks the ping command using the deny

network raw rule.

Use SELinux

SELinux (Security Enhanced Linux) is a security module in Linux systems that supports access
control security policies. It consists of kernel modifications and user-space tools that enforce various
security policies on Linux systems.

The NSA, who initially developed SELinux, released the first version to the open source community
under the GNU GPL on December 22, 2000.

Implementing and managing SELinux policies can be complex and requires a solid understanding of
SELinux concepts and policy writing skills. However, there are numerous SELinux policies available
for commonly used Linux applications.

Docker API
Docker SDKs

TheDocker API is served byDocker Engine and provides full control over Docker. This is particularly
useful when building applications that utilize Docker. To determine the version of the Engine API
you are running, you can use the command docker version | grep -i api. The API often changes
with each Docker release, so API calls are versioned to ensure compatibility. To interact with this
API, you should use one of the available SDKs based on the programming language you are using.

Here is a list of some known SDKs to use Docker Engine API:

Language Library Official
Go Moby¹⁶⁷ Yes
Python docker-py¹⁶⁸ Yes
C libdocker¹⁶⁹ No
C# Docker.DotNet¹⁷⁰ No
C++ lasote/docker_client¹⁷¹ No
Clojure clj-docker-client¹⁷² No
Clojure contajners¹⁷³ No
Dart bwu_docker¹⁷⁴ No
Erlang erldocker¹⁷⁵ No
Gradle gradle-docker-plugin¹⁷⁶ No
Groovy docker-client¹⁷⁷ No
Haskell docker-hs¹⁷⁸ No
HTML (Web Components) docker-elements¹⁷⁹ No
Java docker-client¹⁸⁰ No
Java docker-java¹⁸¹ No
Java docker-java-api¹⁸² No
Java jocker¹⁸³ No

¹⁶⁷https://github.com/moby/moby/tree/master/client
¹⁶⁸https://github.com/docker/docker-py
¹⁶⁹https://github.com/danielsuo/libdocker
¹⁷⁰https://github.com/ahmetalpbalkan/Docker.DotNet
¹⁷¹https://github.com/lasote/docker_client
¹⁷²https://github.com/into-docker/clj-docker-client
¹⁷³https://github.com/lispyclouds/contajners
¹⁷⁴https://github.com/bwu-dart/bwu_docker
¹⁷⁵https://github.com/proger/erldocker
¹⁷⁶https://github.com/gesellix/gradle-docker-plugin
¹⁷⁷https://github.com/gesellix/docker-client
¹⁷⁸https://github.com/denibertovic/docker-hs
¹⁷⁹https://github.com/kapalhq/docker-elements
¹⁸⁰https://github.com/spotify/docker-client
¹⁸¹https://github.com/docker-java/docker-java
¹⁸²https://github.com/amihaiemil/docker-java-api
¹⁸³https://github.com/ndeloof/jocker

https://github.com/moby/moby/tree/master/client
https://github.com/docker/docker-py
https://github.com/danielsuo/libdocker
https://github.com/ahmetalpbalkan/Docker.DotNet
https://github.com/lasote/docker_client
https://github.com/into-docker/clj-docker-client
https://github.com/lispyclouds/contajners
https://github.com/bwu-dart/bwu_docker
https://github.com/proger/erldocker
https://github.com/gesellix/gradle-docker-plugin
https://github.com/gesellix/docker-client
https://github.com/denibertovic/docker-hs
https://github.com/kapalhq/docker-elements
https://github.com/spotify/docker-client
https://github.com/docker-java/docker-java
https://github.com/amihaiemil/docker-java-api
https://github.com/ndeloof/jocker
https://github.com/moby/moby/tree/master/client
https://github.com/docker/docker-py
https://github.com/danielsuo/libdocker
https://github.com/ahmetalpbalkan/Docker.DotNet
https://github.com/lasote/docker_client
https://github.com/into-docker/clj-docker-client
https://github.com/lispyclouds/contajners
https://github.com/bwu-dart/bwu_docker
https://github.com/proger/erldocker
https://github.com/gesellix/gradle-docker-plugin
https://github.com/gesellix/docker-client
https://github.com/denibertovic/docker-hs
https://github.com/kapalhq/docker-elements
https://github.com/spotify/docker-client
https://github.com/docker-java/docker-java
https://github.com/amihaiemil/docker-java-api
https://github.com/ndeloof/jocker

Docker API 273

Language Library Official
NodeJS dockerode¹⁸⁴ No
NodeJS harbor-master¹⁸⁵ No
Perl Eixo::Docker¹⁸⁶ No
PHP Docker-PHP¹⁸⁷ No
Ruby docker-api¹⁸⁸ No
Rust docker-rust¹⁸⁹ No
Rust shiplift¹⁹⁰ No
Scala tugboat¹⁹¹ No
Scala reactive-docker¹⁹² No
Swift docker-client-swift¹⁹³ No

Docker API: Hello World

In the following section, we are going to see how to use the Docker API to create a container and
run it. We are going to use the following methods:

• HTTP REST API
• Go SDK
• Python SDK

REST API

Using the REST API, we can create a container using the following command:

1 curl \

2 --unix-socket /var/run/docker.sock \

3 -H "Content-Type: application/json" \

4 -d '{"Image": "alpine", "Cmd": ["tail", "-f", "/dev/null"]}' \

5 -X POST http://localhost/v1.43/containers/create?name=test-container

This curl command creates a container named “test-container” using the Alpine image and runs the
command tail -f /dev/null in the container. The command tail -f /dev/null is a way to keep
the container running without doing anything. The container will be created in the stopped state.
To start the container, we can use the following command:

¹⁸⁴https://github.com/apocas/dockerode
¹⁸⁵https://github.com/arhea/harbor-master
¹⁸⁶https://github.com/alambike/eixo-docker
¹⁸⁷https://github.com/docker-php/docker-php
¹⁸⁸https://github.com/swipely/docker-api
¹⁸⁹https://github.com/abh1nav/docker-rust
¹⁹⁰https://github.com/softprops/shiplift
¹⁹¹https://github.com/softprops/tugboat
¹⁹²https://github.com/almoehi/reactive-docker
¹⁹³https://github.com/valeriomazzeo/docker-client-swift

https://github.com/apocas/dockerode
https://github.com/arhea/harbor-master
https://github.com/alambike/eixo-docker
https://github.com/docker-php/docker-php
https://github.com/swipely/docker-api
https://github.com/abh1nav/docker-rust
https://github.com/softprops/shiplift
https://github.com/softprops/tugboat
https://github.com/almoehi/reactive-docker
https://github.com/valeriomazzeo/docker-client-swift
https://github.com/apocas/dockerode
https://github.com/arhea/harbor-master
https://github.com/alambike/eixo-docker
https://github.com/docker-php/docker-php
https://github.com/swipely/docker-api
https://github.com/abh1nav/docker-rust
https://github.com/softprops/shiplift
https://github.com/softprops/tugboat
https://github.com/almoehi/reactive-docker
https://github.com/valeriomazzeo/docker-client-swift

