Gaston C. Hillar

MQTT Essentials -
A Lightweight loT
Protocol

The preferred loT publish-subscribe lightweight
messaging protocol

L Packt

MQTT Essentials - A Lightweight I1oT Protocol

Table of Contents

MQTT Essentials - A Lightweight IoT Protocol
Credits
About the Author
Acknowledgment
About the Reviewer
www.PacktPub.com
Why subscribe?
Customer Feedback
Dedication
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback

Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Lightweight Messaging with MQTT 3.1.1 and Mosquitto

Understanding convenient scenarios for the MQTT protocol
Working with the publish-subscribe pattern
Working with message filtering

Understanding the MQTT puzzle -- clients, servers, and connections

Installing a Mosquitto broker on Ubuntu Linux
Installing a Mosquitto broker on macOS

Installing a Mosquitto broker on Windows

Subscribing to topics

Publishing messages
Unsubscribing from topics

Working with best practices when creating topics

Understanding wildcards
Learning about the different Quality of Service levels

Working with at least once delivery
Working with exactly once delivery
Test your knowledge
Summary

2. Securing an MQTT Mosquitto Server
Securing a Mosquitto server

Generating a private certificate authority to use TLS with Mosquitto
Creating a certificate for the Mosquitto server
Configuring TLS transport security in Mosquitto
Testing the MQTT TLS configuration with MQTT.fx
Testing the MQTT TLS configuration with MQTT-spy
Creating a certificate for each MQTT client
Configuring TLS client certificate authentication in Mosquitto
Testing the MQTT TLS client authentication with MQTT.fx
Testing the MQTT TLS configuration with MQTT-spy
Forcing the TLS protocol version
Test your knowledge
Summary

3. Controlling a Drone with Python
Understanding the requirements to control a drone with MQTT

Defining the topics and commands
Installing paho-mqtt for Python
Connecting the client to the MQTT server with Python
Understanding callbacks
Subscribing to topics with Python
Creating a class to represent a drone
Receiving messages with Python
Processing commands with Python
Sending messages with Python
Working with the network loop with Python
Test your knowledge
Summary

4. Interacting with Sensors in Java
Understanding the requirements

Defining the topics and commands
Installing the Eclipse Paho Java Client

Creating a security helper class to establish a TLS secured connection
Configuring a TLS secured connection in Java

Working with asynchronous notifications and callbacks in Java
Subscribing to topics and understanding notification events in Java
Processing commands that interact with sensors in Java

Working with last will and testament in Java

Publishing messages with commands to target sensors

Test your knowledge

Summary
5. Controlling Home Automation in JavaScript
Understanding the requirements
Defining the topics and commands to control home automation
Enabling WebSockets for a Mosquitto server

Testing WebSockets with the Eclipse Paho client JavaScript utility
Understanding the Eclipse Paho JavaScript asynchronous client

Creating an HTML 5 web page to control LEDs

Publishing messages to target remote devices in JavaScript
Processing the received messages in JavaScript

Working with WebSockets to connect to the MQTT server

Subscribing to topics in JavaScript
Processing commands that interact with LEDs in Node.js

Running the home automation web application
Debugging asynchronous code with Chrome Developer Tools (CDT) in JavaScript

Securing MQTT over WebSockets with TLS
Test your knowledge
Summary

6. Interacting with Actuators in Swift
Understanding the requirements

Defining topics and commands
Enabling connections without TLS for a Mosquitto server

Installing the CocoaMQTT client library to create a new iOS app
Building the UI for the iOS app that will control an actuator
Understanding the CocoaMQTT client in Swift 3

Connecting to the MQTT server and subscribing to topics in Swift
Publishing messages to target actuators in Swift

Processing commands that interact with actuators in Node.js
Running the iOS app that controls an actuator with MQTT
Debugging events in Swift
Test your knowledge
Summary

A. Exersise Answers
Chapter 1, Lightweight Messaging with MQTT 3.1.1 and Mosquitto
Chapter 2, Securing an MQTT Mosquitto Server
Chapter 3, Controlling a Drone with Python
Chapter 4, Interacting with Sensors in Java
Chapter 5, Controlling Home Automation in JavaScript
Chapter 6, Interacting with Actuators in Swift

MQTT Essentials - A Lightweight I1oT Protocol

MQTT Essentials - A Lightweight I1oT Protocol

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for
any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: April 2017
Production reference: 1050417
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-781-5

www.packtpub.com

http://www.packtpub.com

Credits

Author Copy Editor

Gaston C. Hillar Muktikant Garimella

Reviewer Project Coordinator
Ben Howes Ulhas Kambali
Commissioning Editor Proofreader

Smeet Thakkar Safis Editing
Acquisition Editor Indexer

Reshma Raman Aishwarya Gangawane

Content Development Edito

'Vikas Tiwari Abhinash Sahu

Technical Editor Production Coordinato

Jijo Maliyekal Arvindkumar Gupta

Graphics |

S ——"— N EEEEEEEEEESSSIie———————————————————————j——_—_——_—_——..,

About the Author

Gaston C. Hillar is Italian and has been working with computers since he was eight. He began
programming with the legendary Texas TI-99/4A and Commodore 64 home computers in the early 80s. He
has a bachelor's degree in computer science (graduated with honors), and an MBA (graduated with an
outstanding thesis). At present, Gaston is an independent IT consultant and freelance author who is always
looking for new adventures around the world.

He has been a senior contributing editor at Dr. Dobb’s and has written more than a hundred articles on
software development topics. Gaston was also a former Microsoft MVP in technical computing. He has
received the prestigious Intel® Black Belt Software Developer award eight times.

He is a guest blogger at Intel® Software Network (http://software.intel.com). You can reach him at
gastonhillar@hotmail.com and follow him on Twitter at http://twitter.com/gastonhillar. Gaston’s blog

is http://csharpmulticore.blogspot.com.

He lives with his wife, Vanesa, and his two sons, Kevin and Brandon.

http://software.intel.com
http://twitter.com/gastonhillar
http://csharpmulticore.blogspot.com

Acknowledgment

At the time of writing this book, I was fortunate to work with an excellent team at Packt Publishing, whose
contributions vastly improved the presentation of this book. Reshma Raman allowed me to provide her
ideas for a book dedicated to MQTT, and I jumped into the exciting project of teaching the features of one
of the most important protocols for IoT projects with examples in many different programming languages.
Vikas Tiwari helped me realize my vision for this book and provided many sensible suggestions regarding
the text, the format, and the flow. The reader will notice his great work. It’s been great working with
Reshma and Vikas in another project and I can’t wait to work with them again. I would like to thank my
technical reviewers and proofreaders for their thorough reviews and insightful comments. I was able to
incorporate some of the knowledge and wisdom they have gained in their many years in the software
development industry. This book was possible because they gave valuable feedback.

The entire process of writing a book requires a huge number of lonely hours. I wouldn’t be able to write
an entire book without dedicating some time to play soccer against my sons, Kevin and Brandon, and my
nephew, Nicolas. Of course, I never won a match. However, I did score a few goals.

About the Reviewer

Ben Howes is the founder and lead consultant at Zoetrope Ltd, a specialist IoT consultancy and product
development firm in the UK. Ben has been creating connected hardware for over 10 years and has worked
across projects spanning from start-ups to multinational deployments.

I’d like to thank Richard Webb, my co-founder, for starting Zoetrope with me.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for
more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

W Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and
video courses, as well as industry-leading tools to help you plan your personal development and advance
your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us
improve, please leave us an honest review on this book's Amazon page at

https://www.amazon.com/dp/1787287815.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in

exchange for their valuable feedback. Help us be relentless in improving our products!

https://www.amazon.com/dp/1787287815

Dedication

To my sons, Kevin and Brandon, and my wife, Vanesa

Preface

MQTT is the preferred IoT publish-subscribe lightweight messaging protocol. If you develop IoT, web
applications, mobile apps, or a combination of these solutions, you must learn how MQTT and its
lightweight messaging system work. Of course, it is extremely important to take security into account
when working with this protocol.

Most of the times, when you work with IoT solutions, you won’t be using a single programming language.
Instead, you will use a combination of different programming languages and code running on different IoT
boards that might use diverse operating systems. MQTT has its own specific vocabulary and different
working modes. Learning MQTT is challenging because it includes too many abstract concepts that
require real-life examples to be easy to understand.

This book will allow you to dive deep into the latest version of the MQTT protocol: 3.1.1. You will learn
to work with Mosquitto MQTT server, command-line tools, and GUI tools to allow you to understand
how everything works with MQTT and the possibilities that this protocol provides for your projects. You
will learn security best practices and you will use them for a Mosquitto MQTT server.

This book will provide you with examples in the following programming languages, which are extremely
popular in IoT, web applications, and mobile apps: Python, Java, HTML 5, JavaScript, Node.js, and
Swift 3. You will control a drone, interact with sensors, control home automation, and interact with
actuators by exchanging MQTT messages with the different programming languages and client libraries.

You will be able to run the examples on a wide range of modern IoT boards, such as Raspberry Pi 3,
Raspberry Pi 2 Model B, Raspberry Pi Zero, Intel Joule, Intel Edison, and Intel Galileo Gen 2. However,
any other board that supports the programming languages explained in the book will be able to run the
samples.

What this book covers

Chapter 1, Lightweight Messaging with MQTT 3.1.1 and Mosquitto, starts our journey towards
understanding the MQTT protocol. You will learn convenient scenarios for this protocol, the details of the
publish-subscribe pattern, and message filtering. You will learn basic concepts related to MQTT and
understand the different components: clients, brokers or servers, and connections. You will learn to install
a Mosquitto broker or server on Linux, macOS, and Windows. You will learn best practices related to
topics and single-level and multilevel wildcards. We will study in detail the different Quality of Service
levels supported by MQTT and when it is convenient to use each of them. We will analyze their
advantages and disadvantages.

Chapter 2, Securing an MQTT Mosquitto Server, covers generating a private certificate authority, a
server certificate, and client certificates to enable TLS transport security and TLS client authentication
with Mosquitto. Communications between the MQTT clients and the MQTT server will be encrypted. We
will work with OpenSSL to generate the digital certificates. We will test the MQTT TLS configuration
with MQTT.fx, MQTT-spy, and the Mosquitto command-line utilities. We will force Mosquitto to use
only a specific TLS version. This way, we will understand how to encrypt communications between the
MQTT clients and the Mosquitto MQTT server.

Chapter 3, Controling a Drone with Python, analyzes the requirements for controlling a drone with
MQTT messages. We will define the topics that we will use and the commands that will be part of the
messages’ payloads to control a drone. Then, we will work with the Paho Python Client to write Python
code that connects an MQTT client to the MQTT server. We will understand the methods we need to call
for the Paho Python Client and their parameters. We will analyze how callbacks work and we will be
able to publish messages to topics, subscribe to topic filters, and receive and process messages. We will
write code that processes commands for a drone with Python. The code will be able to run on different
IoT platforms, including Intel Joule boards and Raspberry Pi 3, and also on any computer that is capable
of executing Python 2.7.x or Python 3.x. We will work with the network loop for the MQTT client in
Python. We will work with a GUI utility, command-line-based utilities, and, finally, with Python code to
control the drone and display the feedback provided by the drone.

Chapter 4, Interacting with Sensors in Java, analyzes the requirements for controlling sensors wired to
different IoT boards with MQTT messages and Java code. We will define the topics that we will use and
the commands that will be part of the messages’ payloads to control sensors. We will take advantage of
the last will and testament feature of MQTT with Java. We will work with the Eclipse Paho Java Client to
write Java code that will connect a non-blocking (asynchronous) MQTT client to the MQTT server. We
will create a security helper class to establish a TLS secured connection, and we will work with
asynchronous notifications and callbacks in Java. We will subscribe to topics, understand how
notification events work, and we will write code that processes commands that interact with sensors.
Finally, we will work with a GUI utility to interact with our Java application through MQTT messages.
We will be able to turn on and turn off the sensors and retrieve data from them.

Chapter 5, Controlling Home Automation in JavaScript, analyzes the requirements to control LEDs
wired to different IoT boards with MQTT messages over WebSockets. We will define the topics that we
will use and the commands that will be part of the message’s payloads to set the colors for LEDs. Then,

we will create an HTML 5 web page combined with JavaScript and the Eclipse Paho JavaScript
asynchronous client to control LEDs. We will write code to publish messages to target remote devices in
JavaScript and we will be able to process received messages to provide feedback to the user. We will
work with MQTT.js to write a Node.js script to process commands that simulate the interaction with
LEDs on different IoT boards. We will be able to run the home automation web application and
understand how all the pieces work together by exchanging MQTT over WebSockets messages. Finally,
we will understand the necessary steps to work with MQTT over WebSockets with TLS.

Chapter 6, Interacting with Actuators in Swift, analyzes the requirements for controlling actuators wired
to different IoT boards with MQTT messages. We will define the topics that we will use and the
commands that will be part of the message’s payloads to turn on and turn off motors. Then, we will create
an iOS app with Xcode and Swift 3, combined with the CocoaMQTT client, to control a motor. We will
write code to publish messages to target remote devices in Swift 3 and we will be able to process
received messages to provide feedback to the user. We will work with MQTT.js to write a Node.js script
to process commands that simulate the interaction with motors on the different IoT boards. We will be
able to run the iOS app and the Node.js script and understand how all the pieces work together by
exchanging MQTT messages.

What you need for this book

You will need any computer or device capable of running Python 3.x or greater, Chrome 56.x or greater,
JDK 8 or greater, and Node.js 6.7.x or greater.

In order to work with Mosquitto 1.4.11 or greater, you will need a computer with any of the operating
systems supported by this version of Mosquitto. The list is available at https://mosquitto.org/download/.

In order to work with Xcode 8.x, you will need a Mac computer capable of running OS X 10.11.5 or later,
with 8 GB RAM.

https://mosquitto.org/download/

Who this book is for

This book is a great resource for developers who want to learn more about the MQTT protocol to apply it
to their individual IoT projects. Prior knowledge of working with IoT devices is essential.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information.
Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles are shown as follows: "If a client specifies and empty value as the
ClientId."

A block of code is set as follows:

Replace localhost with the IP for the Mosquitto
or other MQTT server

mqtt_server_host = "localhost"

mgtt_server_port = 8883

mqtt_keepalive = 60

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are
set in bold:

<div id="led-2">

Select color for LED #2

Any command-line input or output is written as follows:

sudo apt-get update

New terms and important words are shown in bold. Words that you see on the screen, for example, in
menus or dialog boxes, appear in the text like this: "In order to download new modules, we will go to
Files | Settings | Project Name | Project Interpreter."

Note
Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get
the most out of. To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message. If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most
from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

You can download the code files by following these steps:

1. Login or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

Nouhkwhn

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version
of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/MQTT-
Essentials-A-Lightweight-IoT-Protocol. We also have other code bundles from our rich catalog of books
and videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book.
The color images will help you better understand the changes in the output. You can download this file

from
https://www.packtpub.convsites/default/files/downloads/MQTTEssentialsALightweightloTProtocol Colc

https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find
a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could
report this to us. By doing so, you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The required information will appear under the Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and
we will do our best to address the problem.

Chapter 1. Lightweight Messaging with MQTT
3.1.1 and Mosquitto

In this chapter, we will start our journey towards the usage of the preferred IoT publish-subscribe
lightweight messaging protocol in diverse IoT solutions combined with mobile apps and web
applications. We will learn how MQTT and its lightweight messaging system work. We will learn MQTT
basics, the specific vocabulary for MQTT, and its working modes. We will use different utilities and
diagrams to understand the most important concepts related to MQTT. We will:

Understand convenient scenarios for the MQTT protocol

Work with the publish-subscribe pattern

Work with message filtering

Learn basic concepts related to MQTT

Understand the MQTT puzzle: clients, servers or brokers, and connections
Install a Mosquitto MQTT server on Linux, macOS, or Windows
Publish messages

Subscribe to topics

Unsubscribe from topics

Work with best practices when creating topics

Understand wildcards

Learn about the different Quality of Service levels

Work with at least once delivery

Work with exactly once delivery

Understanding convenient scenarios for the
MQTT protocol

Imagine that we have dozens of different devices that must exchange data between them. These devices
have to request data to other devices and the devices that receive the requests must respond with the
demanded data. The devices that requested the data must process the data received from the devices that
responded with the demanded data.

The devices are Internet of Things (IoT) boards that have dozens of sensors wired to them. We have the
following IoT boards with different processing powers: Raspberry Pi 3, Raspberry Pi Model B, Intel
Edison, and Intel Joule 570x. Each of these boards has to be able to send and receive data. In addition,
we want many mobile devices to be able to send and receive data, some of them running iOS and others
Android. We have to work with many programming languages.

We want to send and receive data in near real time through the Internet and we might face some network
problems, that is, our wireless networks are somewhat unreliable and we have some high-latency
environments. Some devices have low power, many of them are powered by batteries and their resources
are scarce. In addition, we must be careful with the network bandwidth usage because some of the
devices use metered connections.

Tip

A metered connection is a network connection in which we have a limited amount of data usage per
month. If we go over this amount of data, we get billed extra charges.

We can use HTTP requests and build a publish-subscribe model to exchange data between different
devices. However, there is a protocol that has been specifically designed to be lighter than the HTTP 1.1
protocol and work better when unreliable networks are involved and connectivity is intermittent. The MQ
Telemetry Transport (MQTT) is better suited for this scenario in which many devices have to exchange
data between themselves in near real time through the Internet and we need to consume the least possible
network bandwidth.

The MQTT protocol is a Machine-to-Machine (M2M) and IoT connectivity protocol. MQTT is a
lightweight messaging protocol that works with a broker-based publish-subscribe mechanism and runs on
top of Transmission Control Protocol / Internet Protocol (TCP/IP).

The following diagram shows the MQTT protocol on top of the TCP/IP stack:

MQTT

LCP

IP

Note

The most popular versions of MQTT are 3.1 and 3.1.1. In this book, we will work with MQTT 3.1.1.
Whenever we reference MQTT, we are talking about MQTT 3.1.1, that is, the newest version of the
protocol. The MQTT 3.1.1 specification has been standardised by the OASIS consortium. In addition,
MQTT 3.1.1 became an ISO standard (ISO/IEC 20922) in 2016.

MQTT is lighter than the HTTP 1.1 protocol, and therefore, it is a very interesting option whenever we
have to send and receive data in near real time with a publish-subscribe model and we require the lowest
possible footprint. MQTT is very popular in IoT, M2M, and embedded projects, but it is also gaining
presence in web applications and mobile apps that require assured messaging and an efficient message
distribution. As a summary, MQTT is suitable for the following application domains in which data
exchange is required:

Asset tracking and management
Automotive telematics

Chemical detection

Environment and traffic monitoring
Field force automation

Fire and gas testing

Home automation

In-Vehicle Infotainment (IVI)

Medical

Messaging

Point of Sale (POS) kiosks

Railway

Radio-Frequency Identification (RFID)

Supervisory Control and Data Acquisition (SCADA)
Slot machines

As a summary, MQTT was designed to be suitable to support the following typical challenges in IoT,
M2M, embedded, and mobile applications:

Be lightweight to make it possible to transmit high volumes of data without huge overheads
Distribute minimal packets of data in huge volumes

Support an event-oriented paradigm with asynchronous bidirectional low latency push delivery of
messages

Easily emit data from one client to many clients

Make it possible to listen for events whenever they happen (event-oriented architecture)

Support always-connected and sometimes-connected models

Publish information over unreliable networks and provide reliable deliveries over fragile
connections

Work very well with battery-powered devices or require low power consumption

Provide responsiveness to make it possible to achieve near real-time delivery of information
Offer security and privacy for all the data

Be able to provide the necessary scalability to distribute data to hundreds of thousands of clients

Working with the publish-subscribe pattern

Before we dive deep into MQTT, we must understand the publish-subscribe pattern, also known as the
pub-sub pattern. In the publish-subscribe pattern, a client that publishes a message is decoupled from the
other client or clients that receive the message. The clients don't know about the existence of the other
clients. A client can publish messages of a specific type and only the clients that are interested in specific
types of messages will receive the published messages.

The publish-subscribe pattern requires a broker, also known as server. All the clients establish a
connection with the broker. The client that sends a message through the broker is known as the publisher.
The broker filters the incoming messages and distributes them to the clients that are interested in the type
of received messages. The clients that register to the broker as interested in specific types of messages
are known as subscribers. Hence, both publishers and subscribers establish a connection with the broker.

It is easy to understand how things work with a simple diagram. The following diagram shows one
publisher and two subscribers connected to a broker:

Subscriber

Subscribe to topic
“sensorl/altitude”

iOS Smartphone

Publish 100 feet to topic
“sensorl/altitude”

Publish 100 feet to topic
“sensorl/altitude”

Altitude
sensor wired

to Raspberry
Pi3

Broker

Subscribe to topic
“sensorl/altitude”

Publish 100 feet to topic

“sensorl/altitude”
Android Tablet

’ Publisher Subscriber

A Raspberry Pi 3 board with an altitude sensor wired to it is a publisher that establishes a connection
with the broker. An iOS smartphone and an Android tablet are two subscribers that establish a connection
with the broker.

The iOS smartphone indicates to the broker that it wants to subscribe to all the messages that belong to the
sensorl/altitude topic. The Android tablet indicates the same to the broker. Hence, both the iOS
smartphone and the Android tablet are subscribed to the sensorl/altitude topic.

Tip

A topic is a named logical channel and it is also referred to as a channel or subject. The broker will send
publishers only the messages published to topics to which they are subscribed.

The Raspberry Pi 3 board publishes a message with 100 feet as the payload and sensorl/altitude as the
topic. The board, that is, the publisher, sends the publish request to the broker.

Tip

The data for a message is known as payload. A message includes the topic to which it belongs and the
payload.

The broker distributes the message to the two clients that are subscribed to the sensorl/altitude topic: the
iOS smartphone and the Android tablet.

Publishers and subscribers are decoupled in space because they don't know each other. Publishers and
subscribers don't have to run at the same time. The publisher can publish a message and the subscriber
can receive it later. In addition, the publish operation isn't synchronized with the receive operation. A
publisher requests the broker to publish a message and the different clients that have subscribed to the
appropriate topic can receive the message at different times. The publisher can send messages as an
asynchronous operation to avoid being blocked until the clients receive the messages. However, it is also
possible to send a message to the broker as a synchronous operation with the broker and to continue the
execution only after the operation was successful. In most cases, we will want to take advantage of
asynchronous operations.

A publisher that requires sending a message to hundreds of clients can do it with a single publish
operation to a broker. The broker is responsible for sending the published message to all the clients that
have subscribed to the appropriate topic. Because publishers and subscribers are decoupled, the
publisher doesn't know whether there is any subscriber that is going to listen to the messages it is going to
send. Hence, sometimes it is necessary to make the subscriber become a publisher too and to publish a
message indicating that it has received and processed a message. The specific requirements depend on the
kind of solution we are building. MQTT offers many features that make our lives easier in many of the
scenarios we have been analyzing.

Working with message filtering

The broker has to make sure that subscribers only receive the messages they are interested in. It is
possible to filter messages based on different criteria in a publish-subscribe pattern. We will focus on
analyzing topic-based filtering, also known as subject-based filtering.

Consider that each message belongs to a topic. When a publisher requests the broker to publish a
message, it must specify both the topic and the message. The broker receives the message and delivers it
to all the subscribers that have subscribed to the topic to which the message belongs.

The broker doesn't need to check the payload for the message to deliver it to the corresponding
subscribers; it just needs to check the topic for each message that has arrived and needs to be filtered
before publishing it to the corresponding subscribers.

A subscriber can subscribe to more than one topic. In this case, the broker has to make sure that the
subscriber receives the messages that belong to all the topics to which it has subscribed. It is easy to
understand how things work with another simple diagram. The following diagram shows two future
publishers that haven't published any messages yet, a broker and two subscribers connected to the broker:

Altitude
sensor wired
to Raspberry
Pi3

Publisher

/ Temperature
sensor wired
to Intel Edison

Publisher

Subscriber

iOS Smartphone

Subscribe to topic
“sensorl/altitude”

Broker

Subscribe to topic
“sensorl/altitude”

Subscribe to topic
“sensor42/temperature”

Android Tablet

Subscriber

A Raspberry Pi 3 board with an altitude sensor wired to it and an Intel Edison board with a temperature
sensor wired to it will be two publishers. An iOS smartphone and an Android tablet are two subscribers
that establish a connection to the broker.

The iOS smartphone indicates to the broker that it wants to subscribe to all the messages that belong to the
sensorl/altitude topic. The Android tablet indicates to the broker that it wants to subscribe to all the
messages that belong to any of the following two topics: sensorl/altitude and sensor42/temperature.
Hence, the Android tablet is subscribed to two topics while the iOS smartphone is subscribed to just one
topic.

The following diagram shows what happens after the two publishers connect and publish messages to
different topics through the broker:

Subscriber

iOS Smartphone

Publish 120 feet to topic
“sensorl/altitude”

Publish 120 feet to topic /
“sensorl/altitude” '

.

Altitude
sensor wired
to Raspberry
Pi 3

Broker

Publish 120 feet to topic
“sensorl/altitude”

Publish 75 F to topic
“sensor42/temperature”

Publisher

Publish 75 F to topic Android Tablet |
“sensord2/temperature” 4

' Temperature
sensor wired
to Intel Edison

Subscriber ‘

Publisher

The Raspberry Pi 3 board publishes a message with 120 feet as the payload and sensorl/altitude as the
topic. The board, that is, the publisher, sends the publish request to the broker. The broker distributes the
message to the two clients that are subscribed to the sensorl/altitude topic: the iOS smartphone and the
Android tablet.

The Intel Edison board publishes a message with 75 F as the payload and sensor42/temperature as the
topic. The board, that is, the publisher, sends the publish request to the broker. The broker distributes the
message to the only client that is subscribed to the sensor42/temperature topic: the Android Tablet.
Thus, the Android tablet receives two messages.

Understanding the MQT'T puzzle -- clients,
servers, and connections

The MQTT broker is known as MQTT server in MQTT 3.1.1, and therefore, we will refer to it as the
server. However, we must take into account that the documentation for MQTT servers, tools and client
libraries can use the old MQTT broker name to refer to the server.

The MQTT server uses the previously explained topic-based filtering to filter and distribute messages to
the appropriate subscribers. There are many MQTT server implementations that provide additional
message filtering features by providing custom plug-ins. However, we will focus on the features that are
part of the MQTT requirements.

As previously explained, in MQTT the publishers and the subscribers are completely decoupled.
Publishers and subscribers are MQTT clients that only establish a connection with the MQTT server. An
MQTT client can be both a publisher and a subscriber at the same time, that is, the client can publish
messages to specific topics and also receive messages that belong to the topics to which the client has
subscribed to.

There are MQTT client libraries available for the most popular programming languages and platforms.
One of the most important things that we must consider when we select the MQTT client library is the list
of MQTT features that they support and the ones that we need for our solution. Sometimes, we can choose
between many libraries for a specific programming language and platform and some of them might not
implement all the features. We will use many libraries for diverse programming languages and platforms
throughout the book and we will learn how to evaluate whether a library is suitable or not for our needs.
Specifically, we will work with Python, Java, JavaScript and Swift.

Any device that has a TCP/IP stack and is capable of using an MQTT library can become an MQTT
client, that is, a publisher, a subscriber or both a publisher and a subscriber. The MQTT library makes it
possible for the device to talk MQTT on top of TCP/IP and to interact with specific types of MQTT
servers. For example, any of the following can become an MQTT client: an Arduino board, a Raspberry
Pi 3 board, an Intel Joule board, an iPhone, an iPad, a laptop running Windows, a server running Linux, a
Macbook running macOS, and Android tablet, among other devices.

There are many MQTT servers available for the most popular platforms, including Linux, Windows and
macOS. Many of them are servers that can work as MQTT servers among other features. An MQTT
server might implement only a subset of the MQTT capabilities and might have specific limitations.
Hence, it is very important to check all the capabilities we will require in our solution before selecting an
MQTT server. As happens with other middleware, we have open source versions, free versions and paid
versions. Thus, we also have to make sure we select the appropriate MQTT server based on our budget
and our specific needs.

Throughout this book, we will work with the Eclipse Mosquitto MQTT server
(http://www.mosquitto.org). Mosquitto is an open source MQTT server with an EPL/EDL license that is
compatible with MQTT versions 3.1 and 3.1.1. We can take advantage of everything we learn with any

http://www.mosquitto.org

other MQTT server such as Erlang MQTT Broker (EMQ), also known as EMQTT
(http://www.emqtt.io), and HiveMQ (http://hivemqg.com), among others. In addition, we might use our
knowledge to work with a cloud-based MQTT server such as CloudMQTT (http://www.cloudmqtt.com).

The MQTT server is the central hub of the publish/subscribe model we previously analyzed. The MQTT
server is responsible of the authentication and authorization of the MQTT clients that will be able to
become publishers and/or subscribers after they are authenticated and authorized. So, the first thing that an
MQTT client must do is to establish a connection with the MQTT server.

In order to establish a connection, the MQTT client must send a CONNECT control packet to the MQTT
server with a payload that must include all the necessary information to initiate the connection and
proceed with the authentication and authorization. The MQTT server will check the CONNECT packet,
perform authentication and authorization and send a response to the client witha CONNACK control
packet that we will analyze in detail after understanding the CONNECT control packet. In case the
MQTT client sends an invalid CONNECT control packet, the server will automatically close the
connection.

The following diagram shows the interaction between an MQTT client and an MQTT server to establish a
connection.

CONNECT

R

CONNACK

- '
: B Audio by -
. | y -~
....... =
. N = ; (r=

.-';.
4

. MQTT server

MQTT client

Publisher or subscriber

Tip

After a successful connection has been established between an MQTT client and an MQTT server, the
server will keep the connection open until the client loses the connection or sends a DISCONNECT
control packet to the server to close the connection.

http://www.emqtt.io
http://hivemq.com
http://www.cloudmqtt.com

The CONNECT control packet must include values for the following fields in the payload and bits for a
special flags byte that is included in the control packet. We want to understand the meaning of these fields
and flags because we will be able to specify their values when we work with MQTT tools and MQTT
client libraries.

e clientId: The client identifier, also known as Client ID, is a string that identifies each MQTT client
that connects to an MQTT server. Each client that connects to the MQTT server must have a unique
ClientId and the server uses it to identify the state that it holds related to the MQTT session
between the client and the server. If a client specifies an empty value as the ClientId, the MQTT
server must generate a unique ClientId to identify the client. However, this behavior depends on
the value specified for the CleanSession field.

e cleanSession: The clean session flag is a boolean value that specifies what happens after an
MQTT client disconnects from the MQTT server and then reconnects. If CleanSession is set to 1 or
true, the client indicates to the MQTT server that the session will only last as long as the network
connection is alive. After the MQTT client disconnects from the MQTT server, any information
related to the session is discarded. A new connection from the same MQTT client to the MQTT
server will not use the data from the previous session and will be a new clean session. If
CleanSession is setto 0 or false, we will work with a persistent session. In this case, the MQTT
server stores all the subscriptions for the MQTT client and when the MQTT client disconnects, the
MQTT server stores all the messages that arrive with specific quality of service levels that match
the subscriptions that the MQTT client had at the time the disconnection occurred. This way, when
the same MQTT client establishes a new connection with the MQTT server, the MQTT client will
have the same subscriptions and will receive all the messages that it couldn't receive when it lost the
connection. We will dive deep on the quality of service level for the messages and their relationship
with the clean session flag or the persistent session option later.

Tip

When the clean session flag is set to @ or false, the client indicates to the server that is wants a persistent
session. We just have to remember a clean session is the opposite of a persistent session.

e UserName: If the client wants to specify a user name to request authentication and authorization from
the MQTT server, it must set the UserName flag to 1 or true and specify a value for the UserName
field.

e password: If the client wants to specify a password to request authentication and authorization from
the MQTT server, it must set the Password flag to 1 or true and specify a value for the Password
field.

Tip

We will dedicate the entire next chapter to MQTT security, and therefore, we just mention the fields and
the flags that are included in the CONNECT control packtet.

e ProtocolLevel: The protocol level value indicates the MQTT protocol version that the MQTT
client requests the MQTT server to use. Remember we will always work with MQTT version 3.1.1.

e KeepAlive: KeepAlive is a time interval expressed in seconds. If the value for keep alive is not
equal to 0, the MQTT client commits to send control packets to the server within the time specified

for keepAlive. If the MQTT client doesn't have to send any control packet, it must send a PINGREQ
control packet to the MQTT server, that is, a ping request to tell the MQTT server that the client
connection is alive. The MQTT server responds to the PINGREQ control packet with a PINGRESP
response to the MQTT client, that is, a ping response to tell the MQTT client that the connection with
the MQTT server is alive. The connection is closed when there is an absence of any of these control
packets. If the value for keep alive is 0, the keep alive mechanism is turned off.

e Will,WillQoS,WillRetain, WillTopic and WillMessage: These flags and fields allow the
MQTT client to take advantage of the last will and testament feature of MQTT. If the MQTT client
sets the will flag to 1 or true, it specifies that it wants the MQTT server to store a last will message
associated with the session. The willQos flag specifies the desired quality of service for the last
willMessage and the willRetain flag indicates whether this messsage must be retained when it is
published or not. If the MQTT client sets the will flag to 1 or true, it must specify the topic for the
willMessage and the message inthe WwillTopic and WillMessage fields. If the MQTT client is
disconnected or loses the connection with the MQTT server, the MQTT server will publish the
message specified in the willMessage field to the topic indicated in the willTopic field with the
chosen quality of service. We will analyze this feature in detail later.

The MQTT server will process a valid CONNECT control packet and it will respond with a CONNACK
control packet. This control packet will include values for the following flags included in the header. We
want to understand the meaning of these flags because we will be able to retreive their values when we
work with MQTT tools and MQTT client libraries.

e sSessionPresent: If the MQTT server received a connection request with the Cleansession flag
set to 1 or true, the value for the SessionPresent flag will be 0 or false because no stored
session will be reused. If the cCleanSession flag was set to 0 or false in the connection request, the
MQTT server will work with a persistent session and the value for the SessionPresent flag will
be 1 or true if the server had a persistent session for the client from a previous connection and
retrieves it. Otherwise, SessionPresent will be © or false. The MQTT client that wanted to work
with a persistent session can use the value of this flag to determine whether it has to request
subscription to the desired topics or whether the subscriptions have been restored from the persisted
session.

e ReturncCode: If the authorization and authentication passed and the connection was successfully
established, the value for ReturnCode will be 0. Otherwise, the return code will be different than o
and the network connection between the client and the server will be closed. The following table
shows the possible values for Returncode with their meaning,

ReturnCode .
Description
value
0 The connection was accepted

The connection was refused because the MQTT server doesn't support the MQTT protocol version requested by the MQTT
client in the CONNECT control packet

2 The connection was refused because the clientId (client identifier) specified has been rejected

The connection was refused because the network connection was established but the MQTT service isn't available

The connection was refused because the user name or password values are malformed

The connection was refused because authorization failed

Installing a Mosquitto broker on Ubuntu Linux

Now, we will learn the necessary steps to install a Mosquitto broker, also known as Mosquitto MQTT
server on the most popular operating systems: Linux, macOS and Windows. First, we will start with
Linux; specifically, we will work with Ubuntu Linux. In case you want to work with a different Linux
distribution, you can find details about the installation procedure in the Mosquitto downloads section:

http://mosquitto.org/download.

Follow these steps to install a Mosquitto broker on Ubuntu Linux. Take into account that you will require
root privileges:

1. Open a Terminal window and run the following command to add the Mosquitto repository: sudo apt-
add-repository ppa: mosquitto-dev/mosquitto-ppa

After you enter the password, you will see an output similar to the next lines (the temporary file
names will be different).

gpg: keyring “/tmp/tmpj3a50plp/secring.gpg' created

gpg: keyring " /tmp/tmpj3a50pilp/pubring.gpg' created

gpg: requesting key 262C4500 from hkp server keyserver.ubuntu.com
gpg: /tmp/tmpj3a50plp/trustdb.gpg: trustdb created

gpg: key 262C4500: public key "Launchpad mosquitto" imported

gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)

oK

2. Run the following command to update the packages with the recently added Mosquitto repository.

sudo apt-get update

You will see an output similar to the next lines.