Docker API 274

1 curl \

2 --unix-socket /var/run/docker.sock \

3 -X POST http://localhost/v1.43/containers/test-container/start

To verify that the container is running, we can use the following command:

1 curl \

2 --unix-socket /var/run/docker.sock \

3 -X GET http://localhost/v1.43/containers/test-container/json

You should see that the container is in the “Running” state:

1 "status": "running",

Go SDK

Let’s create the same container using Go SDK. Start by removing the container we created in the
previous section:

1 docker rm -f test-container

First, we need to run the following commands:

1 mkdir -p container-test-go && cd container-test-go

2 # Initialize a Go module

3 go mod init container-test-go

4 # Install the Docker SDK for Go

5 go get github.com/docker/docker/api/types

6 go get github.com/docker/docker/api/types/container

7 go get github.com/docker/docker/client

Add the following code to “run.go”:

Docker API 275

1 cat <<EOF > run.go

2 package main

3

4 import (

5 "context"

6 "io"

7 "os"

8 "github.com/docker/docker/api/types"

9 "github.com/docker/docker/api/types/container"

10 "github.com/docker/docker/client"

11)

12

13 func main() {

14 // Create a background context for Docker operations

15 ctx := context.Background()

16

17 // Initialize Docker client

18 cli, err := client.NewClientWithOpts(client.FromEnv, client.WithAPIVersionNegoti\

19 ation())

20 if err != nil {

21 panic(err)

22 }

23 defer cli.Close()

24

25 // Pull the Alpine image from Docker Hub

26 reader, err := cli.ImagePull(ctx, "docker.io/library/alpine", types.ImagePullOpt\

27 ions{})

28 if err != nil {

29 panic(err)

30 }

31 io.Copy(os.Stdout, reader)

32

33 // Create a container from the Alpine image, executing the command "tail -f /dev\

34 /null"

35 resp, err := cli.ContainerCreate(ctx, &container.Config{

36 Image: "alpine",

37 Cmd: []string{"tail", "-f", "/dev/null"},

38 }, nil, nil, nil, "test-container") // Set container name to "test-container"

39 if err != nil {

40 panic(err)

41 }

42

43 // Start the created container

Docker API 276

44 if err := cli.ContainerStart(ctx, resp.ID, types.ContainerStartOptions{}); err !\

45 = nil {

46 panic(err)

47 }

48 }

49 EOF

Run the following command to build and run the program:

1 go run run.go

This will create a container named “test-container” and start it. To verify that the container is
running, we can run this Go program:

1 cat <<EOF > list.go

2 package main

3

4 import (

5 "context"

6 "fmt"

7 "time"

8

9 "github.com/docker/docker/api/types"

10 "github.com/docker/docker/client"

11)

12

13 func main() {

14 // Create a background context for Docker operations

15 ctx := context.Background()

16

17 // Initialize Docker client

18 cli, err := client.NewClientWithOpts(client.FromEnv, client.WithAPIVersionNegoti\

19 ation())

20 if err != nil {

21 panic(err)

22 }

23 defer cli.Close() // Ensure the client is closed when the function returns

24

25 // Retrieve a list of containers

26 containers, err := cli.ContainerList(ctx, types.ContainerListOptions{})

27 if err != nil {

28 panic(err)

Docker API 277

29 }

30

31 // Iterate through and print details of each container

32 for _, container := range containers {

33 fmt.Printf("ID: %s\n", container.ID)

34 fmt.Printf("Names: %v\n", container.Names)

35 fmt.Printf("Image: %s\n", container.Image)

36 fmt.Printf("Command: %s\n", container.Command)

37 fmt.Printf("Created: %s\n", time.Unix(container.Created, 0).Format(time.RFC1\

38 123))

39 fmt.Printf("Status: %s\n", container.Status)

40 fmt.Printf("Ports: %v\n\n", container.Ports)

41 }

42 }

43 EOF

Run the following command to build and run the program:

1 go run list.go

Python SDK

Let’s do the same thing using Python SDK. Start by removing the container we created in the
previous section:

1 docker rm -f test-container

First, we need to run the following commands:

1 mkdir -p container-test-python && cd container-test-python

2 # Initialize a Python virtual environment

3 apt install python3-pip

4 pip3 install virtualenvwrapper

5 mkvirtualenv container-test-python

6 # Install the Docker SDK for Python

7 pip install docker

Add the following code to “run.py”:

Docker API 278

1 cat <<EOF > run.py

2 import docker

3

4 # Create a Docker client

5 client = docker.from_env()

6

7 # Pull the Alpine image (if not already present)

8 client.images.pull("alpine")

9

10 # Create a container with the specified name, image, and command

11 container = client.containers.create(

12 image="alpine",

13 command="tail -f /dev/null",

14 name="test-container"

15)

16

17 # Start the container

18 container.start()

19 EOF

In order to run the program, we need to activate the Python virtual environment:

1 workon container-test-python

2 python run.py

This will create a container named “test-container” and start it. To verify that the container is
running, we can run this Python program:

1 cat <<EOF > list.py

2 import docker

3

4 # Create a Docker client

5 client = docker.from_env()

6

7 # List all containers (including non-running ones)

8 containers = client.containers.list(all=True)

9

10 # Iterate through and print details of each container

11 for container in containers:

12 print(f"ID: {container.id}")

13 print(f"Name: {container.name}")

14 print(f"Image: {container.image.tags}")

Docker API 279

15 print(f"Status: {container.status}")

16 print("-----")

17 EOF

Run the following command to build and run the program:

1 python list.py

Prototyping a Log Collector Service

Let’s create a service that collects logs from all running containers. We are going to use Python SDK.
This is the initial program:

1 import docker

2 import threading

3

4 def stream_container_logs(container):

5 """Stream logs from a single container."""

6 for log in container.logs(stream=True):

7 print(f"Logs from {container.name}: {log.decode().strip()}")

8

9 def main():

10 # Create a Docker client

11 client = docker.from_env()

12

13 # List all running containers

14 containers = client.containers.list()

15

16 # Create and start a thread for each container to stream logs

17 threads = []

18 for container in containers:

19 thread = threading.Thread(target=stream_container_logs, args=(container,))

20 thread.start()

21 threads.append(thread)

22

23 # Wait for all threads to complete (optional)

24 for thread in threads:

25 thread.join()

26

27 if __name__ == "__main__":

28 main()

Docker API 280

The idea is to create a thread for each container to stream logs. However, this program does not
store logs yet. For the sake of simplicity, we are going to use SQLite to store logs. First, we need to
run the following commands that creates the database and table:

1 cat <<EOF > init.py

2 import sqlite3

3

4 def create_db():

5 conn = sqlite3.connect('container_logs.db')

6 cursor = conn.cursor()

7 cursor.execute('''

8 CREATE TABLE IF NOT EXISTS logs (

9 timestamp DATETIME,

10 host TEXT,

11 container_id TEXT,

12 log_line TEXT

13)

14 ''')

15 conn.commit()

16 conn.close()

17

18 if __name__ == "__main__":

19 create_db()

20 EOF

Run the script:

1 python init.py

Now, let’s go back to the initial code and make it save logs to the database we just created:

1 cat <<EOF > main.py

2 import docker

3 import sqlite3

4 import datetime

5 import threading

6 import socket

7

8 def save_log_to_db(container_id, log_line):

9 """Save log line to SQLite database."""

10 conn = sqlite3.connect('container_logs.db')

11 cursor = conn.cursor()

Docker API 281

12 timestamp = datetime.datetime.now()

13 host = socket.gethostname()

14 cursor.execute("INSERT INTO logs (timestamp, host, container_id, log_line) VALUE\

15 S (?, ?, ?, ?)",

16 (timestamp, host, container_id, log_line))

17 conn.commit()

18 conn.close()

19

20 def stream_container_logs(container):

21 """Stream logs from a single container and save them to the database."""

22 for log in container.logs(stream=True):

23 save_log_to_db(container.id, log.decode().strip())

24

25 def main():

26 # Create a Docker client

27 client = docker.from_env()

28

29 # List all running containers

30 containers = client.containers.list()

31

32 # Create and start a thread for each container to stream logs

33 threads = []

34 for container in containers:

35 thread = threading.Thread(target=stream_container_logs, args=(container,))

36 thread.start()

37 threads.append(thread)

38

39 # Wait for all threads to complete (optional)

40 for thread in threads:

41 thread.join()

42

43 if __name__ == "__main__":

44 main()

45 EOF

Debugging And Troubleshooting
Docker Daemon Logs

When encountering a problem, one of the first steps for many is to check the Docker Daemon logs.
The accessibility of Docker logs varies depending on your system:

Operating System Log File Location or Command
OSX ∼/Library/Containers/*/log/docker.log
Debian /var/log/daemon.log

CentOS Run /var/log/daemon.log \| grep docker

CoreOS Run journalctl -u docker.service

Ubuntu (upstart) /var/log/upstart/docker.log

Ubuntu (systemd) Run journalctl -u docker.service

Fedora Run journalctl -u docker.service

Red Hat Enterprise Linux Server Run /var/log/messages \| grep docker

OpenSuSE Run journalctl -u docker.service

Boot2Docker /var/log/docker.log

Windows AppData\Local

Another way to troubleshoot the daemon is by running it in the foreground.

1 dockerd

If you are already running Docker, you should stop it and start the daemon.

1 # stop

2 sudo service docker stop

3 # start

4 sudo dockerd

Activating Debug Mode

To activate the debug mode, you need to set the log level to debug. To do this, set the debug key to
true in the “daemon.json” file. Normally, you can find this file under “/etc/docker”. If the file does
not exist, you may need to create it.

Debugging And Troubleshooting 283

1 {

2 "debug": true

3 }

Possible values are debug, info, warn, error, fatal.

Now send a HUP signal to the daemon to make it reload its configuration: sudo kill -SIGHUP

$(pidof dockerd) or execute service docker stop && dockerd:

You will be able to see all of the actions that Docker is doing. For example, when you run docker

run hello-world, you will see something like:

1 DEBU[2023-11-24T08:13:40.601762558Z] form data: {"AttachStderr":true,"AttachStdin":f\

2 alse,"AttachStdout":true,"Cmd":null,"Domainname":"","Entrypoint":null,"Env":null,"Ho\

3 stConfig":{"AutoRemove":false,"Binds":null,"BlkioDeviceReadBps":[],"BlkioDeviceReadI\

4 Ops":[],"BlkioDeviceWriteBps":[],"BlkioDeviceWriteIOps":[],"BlkioWeight":0,"BlkioWei\

5 ghtDevice":[],"CapAdd":null,"CapDrop":null,"Cgroup":"","CgroupParent":"","CgroupnsMo\

6 de":"","ConsoleSize":[49,85],"ContainerIDFile":"","CpuCount":0,"CpuPercent":0,"CpuPe\

7 riod":0,"CpuQuota":0,"CpuRealtimePeriod":0,"CpuRealtimeRuntime":0,"CpuShares":0,"Cpu\

8 setCpus":"","CpusetMems":"","DeviceCgroupRules":null,"DeviceRequests":null,"Devices"\

9 :[],"Dns":[],"DnsOptions":[],"DnsSearch":[],"ExtraHosts":null,"GroupAdd":null,"IOMax\

10 imumBandwidth":0,"IOMaximumIOps":0,"IpcMode":"","Isolation":"","Links":null,"LogConf\

11 ig":{"Config":{},"Type":""},"MaskedPaths":null,"Memory":0,"MemoryReservation":0,"Mem\

12 orySwap":0,"MemorySwappiness":-1,"NanoCpus":0,"NetworkMode":"default","OomKillDisabl\

13 e":false,"OomScoreAdj":0,"PidMode":"","PidsLimit":0,"PortBindings":{},"Privileged":f\

14 alse,"PublishAllPorts":false,"ReadonlyPaths":null,"ReadonlyRootfs":false,"RestartPol\

15 icy":{"MaximumRetryCount":0,"Name":"no"},"SecurityOpt":null,"ShmSize":0,"UTSMode":""\

16 ,"Ulimits":null,"UsernsMode":"","VolumeDriver":"","VolumesFrom":null},"Hostname":"",\

17 "Image":"hello-world","Labels":{},"NetworkingConfig":{"EndpointsConfig":{}},"OnBuild\

18 ":null,"OpenStdin":false,"StdinOnce":false,"Tty":false,"User":"","Volumes":{},"Worki\

19 ngDir":""}

20 DEBU[2023-11-24T08:13:40.642530675Z] container mounted via layerStore: /var/lib/dock\

21 er/overlay2/29100a7dc2eb24f86aa2f80fa8ff55b5d92cc069221d1013297ef310b9e91b35/merged \

22 container=0f40cbf4bbc319b530b9f1f7b4224e10a7a5166a38b7d9331bb8bf6042d462c7

23 DEBU[2023-11-24T08:13:40.661266118Z] Calling POST /v1.43/containers/0f40cbf4bbc319b5\

24 30b9f1f7b4224e10a7a5166a38b7d9331bb8bf6042d462c7/attach?stderr=1&stdout=1&stream=1

25 DEBU[2023-11-24T08:13:40.661717018Z] attach: stdout: begin

26 DEBU[2023-11-24T08:13:40.661773761Z] attach: stderr: begin

27 DEBU[2023-11-24T08:13:40.662228060Z] Calling POST /v1.43/containers/0f40cbf4bbc319b5\

28 30b9f1f7b4224e10a7a5166a38b7d9331bb8bf6042d462c7/wait?condition=next-exit

29 DEBU[2023-11-24T08:13:40.662965861Z] Calling POST /v1.43/containers/0f40cbf4bbc319b5\

30 30b9f1f7b4224e10a7a5166a38b7d9331bb8bf6042d462c7/start

Debugging And Troubleshooting 284

Debugging Docker Objects

Whether you are using standalone containers or managed services with Docker Swarm, Docker
provides the inspect command to retrieve information about the objects you are working with. The
inspect command offers detailed information about Docker objects, including containers, images,
volumes, networks, and services.