Get:1 http://ppa.launchpad.net/mosquitto-dev/mosquitto-ppa/ ubuntu
xenial InRelease [23,8 kB]

Hit:2 http://security.ubuntu.com/ubuntu xenial-security InRelease

Hit:3 http://ar.archive.ubuntu.com/ubuntu xenial InRelease

Hit:4 http://ar.archive.ubuntu.com/ubuntu xenial-updates InRelease

Get:5 http://ppa.launchpad.net/mosquitto-dev/ mosquitto-ppa/ubuntu
xenial/main amd64 Packages [2.048 B]

Hit:6 http://ar.archive.ubuntu.com/ubuntu xenial-backports InRelease

Get:7 http://ppa.launchpad.net/mosquitto-dev/ mosquitto-ppa/ubuntu
xenial/main i386 Packages [2.048 B]
Get:8 http://ppa.launchpad.net/mosquitto-dev/mosquitto-ppa/ ubuntu

xenial/main Translation-en [1.292 B]
Fetched 29,2 kB in 1s (21,5 kB/s)
Reading package lists... Done

3. Now, run the following command to install the package for the Mosquitto server.
sudo apt-get install mosquitto

You will see an output similar to the next lines. Enter Y and press Enter to answer the question and
complete the installation process.

http://mosquitto.org/download

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
libev4 libuvl libwebsockets?7
The following NEW packages will be installed:
libev4 libuvl libwebsockets7 mosquitto
0 upgraded, 4 newly installed, 0 to remove and 299 not upgraded.
8 not fully installed or removed.
Need to get 274 kB of archives.
After this operation, 714 kB of additional disk space will be used.
Do you want to continue? [Y/n]

The last lines should include a line that says Setting up mosquitto, as shown in the following
lines: Setting up mosquitto (1.4.10-0Omosquitto3) ... Processing triggers for libc-bin (2.23-
Oubuntu3) ... Processing triggers for systemd (229-4ubuntu?) ... Processing triggers for
ureadahead (0.100.0-19) ...

. Run the following command to install the Mosquitto client packages that will allow us to run
commands to publish messages to topics and subscribe to topic filters.

sudo apt-get install mosquitto-clients

You will see an output similar to the next lines. Enter Y and press Enter to answer the question and
complete the installation process.

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
libc-ares2 libmosquittol
The following NEW packages will be installed:
libc-ares2 libmosquittol mosquitto-clients
0 upgraded, 3 newly installed, 0 to remove and 299 not upgraded.
Need to get 138 kB of archives.
After this operation, 332 kB of additional disk space will be used.
Do you want to continue? [Y/n]

The last lines should include a line that says Setting up mosquitto-clients, as shown in the
following lines: Setting up libmosquitto1:amd64 (1.4.10-0Omosquitto3) ... Setting up mosquitto-
clients (1.4.10-Omosquitto3) ... Processing triggers for libc-bin (2.23-0ubuntu3) ...

. Run the following command to check the status for the mosquitto service that was recently
installed.

sudo service mosquitto status

The first lines of the output should be similar to the following lines with an active (running)
status displayed. The details after CGroup indicate the command-line that started the service. The -c
option followed by /etc/mosquitto/mosquitto.conf specifies that Mosquitto is using this
configuration file.

mosquitto.service - LSB: mosquitto MQTT v3.1 message broker
Loaded: loaded (/etc/init.d/mosquitto; bad; vendor preset:

enabled)
Active: active (running)
Docs: man:systemd-sysv-generator(8)
CGroup: /system.slice/mosquitto.service
L-17560 /usr/sbin/mosquitto -c
/etc/mosquitto/mosquitto.conf

You can also run the following command to check whether the Mosquitto MQTT server is listening
at the default port: 1883.

netstat -an | grep 1883
The following lines show the results of the previous command that indicate the Mosquitto MQTT

server has opened an IPv4 and an IPv6 listen socket on port 1883: tcp 0 0 0.0.0.0:1883 0.0.0.0:*
LISTEN tcp6 00 :::1883 :::* LISTEN

Installing a Mosquitto broker on macOS

Follow these steps to install a Mosquitto broker on macOS (known as OS X before version Sierra):

1. In case you don't have Homebrew installed, open a Terminal window and run the command indicated
in the Homebrew homepage, http://brew.sh , to install this popular package manager for macOS. The
following command will do the job. However, it is convenient to check the Homebrew homepage
and check all the detailed instructions that are always updated with the newest versions of macOS
that become available. In case you already have Homebrew installed, move to the next step.

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew
/install/master/install)"

2. Open a Terminal window and run the following command to request Homebrew to install Mosquitto:
brew install mosquitto

3. The following lines show the last messages shown in the Terminal that indicate that Homebrew has
installed Mosquitto and the instructions to start the MQTT server.

==> Installing mosquitto
==> Downloading https://homebrew.bintray.com/bottles/mosquitto-
1.4.10.el _capitan.bottle.tar.gz
HHHHBHHHHBHHHHBHHHH BB HHH BB HHHBHHHHBH AR B H AR B H G R BHHHE 100. 0%
==> Pouring mosquitto-1.4.10.el capitan.bottle.tar.gz
==> Caveats
mosquitto has been installed with a default configuration file.
You can make changes to the configuration by editing:
/usr/local/etc/mosquitto/mosquitto.conf
To have launchd start mosquitto now and restart at login:
brew services start mosquitto
Or, if you don't want/need a background service you can just run:
mosquitto -c /usr/local/etc/mosquitto/mosquitto.conf
==> Summary
/usr/local/Cellar/mosquitto/1.4.10: 32 files, 618.3K

4. After the Mosquitto installation has been completed, run the following command in a new Terminal
window to launch Mosquitto with the default configuration file. The -c option followed by
/usr/local/etc/mosquitto/mosquitto.conf specifies that we want to use this configuration
file.

/usr/local/sbin/mosquitto -c¢ /usr/local/etc/mosquitto/mosquitto.conf

The following is the output after you run the previous command:

Gastons-MacBook-Pro:~ gaston$ /usr/local/sbin/mosquitto -c
/usr/local/etc/mosquitto/mosquitto.conf

1482518967: mosquitto version 1.4.10 (build date 2016-08-31
20:09:41+0100) starting

1482518967: Config loaded from
/usr/local/etc/mosquitto/mosquitto.conf.

1482518967 : Opening ipv4 listen socket on port 1883.

1482518967 : Opening ipv6 listen socket on port 1883.

http://brew.sh

The last lines indicate the Mosquitto MQTT server has opened an IPv4 and an IPv6 listen socket on
port 1883. Leave the Terminal window opened because we need Mosquitto running on the local
computer to work with the next examples.

Installing a Mosquitto broker on Windows

Follow these steps to install a Mosquitto broker on Windows. Take into account that you will require
Windows Vista or higher (Windows 7, 8, 8.1, 10 or greater).

1.

Download the executable file listed under Binary Installation and Windows that provides the native
build in the Mosquitto downloads web page: http://mosquitto.org/download . For Moquitto 1.4.10,
the file name is mosquito-1.4.10-install-win32.exe. You must click or tap on the file name and
you will be redirected to the Eclipse repository with many mirror options, including a default
recommendation, from which you can download the executable file.

Run the previously downloaded executable file and the Mosquitto Setup Wizard will display its
Welcome dialog box. Click Next > to continue. The setup wizard will display the dependencies that
you must install: OpenSSL and pthreads. The dialog box will display the links that you can use to
download and run installers for these two requirements.

If you don't have Win32 OpenSSL v1.0.2j Light installed on Windows, go to the Win32 OpenSSL
web page: http://slproweb.com/products/Win320OpenSSL.html and download the Win32 OpenSSL
v1.0.2k Light file listed in a table under Download Win32 OpenSSL. Do not download the Win64
version because you will need the Win32 version to make it possible for Mosquitto to have its
dependencies. If you already have Win32 OpenSSL v1.0.2k Light installed, advance to step number
7. For Win32 OpenSSL v1.0.2k Light, the file name is Win320penSSL_Light-1_0_2j.exe. Run
the downloaded executable file and OpenSSL Light (32-bit) will display its Welcome dialog box.
Click Next > to continue.

The setup wizard will display the License Agreement. Read it, select I Accept the agreement and
click Next >. Select the folder in which you want to install OpenSSL Light (32-bit) in case you don't
want to use the default folder. Remember the folder you specify because you will need to copy a few
DLL files from this folder later. The default folder is C:0penSSL-win32.

Click Next > to continue, specify a different Start Menu folder if necessary and click Next >. Select
The OpenSSL binaries (/bin) directory as the desired option to Copy OpenSSL DLLs to. This
way, the installation will copy the DLLs to a bin sub-folder within the previously specified folder,
by default, C:0penSSL-Win32bin.

Click Next > to continue. Review the selected installation options and click Install to complete the
installation for OpenSSL Light (32-bit). Finally, consider a donation to the Win32 OpenSSL project
and click Finish to exit setup.

Go to the following address in your web browser: ftp://sources.redhat.com/pub/pthreads-win32/dll-
latest/dl1/x86 . The browser will display many files for this FTP directory. Right click on
pthreadVC2.dll and save the file in your Downloads folder. You will have to copy this DLL to the
Mosquitto installation folder later.

. Now, go back to the Mosquitto Setup window and click Next > to continue. By default, Mosquitto

will install the files and the Mosquitto Service. Use the default components installation options and
click Next > to continue.

Select the folder in which you want to install Mosquitto in case you don't want to use the default
folder. Remember the folder you specify because you will need to copy a few DLL files to this
folder later. The default folder is C:Program Files (x86)mosquitto. Click Install to complete
the installation. Once the installation has completed click Finish to close the Mosquitto Setup

http://mosquitto.org/download
http://slproweb.com/products/Win32OpenSSL.html
ftp://sources.redhat.com/pub/pthreads-win32/dll-latest/dll/x86

Wizard.

10. Open a File Explorer window and go to the bin sub-folder within the folder in which you installed
OpenSSL Light (32-bit), by default, C: 0penSSL-wWin32bin.

11. Copy the following two DLLs: 1ibeay32.d11 and ssleay32.d11. Now, go to the folder in which
you installed Mosquitto and paste these two DLLs. By default, the Mosquitto installation folder is
C:Program Files (x86)mosquitto. You will need to provide administrator permission to paste
the DLLs in the default folder.

12. Open a File Explorer window and go to your bownloads folder. Copy the pthreads DLL you
downloaded in one of the previous steps: pthreadvc2.d11. Now, go to the folder in which you
installed Mosquitto and paste this DLL. You will need to provide administrator permission to paste
the DLL in the default Mosquitto installation folder.

13. Now that all the dependencies are included in the Mosquitto installation folder, it is necessary to run
the installation again to make the Mosquitto Setup configure the Windows service. Run the
previously downloaded Mosquitto installation executable again. For Moquitto 1.4.10, the file name
ismosquito-1.4.10-install-win32.exe. Make sure you specify the same installation folder as
the folder in which you copied the DLLs and that the Service component is activated. Click Next >
many times and click Install to complete the configuration for the Windows service. Once the
installation has completed click Finish to close the Mosquitto Setup Wizard.

14. Open the Services application in Windows and search for the service whose name is Mosquitto
Broker. Right click on the service name and select Start. The Status will change to Running. By
default, the service is configured to have its Startup Type set to Automatic. If you don't want to
automatically start the Mosquitto Broker service, change the Startup Type to Manual. You will have
to repeat the step you just did to manually start the service before working with Mosquitto on the
Windows computer.

Open a Command Prompt window and run the following command to check whether the Mosquitto MQTT
server is listening at the default port: 1883.

netstat -an | findstr 1883
The following lines show the results of the previous command that indicate the Mosquitto MQTT server

has opened an IPv4 and an IPv6 listen socket on port 1883: TCP 0.0.0.0:1883 0.0.0.0:0 LISTENING
TCP [::]:1883 [::]:0 LISTENING

Subscribing to topics

A drone is an IoT device that interacts with many sensors and actuators, including digital electronic speed
controllers linked to engines, propellers and servomotors. A drone is also known as an Unnamed Aerial
Vehicle (UAV). Let's imagine that we have to monitor many drones. Specifically, we have to display their
altitude and the speed for each of their servomotors. Not all of the drones have the same number of
engines, propellers and servomotors. We have to monitor quadcopters (4 propellers), hexacopters (6
propellers) and octocopters (8 propellers).

Each drone will publish its altitude every two seconds to the following topic:
sensors/dronename/altitude, where dronename must be replaced by the name assigned to each
drone. For example, the drone named drone®1 will publish its altitude values to the
sensors/drone01/altitude topic and the drone named drone26 will use the
sensors/drone20/altitude topic.

In addition, each drone will publish the speed for each of its rotors every two seconds to the following
topic: sensors/dronename/speed/rotor/rotornumber, where dronename must be replaced by the
name assigned to each drone and rotornumber must be replaced by the rotor number for which the speed
is going to be published. For example, the drone named drone®1 will publish its speed values for its
rotor number 1 to the sensors/drone@1/speed/rotor/1 topic.

We will use the mosquitto_sub command-line utility included in Mosquitto to generate a simple MQTT
client that subscribes to a topic and print all the messages it receives. Open a Terminal in macOS or
Linux, or a Command Prompt in Windows, go to the directory in which Mosquitto is installed and run the
following command:

mosquitto_sub -V mqttv31ll -t sensors/drone@i1/altitude -d

The previous command will create an MQTT client that will establish a connection with the local MQTT
server and then will make the client subscribe to the topic specified after the -t option:
sensors/drone01/altitude. We specify the version of the MQTT protocol that we want to use when
the client establishes the connection with -v mqttv311. This way, we indicate the MQTT server that we
want to use MQTT version 3.1.1. We specify the -d option to enable debug messages that will allow us to
understand what happens under the hoods. We will analyze additional options for the connection and the
subscription later.

The Terminal or Command Prompt window will display debug messages similar to the following lines.
Take into account that the generated clientId will be different from the one shown after client:
mosqpub/5449-Gastons-Ma.

Client mosqsub/5449-Gastons-Ma sending CONNECT

Client mosqsub/5449-Gastons-Ma received CONNACK

Client mosqsub/5449-Gastons-Ma sending SUBSCRIBE (Mid: 1, Topic:
sensors/drone@1/altitude, QoS: 0)

Client mosqsub/5449-Gastons-Ma received SUBACK

Subscribed (mid: 1): 0

The Terminal or Command Prompt window will display the messages published to the topic to which we
subscribed as they arrive from the MQTT server to the MQTT client. Keep the window opened. You will
see that that the client sends PINGREQ packets to the MQTT server and receives PINQRESP packets from
the MQTT server. The following lines show examples of the messages displayed for these packets:

Client mosqsub/5449-Gastons-Ma sending PINGREQ
Client mosqsub/5449-Gastons-Ma received PINGRESP

MQTT.fx is a GUI utility implemented with JavaFX that is available for Windows, Linux and macOS.
This tool allows us to connect with an MQTT server, subscribe to topic filters, see the received messages
and publish messages to topics. You can download the appropriate version for your operating system from
the downloads section of the main web page for this utility: http://www.mqttfx.org .

Now, we will use the MQTT.fx GUI utility to generate another MQTT client that subscribes to the same
topic, sensors/drone@1/altitude, and displays all the messages it receives. Follow the next steps:

1. Launch MQTT.fx, select local mosquitto in the dropdown located at the upper-left corner and click
on the configuration icon at the right-hand side of this dropdown and at the left-hand side of the
Connect button. MQTT.fx will display the Edit Connection Profiles dialog box with different
options for the connection profile named local mosquitto. We analyzed many of these options when
we learned about the data that the MQTT client sends to the MQTT server to establish a connection.

2. Make sure the General button is pressed and deactivate the MQTT Version Use Default checkbox.
Make sure 3.1.1 is selected in the dropdown below MQTT Version. This way, we indicate to the
MQTT server that we want to use MQTT version 3.1.1. Notice that the Client ID textbox specifies
MQTT_FX_Client. This is the clientId value that MQTT.fx will send to the MQTT server
(Mosquitto) in the CONNECT control packet. The following screenshot shows the dialog box with the
selected options:

http://www.mqttfx.org

File Extras Help

O :
local mosquitto
| |
M

M2M Eclipse

nosquitto

Connection Profile

Profile Mame | |ocal mosqguitto

Broker Address | 127.0.0.1
Broker Port | 1883

Qient 1D | MQTT_FX_Client Generate

Genera-l User Credentials SSL/TLS Proxy Last Will and Testament

Connection Timeout | 30
Keep Alive Interval | 60
Clean Session

MQTT Version Use Default

o]

Clear Publish History

Revert Cancel

OK

Apply

3. Click OK and then click on the Connect button. MQTT.fx will establish a connection with the local
Mosquitto server. Notice that the Connect button is disabled and the Disconnect button is enabled
because the client is connected to the MQTT server.

4. Click Subscribe and enter sensors/drone01/altitude inthe dropdown at the left-hand side of the

Subscribe button. Then, click the Subscribe button. MQTT.fx will display a new panel at the left-
hand side with the topic to which we have subscribed, as shown in the next screenshot.

| |
File Extras Help
B Disconnect
Publish | Subscribe | Scripts Broker Status Log
zensors/drone(1/altitude
sensors/drone faltitude]
Dump Messages Mute

In case you don't want to work with the MQTT.fx utility, you can run another mosquitto_sub command to
generate another MQTT client that subscribes to the topic and print all the messages it receives. You just
need to open another Terminal in macOS or Linux, or another Command Prompt in Windows, go to the
directory in which Mosquitto is installed and run the following command again. In this case, it isn't
necessary to specify the -d option.

mosquitto_sub -V mqttv31ll -t sensors/drone0l/altitude

Now, we have two MQTT clients subscribed to the same topic: sensors/drone@1/altitude. Now, we
will understand what happens under the hoods when a client subscribes to a topic.