1 docker service inspect [OPTIONS] SERVICE [SERVICE...]

2 docker container inspect [OPTIONS] CONTAINER [CONTAINER...]

3 docker image inspect [OPTIONS] IMAGE [IMAGE...]

4 docker network inspect [OPTIONS] NETWORK [NETWORK...]

5 docker volume inspect [OPTIONS] VOLUME [VOLUME...]

As an example, let’s create the following container:

1 docker run -it -p 8000:80 -d --name webserver nginx

Now, use the following command:

1 docker inspect webserver

The output will be a JSON object that contains all the information about the container. It is also
possible to retrieve a single element, such as the IP address or port bindings.

1 # Get the IP address

2 docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' w\

3 ebserver

4 # Get the port bindings

5 docker inspect --format='{{range $p, $conf := .NetworkSettings.Ports}} {{$p}} -> {{(\

6 index $conf 0).HostPort}} {{end}}' webserver

Since you can access the container’s host, you can also use regular commands to debug it:

1 docker exec -it webserver ps aux

2 docker exec -it webserver cat /etc/resolv.conf

Using docker stats and docker events commands could give you also some additional information
useful for debugging.

Debugging And Troubleshooting 285

Troubleshooting Docker Using Sysdig

There are several tools available for troubleshooting Docker. One of the most popular tools is
Sysdig¹⁹⁴. Sysdig is a Linux system exploration and troubleshooting tool that provides support for
containers.

To install Sysdig, simply run the following command. This is the recommended installation method.

1 curl -s https://download.sysdig.com/stable/install-sysdig | sudo bash

You can also install sysdig using your Linux distribution package manager:

1 apt install sysdig

Or by running it in a container:

1 sudo docker run --rm -i -t --privileged --net=host \

2 -v /var/run/docker.sock:/host/var/run/docker.sock \

3 -v /dev:/host/dev \

4 -v /proc:/host/proc:ro \

5 -v /boot:/host/boot:ro \

6 -v /src:/src \

7 -v /lib/modules:/host/lib/modules:ro \

8 -v /usr:/host/usr:ro \

9 -v /etc:/host/etc:ro \

10 docker.io/sysdig/sysdig

We are going to install using the script method. The script will install the Sysdig repository and the
Sysdig package.

Then add your username to the same group as Sysdig:

1 groupadd sysdig

2 usermod -aG sysdig $USER

Use visudo to edit the “sudo-config” file and add the line %sysdig ALL=/usr/bin/sysdig. Save the
changes.

These configurations will allow you to run Sysdig without using sudo.

Sysdig can be used to obtain information about:

¹⁹⁴https://github.com/draios/sysdig

https://github.com/draios/sysdig
https://github.com/draios/sysdig

Debugging And Troubleshooting 286

• Networking
• Containers
• Applications
• Disk I/O
• Processes and CPU usage
• Performance and Errors
• Security
• Tracing

Debugging containers is also debugging the host, so Sysdig can be used for general troubleshooting.
However, in this section, we are specifically interested in the container-related commands. Let’s take
a look at some of them.

To list the running containers along with their resource usage:

1 csysdig -vcontainers

Listing all of the processes with container context can be done using:

1 csysdig -pc

To view the CPU usage of the processes running inside the “my_container” container, use:

1 sysdig -pc -c topprocs_cpu container.name=my_container

Bandwidth can be monitored using:

1 sysdig -pc -c topprocs_net container.name=my_container

Processes using most network bandwidth can be checked using:

1 sysdig -pc -c topprocs_net container.name=my_container

To view the top network connections:

1 sysdig -pc -c topconns container.name=my_container

Top used files consuming I/O bytes could be checked using:

Debugging And Troubleshooting 287

1 sysdig -pc -c topfiles_bytes container.name=my_container

And to show all the interactive commands executed inside the my_container container, use:

1 sysdig -pc -c spy_users container.name=my_container

The Ultimate Docker Cheat Sheet
Installation

Linux

Here’s a general command to install Docker on most Linux distributions:

1 curl -fsSL https://get.docker.com -o get-docker.sh

2 sudo sh get-docker.sh

Notes:

• This script will attempt to install Docker from Docker’s repositories. It’s a convenient one-liner,
but remember that running scripts downloaded from the internet can be risky. Always review
scripts before executing them.

• The installation method may vary depending on your specific Linux distribution. It’s recom-
mended to follow the installation guide for your distribution from the Docker documentation.

• After installation, consider adding your user to the docker group to manage Docker as a non-
root user:

1 sudo usermod -aG docker $USER

2 # You will need to log out and log back in for this to take effect.

• For production environments, it’s advised to follow a more controlled installation process, like
using your distribution’s package manager to install Docker from official repositories.

For more information, see here¹⁹⁵

¹⁹⁵https://docs.docker.com/install/#server

https://docs.docker.com/install/#server
https://docs.docker.com/install/#server

The Ultimate Docker Cheat Sheet 289

Mac

Use one of the following links to download the Docker Desktop .dmg file for the stable version:

• Docker Desktop for Mac with Apple silicon: Download¹⁹⁶
• Docker Desktop for Mac with Intel chip: Download¹⁹⁷

Open the downloaded .dmg file. Follow the on-screen installation instructions, which typically
involve dragging the Docker icon to the Applications folder.

Once installed, you can open Docker from your Applications folder. Verify the installation by
running docker --version in the terminal.

Note: Docker for Mac requires Apple Mac with Intel’s hardware support for Memory management
unit (MMU) virtualization, including Extended Page Tables (EPT) and Unrestricted Mode. You can
check your hardware specifications for compatibility.

For more information, see here¹⁹⁸

Windows

Download Docker Desktop for Windows from here¹⁹⁹

Open the downloaded .msi file. Follow the on-screen instructions to complete the installation
process.

Verify Installation:

• After installation, you can open Docker from the Start menu.
• To verify the installation, open a command prompt or PowerShell and run docker --version.

Note: Docker Desktop for Windows requires Microsoft Windows 10 Pro or Enterprise 64-bit, or
Windows 11 for Intel processors. For older versions of Windows, Docker Toolbox may be used.
Docker Desktop for Windows comes with Docker Engine, Docker CLI client, Docker Compose,
Docker Content Trust, Kubernetes, and Credential Helper.

Ensure your system meets the necessary requirements and that virtualization is enabled in the BIOS
settings. Docker Desktop for Windows uses Hyper-V for virtualization and also supports WSL 2
backend.

For more information, see here²⁰⁰

¹⁹⁶https://desktop.docker.com/mac/main/arm64/Docker.dmg
¹⁹⁷https://desktop.docker.com/mac/main/amd64/Docker.dmg
¹⁹⁸https://docs.docker.com/docker-for-mac/install/
¹⁹⁹https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe
²⁰⁰https://docs.docker.com/docker-for-windows/install/

https://desktop.docker.com/mac/main/arm64/Docker.dmg
https://desktop.docker.com/mac/main/amd64/Docker.dmg
https://docs.docker.com/docker-for-mac/install/
https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe
https://docs.docker.com/docker-for-windows/install/
https://desktop.docker.com/mac/main/arm64/Docker.dmg
https://desktop.docker.com/mac/main/amd64/Docker.dmg
https://docs.docker.com/docker-for-mac/install/
https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe
https://docs.docker.com/docker-for-windows/install/

The Ultimate Docker Cheat Sheet 290

Docker Registries & Repositories

Login to a Registry

• Docker Hub

1 docker login

2 # or docker login docker.io

• Private Registry

1 docker login localhost:8080

Logout from a Registry

• Docker Hub

1 docker logout

2 # or docker logout docker.io

• Private Registry

1 docker logout localhost:8080

Searching an Image

1 docker search nginx

1 docker search --filter stars=3 --no-trunc nginx

Pulling an Image

The Ultimate Docker Cheat Sheet 291

1 docker image pull nginx

1 docker image pull eon01/nginx localhost:5000/myadmin/nginx

Pushing an Image

1 docker image push eon01/nginx

1 docker image push eon01/nginx localhost:5000/myadmin/nginx

Running Containers

Create and Run a Simple Container

• Start an ubuntu:latest²⁰¹ image
• Bind the port 80 from the CONTAINER to port 3000 on the HOST
• Mount the current directory to /data on the CONTAINER
• Note: on windows you have to change -v ${PWD}:/data to -v "C:\Data":/data

1 docker container run --name infinite -it -p 3000:80 -v ${PWD}:/data ubuntu:latest

Creating a Container

1 docker container create -t -i eon01/infinite --name infinite

Running a Container

1 docker container run -it --name infinite -d eon01/infinite

Renaming a Container

²⁰¹https://hub.docker.com/_/ubuntu/

https://hub.docker.com/_/ubuntu/
https://hub.docker.com/_/ubuntu/

The Ultimate Docker Cheat Sheet 292

1 docker container rename infinite infinity

Removing a Container

1 docker container rm infinite

A container can be removed only after stopping it using docker stop command. To avoid this, add
the --rm flag while running the container.

Updating a Container

1 docker container update --cpu-shares 512 -m 300M infinite

Running a command within a running container

1 docker exec -it infinite sh

Starting & Stopping Containers

Starting

1 docker container start nginx

Stopping

1 docker container stop nginx

Restarting

1 docker container restart nginx

Pausing

The Ultimate Docker Cheat Sheet 293

1 docker container pause nginx

Unpausing

1 docker container unpause nginx

Blocking a Container

1 docker container wait nginx

Sending a SIGKILL

1 docker container kill nginx

Sending another signal

1 docker container kill -s HUP nginx

Attaching to a Container

1 docker container attach nginx

Getting Information about Containers

From Running Containers

Short version:

1 docker ps

Alternative:

1 docker container ls

From All containers

The Ultimate Docker Cheat Sheet 294

1 docker ps -a

1 docker container ls -a

Container Logs

1 docker logs infinite

Tail Containers’ Logs

1 docker container logs infinite -f

Inspecting Containers

1 docker container inspect infinite

1 docker container inspect --format '{{ .NetworkSettings.IPAddress }}' $(docker ps -q)

Containers Events

1 docker system events infinite

Public Ports

1 docker container port infinite

Running Processes

1 docker container top infinite

Container Resource Usage

The Ultimate Docker Cheat Sheet 295

1 docker container stats infinite

Inspecting changes to files or directories on a container’s
filesystem

1 docker container diff infinite

Managing Images

Listing Images

1 docker image ls

Building Images

From a Dockerfile in the Current Directory

1 docker build .

From a Remote GIT Repository

1 docker build github.com/creack/docker-firefox

Instead of Specifying a Context, You Can Pass a Single Dockerfile in the URL or
Pipe the File in via STDIN

1 docker build - < Dockerfile

1 docker build - < context.tar.gz

Building and Tagging

1 docker build -t eon/infinite .

Building a Dockerfile while Specifying the Build Context

The Ultimate Docker Cheat Sheet 296

1 docker build -f myOtherDockerfile .

Building from a Remote Dockerfile URI

1 curl example.com/remote/Dockerfile | docker build -f - .

Removing an Image

1 docker image rm nginx

Loading a Tarred Repository from a File or the Standard Input
Stream

1 docker image load < ubuntu.tar.gz

1 docker image load --input ubuntu.tar

Saving an Image to a Tar Archive

1 docker image save busybox > ubuntu.tar

Showing the History of an Image

1 docker image history

Creating an Image From a Container

1 docker container commit nginx

Tagging an Image

The Ultimate Docker Cheat Sheet 297

1 docker image tag nginx eon01/nginx

Networking

Creating Networks

Creating an Overlay Network

1 docker network create -d overlay MyOverlayNetwork

Creating a Bridge Network

1 docker network create -d bridge MyBridgeNetwork

Creating a Customized Overlay Network

1 docker network create -d overlay \

2 --subnet=192.168.0.0/16 \

3 --subnet=192.170.0.0/16 \

4 --gateway=192.168.0.100 \

5 --gateway=192.170.0.100 \

6 --ip-range=192.168.1.0/24 \

7 --aux-address="my-router=192.168.1.5" --aux-address="my-switch=192.168.1.6" \

8 --aux-address="my-printer=192.170.1.5" --aux-address="my-nas=192.170.1.6" \

9 MyOverlayNetwork

Removing a Network

1 docker network rm MyOverlayNetwork

Listing Networks

1 docker network ls

Getting Information About a Network

The Ultimate Docker Cheat Sheet 298

1 docker network inspect MyOverlayNetwork

Connecting a Running Container to a Network

1 docker network connect MyOverlayNetwork nginx

Connecting a Container to a Network When it Starts

1 docker container run -it -d --network=MyOverlayNetwork nginx

Disconnecting a Container from a Network

1 docker network disconnect MyOverlayNetwork nginx

Exposing Ports

Using Dockerfile, you can expose a port on the container using:

1 EXPOSE <port_number>

You can also map the container port to a host port using:

1 docker run -p $HOST_PORT:$CONTAINER_PORT --name <container_name> -t <image>

e.g.