The MQTT client sends a SUBSCRIBE packet to the MQTT server with a packet identifier (PacketId) in
the header and one or more pairs of a topic filter and the desired quality of service level in the payload.

Note
The quality of service is known as QoS.

Hence, a single SUBSCRIBE packet can request the MQTT server to subscribe a client to many topics. The
SUBSCRIBE packet must include at least one topic filter and QoS pair to comply with the protocol.

In the two cases in which we requested a subscription, we used a specific topic name as the value for the
topic filter, and therefore, we request the MQTT server to subscribe to a single topic. We will learn about
the usage of wildcards in topic filters later.

We used the default options, and therefore, the quality of service requested is the default level of 0. We
will dive deep on the QoS levels later. Now, we will stay focused on the simplest subscription cases. If
the QoS level is equal to 0, the value for the PacketId field will be 0. In case the QoS level is equal to 1
or 2, the packet identifier will have a number value to identify the packet and make it possible to identify
the responses related to this packet.

The MQTT server will process a valid SUBSCRIBE packet and it will respond with a SUBACK packet that
indicates the subscribe acknowledgement and confirms the receipt and processing of the SUBSCRIBE
packet. The SUBACK packet will include the same packet identifier (PacketId) in the header that was
received in the SUBSCRIBE packet. The SUBACK packet will include one return code for each pair of a
topic filter and the desired QoS level received in the SUBSCRIBE packet. The number of return codes will
match the number of topic filters included in the SUBSCRIBE packet. The following table shows the
possible values for these return codes. The first three return codes indicate a successful subscription and
each value specifies the maximum QoS that can be delivered based on the requested QoS and the MQTT
server possibilities to grant it.

ReturnCode value

Description ‘

Successfully subscrib with a maxium QoS of @

Successfully subscrib with a maxium QoS of 1

Successfully subscrib with a maxium QoS of 2

128

Failed to subscribe ‘

If the subscription was successful, the MQTT server will start sending every published message that
matches the topic filters specified in the subscription to the MQTT client with the QoS specified in the
return code.

The following diagram shows the interaction between an MQTT client and an MQTT server to subscribe
to one or many topic filters.

SUBSCRIBE

I

SUBACK

R —

.
£
Y.
F.

MQTT server

MQTT client
Subscriber

Publishing messages

We will use the mosquitto_pub command-line utility included in Mosquitto to generate a simple MQTT
client that publishes a message to a topic. Open a Terminal in macOS or Linux, or a Command Prompt in
Windows, go to the directory in which Mosquitto is installed and run the following command:

mosquitto_pub -V mqttv31l -t sensors/drone@1/altitude -m "10 f" -d

The previous command will create an MQTT client that will establish a connection with the local MQTT
server and then will make the client publish a message to the topic specified after the -t option:
sensors/drone01/altitude. We specify the payload for the message after the -m option: "10 f". We
specify the version of the MQTT protocol that we want to use when the client establishes the connection
with -v mqttv311. This way, we indicate the MQTT server that we want to use MQTT version 3.1.1.
We specify the -d option to enable debug messages that will allow us to understand what happens under
the hoods. We will analyze additional options for the connection and the publication later.

The Terminal or Command Prompt window will display debug messages similar to the following lines.
Take into account that the generated c1ientId will be different from the one shown after
Client:mosqpub/5303-Gastons-Ma. After publishing the message, the client disconnects.

Client mosqpub/5308-Gastons-Ma sending CONNECT

Client mosqpub/5308-Gastons-Ma received CONNACK

Client mosqpub/5308-Gastons-Ma sending PUBLISH (dOo, qO, r0, ml, 'drones/altitude',
... (5 bytes))

Client mosqpub/5308-Gastons-Ma sending DISCONNECT

Now, we will use the MQTT.fx GUI utility to generate another MQTT client that publishes another
message to the same topic, sensors/drone®1/altitude. Follow the next steps:

1. Go to the MQTT.fx window in which you established a connection and subscribed to a topic.

2. Click Publish and enter sensors/drone®1/altitude in the dropdown at the left-hand side of the
Publish button.

3. Enter the following text in the textbox below the Publish button: 26 f, as shown in the following
screenshot:

@ O MQTT.fx - 1.3.0

A .
‘ Disconnect

_Pubﬁshw Subscribe Scripts Broker Status Log

» sensors/drone01/altitude " il IO Qos1 . Qos2 Retained @G

20f

4. Then, click the Publish button. MQTT.fx will publish the entered text to the specified topic.

In case you don't want to work with the MQTT.fx utility, you can run another mosquitto_pub command to
generate another MQTT client that publishes a message to the topic. You just need to open another
Terminal in macOS or Linux, or another Command Prompt in Windows, go to the directory in which
Mosquitto is installed and run the following command.

mosquitto_pub -V mqttv31ll -t sensors/droneO@1/altitude -m "20 f"
Now, go back to the Terminal or Command Prompt window in which you executed the mosquitto_sub

command and subscribed to the sensors/drone@1/atitude topic. You will see lines similar to the
following ones:

Client mosqsub/5532-Gastons-Ma received PUBLISH (do, g0, r0, mo,

'sensors/drone@1/altitude’', ... (4 bytes))

10 f

Client mosqsub/5532-Gastons-Ma received PUBLISH (do, g0, r0, mo,
'sensors/drone@1/altitude', ... (4 bytes))

20 f

If we clean up the debug messages that start with the client prefix, we will see just the next two lines.
These lines show the payloads for the two messages that we received as a result of our subscription to the
sensors/drone@1/altitude topic.

10 f
20 f

Go to the MQTT.fx window and click Subscribe. You will see 2 at the right-hand side of the title for the
topic filter used to subscribe in the panel located at the left-hand side of the window. MQTT.fx is telling
you that you have received two messages in the sensors/drone@1/altitude topic. Click on this panel
and MQTT.fx will display all the received messages at the right-hand side of the panel. MQTT.fx will
display a number at the right-hand side of each message to specify the message number since we started
the subscription to the topic filter. Click on each message and MQTT.fx will display the QoS level for the
message (0), the date and time that it was received and the payload for the message in the default plain
string format. The following picture shows the payload for the second message that has been received by
the subscriber generated by MQTT.fx.

@ MQTT.fx - 1.3.0

E Disconnect vy Q

Publish | Subscribe | Scripts Broker Status Log

sensors/drone01/altitude v " Autoscroll v

sensors/drone01/altitude 2 sensors/drone01/altitude 1

Dump Messages Mute ‘Unsubscribe

sensors/drone01/altitude 2

sensors/drone01/altitude 2

QoS0 08-01-2017 16:03:12.57792291
20 £

\ Plair J JSON Hex Base64

We created two publishers and each of them published a message to the same topic:
sensors/drone@1/altitude. The two subscribers for this topic received both messages. Now, we will
understand what happens under the hoods when a client publishes a message to a topic.

The MQTT client that has already established a connection sends a PUBLISH packet to the MQTT server
with a header that includes the following fields and flags. We want to understand the meaning of these
fields and flags because we will be able to specify some of their values when we work with MQTT tools
and MQTT client libraries.

e PacketId: If the QoS level is equal to 0, the value for this field will be 0 or it won't be present. In
case the QoS level is equal to 1 or 2, the packet identifier will have a number value to identify the
packet and make it possible to identify the responses related to this packet.

e Dup: If the QoS level is equal to 0, the value for this field will be 0. In case the QoS level is equal to
1 or 2, the MQTT client library or the MQTT server can resend a message that was previously
published by the client when the subscribers haven't ackowledged the first message. Whenever there
is an attempt to resend a message that has already been published, the value for the bup flag must be
10r true.

e QosS: Specifies the QoS level for the message. We will dive deep on the quality of service level for
the messages and their relationship with many other flags later. So far, we have been working with
QoS level o.

e Retain:If the value for this flag is set to 1 or true, the MQTT server will store the message with its
specified QoS level. Whenever new MQTT clients subscribers to a topic filter that matches the topic

for the stored or retained message, the last stored message for this topic will be sent to the new
subscriber. If the value for this flag is set to @ or false, the MQTT server won't store the message
and won't replace a retained message with the same topic in case there is one message retained for
this topic.

e TopicName: A string with the topic name to which the message must be published. Topic names have
a hierarchy structure where slashes (/) are used as delimiters. In our examples, the value for
TopicName was "sensors/drone@1/altitude". We will analyze best practices for topic names
later.

Tip

The payload contains the actual message that the MQTT client wants the MQTT server to publish. MQTT
is data agnostic, and therefore, we can send any binary data and we don't have restrictions such as those
imposed by JSON or XML. Of course, we can use these or others to organize the payloads if we wish. In
our examples, we sent a string that included a number that represented the altitude followed by a space
and an "f" that indicates the unit of measure is feet.

The MQTT server will read a valid PUBLISH packet and it will respond with a packet only for QoS
levels greater than 0. In case the QoS level is 0, the MQTT will not respond. The MQTT server will
determine all the subscribers whose subscribed topic matches the topic name specified for the message
and the server will publish the message to these clients.

The following diagram shows the interaction between an MQTT client and an MQTT server to publish a
message with a QoS level of o.

MQTT client ‘

< 0)
PUB\.\S\'\ = ’ Subscriber #1
PUBLISH (QoS 0)

IR | MQTT server
p

e SSUSH (0 0)
I MQTT client | MQTT client ‘

Publisher Subscriber #2

The other QoS levels have a different flow with additional interaction between the publisher and the
MQTT server and increased overheads that we will analyze later.

Unsubscribing from topics

Whenever we don't want a subscriber to receive more messages whose destination topic name matches
one or more topic filters, the subscriber can send a request to unsubscribe to a list of topic filters to the
MQTT server. Obviously, unsubscribing from topic filters is the opposite operation of subscribing to
topic filters. We will use the MQTT.fx GUI utility to unsubscribe the MQTT client from the
sensors/drone01/altitude topic. Follow the next steps:

1. Go to the MQTT.fx window in which you established a connection and subscribed to a topic.

2. Click Subscribe.
3. Click on the panel that displays the sensors/drone®1/altitudetopic name at the left-hand side of

the window. Then, click on the Unsubscribe button located in this panel. The following screenshot
shows this button.

Publish \ Subscribe \ Scripts Broker Status Log

sensors/droneQ1/altitude v
sensors/drone01/altitude 2 sensors/drone01/altitude
v Dump Messages Mute

sensors/drone01/altitude

4. MQTT.fx will unsubscribe the client from the sensors/drone®1/altitude topic, and therefore, the
client won't receive any new message published to the sensors/droned1/altitude topic.

Now, we will use the MQTT.fx GUI utility to use the MQTT client to publish another message to the
sensors/drone01/altitude topic. Follow the next steps:

1. Go to the MQTT.fx window in which you established a connection and subscribed to a topic.

2. Click Publish and enter sensors/drone®1/altitude in the dropdown at the left-hand side of the

Publish button.

Then, click the Publish button. MQTT.fx will publish the entered text to the specified topic.

4. Enter the following text in the textbox below the Publish button: 30 f, as shown in the following
screenshot:

w

File Extras Help

tﬁ‘ﬁ’ Disconnect i‘ o

lﬁ%_ffa Subscribe Scripts Broker Status Log

Switch Four] » sensors/drone0l/altitude v Publish [| QoS1 Qos2 | | e

30f

Switch Four]

In case you don't want to work with the MQTT.fx utility, you can run a mosquitto_pub command to
generate another MQTT client that publishes a message to the topic. You just need to open another
Terminal in macOS or Linux, or another Command Prompt in Windows, go to the directory in which
Mosquitto is installed and run the following command.

mosquitto_pub -V mqttv31ll -t sensors/droneO@1/altitude -m "30 f"

Now, go back to the MQTT.fx window and click Subscribe. The client has unsubscribed from the
sensors/drone01/altitude topic before we published a new message to this topic, and therefore, this
published message isn't displayed.

Go back to the Terminal or Command Prompt window in which you executed the mosquitto_sub
command and subscribed to the sensors/droned1/atitude topic. You will see lines similar to the
following ones:

Client mosqsub/5532-Gastons-Ma received PUBLISH (do, g0, r0, mo,

'sensors/drone@1/altitude’', ... (4 bytes))
30 f

This client is still subscribed to the sensors/droned1/altitude topic, and therefore, it received the
message with the payload of "30 f".

The MQTT client sends an UNSUBSCRIBE packet to the MQTT server with a packet identifier (PacketId)
in the header and one or more topic filters in the payload. The main difference with a SUBSCRIBE packet
is that it isn't necessary to include the QoS level for each topic filter because the MQTT client just wants
to unsubscribe.

Tip
After an MQTT client unsubscribes from one or more topic filters, the MQTTserver still keeps the

connection opened and the subscriptions to the topic filters that don't match the topic filters specified in
the UNSUBSCRIBE packet payload will continue working.

Hence, a single UNSUBSCRIBE packet can request the MQTT server to unsubscribe a client from many
topics. The UNSUBSCRIBE packet must include at least one topic filter in the payload to comply with the
protocol.

In the previous example in which we requested the MQTT server to unsubscribe, we used a specific topic
name as the value for the topic filter, and therefore, we requested the MQTT server to unsubscribe from a
single topic. As previously mentioned, we will learn about the usage of wildcards in topic filters later.

The packet identifier will have a number value to identify the packet and make it possible to identify the
response related to this UNSUBSCRIBE packet. The MQTT server will process a valid UNSUBSCRIBE
packet and it will respond with an UNSUBACK packet that indicates the unsubscribe acknowledgement and
confirms the receipt and processing of the UNSUBSCRIBE packet. The UNSUBACK packet will include the
same packet identifier (PacketId) in the header that was received in the UNSUBSCRIBE packet.

The MQTT will remove any topic filter that matches exactly any of the specified topic filters in the
UNSUBSCRIBE packet's payload for the specific client that sent the packet. The topic filter match must be
exact to be deleted. After the MQTT server deletes a topic filter from the subscription list for the client,
the server stops adding new messages to be published to the client. Only messages that have already
started delivery to the client with QoS levels of 1 or 2 will be published to the client. In addition, the
server might publish existing messages that have been buffered for their distribution to the subscriber.

The following diagram shows the interaction between an MQTT client and an MQTT server to
unsubscribe from one or many topic filters.

UNSUBSCRIBE /
l /

UNSUBACK ¢ MQTT server

WsmEEsEEEEEREnn
DSl {DISPLAY)

=

ETHERNET

[

MQTT client
Subscriber

Working with best practices when creating topics

We already know that MQTT allows us to publish messages on topics. A publisher always has to to
specify the topic name to which a message will be published. The easiest way to understand topic names
in MQTT is to think about them like paths in a file system.

If we have to save dozens of files that have information about different types of sensors for a diverse
number of drones, we can create a hierarchy of directories or folders to organize all the files that we will
save. We can create a directory named sensors, then one sub-directory for each drone, such as droneo1,
and finally a sub-directory with the sensor name, such as altitude. The path in macOS or Linux will be
sensors/drone01/altitude because these operating systems use a forward slash (/) as a delimiter. In
Windows, the path will be sensorsdronealtitude because this operating system uses a backslash () as
a delimiter.

Then, we will save the files that have information about the altitude sensor for the drone named drone61
in the created path. Instead of saving files in a path, we can think about publishing a message to a path and
use the same mechanism we use to organize files in paths to arrange messages in topics.

Instead of directories or folders, a topic has topic levels, specifically, a hierarchy of topic levels and the
slashes (/) are used as delimiters, that is, topic level separators. If we use sensors/drone@1/altitude
as the topic name, sensors is the first topic level, droneo1 is the second topic level and altitude is the
third topic level.

Tip

Topic names are case-sensitive, and therefore, sensors/drone@1/altitude is different from
sensors/Drone®1/altitude, Sensors/drone®1/altitude and Sensors/Drone®@1/Altitude. In fact,
the four strings will be considered as four individual topic names. We must make sure we select a casing
scheme for the topic names and we use it for all the topic names and topic filters.

We can use any UTF-8 character in topic names with the exception of the two wildcard characters that we
will analyze later: the plus sign (+) and hash (#). Hence, we must avoid + and # in the topic names.
However, it is a good practice to restrict the character set to avoid unexpected problems with client
libraries. For example, we can avoid accents and characters that are not common in English as we do
whenever we build URLs. It is possible to use these characters but be sure that you can face issues when
using them.

We should avoid creating topics starting with the dollar sign ($) because many MQTT servers publish
statistics data, related to the servers, in topics that start with $. Specifically, the first topic level is $sYS.

We must maintain consistency when sending messages to different topic names as we do when we save
files in different paths. For example, if we want to publish the altitude for a drone named drone20, we
will use sensors/drone20/altitude. We must use the same topic levels that we used for the same goal
for drone®1 and just change the drone name from drone®1 to drone20. It would be a really bad practice
to use a topic with a different structure or inconsistent casing, such as altitude/sensors/drone20 or

Sensors/Drone20/Altitude. We have to take into account that we can subscribe to multiple topics by
using topic filters, and therefore, it is very important to create topic names accordingly.

Understanding wildcards

When we analyzed the subscription operation, we learn that an MQTT client can subscribe to one or more
topic filters. In case we specify a topic name as a topic filter, we will only subscribe to a single topic. We
can take advantage of the following two wildcards to create topic filters that subscribe to all the topics
that match the filter:

e Plus sign (+): It is a single level wildcard that matches any name for a specific topic level. We can
use this wildcard instead of specifying a name for any topic level in the topic filter.
e Hash (#): It is a multi level wildcard that we can use only at the end of the topic filter, as the last

level and matches any topic whose first levels are the same as the topic levels specified at the left-
hand side of the # symbol.

For example, in case we want to receive all the messages related to the altitudes for all the drones, we
can use the + single level wildcard instead of a specific drone name. We can use the following topic
filter: sensors/+/altitude.