1 docker run -p $HOST_PORT:$CONTAINER_PORT --name infinite -t infinite

Cleaning Docker

Removing a Running Container

1 docker container rm nginx

Removing a Container and its Volume

The Ultimate Docker Cheat Sheet 299

1 docker container rm -v nginx

Removing all Exited Containers

1 docker container rm $(docker container ls -a -f status=exited -q)

Removing all Stopped Containers

1 docker container rm `docker container ls -a -q`

Removing a Docker Image

1 docker image rm nginx

Removing Dangling Images

1 docker image rm $(docker image ls -f dangling=true -q)

Removing all Images

1 docker image rm $(docker image ls -a -q)

Removing all Untagged Images

1 docker image rm -f $(docker image ls | grep "^<none>" | awk "{print $3}")

Stopping and Removing all Containers

1 docker container stop $(docker container ls -a -q) && docker container rm $(docker c\

2 ontainer ls -a -q)

Removing Dangling Volumes

The Ultimate Docker Cheat Sheet 300

1 docker volume rm $(docker volume ls -f dangling=true -q)

Removing all Unused Resources: Containers, Networks, Images,
and Volumes

1 docker system prune -a

Forcefully Removing all Unused Resources: Containers, Networks,
Images, and Volumes

1 docker system prune -a --force

Docker Swarm

Installing Docker Swarm

1 curl -ssl https://get.docker.com | bash

Initializing the Swarm

1 docker swarm init --advertise-addr 192.168.10.1

Getting a Worker to Join the Swarm

1 docker swarm join-token worker

Getting a Manager to Join the Swarm

1 docker swarm join-token manager

Listing Services

The Ultimate Docker Cheat Sheet 301

1 docker service ls

Listing nodes

1 docker node ls

Creating a Service

1 docker service create --name vote -p 8080:80 instavote/vote

Listing Swarm Tasks

1 docker service ps

Scaling a Service

1 docker service scale vote=3

Updating a Service

1 docker service update --image instavote/vote:movies vote

1 docker service update --force --update-parallelism 1 --update-delay 30s nginx

1 docker service update --update-parallelism 5--update-delay 2s --image instavote/vote\

2 :indent vote

1 docker service update --limit-cpu 2 nginx

1 docker service update --replicas=5 nginx

Docker Scout Suite

Compare the Most Recently Built Image to a Reference

The Ultimate Docker Cheat Sheet 302

1 docker scout compare --to namespace/repo:latest

Compare an Image to the Latest Tag

1 docker scout compare --to namespace/repo:latest namespace/repo:v1.2.3-pre

Compare a Local Build to the Same Tag from the Registry

1 docker scout compare local://namespace/repo:v1.2.3 --to registry://namespace/repo:v1\

2 .2.3

Ignore Base Images

1 docker scout compare --ignore-base --to namespace/repo:latest namespace/repo:v1.2.3-\

2 pre

Generate a Markdown Output

1 docker scout compare --format markdown --to namespace/repo:latest namespace/repo:v1.\

2 2.3-pre

Only Compare Maven Packages and Only Display Critical
Vulnerabilities for Maven Packages

1 docker scout compare --only-package-type maven --only-severity critical --to namespa\

2 ce/repo:latest namespace/repo:v1.2.3-pre

List Existing Environments

1 docker scout environment

List Images of an Environment

The Ultimate Docker Cheat Sheet 303

1 docker scout environment staging

Record an Image to an Environment, for a Specific Platform

1 docker scout environment staging namespace/repo:stage-latest --platform linux/amd64

Display Vulnerabilities For The Most Recently Built Image

1 docker scout cves

Display Vulnerabilities Grouped By Package

1 docker scout cves alpine

Display Vulnerabilities From A Docker Save Tarball

1 docker save alpine > alpine.tar

2 docker scout cves archive://alpine.tar

Display Vulnerabilities From An Oci Directory

1 skopeo copy --override-os linux docker://alpine oci:alpine

2 docker scout cves oci-dir://alpine

Display Vulnerabilities From The Current Directory

1 docker scout cves fs://.

Export Vulnerabilities To A Sarif Json File

1 docker scout cves --format sarif --output alpine.sarif.json alpine

Markdown Output, Including Html Tags. To Be Used In Pull
Request Comments For Instance

The Ultimate Docker Cheat Sheet 304

1 docker scout cves --format markdown alpine

List All Go Packages Of The Image That Are Vulnerable

1 docker scout cves --format only-packages --only-package-type golang --only-vuln-pack\

2 ages golang:1.18.0

Display Base Image Update Recommendations Of The Most
Recently Buit Image

1 docker scout recommendations

Only Display Base Image Refresh Recommendations

1 docker scout recommendations golang:1.19.4 --only-refresh

Only Display Base Image Update Recommendations

1 docker scout recommendations golang:1.19.4 --only-update

Evaluate Policies Against An Image

1 docker scout policy IMAGE

Evaluate Policies Against An Image For A Specific Organization

1 docker scout policy IMAGE --org ORG

Evaluate Policies Against An Image With A Specific Platform

1 docker scout policy IMAGE --platform PLATFORM

Compare Policy Results For A Repository In A Specific
Environment

The Ultimate Docker Cheat Sheet 305

1 docker scout policy REPO --env ENV

Resources

Guidelines for Building Secure Images and Containers

• Use Minimal Base Images: Choose smaller and simpler base images to reduce attack surface.
• Non-root User: Run as a non-root user to minimize privileges.
• Sign and Verify Images: Implement image signing to prevent man-in-the-middle (MITM)
attacks.

• Manage Vulnerabilities: Regularly scan for and address vulnerabilities in open-source compo-
nents.

• Protect Sensitive Data: Avoid embedding secrets or sensitive data in image layers.
• Immutable Tags: Use specific version tags for reproducibility and stability.
• Prefer COPY Over ADD: Use COPY for file transfer to avoid unexpected behavior of ADD.
• Utilize Labels: Apply metadata labels for better image organization and management.
• Multi-Stage Builds: Leverage multi-stage builds for smaller, more secure final images.
• Use a Linter: Implement a Dockerfile linter for best practices and common mistakes.
• Regular Updates: Keep base images and dependencies up-to-date to patch vulnerabilities.
• Limit Build Context: Minimize the build context sent to the Docker daemon.
• Avoid Privilege Escalation: Set USER before CMD or ENTRYPOINT to enforce user context.
• Explicit Port Exposing: Only expose necessary ports to limit network access.
• Implement Health Checks: Include health checks for container self-assessment and recovery.
• Use Specific FROM Images: Avoid latest tag; use specific versions for base images.
• Control Resource Use: Implement resource limits (CPU, memory) to mitigate DoS attacks.
• Enable Docker Security Features: Utilize features like seccomp, AppArmor, and user names-
paces.