If we publish messages to the following topics, the subscriber that used the sensors/+/altitude topic
filter will receive all of them:

® sensors/drone@l/altitude

® sensors/drone@2/altitude

® sensors/superdrone@l/altitude

® sensors/thegreatestdrone/altitude

The subscriber to the sensors/+/altitude topic filter won't receive messages sent to any of the
following topics, because they won't match the topic filter.

® sensors/drone@l1/speed/rotor/1
® sensors/superdrone@l1/speed/rotor/2
® sensors/superdrone0l/remainingbattery

In case we want to receive all the messages related to all the sensors for the drone named drone®1, we
can use the # multi level wildcard after the drone name and the slash (/). We can use the following topic
filter: sensors/drone01/#.

If we publish messages to the following topics, the subscriber that used the sensors/drone®1/# topic
filter will receive all of them:

® sensors/drone@l/altitude

® sensors/drone@l1/speed/rotor/1

® sensors/drone@l1/speed/rotor/2

® sensors/drone@l1/speed/rotor/3

® sensors/drone@l1/speed/rotor/4

® sensors/drone@l/remainingbattery

We used a multi level wildcard, and therefore, no matter the additional topic levels after
sensors/droned1/, we will receive all of them.

The subscriber to the sensors/drone01/# topic filter won't receive messages sent to any of the
following topics, because they won't match the topic filter. None of the following has sensors/drone@1/
as a prefix, and therefore, they don't match the topic filter.

® sensors/drone@2/altitude

® sensors/superdrone@l/altitude

® sensors/thegreatestdrone/altitude

® sensors/drone@2/speed/rotor/1

® sensors/superdrone@2/speed/rotor/2

® sensors/superdrone@2/remainingbattery

Obviously, we must be careful when we use any wildcard because we might be subscribing to a huge
number of topics with a single topic filter. We have to avoid subscribing to topics aren't of interest to the
client to avoid wasting unnecessary bandwidth and the broker server resources.

We will use these wildcards in subscriptions later to analyze how different QoS levels work with MQTT.

Learning about the different Quality of Service
levels

Now that we understand how the connection, subscription and publication works in combination with
topic names and the topic filters with wildcards, we can dive deep on the QoS levels. So far, we have
analyzed how both the subscription and publication worked with a QoS level equal to 0. Now, we will
understand what this number means and how things work when we use the other available QoS levels for
the publication and the subscription.

Note

Remember that publication involves publishing from the MQTT client to the MQTT server and then from
the server to the subscribed client.It is very important to understand that we can publish with a QoS level
and subscribe with another QoS level. Hence, there is a QoS level for the publish process between the
publisher and the MQTT server and another QoS level for the publish process between the MQTT server
and the subscriber. We will use sender and receiver to identify the parties involved in a message delivery
for the different QoS levels. In the publish process between the publisher and the MQTT server, the
publisher will be the sender and the MQTT server the receiver. In the publish process between the MQTT
server and the subscriber, the sender will be the MQTT server and the receiver will be the subscriber.

Based on the QoS level, we have differences in the meaning of a successfully delivered message in the
MQTT protocol between the involved parties. The QoS level is the agreement between a sender and a
receiver of a message about the guarantees of actually delivering the message. These warranties might
include the number of times that a message might arrive and the possibility or not of duplicates. MQTT
supports the following three possible QoS levels:

e (0, At most once delivery: This QoS level offers the same warranty as the underlying TCP protocol.
The message is not acknowledged by the receiver or destination. The sender just sends the message
to the destination and nothing else happens. The sender neither stores nor schedules new deliveries
for any messages that might fail to reach the destination. The key advantage of this QoS level is that
it has the lowest possible overhead, compared to the other QoS levels.

e 1, At least once delivery: This QoS level adds a confirmation requirement to the destination that
has to receive the message. This way, QoS level 1 provides a warranty that the message will be
delivered at least once to the subscriber. One of the key disadvantages of this QoS level is that it
might generate duplicates, that is, the same message might be sent more than once to the same
destination. The sender stores the message until it receives an acknowledgement from the subscriber.
In case the sender doesn't receive the acknowledgement within a specific time, the sender will
publish the message again to the receiver. The final receiver must have the necessary logic to detect
duplicates in case they shouldn't be processed twice.

e 2, Exactly once delivery: This QoS level provides a warranty that the message is delivered only
once to the destination. QoS level 2 has the highest overhead, compared to the other QoS levels.
This QoS level requires two flows between the sender and the receiver. A message published with
QoS level 2 is considered successfully delivered after the sender is sure that it has been successfully
received once by the destination.

Sometimes, we just want messages to be delivered with the least possible bandwidth usage, we have a
very reliable network and it doesn't matter if for some reason a few messages are lost. In these cases,
QoS level 0 is the appropriate choice.

In other cases, the messages are extremely important because they represent commands to control an IoT
device, the network is unreliable and we must make sure that the message reaches the destination. In
addition, a duplicate command might generate a big problem because we don't want the IoT device to
process a specific command twice. In these cases, QoS level 2 is going to be the appropriate choice.

Note

If a publisher works with a QoS level higher than the QoS level specified by the subscriber, the MQTT
server will have to downgrade the QoS level to the lowest level that the specific subscriber is using when
it publishes the message from the MQTT server to this subscriber. For example, if we use QoS level 2 to
publish a message from the publisher to the MQTT server but one subscriber has requested QoS level 1
when making the subscription, the publication from the MQTT server to this subscriber will use QoS
level 1.

Working with at least once delivery

First, we will use wildcards to subscribe to a topic filter with QoS level 1 and then we will publish one
message to a topic name that will match the topic filter with QoS level 1. This way, we will analyze how
both publishing and subscription work with QoS level 1.

We will use the mosquitto_sub command-line utility included in Mosquitto to generate a simple MQTT
client that subscribes to a topic filter with QoS level 1and prints all the messages it receives. Open a
Terminal in macOS or Linux, or a Command Prompt in Windows, go to the directory in which Mosquitto
is installed and run the following command:

mosquitto_sub -V mqttv31il -t sensors/+/altitude -q1 -d

The previous command will create an MQTT client that will establish a connection with the local MQTT
server and then will make the client subscribe to the topic filter specified after the -t option:
sensors/+/altitude. We specify that we want to use QoS level 1 to subscribe to the topic filter with
the -q 1 option. We specify the -d option to enable debug messages that will allow us to understand what
happens under the hoods and the differences with publishing a message with QoS level 0.

The Terminal or Command Prompt window will display debug messages similar to the following lines.
Take into account that the generated clientId will be different from the one shown after client
mosqsub/1795-Gastons-Ma. Notice that QoS: 1 indicates that the subscription is done with QoS level
1.

Client mosqsub/1795-Gastons-Ma sending CONNECT

Client mosqsub/1795-Gastons-Ma received CONNACK

Client mosqsub/1795-Gastons-Ma sending SUBSCRIBE (Mid: 1, Topic:
sensors/+/altitude, QoS: 1)

Client mosqsub/1795-Gastons-Ma received SUBACK

Subscribed (mid: 1): 1

We will use the mosquitto_pub command-line utility included in Mosquitto to generate a simple MQTT
client that publishes a message to a topic with QoS level 1 instead of the QoS level 0 that we used when
we published messages before. Open a Terminal in macOS or Linux, or a Command Prompt in Windows,
go to the directory in which Mosquitto is installed and run the following command:

mosquitto_pub -V mqttv31l -t sensors/drone@2/altitude -m "65 f" -q 1 -d

The previous command will create an MQTT client that will establish a connection with the local MQTT
server and then will make the client publish a message to the topic specified after the -t option:
sensors/drone02/altitude. We specify the payload for the message after the -m option:"65 f". We
specify that we want to use QoS level 1 to publish the message with the -q 1 option. We specify the -d
option to enable debug messages that will allow us to understand what happens under the hoods and the
differences with publishing a message with QoS level 0.

The Terminal or Command Prompt window will display debug messages similar to the following lines.
Take into account that the generated clientId will be different from the one shown after client:

mosqpub/1516-Gastons-Ma. After publishing the message, the client disconnects.

Client mosqpub/1516-Gastons-Ma sending CONNECT

Client mosqpub/1516-Gastons-Ma received CONNACK

Client mosqpub/1516-Gastons-Ma sending PUBLISH (do, qi, r0, mil,
'sensors/drone@2/altitude', ... (4 bytes))

Client mosqpub/1516-Gastons-Ma received PUBACK (Mid: 1)

Client mosqpub/1516-Gastons-Ma sending DISCONNECT

The previous lines show that the generated MQTT client sends a PUBLISH packet to the MQTT server and
then receives a PUBACK package from the server.

Now, go back to the Terminal or Command Prompt window in which you executed the mosquitto_sub
command and subscribed to the sensors/+/atitude topic filter. You will see lines similar to the
following ones:

Client mosqsub/1795-Gastons-Ma received PUBLISH (do, g1, r0, mi,

'sensors/drone@2/altitude', ... (4 bytes))
Client mosqsub/1795-Gastons-Ma sending PUBACK (Mid: 1)
65 f

The previous lines show that the generated MQTT client, that is, the subscriber, received a PUBLISH
packet from the MQTT server and then sent a PUBACK package to the server to acknowledge the message.
If we clean up the debug messages that start with the cClient prefix, we will see just the last line that
shows the payloads for the message that we received as a result of our subscription to the
sensors/+/altitude topic filter: 65 f.

The MQTT client that has already established a connection, that is, the publisher, sends a PUBLISH packet
to the MQTT server with the header we have already described, Qos set to 1, and including a PacketId
numeric value that will be unique for this client. At this time, the publisher will consider the PUBLISH
packet identified with the PacketId as an unacknowledged PUBLISH packet.

The MQTT server reads a valid PUBLISH packet and it will respond to the publisher with a PUBACK
packet with the same PacketId value that has been used for the PUBLISH packet. Once the publisher
receives the PUBACK packet, it discards the message and the MQTT server is responsible of publishing it
to the appropriate subscribers.

The following diagram shows the interaction between a publisher and an MQTT server to publish a
message with a QoS level of 1.

PUBLISH (QoS 1)
— /

PUBACK / MQTT server

(R —

i
{7}
=4
T
i3}
=5
=
[}

MQTT client
Publisher

The MQTT server can start publishing messages to the appropriate subscribers before it sends the
PUBACK packet to the publisher. Hence, when the publisher receives the PUBACK packet from the MQTT
server, it doesn't mean that all the subscribers have received the message. It is very important to
understand the meaning of this PUBACK packet.

For each subscriber to which the message has to be published, the MQTT server will send a PUBLISH
packet and the subscriber must acknowledge the reception of the message by sending a PUBACK packet to
the MQTT server. The following diagram shows the interaction between an MQTT server and the
subscribers when a message is published with a QoS level of 1.

MQTT client
S 1) Subscriber #1
on (00 1
puBY | Qo
PUBLISH (QoS 1)I . LBACK

PUBACK MQTT server

. Subscriber #2
Publisher QoS 1

| MQTT client PUBAC/(MQTT client

If the application is able to tolerate duplicates and we have to make sure that the messages arrive at least
once to the subscribers, QoS level 1 is an excellent choice. In case there is no way to handle duplicates,
we have to use QoS level 2.

Working with exactly once delivery

First, we will use wildcards to subscribe to a topic filter with QoS level 2 and then we will publish one
messages to a topic that will match the topic filter with QoS level 2. This way, we will analyze how both
publishing and subscription work with QoS level 2.

We will use the mosquitto_sub command-line utility included in Mosquitto to generate a simple MQTT
client that subscribes to a topic filter with QoS level 1 and prints all the messages it receives. Open a
Terminal in macOS or Linux, or a Command Prompt in Windows, go to the directory in which Mosquitto
is installed and run the following command:

mosquitto_sub -V mqttv3ll -t sensors/drone@3/# -q 2 -d

The previous command will create an MQTT client that will establish a connection with the local MQTT
server and then will make the client subscribe to the topic filter specified after the -t option:
sensors/drone03/#. We specify that we want to use QoS level 1 to subscribe to the topic filter with the
-q 2 option. We specify the -d option to enable debug messages that will allow us to understand what
happens under the hoods and the differences with publishing a message with QoS levels 0 and 1.

The Terminal or Command Prompt window will display debug messages similar to the following lines.
Take into account that the generated clientId will be different from the one shown after client
mosqsub/1795-Gastons-Ma. Notice that QoS: 2 indicates that the subscription is done with QoS level
2.

Client mosqsub/2017-Gastons-Ma sending CONNECT

Client mosqsub/2017-Gastons-Ma received CONNACK

Client mosqsub/2017-Gastons-Ma sending SUBSCRIBE (Mid: 1, Topic: sensors/drone03/#,
Qos: 2)

Client mosqsub/2017-Gastons-Ma received SUBACK

Subscribed (mid: 1): 2

We will use the mosquitto_pub command-line utility included in Mosquitto to generate a simple MQTT
client that publishes a message to a topic with QoS level 2 instead of the QoS levels 0 and 1 that we used
when we published messages before. Open a Terminal in macOS or Linux, or a Command Prompt in
Windows, go to the directory in which Mosquitto is installed and run the following command:

mosquitto_pub -V mqttv31ll -t sensors/drone@3/speed/rotor/1 -m "362 f" -q 2 -d

The previous command will create an MQTT client that will establish a connection with the local MQTT
server and then will make the client publish a message to the topic specified after the -t option:
sensors/drone03/speed/rotor/1. We specify the payload for the message after the -m option: "362
f". We specify that we want to use QoS level 2 to publish the message with the -q 2 option. We specify
the -d option to enable debug messages that will allow us to understand what happens under the hoods
and the differences with publishing a message with QoS levels 0 and 1.

The Terminal or Command Prompt window will display debug messages similar to the following lines.
Take into account that the generated clientId will be different from the one shown after client:

mosqpub/2026-Gastons-Ma. After publishing the message, the client disconnects.

Client mosqpub/2026-Gastons-Ma sending CONNECT

Client mosqpub/2026-Gastons-Ma received CONNACK

Client mosqpub/2026-Gastons-Ma sending PUBLISH (do, q2, ro, mi,
'sensors/drone0@3/speed/rotor/1', ... (5 bytes))

Client mosqpub/2026-Gastons-Ma received PUBREC (Mid: 1)

Client mosqpub/2026-Gastons-Ma sending PUBREL (Mid: 1)

Client mosqpub/2026-Gastons-Ma received PUBCOMP (Mid: 1)

Client mosqpub/2026-Gastons-Ma sending DISCONNECT

The previous lines show that the generated MQTT client, that is, the publisher, had the following packet
exchanges with the MQTT server:

1. The publisher sent a PUBLISH packet to the MQTT server.

2. The publisher received a PUBREC packet from the MQTT server.
3. The publisher sent a PUBREL packet to the MQTT server.

4. The publisher received a puBcoMP packet from the MQTT server.

Now, go back to the Terminal or Command Prompt window in which you executed the mosquitto_sub
command and subscribed to the sensors/drone03/# topic filter. You will see lines similar to the
following ones:

Client mosqsub/2017-Gastons-Ma received PUBLISH (do, g2, r0, mi,
'sensors/drone0@3/speed/rotor/1', ... (5 bytes))

Client mosqsub/2017-Gastons-Ma sending PUBREC (Mid: 1)

Client mosqsub/2017-Gastons-Ma received PUBREL (Mid: 1)

362 f

Client mosqsub/2017-Gastons-Ma sending PUBCOMP (Mid: 1)

The previous lines show that the generated MQTT client, that is, the subscriber, had the following packet
exchanges with the MQTT server:

1. The subscriber received a PUBLISH packet from the MQTT server.

2. The subscriber sent a PUBREC packet to the MQTT server.

3. The subscriber received a PUBREL packet from the MQTT server.

4. The subscriber sends a PUBCOMP packet to the MQTT server after it successfully received the
message with the payload.

If we clean up the debug messages that start with the Client prefix, we will see just the last line that
shows the payloads for the message that we received as a result of our subscription to the
sensors/drone03/# topic filter: 362 f.

The MQTT client that has already established a connection, that is, the publisher sends a PUBLISH packet
to the MQTT server with the header we have already described, QoS set to 2, and including a PacketId
numeric value that will be unique for this client. At this time, the publisher will consider the PUBLISH
packet identified with the PacketId as an unacknowledged PUBLISH packet.

The MQTT server reads a valid PUBLISH packet and it will respond to the publisher with a PUBREC

packet with the same PacketId value that has been used for the PUBLISH packet. The PUBREC packet
indicates the MQTT server accepted the ownership of the message. Once the publisher receives the
PUBREC packet, it discards the message and it will store the PacketId related to the message and the
PUBREC packet.

The publisher sends a PUBREL packet to the MQTT server as a response to the received PUBREC packet.
This PUBREL packet will be considered unacknowledged until it receives the PUBCOMP packet related to
the PacketId from the MQTT server. Finally, the MQTT server sends a PUBCOMP packet with the
PacketId to the publisher and at this point, both the publisher and the MQTT server are sure that the
message has been successfully delivered.

The following diagram shows the interaction between a publisher and an MQTT server to publish a
message with a QoS level of 2.

PUBLISH (QoS 2)|

PUBREC

PUBREL MQTT server

=
o}
=z
3
&
E
s
o

PUBCOMP

MQTT client l

Publisher

For each subscriber with QoS level 2 to which the message has to be published, the MQTT server will
send a PUBLISH packet and the same packet exchange that we have analyzed between the publisher and
the MQTT server will happen between the MQTT server and the subscriber. However, in this case, the
MQTT server is the one that acts as a publisher and starts the flow. The following diagram shows the
interaction between an MQTT server and the subscribers when a message is published with a QoS level
of 2.

MQTT client
Subscriber #1

QoS 2
PUBLISH (QoS 2)
| PUBREC
| P PUBREL | . MQTT server
i :' PUBCOMP
MQTT client |
Publisher
MQTT client
Subscriber #2
QoS 2

If the application isn't able to tolerate duplicates and we have to make sure that the messages arrive only
once to the subscribers, QoS level 2 is the appropriate choice. However, magic comes with a price: we
must take into account that QoS level 2 has the highest overhead, compared to the other QoS levels.

Test your knowledge

1. MQTT runs on top of:
1. The MQIP protocol.
2. The TCP/IP protocol.
3. The IoT protocol.

2. The data for an MQTT message is known as:
1. Payload.
2. Packet.
3. Upload.

3. In MQTT version 3.1.1, the broker is named:
1. MQTT agent.
2. MQTT client.
3. MQTT server.

4. QoS level 0 for MQTT means:
1. Exactly once delivery
2. At most once delivery
3. Atleast once delivery

5. QoS level 1 for MQTT means:
1. Exactly once delivery
2. At most once delivery
3. Atleast once delivery

6. QoS level 2 for MQTT means:
1. Exactly once delivery
2. At most once delivery
3. Atleast once delivery

Summary

In this chapter, we started our journey toward understanding the MQTT protocol. We understood
convenient scenarios for this protocol, the details of the publish/subscribe pattern and message filtering.
We learned basic concepts related to MQTT and understood the different components: clients, brokers
and connections.

We learned to install a Mosquitto broker or server on Linux, macOS and Windows. We used the default
configuration to learn how everything works under the hoods while using Mosquitto. This way, it will be
easier for us to use the client libraries in different programming languages to publish MQTT messages
and subscribe to MQTT topic filters.

We learned best practices related to topics, single level and multi level wildcards. We studied in detail
the different Quality of Service levels supported by MQTT and when it is convenient to use each of them.
We analyzed their advantages and disadvantages.

Now that we understood how the MQTT basics work, we will learn how to secure an MQTT server and
to follow best practices related to security, which is what we are going to discuss in the next chapter.

Chapter 2. Securing an MQT'T Mosquitto Server

In this chapter, we will secure a Mosquitto server. We will work with digital certificates to encrypt all the
data sent between the MQTT clients and the server. To secure the server, we will:

Generate a private certificate authority to use TLS with Mosquitto
Create a certificate for the Mosquitto server

Configure TLS transport security in Mosquitto

Test the MQTT TLS configuration with MQTT.fx

Test the MQTT TLS configuration with MQTT-spy

Create a certificate for each MQTT client

Configure TLS client certificate authentication in Mosquitto

Test the MQTT TLS client authentication with MQTT.fx

Test the MQTT TLS configuration with MQTT-spy

Force the TLS protocol version

Securing a Mosquitto server

Security for IoT, mobile, and web applications is an extremely important topic that deserves entire books
dedicated to it. Each solution has its own security requirements, and it is very important to consider all of
them when developing each component of the solution.

If we use MQTT to publish values that are neither confidential nor critical for other applications, our only
concern may be to keep control over the maximum number of subscribers to topics to make sure that the
messages are always available. This way, we can avoid the failure of MQTT in delivering messages to a
huge number of subscribers.

However, most of the times, we won't be working on a solution that can share the data with the entire
world without limitations and doesn't need to care about data confidentiality and integrity in addition to
data availability. Imagine that we are working on a solution that includes a mobile app that allows users
to control a huge drone. If the drone flies the wrong way, we can do harm to real people. We cannot allow
any unknown publisher to be able to send messages to the topics that allow us to control the drone. We
have to make sure that the right person is controlling the drone and that the commands sent as part of the
messages cannot be altered by an intruder in the middle of the road.

Tip

The different levels of security come at a price, that is, there is always an additional overhead. Hence, we
should always keep a balance to avoid overheads that can make the entire solution unfeasible and
unusable. Whenever we add more security, we will require additional bandwidth and we will add a
processing overhead to the clients and the server. We have to take into account that some cryptographic
algorithms that work without problems in modern smartphones aren't suitable for IoT boards with a
constrained processing power. Sometimes, the security requirements can force us to use specific
hardware, such as more powerful IoT boards. We definitely have to consider security before purchasing
all the hardware for our solution.

Another important thing that we must take into account is that many security levels require maintenance
tasks, which might be unfeasible in certain cases or extremely difficult to achieve in other cases. For
example, if we decide to use a certificate for each device that will become a client of the MQTT server,
we will have to generate and distribute a certificate for each device. We have to access the filesystem for
the device to copy new files to it. In case we have to invalidate a certificate, it would be necessary to
provide a new certificate to the affected device. Consider a situation in which all the devices are
distributed in different locations, which are difficult to access; we must have a mechanism to remotely
access the device and be able to provide it with the new certificate. This task would also require security
because we don't want anybody else to access the device's filesystem. Thus, things can become extremely

complex once we start analyzing all the security requirements and the possible and necessary maintenance
tasks.

Each MQTT server or broker implementation can provide specific security features. We will work with
some of the features provided by Mosquitto out of the box. Specific security requirements might make us
decide to work with a specific MQTT server or broker implementation.

When we work with Mosquitto, we can implement security in the following levels:

e Network: We can use a Virtual Private Network (VPN) to extend a private network across the
Internet.

e Transport: MQTT uses TCP as the transport protocol, and therefore, by default, the communications
aren't encrypted. Transport Layer Security (TLS) is usually referred to as TLS/SSL, because
Secure Socket Layers (SSL) is its predecessor. We can use TLS to secure and encrypt
communications between the MQTT clients and the MQTT server. The usage of TLS with MQTT is
sometimes referred to as MQTTS. TLS allows us to provide both privacy and data integrity. We can
use TLS client certificates to provide authentication.

e Application: At this level, we can take advantage of the features included in MQTT to provide
application-level authentication and authorization. We can use clientId (Client Identifier) to
identify each client and combine it with user name and password authentication. We can add
additional security mechanisms at this level. For example, we can encrypt the message payload
and/or add integrity checks to ensure data integrity. However, the topic would still be unencrypted,
and therefore, TLS is the only way of making sure that everything is encrypted. We can work with
plugins to provide more complex authentication and authorization mechanisms. We can grant or deny
permissions to each user to control which topics they can subscribe to and which topics they can
publish messages to.

Tip

The most popular MQTT implementations provide support for TLS. However, make sure that you check
the features before selecting the appropriate MQTT server for your solution.

We won't cover all the security topics because it would require one or more entire books dedicated to
these topics. Instead, we will focus on the most common features used in transport-level security first, and
then, we will move to application-level security. The usage of VPNs is out of the scope of this book.
However, you must consider their usage based on your specific needs. We will use Mosquitto for our
examples, but you can follow many similar procedures for any other MQTT server you decide to use.
Everything we will learn will be useful for any other MQTT server that provides support for the same
security features that we will use with Mosquitto.

Generating a private certificate authority to use
TLS with Mosquitto

So far, we have been working with a Mosquitto server with its default configuration that listens on port
1883 and uses TCP as the transport protocol. The data sent between each MQTT client and server isn't
encrypted. There are no restrictions to subscribers or publishers. If we open the firewall ports and
redirect the ports in the router, any MQTT client that has our IP can publish to any topic and can subscribe
to any topic.

In our examples in the previous chapter, we didn't make any changes in our configurations to allow
incoming connections to port 1883, and therefore, we didn't open our Mosquitto server to the Internet.

We want to use TLS with MQTT and Mosquitto. This way, we will make sure that we can trust the MQTT
server because we have confidence that it is who it says; our data will be private because it will be
encrypted, and it will have integrity because it won't be altered in the middle of the road. In case you have
experience with the HTTP protocol, we will make the same shift we do when we move from using HTTP to
HTTPS.

Websites purchase certificates from major certificate authorities. In case we want to use a purchased
certificate for the server, we don't need to generate our own certificates. In fact, it is the most convenient
option when we have an MQTT server made public.

We will use the free OpenSSL utility to generate the necessary certificates for the server to enable TLS
with Mosquitto. OpenSSL is already installed in macOS and most modern Linux distributions. In
Windows, we already installed OpenSSL as one of the prerequisites for Mosquitto. The usage of the
OpenSSL utility deserves an entire book, and therefore, we will just focus on generating the certificate we
need with the most common options. In case you have any specific security needs, make sure that you dive
deep into the necessary options to achieve the goals with OpenSSL.

Specifically, we will generate an X.509 digital certificate that uses the X.509 Public Key Infrastructure
(PKI) standard. This digital certificate allows us to confirm that a specific public key belongs to the
subject included within the certificate. There is an identity that issues the certificate and its details are
also included in the certificate.

The digital certificate is valid only within a specific period, and therefore, we must take into account that
a digital certificate will expire some day and we will have to provide a new certificate to replace the
expired one. There are specific data requirements for the certificate based on the specific X.509 version
that we use. According to the version and to the options we use to generate the certificates, we may need
to provide specific data.

We will be running commands to generate different X.509 digital certificates and we will provide all the
necessary details that will be included in the certificate. We will understand all the data that the
certificate will have when we create them.

We will create our own private certificate authority, also known as CA. We will create a root certificate
and then we will generate the server key.

Tip

Check the directory or folder in which you have installed OpenSSL. In macOS, OpenSSL is installed in
/usr/bin/openssl. However, it is an old version and it is necessary to install a newer version before
running the commands. It is possible to install the new version with the homebrew package manager. In
Windows, the OpenSSL version we have installed as a prerequisite has the openssl.exe executable file
in the default c: 0penssL-win32bin folder. Use the full path to OpenSSL in each of the next commands
that start with openssl.

Create a new directory named certificates and change the necessary permissions for this directory to
make sure that only you can access its contents.

Open the Terminal in macOS or Linux, or the Command Prompt in Windows, and go to the previously
created directory, certificates. Run the following command to create a 2,048-bit root key and save it
inthe ca.key file: openssl genrsa -out ca.key 2048

The following lines show a sample output generated by the previous command: Generating RSA private
key, 2048 bit long modulus

The previous command will generate the private root key in the ca.key file. Make sure that you keep this
file private because anybody who has this file will be able to generate certificates. It is also possible to
password-protect this file by using other options with openss1. However, as previously explained, we
will follow the necessary steps to use TLS, and you can explore additional options related to OpenSSL
and certificates.

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the following command
to self-sign the root certificate. The next command uses the previously created 2,048-bit private key saved
in the ca.key file and generates a ca.crt file with the self-signed X.509 digital certificate. The
command makes the self-signed certificate valid for 3,650 days. The value is specified after the -days
option: openssl req -x509 -new -nodes -key ca.key -sha256 -days 3650 -out ca.crt

Tip

In this case, we specified the - sha256 option to use SHA-256 hash functions. If we want increased
security, we can use the -sha512 instead of -sha256 in all the cases in which we are using -sha256.
This way, we will use SHA-512 hash functions. However, we must take into account that SHA-512 might
not be appropriate for certain power-constrained IoT devices.

After you enter the previous command, OpenSSL asks information that will be incorporated in the
certificate. You have to enter the information and press Enter. In case you don't want to enter specific
information, just enter a dot (.) and press Enter. It is possible to pass all the values as arguments for the

openssl command, but it makes it a bit difficult to understand what we are doing. In fact, it is also
possible to use fewer calls to the openss1 command to perform the previous tasks. However, we will run
a few more steps to understand what we are doing.

The following lines show the sample output and the questions with sample answers. Remember that we
are generating our private certificate authority: You are about to be asked to enter information that
will be incorporated into your certificate request. What you are about to enter is what is called a
Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some
fields there will be a default value, If you enter '.’, the field will be left blank. ----- Country Name (2
letter code) [AU]:US State or Province Name (full name) [Some-State]: CALIFORNIA Locality
Name (eg, city) []:SAN FRANCISCO Organization Name (eg, company) [Internet Widgits Pty
Ltd]: CERTIFICATE AUTHORITY Organizational Unit Name (eg, section) []:. Common Name
(e.g. server FQDN or YOUR name) []: CERTIFICATE AUTHORITY Email Address

[1:certificate @ example.com

Run the following command to display the data and details for the generated certificate authority
certificate file: openssl x509 -in ca.crt -noout -text

The following lines show the sample output, which displays details about the signature algorithm, the
issuer, the validity, the subject, the extensions, and the constraints: Certificate: Data: Version: 3 (0x2)
Serial Number: ff:db:b4:d7:fa:30:00:bf Signature Algorithm: sha256 WithRSAEncryption Issuer:
C=US, ST=CALIFORNIA, L=SAN FRANCISCO, O=CERTIFICATE AUTHORITY,
CN=CERTIFICATE AUTHORITY/emailAddress=certificate @example.com Validity Not Before:
Jan 17 22:10:24 2017 GMT Not After : Jan 15 22:10:24 2027 GMT Subject: C=US,
ST=CALIFORNIA, L=SAN FRANCISCO, O=CERTIFICATE AUTHORITY, CN=CERTIFICATE
AUTHORITY/emailAddress=certificate @example.com Subject Public Key Info: Public Key
Algorithm: rsaEncryption RSA Public Key: (2048 bit) Modulus (2048 bit):
00:db:92:26:c1:fc:60:83:f1:c1:01:5e:46:e8:27: a8:e1:6e:08:02:65:05:ac:3e:d9:ad:22:8e:73:88:
3e:bf:16:b7:56:d7:44:87:€6:59:95:91:63:40:6a: 7c:fc:4f:db:48:b2:eb:d0:ca:ef:2d:6a:16:b9:31:
fc:8e:ce:e9:9b:e8:d7:1¢:16:81:17:b8:93:c2:e2: 7c:14:0e:aa:4d:c4:75:38:4e:80:50:47:6d:fa:52:
€6:0c:98:2£:93:af:da:36:67:60:34:79:80:7e:cd: 03:da:c8:23:3d:e0:74:96:37:3c:0f:1d:fd:eb:e9:
b9:d2:4b:00:e8:a4:d9:£6:e1:d2:51:e7:e5:74:29: dc:3d:68:84:93:47:7a:cf:6e:92:e3:10:db:73:95:
7c:d4:¢7:54:b0:10:bd:5c:0f:1e:0a:c1:bd:d9:25: d8:0d:d2:c2:30:92:90:6c:2d:4¢:59:17:e0:d9:06:
7d:c2:2a:b7:80:b8:cf:09:7b:23:e9:ed:8e:75:78: b7:8f:9e:87:17:a6:17:2d:c0:68:86:0d:97:5e:ab:
5f:8d:d2:66:a7:11:0e:89:51:9c:9e:be:22:3f:£2: bd:ca:03:c5:da:5d:d0:09:20:9b:55:60:23:6b:3c:
67:de:99:8a:ef:0a:62:7f:92:8d:88:¢9:01:70:b8: 3d:eb Exponent: 65537 (0x10001) X509v3
extensions: X509v3 Subject Key Identifier:
60:E5:C6:17:15:F8:2B:54:B2:DA:33:25:61:D4:4B:E3:DC:D9:70:6B X509v3 Authority Key
Identifier: keyid:60:E5:C6:17:15:F8:2B:54:B2:DA:33:25:61:D4:4B:E3:DC:D9:70:6B
DirName:/C=US/ST=CALIFORNIA/L=SAN FRANCISCO/O=CERTIFICATE
AUTHORITY/CN=CERTIFICATE AUTHORITY/emailAddress=certificate @example.com
serial: FF:DB:B4:D7:FA:30:00: BF X509v3 Basic Constraints: CA: TRUE Signature Algorithm:
sha256 WithRSAEncryption b8:b5:dc:71:b4:7f:66:f4:c0:d2:8f:0a:87:63:4f:b3:74:b0:
37:dd:5a:20:10:01:1c:91:ba:fa:71:47:b7:ad:ec:37:69:c1:
31:79:58:70:89:£2:d4:67:b3:a6:64:e2:75:0d:48:d1:fc:df:

67:3d:e7:cc:fa:9c:6d:65:ef:39:b2:74:76:11:4b:b5:23: 3f:
b3:cb:af:7a:eb:33:d0:4c:da:ed:1e:40:4b:33:7b:ed:25:ba:
9a:5a:d9:45:36:54:b7:25:b2:96:37:32:be:b1:f5:fa: 1b: 0f:
e4:29:7a:bd:c5:78:da:cc:ff:£0:3b:16:71:13:b0:ee:6c:04:
79:b0:33:56:c6:ac:28:d7:0b:7e:0e:ca:f0:7d:56:0f:59:e8:
5a:f9:49:66:1b:b8:7e:a1:31:07:ed:£6:0c:ec:9a:1e:82:73:
26:c5:2b:a9:c5:44:ef:b3:a4:7d:98:23:3e:f0:5b:ba: af:b6:
bf:0c:c8:be:75:¢c9:a6:07:2e:4d:47:2d:71:80:fc:fd:42:e2:
18:0d:4d:65:7e:6£:27:42:65:79:83:f9:74:11:¢6:70:32:6f:
d9:98:5c:54:e5:eb:b6:68:7b:93:25:56:ef:11:d4:2f:61:d1:
43:4£:b9:69:1c:2d:d2:e0:99:e5:12:be:20:c1:54:fe:b8:ea: ¢9:£0:27:d9

After running the previous commands, we will have the following two files in the certificates
directory:

e ca.key: Certificate authority key
e ca.crt: Certificate authority certificate file

Tip

The certificate authority certificate file is in a Privacy Enhanced Mail (PEM) format. We must remember
this format because some MQTT utilities will require us to specify whether the certificate is in the PEM
format or not. A wrong value in this option won't make the MQTT client establish a connection with an
MQTT server that uses a certificate in PEM format.

Creating a certificate for the Mosquitto server

Now that we have a private certificate authority, we can create the certificate for the Mosquitto server,
that is, a certificate for the computer that will run the MQTT server.

First, we must generate a new private key that will be different from the private key we generated for our
own private certificate authority.

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the following command
to create a 2,048-bit key and save it in the server . key file: openssl genrsa -out server.key 2048

The following lines show a sample output generated by the previous command: Generating RSA private
key, 2048 bit long modulus

The previous command will generate the private key in the server . key file. Go back to the Terminal in
macOS or Linux, or the Command Prompt in Windows. Run the following command to generate a
certificate signing request, also known as CSR. The next command uses the previously created 2,048-bit
private key saved in the server . key file and generates a server.csr file: openssl req -new -key
server.key -out server.csr

After you enter the previous command, OpenSSL asks for information that will be incorporated in the
certificate. You have to enter the information and press Enter. In case you don't want to enter specific
information, just enter a dot (.) and press Enter. In this case, the most important value is Common Name.
Enter the IPv4 or IPv6 address for the computer that is running the Mosquitto server in this field.