• Review and Reduce Layers: Minimize layers and consolidate commands to reduce complexity.
• Use Trusted Registries: Pull base images and dependencies from trusted, official sources.

Newsletters, News and Blogs

• Docker Blog²⁰²
• Docker Security Blog²⁰³
• Kaptain Newsletter: Docker, Kubernetes and Distributed Systems²⁰⁴
• DevOpsLinks Newsltter: Cloud and DevOps²⁰⁵

²⁰²https://www.docker.com/blog/
²⁰³https://www.docker.com/blog/tag/docker-security/
²⁰⁴https://faun.dev/newsletter/kaptain
²⁰⁵https://faun.dev/newsletter/devopslinks

https://www.docker.com/blog/
https://www.docker.com/blog/tag/docker-security/
https://faun.dev/newsletter/kaptain
https://faun.dev/newsletter/devopslinks
https://www.docker.com/blog/
https://www.docker.com/blog/tag/docker-security/
https://faun.dev/newsletter/kaptain
https://faun.dev/newsletter/devopslinks

The Ultimate Docker Cheat Sheet 306

How to Start

• Docker Documentation²⁰⁶
• Dockerfile Reference²⁰⁷
• Play With Docker²⁰⁸

Security Resources

• 10 Docker Image Security Best Practices²⁰⁹
• Security best practices²¹⁰
• Docker security²¹¹
• Docker Security: 5 Risks and 5 Best Practices for Securing Your Containers²¹²
• Docker Security Cheat Sheet²¹³
• Docker Security Best Practices: A Complete Guide²¹⁴
• Top 20 Dockerfile best practices²¹⁵
• Top 20 Docker Security Best Practices: Ultimate Guide²¹⁶
• Docker Security Best Practices - cheat sheet included²¹⁷
• Security Best Practices for Docker Containers²¹⁸
• Docker Security: 14 Best Practices for Securing Docker Containers²¹⁹

Dockerfile Best Practices

• Overview of best practices for writing Dockerfiles²²⁰
• Guidelines for Dockerfile Best Practices²²¹
• Dockerfile Best Practices²²²
• Best Practices and Tips for Writing a Dockerfile²²³
• Best Practices for Docker²²⁴
• Best Practices in Writing Dockerfiles²²⁵

²⁰⁶https://docs.docker.com/
²⁰⁷https://docs.docker.com/engine/reference/builder/
²⁰⁸https://labs.play-with-docker.com/
²⁰⁹https://snyk.io/blog/10-docker-image-security-best-practices/
²¹⁰https://docs.docker.com/develop/security-best-practices/
²¹¹https://docs.docker.com/engine/security/
²¹²https://www.tigera.io/learn/guides/container-security-best-practices/docker-security/
²¹³https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
²¹⁴https://anchore.com/blog/docker-security-best-practices-a-complete-guide/
²¹⁵https://sysdig.com/blog/dockerfile-best-practices/
²¹⁶https://blog.aquasec.com/docker-security-best-practices
²¹⁷https://blog.gitguardian.com/how-to-improve-your-docker-containers-security-cheat-sheet/
²¹⁸https://kinsta.com/blog/docker-security/
²¹⁹https://www.bmc.com/blogs/docker-security-best-practices/
²²⁰https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
²²¹https://docs.docker.com/develop/develop-images/guidelines/
²²²https://sysdig.com/blog/dockerfile-best-practices/
²²³https://www.qovery.com/blog/best-practices-and-tips-for-writing-a-dockerfile
²²⁴https://www.harness.io/blog/best-practices-for-docker
²²⁵https://www.divio.com/blog/best-practices-writing-dockerfiles/

https://docs.docker.com/
https://docs.docker.com/engine/reference/builder/
https://labs.play-with-docker.com/
https://snyk.io/blog/10-docker-image-security-best-practices/
https://docs.docker.com/develop/security-best-practices/
https://docs.docker.com/engine/security/
https://www.tigera.io/learn/guides/container-security-best-practices/docker-security/
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://anchore.com/blog/docker-security-best-practices-a-complete-guide/
https://sysdig.com/blog/dockerfile-best-practices/
https://blog.aquasec.com/docker-security-best-practices
https://blog.gitguardian.com/how-to-improve-your-docker-containers-security-cheat-sheet/
https://kinsta.com/blog/docker-security/
https://www.bmc.com/blogs/docker-security-best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/guidelines/
https://sysdig.com/blog/dockerfile-best-practices/
https://www.qovery.com/blog/best-practices-and-tips-for-writing-a-dockerfile
https://www.harness.io/blog/best-practices-for-docker
https://www.divio.com/blog/best-practices-writing-dockerfiles/
https://docs.docker.com/
https://docs.docker.com/engine/reference/builder/
https://labs.play-with-docker.com/
https://snyk.io/blog/10-docker-image-security-best-practices/
https://docs.docker.com/develop/security-best-practices/
https://docs.docker.com/engine/security/
https://www.tigera.io/learn/guides/container-security-best-practices/docker-security/
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://anchore.com/blog/docker-security-best-practices-a-complete-guide/
https://sysdig.com/blog/dockerfile-best-practices/
https://blog.aquasec.com/docker-security-best-practices
https://blog.gitguardian.com/how-to-improve-your-docker-containers-security-cheat-sheet/
https://kinsta.com/blog/docker-security/
https://www.bmc.com/blogs/docker-security-best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/guidelines/
https://sysdig.com/blog/dockerfile-best-practices/
https://www.qovery.com/blog/best-practices-and-tips-for-writing-a-dockerfile
https://www.harness.io/blog/best-practices-for-docker
https://www.divio.com/blog/best-practices-writing-dockerfiles/

Afterword
What’s next?

Congratulations on completing “Painless Docker”! I trust that this deep dive into the world of Docker
has enriched your understanding and equipped you with useful and especially actionable insights.

Throughout this guide, we have explained how to use Docker to build, ship, and run applications. We
have also explored the Docker ecosystem and its various components, including Docker Compose
and Docker Swarm.

By now, you should possess a robust grasp of the methodologies and best practices pivotal to
harnessing the full capabilities of Docker.

As with any skill, mastery comes with practice. I urge you to apply the strategies and examples
discussed in this guide, experimenting and iterating to refine your proficiency.

I hope this reading experience was both enlightening and enjoyable. Continue your journey of
discovery and never cease to be curious!

Thank you

Thank you for accompanying me on this enlightening journey. I wish you success and innovation
in all your future adventures and endeavors.

About the author

Aymen El Amri is a polymath software engineer, author, and entrepreneur. He is the founder of
FAUN Developer Community²²⁶, a platform dedicated to helping developers in their continuous
learning journey. He has penned numerous guides on software development, AI, and cloud
technologies. Connect with him on LinkedIn²²⁷ and Twitter²²⁸.