The following lines show the sample output and the questions with sample answers. Do not forget to enter
the appropriate value for Common Name: You are about to be asked to enter information that will be
incorporated into your certificate request. What you are about to enter is what is called a
Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some
fields there will be a default value, If you enter '.’, the field will be left blank. ----- Country Name (2
letter code) [AU]:US State or Province Name (full name) [Some-State]: CALIFORNIA Locality
Name (eg, city) []:PALO ALTO Organization Name (eg, company) [Internet Widgits Pty
Ltd]:MQTT SERVER Organizational Unit Name (eg, section) [[:MQTT Common Name (e.g.
server FQDN or YOUR name) []:192.168.1.101 Email Address []:mqttserver@example.com Please
enter the following 'extra’ attributes to be sent with your certificate request A challenge password
[1:. An optional company name []:Mosquitto

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the following command
to sign the previously created certificate signing request, that is, the server.csr file. The next command
also uses the self-signed X.509 digital certificate for the certificate authority and its private key that we
generated before: the ca.crt and ca.key files. The command generates a server.crt file with the
signed X.509 digital certificate for the Mosquitto server. The command makes the signed certificate valid
for 3,650 days. The value is specified after the -days option: openssl x509 -req -in server.csr -CA

ca.crt -CAkey ca.key -CAcreateserial -out server.crt -days 3650 -sha256
Tip

As we did when we created the self-signed X.509 digital certificate for the certificate authority, we also
specify the -sha256 option to use SHA-256 hash functions for the Mosquitto server certificate. You can
use the -sha512 option instead of -sha256 in case you want to use SHA-512 hash functions for increased
security.

The following lines show a sample output generated by the previous command. The values shown after
the subject will be different in your configuration because you entered your own values when you
generated the certificate signing request that was saved in the server.csr file: Signature ok
subject=/C=US/ST=CALIFORNIA/L=PALO ALTO/O=MQTT
SERVER/OU=MQTT/CN=192.168.1.101/emailAddress=mqttserver@example.com Getting CA
Private Key

Run the following command to display the data and details for the generated server certificate file:
openssl x509 -in server.crt -noout -text

The following lines show the sample output that displays details about the signature algorithm, the issuer,
the validity, the subject, and the signature algorithms: Certificate: Data: Version: 1 (0x0) Serial
Number: 87:f1:cb:ae:43:c3:17:ee Signature Algorithm: sha256 WithRSAEncryption Issuer: C=US,
ST=CALIFORNIA, L=SAN FRANCISCO, O=CERTIFICATE AUTHORITY, CN=CERTIFICATE
AUTHORITY/emailAddress=certificate @example.com Validity Not Before: Jan 18 14:29:48 2017
GMT Not After : Jan 16 14:29:48 2027 GMT Subject: C=US, ST=CALIFORNIA, L=PALO ALTO,
O=MQTT SERVER, OU=MQTT, CN=192.168.1.101/emailAddress=mqttserver@example.com
Subject Public Key Info: Public Key Algorithm: rsaEncryption RSA Public Key: (2048 bit) Modulus
(2048 bit): 00:df:£6:€3:92:27:44:c0:93:56:70:e1:ec:97:¢0:
fc:24:df:73:a1:4b:d9:a5:d9:30:0c:63:06:8b:4c: 69:91:42:fc:41:al1:ba:13:b9:8b:0d:b1:89:80:48:
20:b7:61:¢0:4b:be:92:66:c8:a5:f4:67:b3:7e:05: ed:59:1c:1e:al1:6f:db:3b:1b:16:c8:cd:93:d7:c8:
28:0d:20:73:12:9e:1d:ad:30:af:97:a7:4e:be:1b: 90:48:d6:8c:d4:04:1a:3f:al:2e:4a:dc:b2:d8:32:
£1:¢9:83:8a:d7:15:a1:da:58:69:38:£3:0b:50:b0: £6:42:c2:8d:c3:32:4a:20:e7:£6:3d:£2:59:70:d9:
da:13:59:aa:4f:1a:83:e8:e4:9a:82:ca:db:81:89: 4b:06:48:94:c2:8a:10:0b:7d:c8:d7:2e:c4:25:54:
60:b3:13:77:£2:99:dc:1¢:26:d5:99:d2:24:57:3e: 6e:80:c5:€7:49:30:2a:01:d4:b0:19:ef:48:ec:f5:
0f:8b:af:52:f6:0c:6e:91:2d:d8:e5:5b:49:cc:9a: 79:d7:13:1e:b2:c2:5b:d2:3¢:b7:71:£3:£6:9¢:50:
25:97:da:0c:7a:24:4a:7e:0a:6a:02:5f:ba:2d:b3: 5d:0b:e6:e2:d7:0c:7d:31:¢3:28:68:3¢:02:31:0d:
8d:33 Exponent: 65537 (0x10001) Signature Algorithm: sha256WithRSAEncryption
72:3b:9b:e7:¢0:17:66:a2:3b:52:b6:12:74:e5:1d:21:fd:fc:
b3:09:9¢:b1:£2:97:15:5e:44:0e:3f:ee:c3:e4:61:00:4f:16:
99:58:19:72:3c:3d:54:df:£8:2c:6¢:51:2¢:7£:50:17:4b: 24:
2e:cc:2f:£6:ee:43:97:b0:d5:05:a29:89:18:ac:18:26:28:45:
3c:0f:6e:ae:54:6a:1f:da:71:34:2e:01:79:5b:3b: 14:£0:cd:
70:11:4c:4d:e5:36:89:e0:b2:2f:64:b5:44:05:65:94:35:a4:
0f:21:e8:f£:07:27:89:€6:02:cf:£7:51:68:2c:e0:c2:c2:0c:
dd:26:56:70:bc:26:64:ab:7e:cc:c0:0c:0b:bf:da:91:22:05:
71:41:af:af:c7:47:7a:cb:cd:cd:£3:49:bb:bb: ca:52:£5:56:

d3:75:33:¢6:9f:fb:a8:35:87:3e:d5:13:37:b4:¢5:d4:19:64:
ab:f2:5d:b7:06:d8:¢8:54:95:cd:£2:02:74:d7:49:62:55:73:
b3:80:78:85:¢2:6b:2a:68:96:95:4c:c4:3c:3e:20:ed:4a: 8f:
84:34:51:28:99:01:d1:4d:21:4d:8£:97:7a:47:8c:b0:8e:4a:
59:6:21:44:da:af:54:84:b9:ce:95:b9:21:35:14:a6:45:2f: e5:bc:37:84

After running the previous commands, we will have the following three files in the certificates
directory:

e server.key: Server key
e server.csr: Server certificate signing request
e server.crt: Server certificate file

Tip

The server certificate file is in PEM format, as happened with the certificate authority certificate file.

Configuring TLS transport security in Mosquitto

Now, we will configure Mosquitto to use TLS transport security and work with encrypted
communications with different clients. Note that we haven't generated certificates for the clients, and
therefore, we won't use client certificates for authentication. This way, any client that has the ca.crt file
will be able to establish a communication with the Mosquitto server.

Go to the Mosquitto installation directory and create a new subdirectory named certificates. In
Windows, you will need administrator privileges to access the default installation folder.

Copy the following files from the certificates directory, in which we have saved the certificate
authority certificate and the server certificate, to the certificates subdirectory we recently created
within the Mosquitto installation directory:

® ca.crt
® server.crt
® server.key

In case you are running the Mosquitto server in a Terminal window in macOS or Linux, press Ctrl + C to
stop it. In Windows, stop the appropriate service. If you are running the Mosquitto server in Linux, run the
following command to stop the service:

sudo service mosquitto stop

Go to the Mosquitto installation directory and open the mosquitto.conf configuration file. By default,
all the lines for this file are commented, that is, they start with a hash sign (#). The default value for each
setting is indicated and commented. This way, we easily know all the default values. The settings are
organized in different sections.

Tip

It is a good practice to make a backup copy of the exiting mosquitto.conf configuration file before
making changes to it. Whenever we make changes to mosquitto.conf itis a good idea to be able to
easily roll back to the previous configuration if something goes wrong.

In macOS or Linux, add the following lines at the end of the configuration file and make sure you replace
/usr/local/etc/mosquitto/certificates with the full pathto the certificates directory we
created within the Mosquitto installation folder:

MQTT over TLS

listener 8883

cafile /usr/local/etc/mosquitto/certificates/ca.crt
certfile /usr/local/etc/mosquitto/certificates/server.crt
keyfile /usr/local/etc/mosquitto/certificates/server.key

In Windows, add the following lines at the end of the configuration file and make sure you replace
C:Program Files (x86)mosquittocertificates with the full pathto the certificates directory
we created within the Mosquitto installation folder:

MQTT over TLS

listener 8883

cafile C:Program Files (x86)mosquittocertificatesca.crt
certfile C:Program Files (x86)mosquittocertificatesserver.crt
keyfile C:Program Files (x86)mosquittocertificatesserver.key

We specified the 8883 value for the 1istener option to make Mosquitto listen for incoming network
connections on port 8883. This port is the default port number for MQTT with TLS.

The cafile option specifies the full path for the file that provides a PEM-encoded certificate authority
certificate file: ca.crt.

The certfile option specifies the full path for the file that provides a PEM-encoded server certificate:
server.crt.

Finally, the keyfile option specifies the full path for the file that provides a PEM-encoded server keyfile:
server.key.

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again with the same
mechanism we learned for Linux, macOS, and Windows in the previous chapter. The Mosquitto server
will be listening on port 8883 instead of 1883.

We will use the mosquitto_sub command-line utility included in Mosquitto to try to generate a simple
MQTT client that subscribes to a topic and prints all the messages it receives. We will use the default
configuration that will try to establish a communication with the Mosquitto server by using the default
1883 port without a certificate authority certificate specified. Open the Terminal in macOS or Linux, or
the Command Prompt in Windows, go to the directory in which Mosquitto is installed, and run the
following command:

mosquitto_sub -V mqttv31ll -t sensors/drone@i1/altitude -d

The mosquitto_sub utility will display the following error. The Mosquitto server is not accepting
connection on port 1883 anymore:

Error: Connection refused

Run the following command that uses the -p option followed by the port number that we want to use:
8883. This way, we will try to connect to port 8883 instead of the default 1883 port:

mosquitto_sub -V mqttv31ll -p 8883 -t sensors/droneOl1l/altitude -d

The mosquitto_sub utility will display debug messages indicating that it is sending the CONNECT
packet to the MQTT server. However, the connection will never be established because Mosquitto will

display the following error. The Mosquitto server is not accepting connection on port 1883
anymore. Press Ctrl+C to stop the utility trying to connect.

The following command specifies the certificate authority certificate file after the - -cafile optionin
addition to indicating that we want to use port 8883. You just have to replace ca.crt with the full path to

the ca.crt file you created in the certificates directory. For example, it might be
C:certificatesca.crt in Windows or /Users/gaston/certificates/ca.crt in macOS or Linux.
The mosquitto_sub utility will create an MQTT subscriber that will establish an encrypted connection
with Mosquitto:

mosquitto_sub -V mqttv31ll -p 8883 --cafile ca.crt-t
sensors/drone01/altitude-d

With a similar syntax, we will use the mosquitto_pub command-line utility included in Mosquitto to
generate a simple MQTT client that publishes a message to a topic with an encrypted connection. Open
the Terminal in macOS or Linux, or the Command Prompt in Windows, go to the directory in which
Mosquitto is installed, and run the following command:

mosquitto_pub -V mqttv31l -p 8883 --cafile ca.crt -t
sensors/drone01/altitude -m "150 f" -d

Tip

Remember to replace ca.crt with the full path to the ca.crt file you created in the certificates
directory.

Testing the MQTT TLS configuration with

MQTT.fx

Now, we will use the MQTT.fx GUI utility to generate another MQTT client that uses an encrypted
connection to publish messages to the same topic, sensors/drone@1/altitude. We have to make
changes to the connection options to enable TLS and specify the certificate authority certificate file.

Follow the next steps:

1. Launch MQTT.fx, select local mosquitto in the dropdown located on the upper-left corner, and click
on the configuration icon on the right-hand side of this dropdown and on the left-hand side of the

Connect button. MQTT.fx will display the Edit Connection Profiles dialog box with different

options for the connection profile named local mosquitto.

Press the SSL/TLS button.

@ Uk W

Activate the Enable SSL/TLS checkbox.
Activate the CA certificate file radio button.
Enter or select the full path to the ca.crt file that you created in the certificates folder in the CA

Change the value specified in Broker Port from 1883 to 8883 .

Certificate File textbox and click OK. The following screenshot shows the dialog box with the

selected options:

M2M Eclipse

@

Revert

Edit Connection Profiles

local mosquitto Connection Profile

Profile Name

Broker Address

Broker Port

Client ID

General User Credentials

Enable SSL/TLS

CA signed server certificate

CA certificate file

CA Certificate File | sers;gaston/DownIoadsfmosquitto_ccrtsfcertiﬂcates,l'ca,crd |

CA certificate keystore

Self signed certificates

local mosquitto

127.0.0.1
8883

MQTT_FX_Client Generate

SSL/TLS | Proxy Last Will and Testament

Protocol TLSv1.2

Self signed certificates in keystores

OK

Apply

* Click on the Connect button. MQTT.fx will establish an encrypted connection with the local Mosquitto
server. Notice that the Connect button is disabled and the Disconnect button is enabled because the client
is connected to the Mosquitto server.

» Click Subscribe and enter sensors/drone@1/altitude in the dropdown on the left-hand side of the
Subscribe button. Then, click the Subscribe button. MQTT.fx will display a new panel on the left-hand
side with the topic to which we have subscribed.

* Click Publish and enter sensors/drone@1/altitude in the dropdown on the left-hand side of the
Publish button.

» Enter the following text in the textbox below the Publish button: 400 f.

e Then, click the Publish button. MQTT.fx will publish the entered text to the specified topic.

* Click Subscribe and you will see the published message.

With the configuration changes we have made to the Mosquitto server, any client that has the certificate
authority certificate file, that is, the ca.crt file we generated, will be able to establish a connection with
Mosquitto, subscribe, and publish to topics. The data sent between the MQTT clients and the MQTT
server is encrypted. In this configuration, we don't require the MQTT clients to provide certificates for
authentication.

Testing the MQTT TLS configuration with
MQTT-spy

There is another very popular utility to generate MQTT clients that can subscribe to topics and publish to
topics: MQTT-spy. This utility is open source and can run on any computer that has Java 8 or a higher
version installed on it. You can find more information about MQTT-spy at http://kamilfb.github.io/mqtt-
spy. The options to establish a connection with an MQTT server with a certificate authority certificate
file are similar to the ones we analyzed for MQTT.fx. However, in case you also want to work with this
utility, it is convenient to analyze them in detail.

Now, we will use the MQTT-spy GUI utility to generate another MQTT client that uses an encrypted
connection to publish messages to the same topic, that is, sensors/drone®1/altitude. Follow the next
steps:

1. Launch MQTT-spy.
2. Select Connections | New connection. The Connection list dialog box will appear.

3. Click on the Connectivity tab and select MQTT 3.1.1 in the Protocol version dropdown. We want
to work with MQTT version 3.1.1.

Click on the Security tab and on the TLS tab below the User auth. tab.

Select CA certificate in the TLS/SSL mode dropdown.

Select TLSv1.2 in the Protocol dropdown.

Enter or select the full path to the ca.crt file that you created in the certificates folder and click
Open connnection. The following screenshot shows the dialog box with the selected options:

Nk

File Configuration Connections Window Help

Control panel

@ @ Connection list
—_ All connections .
Connection name gaston_181739667@127.0.0.1
N * gaston_181739667@127.0.0.1 [auto-generated if = client ID@server URI]
Configuration mode (perspective) Default - simpified properties v

Connectivity = Security | Last Will | Publications | Subscriptions | Log | Other

S TLS/SSL mode CA certificate v
m
§ Protocol TLSV1.2 v
:l CA certificate file fDuwnIoads/mosquitto_certsfcertificates!ca‘crtl '
L J
W
=
b=
a

Note: to save the changes, click the "Apply all" button

% New ~ Duplicate R Delete

“3) Undo all « Apply all & Apply 9 Undo Open connection

http://kamilfb.github.io/mqtt-spy

» MQTT-spy will close the dialog box and will display a new tab with a green background and the

connection name that appears highlighted and selected on the left-hand side in the Connection list dialog.

Make sure you click on the tab for the new connection.

e Enter sensors/drone®1/altitude in the Topic dropdown.

o Enter the following text in the Data textbox: 540 f. The following screenshot shows the tab for the new

connection and the data entered in the different controls:
matt-spy

File Configuration Connections Window Help

Control panel ﬂ gaston_181739667@127.0.0.1

¥ Publish message

5
@

Topic | sensors/drone01/altitude v

Publish | =
Data 540f)

o Click the Publish button. MQTT-spy will publish the entered text to the specified topic, and you will be
able to see the message in both the MQTT.fx subscriber and the mosquitto-sub subscriber.

Creating a certificate for each MQTT client

Now, we want to require each MQTT client to provide a valid certificate to establish a connection with
the MQTT server. This way, only the clients that have a valid certificate will be able to publish or
subscribe to topics. We will use the previously created private certificate authority to create client
certificates for authentication.

We will generate a sample certificate for our local computer that will act as a client. We can follow the
same procedure to generate additional certificates for additional devices that we want to be able to
connect to the Mosquitto server. We just need to use a different name for the file and use a different device
name in the corresponding option.

Tip

We must use the same certificate authority certificate that we used to generate the server certificate to
generate the client certificates.

First, we must generate a new private key that will be different from the private keys we generated for our
own private certificate authority and for the server certificate.