Join the community

If this guide resonated with you, consider joining the FAUN community²²⁹. Stay updated with
upcoming free and premium guides, courses, and weekly newsletters.

²²⁶https://faun.dev
²²⁷https://www.linkedin.com/in/elamriaymen/
²²⁸https://twitter.com/eon01
²²⁹https://faun.dev/join

https://faun.dev/
https://www.linkedin.com/in/elamriaymen/
https://twitter.com/eon01
https://faun.dev/join
https://faun.dev/
https://www.linkedin.com/in/elamriaymen/
https://twitter.com/eon01
https://faun.dev/join

Afterword 308

Feedback

Your insights and feedback are invaluable. They play a pivotal role in the ongoing enhancement and
evolution of this guide.

If this work has struck a chord with you, I’d be honored to receive your testimonial. Please email me
at aymen@faun.dev²³⁰. Your experiences can guide and inspire future readers, and I’d be thrilled to
share your words with our broader community.

²³⁰mailto:aymen@faun.dev

mailto:aymen@faun.dev
mailto:aymen@faun.dev

	Table of Contents
	Preface
	To Whom Is This Guide Addressed?
	How To Properly Enjoy This Guide
	Join the community

	The Missing Introduction to Containerization
	We Are Made by History
	Jails, Virtual Private Servers, Zones, Containers, and VMs: What's the Difference Anyway?
	OS Containers vs. App Containers
	Docker: Container or Platform?
	The Open Container Initiative: What is a Standard Container?
	A Deep Dive into Container Prototyping with runC
	Industry Standard Container Runtimes
	containerd, shim and runC: How Everything Works Together
	Adding a New Runtime to Docker
	Does CRI Mean the Death of Docker?
	The Moby Project

	Installing and Using Docker
	Installing Docker
	Docker CLI

	Docker Events
	Using Docker API To List Events

	Docker Containers
	Creating Containers
	Running Containers
	Restarting Containers
	Pausing and Unpausing Containers
	Stopping Containers
	Killing Containers
	Removing Containers
	Container Lifecycle
	Starting Containers Automatically
	Accessing Containers Ports
	Running Docker In Docker

	Managing Containers Resources
	Memory Usage Reservations and Limits
	CPU Usage Reservations and Limits

	Docker Images
	What is an Image?
	Images are Layers
	Images, Intermediate Images & Dangling Images
	The Dockerfile and its Instructions
	The Base Image
	Extending the Base Image
	Exploring Images' Layers
	Building an Image Using a Dockerfile
	Creating Images out of Containers
	Migrating a VM to a Docker Image
	Creating and Understanding the Scratch Image

	Docker Hub and Docker Registry
	Docker Hub, Public and Private Registries
	Docker Hub: The Official Docker Registry
	Using Docker Hub
	DockerHub Alternatives
	Creating a Private Docker Registry

	Optimizing Docker Images
	Less Layers = Faster Builds?
	Is There a Maximum Number of Layers?
	Optimizing Dockerfile Layer Caching for Dependency Management
	The Multi-Stage Build
	Smaller Images
	Other Techniques: Squashing, Distroless, etc

	Docker Volumes
	What is a Docker Volume?
	Creating and Using Docker Volumes
	Listing and Inspecting Docker Volumes
	Named Volumes vs Anonymous Volumes
	Bind Mounts
	Data Propagation
	Dangling Volumes
	TMPFS Mounts
	Docker Volume From Containers

	Docker Logging
	How Docker Logs Work
	Logging Best Practices and Recommendations
	Logging Drivers
	Docker Daemon Logging

	Docker Networks
	Docker Networks Types
	The (System) Bridge Network
	The (User) Bridge Network
	The Host Network
	The None Network
	The Macvlan Network
	The Overlay Network
	The Ingress Network
	Docker Links

	Docker Compose
	What is Docker Compose and Why Should I Care?
	Installing Docker Compose
	Understanding Docker Compose and How it Works
	Docker Compose Dependencies
	Creating Portable Docker Compose Stacks
	Docker Compose Logging
	Understanding Docker Compose Syntax
	Using Dockerfile with Docker Compose
	Docker Compose with Bind Mounts
	Creating Custom Networks
	Docker Compose Secrets
	Scaling Docker Compose Services

	Cleaning Docker
	Delete Volumes
	Delete Networks
	Delete Images
	Remove Docker Containers
	Cleaning Up Everything

	Docker Plugins
	Orchestration - Docker Swarm
	What is Docker Swarm?
	Creating a Swarm Cluster
	Swarm Services and Tasks
	Networking in Docker Swarm
	Performing Operations on Nodes
	Multi-manager Docker Swarm
	Docker Swarm Environment Variables and Secrets
	Docker Swarm Volumes
	Deploying a WordPress Application on Docker Swarm
	Docker Swarm Global Services
	Docker Swarm Resouce Management
	Docker Swarm Stacks
	Docker Swarm Rolling Updates
	Using an External Load Balancer with Docker Swarm
	Using Traefik as a Front-End Load Balancer with Docker Swarm
	Docker Swarm Logging
	Docker Swarm vs. Kubernetes

	Docker Desktop
	What is Docker Desktop?
	How to Install Docker Desktop

	Common Security Threats
	Docker vs. VMs: Which is more secure?
	Kernel Panic & Exploits
	Container Breakouts & Privilege Escalation
	Poisoned Images
	Denial-of-service Attacks
	Compromising secrets
	Application Level Threats
	Host System Level Treats

	Docker Security Best Practices
	Implement Security by Design
	setuid/setgid Binaries
	Control Resources
	Use Notary to Verify Image Integrity
	Scan Images
	Set Container Filesystem to Read Only
	Set Volumes to Read-Only
	Do Not Use the Root User
	Run the Docker Daemon in Rootless Mode
	Do Not Use Environment Variables For Sensitive Data
	Use Secret Management Tools
	Do Not Run Containers in the Privileged Mode
	Turn Off Inter-Container Communication
	Only Install Necessary Packages
	Make Sure Docker is up to Date
	Security Through Obscurity
	Use Limited Linux Capabilities
	Use Seccomp
	Use AppArmor
	Use SELinux

	Docker API
	Docker SDKs
	Docker API: Hello World
	Prototyping a Log Collector Service

	Debugging And Troubleshooting
	Docker Daemon Logs
	Activating Debug Mode
	Debugging Docker Objects
	Troubleshooting Docker Using Sysdig

	The Ultimate Docker Cheat Sheet
	Installation
	Docker Registries & Repositories
	Running Containers
	Starting & Stopping Containers
	Getting Information about Containers
	Managing Images
	Networking
	Cleaning Docker
	Docker Swarm
	Docker Scout Suite
	Resources

	Afterword
	What's next?
	Thank you
	About the author
	Join the community
	Feedback