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the following command
to create a 2,048-bit key and save it in the device001. key file. To repeat this procedure for other
devices, replace device001 with any other name that identifies the device that will use the certificate. Do
this in all the following commands that use device001 for different file names and values: openssl
genrsa -out device001.key 2048

The following lines show a sample output generated by the previous command: Generating RSA private
key, 2048 bit long modulus

The previous command will generate the private key in the device001.key file. Go back to the Terminal
in macOS or Linux, or the Command Prompt in Windows. Run the following command to generate a
certificate signing request, also known as CSR. The next command uses the previously created 2,048-bit
private key saved in the device001.key file and generates a device001.csr file: openssl req-new -
key device001.key -out device001.csr

After you enter the previous command, OpenSSL asks for information that will be incorporated in the
certificate. You have to enter the information and press Enter. In case you don't want to enter specific
information, just enter a dot (.) and press Enter. In this case, the most important value is Common Name.
Enter the device name in this field: You are about to be asked to enter information that will be
incorporated into your certificate request. What you are about to enter is what is called a
Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some
fields there will be a default value, If you enter '.’, the field will be left blank. ----- Country Name (2
letter code) [AU]:US State or Province Name (full name) [Some-State]: CALIFORNIA Locality

Name (eg, city) []:SAN JOSE Organization Name (eg, company) [Internet Widgits Pty Ltd]:MQTT
CLIENT 001 Organizational Unit Name (eg, section) []:MQTT CLIENT 001 Common Name (e.g.
server FQDN or YOUR name) []:MQTT CLIENT 001 Email Address
[1:mqttclient001@example.com Please enter the following 'extra' attributes to be sent with your
certificate request A challenge password []:. An optional company name []:.

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the following command
to sign the previously created certificate signing request, that is, the client001.csr file. The next
command also uses the self-signed X.509 digital certificate for the certificate authority and its private key
that we generated before: the ca.crt and ca.key files. The command generates a client001.crt file
with the signed X.509 digital certificate for the MQTT client. The command makes the signed certificate
valid for 3,650 days. The value is specified after the -days option. The -addTrust clientAuth option
indicates that we want to use the certificate to authenticate a client: openssl x509 -req -in device001.csr -
CA ca.crt -CAkey ca.key -CAcreateserial -out device001.crt -days 3650 -sha256 -addtrust
clientAuth

The following lines show a sample output generated by the previous command. The values shown after
the subject will be different in your configuration because you entered your own values when you
generated the certificate signing request that was saved in the device001.csr file: Signature ok
subject=/C=US/ST=CALIFORNIA/L=SAN JOSE/O=MQTT CLIENT 001/0U=MQTT CLIENT
001/CN=MQTT CLIENT 001/emailAddress=mqttclient001@example.com Getting CA Private Key

Run the following command to display the data and details for the generated server certificate file:
openssl x509 -in device(001.crt -noout -text

The following lines show the sample output that displays details about the signature algorithm, the issuer,
the validity, the subject, and the signature algorithms: Certificate: Data: Version: 1 (0x0) Serial
Number: 87:f1:cb:ae:43:c3:17:ef Signature Algorithm: sha256 WithRSAEncryption Issuer: C=US,
ST=CALIFORNIA, L=SAN FRANCISCO, O=CERTIFICATE AUTHORITY, CN=CERTIFICATE
AUTHORITY/emailAddress=certificate @example.com Validity Not Before: Jan 18 22:51:42 2017
GMT Not After : Jan 16 22:51:42 2027 GMT Subject: C=US, ST=CALIFORNIA, L=SAN JOSE,
O=MQTT CLIENT 001, OU=MQTT CLIENT 001, CN=MQTT CLIENT
001/emailAddress=mqttclient001@example.com Subject Public Key Info: Public Key Algorithm:
rsaEncryption RSA Public Key: (2048 bit) Modulus (2048 bit):
00:a2:f0:b8:70:¢6:9f:de:a0:42:27:fe:5c:86:2d: 73:a5:ae:1c:78:6c:bf:07:fe:bb:cc:a4:69:1d:3c:
10:01:ef:4d:2c:85:43:57:4d:a2:5a:1c:ea:8f:1d: c2:73:4e:d8:27:31:78:9d:02:12:a9:2d:1b:2¢:63:
fc:91:41:94:06:£6:7d:9b:4b:8f:58:cb:bf:b6:ea: 1d:e5:e2:fd:18:64:9a:f6:0e:ba:f0:7a:ba:52:c0:
01:78:42:74:43:67:97:1£4:db:80:a8:8b:e7:c0:c4: e7:ce:e4:ba:f8:7e:17:4f:e0:28:9d:93:ad:37:74:
61:1b:fc:db:42:d1:36:31:11:47:9b:23:4f:37:d8: 54:e6:30:b7:f7:14:68:b7:e1:b3:43:43:£2:53:55:
e6:ee:bf:d0:61:15:d3:7e:d1:de:88:1a:00:1b:b3: 09:bd: 0f:ea:f8:d6:15:3b:8f:df:2c:3f:d1:ec:fa:
3d:20:28:bb:82:ed:b2:3f:b7:db:c6:fb:99:16:70: 9a:2e:1c:3c:71:fd:ac:f0:ed:f1:ea:93:e6:2b:27:
88:91:bb:32:1a:bf:90:31:bb:52:1£:22:60:9b:3a: 16:d3:02:98:97:8e:b1:49:1c:c8:d7:0£:61:24:bf:
bl:ae:8c:fe:7d:99:6c:f4:d2:83:5e:63:77:4f:b4: e7:db Exponent: 65537 (0x10001) Signature
Algorithm: sha256 WithRSAEncryption 3c:85:23:6a:a5:cb:eb:94:59:58:53:fe:d0:c4:26:75:76:9f:
fd:82:4b:5d:31:6a:a7:ba:08:75:96:f4:15:bf:e3:e2:7¢:91:

bf:50:19:€9:a2a:76:99:13:fe:85:6d:22:67:96:68:b6:f0:86:
06:cc:76:3c:79:4a:bc:1e:32:76:09:2¢:82:93:b7:68:9c: 1b:
23:85:2c:ce:d2:39:d6:d3:c3:9c:d6:bc:38:25:bb:3c:55:53:
a7:2f:58:d3:4d:9a:4c:86:78:7b:0f:6d:ea:8b:b3:0e:5c:2a:
59:86:8e:1£:29:07:10:e8:37:ae:69:7e:b0:1f:a7:b9:08:e0:
6e:aa:f9:a6:96:e0:e9:e4:4e:98:dc:a7:05:al:ea:90:34:c9:
4a:4d:7f:91:73:7a:22:24:91:82:37:d8:f4:a8:2a:1b:bb: b2:
38:d5:27:ae:65:¢5:e0:10:12:07:68:ca:ed:e9:27:1b:49:9b:
39:81:bf:f2:6b:eb:b2:09:eb:1f:3b:de:dd:93:81:6f:c2:5a:
4e:cd:b4:cd:05:fe:17:71:fb:fe:28:ba:55:4d:e4:91:64:fe:
d6:57:61:81:d7:78:a€:9¢:65:26:3c:6e:bb:9e:76:10:cd:94:
44:92:1d:2d:e3:ff:57:fd:ab:24:b5:3c:cc:a8:76:0f:15:b3: 79:31:1f:ef

After running the previous commands, we will have the following three new files in the certificates
directory:

e device001.key: Client key
e device001.csr: Client certificate signing request
e device00l.crt: Client certificate file

Note

The client certificate file is in the PEM format, as happened with the authority certificate file and the
server certificate file.

We will have to provide the following three files to any device that we want to be able to connect to the
Mosquitto server:

® ca.crt
® deviceO@O@1l.crt
® device001.key

Tip

Never provide additional files to the devices that have to establish a connection with the MQTT server.
You don't want the devices to be able to generate additional certificates. You just want them to
authenticate with a valid certificate.

The openss1 utility allows us to provide values for many of the options with additional command-line
options. Hence, it is possible to automate many of the previous steps to make it easier to generate multiple
device certificates.

Configuring TLS client certificate authentication
in Mosquitto

Now, we will configure Mosquitto to use TLS client certificate authentication. This way, any client will
require the ca.crt file and a client certificate to establish a communication with the Mosquitto server.

In case you are running the Mosquitto server in a Terminal window in macOS or Linux, press CtriIC to
stop it. In Windows, stop the appropriate service.

Go to the Mosquitto installation directory and open the mosquitto.conf configuration file.

In macOS, Linux. or Windows, add the following lines at the end of the configuration file:

require_certificate true

We specified the true value for the require_certificate option to make Mosquitto require a valid
client certificate for any client that requests a connection to Mosquitto.

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again. We will use the
mosquitto_sub command-line utility included in Mosquitto to generate a simple MQTT client that
subscribes to a topic filter and prints all the messages it receives. The following command specifies the
certificate authority certificate file, the client certificate, and the client key. You have to replace ca.crt,
device001.crt, and device001.key with the full path to these files created in the certificates
directory. However, it is a better idea to copy these files to a new directory as if we were working with
the files that will only be available to the device that wants to establish a connection with Mosquitto. The
mosquitto_sub utility will create an MQTT subscriber that will establish an encrypted connection with
Mosquitto and will provide the client certificate and client key to perform authentication.

mosquitto_sub -V mqttv31l -p 8883 --cafile ca.crt --cert device00l1l.crt --key
device001l.key-t sensors/+/altitude -d

With a similar syntax, we will use the mosquitto_pub command-line utility included in Mosquitto to
generate a simple MQTT client that publishes a message to a topic that will match the previously
specified topic filter, with an encrypted connection and client authentication. Open the Terminal in macOS
or Linux, or a Command Prompt in Windows, go to the directory in which Mosquitto is installed, and run
the following command. Remember to replace ca.crt, device@01.crt, and device001.key with the
full path to these files created in the certificates directory:

mosquitto_pub -V mqttv31l -p 8883 --cafile ca.crt --cert device00l1l.crt --key
device001l.key-t sensors/dronel2/altitude -m "1350 f" -d

Tip
Sometimes, it is necessary to invalidate a client certificate. Mosquitto allows us to specify a PEM-

encoded certificate revocation list file. We have to specify the path to this file as a value for the cr1file
option in the Mosquitto configuration file.

Testing the MQTT TLS client authentication
with MQTT.fx

Now, we will use the MQTT.fx GUI utility to generate another MQTT client that uses an encrypted
connection and TLS client authentication to publish messages to a topic that matches the topic filter we
used for the subscription, sensors/drone25/altitude. We have to make changes to the connection
options we used when we enabled TLS and specify the client certificate and client key files. Follow the
next steps:

1.

@ Uk W

Launch MQTT.fx, select local mosquitto in the dropdown located on the upper-left corner, and click
on the configuration icon on the right-hand side of this dropdown and on the left-hand side of the
Connect button. MQTT.fx will display the Edit Connection Profiles dialog box with different
options for the connection profile named local mosquitto.

Make sure the value specified in Broker Port is 8883 .

Press the SSL/TLS button.

Make sure the Enable SSL/TLS checkbox is activated.

Activate the Self signed certificates radio button.

Enter or select the full path to the ca.crt file that you created in the certificates folder in the CA
File textbox.

Enter or select the full path to the device001.crt file that you created in the certificates folder
in the Client Certificate File textbox.

Enter or select the full path to the device001. key file that you created in the certificates folder
in the Client Key File textbox.

Make sure that the PEM Formatted checkbox is activated. The following screenshot shows the
dialog box with the selected options and sample values for the different textboxes:

& & Edit Connection Profiles
M2M Eclipse
local mosquitto ConneCtion PrOf”e
Profile Name = |ocal mosquitto
Broker Address 127.0.0.1
Broker Port 8883
ClientiD MQTT_FX_Client Generate
General User Credentials | SSL/TLS | Proxy Last Will and Testament
Enable SSL/TLS / Protocol TLSv1.2 v
CA signed server certificate
CA certificate file
CA certificate keystore
@® Self signed certificates
CAFile [Users/gaston/certificates/ca.crt
Client Certificate File = /Users/gaston/certificates/device001.crt
Client Key File | {Users/gaston/certificates/device001.key
Client Key Password
PEM Formatted +/
Self signed certificates in keystores
g - Revert oK Apply

* Click OK. Then, click on the Connect button. MQTT.fx will establish an encrypted connection with the
local Mosquitto server by using the certificate and key files we have specified. Note that the Connect
button is disabled and the Disconnect button is enabled because the client is connected to the Mosquitto
server.

* Click Subscribe and enter sensors/+/altitude inthe dropdown on the left-hand side of the
Subscribe button. Then, click the Subscribe button. MQTT.fx will display a new panel on the left-hand
side with the topic filter to which we have subscribed.

o Click Publish and enter sensors/drone46/altitude in the dropdown on the left-hand side of the
Publish button.

» Enter the following text in the textbox below the Publish button: 1235 f.

o Then, click the Publish button. MQTT.fx will publish the entered text to the specified topic.

o Click Subscribe and you will see the published message.

Testing the MQTT TLS configuration with
MQTT-spy

Now, we will use the MQTT-spy GUI utility to generate another MQTT client that uses an encrypted
connection to publish messages to another topic that will match the sensors/+/altitude topic filter,
sensors/drone500/altitude. Follow the next steps:

1.
2.

Nk

0

10.

Launch MQTT-spy.

Select Connections | New connection or Connections | Manage connections in case you were
already running MQT T-spy or have saved previous settings. The Connection list dialog box will
appear.

Click on the Connectivity tab and make sure MQTT 3.1.1 is selected in the Protocol version
dropdown.

Click on the Security tab and on the TLS tab below the User auth. tab.

Select CA certificate& client certificate/key in the TLS/SSL mode dropdown.

Select TLSv1.2 in the Protocol dropdown.

Enter or select the full path to the ca.crt file that you created in the certificates folder in the CA
certificate file textbox.

Enter or select the full path to the device001.crt file that you created in the certificates folder
in the Client certificate file textbox.

Enter or select the full path to the device001.key file that you created in the certificates folder
in the Clientkey file textbox.

Activate the Client key in PEM format checkbox. Finally, click Open connnection or Close and
re-open existing connection. The following screenshot shows the dialog box with the selected

options and sample values for the textboxes:
¥ mqtt-spy

File Configuration Connections Window Help

Control panel ﬂ gaston_224817975@127.0.0.1

& @ Connection list
—_ All connections .
Connection name gaston_224817975@127.0.0.1
n * gagtgn_224817975@‘127.0_0_1 [auto-generated if = client ID@server URI]
Configuration mode (perspective) Default - simpified properties v

Connectivity | Security | Last Will | Publications | Subscriptions | Log Other

'::‘5u: TLS/SSL mode CA certificate & client certificate/key v
5‘:} Protocol TLSv1.2 v
| CA certificate file /Users/gaston/certificates/ca.crt

g Client certificate file [Users/gaston/certificates/device001.crt

a Client key file /Users/gaston/certificates/device001.key

Client key password
Note: to save the changes, click the "Apply all" button

Client key in PEM format v
4 New ~ Duplicate & Delete

<) Undo all & Apply all % Apply “3) Undo Close and re-open existing connection

o MQTT-spy will close the dialog box and will display a new tab with a green background and the
connection name, which appears highlighted and selected on the left-hand side in the Connection list
dialog. Make sure you click on the tab for the new connection.

* Enter sensors/drone500/altitude in the Topic dropdown.

» Enter the following text in the Data textbox: 1777 f.

* Click the Publish button. MQTT-spy will publish the entered text to the specified topic, and you will be
able to see the message in both the MQTT.fx subscriber and the mosquitto-sub subscriber.

Tip
As happens with any security configuration, a checkbox that isn't activated based on the previous

instructions won't allow the MQTT client to establish a connection with Mosquitto. It is very important to
remember that the certificates use the PEM format.

Forcing the TLS protocol version

It is a good practice to use the highest possible TLS protocol version. By default, Mosquitto accepts TLS

1.0, 1.1, and 1.2. If all the clients are capable of working with the highest TLS protocol version supported
by Mosquitto, we should force Mosquitto to use only the highest version. This way, we make sure that we
won't be vulnerable to attacks to the previous TLS versions.

Now, we will make the necessary changes in the configuration file to force the usage of TLS 1.2. In case
you are running the Mosquitto server in a Terminal window in macOS or Linux, press Ctrl+C to stop it.
In Windows, stop the appropriate service.

Go to the Mosquitto installation directory and open the mosquitto.conf configuration file.

In macOS, Linux, or Windows, add the following lines at the end of the configuration file:

tls version tlsv1l.2

We specified the t1svi.2 value for the t1s_version option to make Mosquitto work only with TLS 1.2.
Any client that uses an earlier TLS version won't be able to establish a connection with the Mosquitto
server.

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again. We specified the
TLS version when we configured the connection in both the MQTT.fx and MQTT-spy GUI utilities, and
we specified TLS 1.2 as the desired TLS version for the client. We must use the --t1ls-version
t1lsvi.2 option for the mosquitto_sub and mosquitto_pub command-line utilities.

Open the Terminal in macOS or Linux, or the Command Prompt in Windows, go to the directory in which
Mosquitto is installed, and run the following command. Remember to use the full paths for the ca.crt,
device.001 and device.key files:

mosquitto_pub --tls-version tlsv1l.2-V mqttv311l -p 8883 --cafile ca.crt -t
sensors/drone01/altitude -m "2532 f" -d

The previous command specified the usage of TLS 1.2, and therefore, the MQTT client could establish a
connection with the Mosquitto server and publish the message. If we specify a different TLS version, the
mosquitto_pub command won't be able to connect with the Mosquitto server.

Test your knowledge

1. Which of the following can we use to secure and encrypt communications between the MQTT clients
and the MQTT server?
1. TLS.
2. TCP.
3. HTTPS.

2. Which is the default port number for MQTT over TLS?
1. 1883.
2. 9883.
3. 8883.

3. If we specify true as the value for the require_certificate option of the Mosquitto configuration
file:
1. Clients that want to connect to the MQTT server will require a client certificate.
2. Clients that want to connect to the MQTT server won't require a client certificate.
3. Clients that want to connect to the MQTT server can provide an optional client certificate.

4. Which of the following utilities allows us to generate an X.509 digital certificate?
1. OpenX509.
2. OpenSSL.
3. TLS4You.

5. When we use MQTT over TLS:
1. There is just a small bandwidth overhead but no processing overhead at all compared with
MQTT over TCP without TLS.
2. There are both bandwidth and processing overheads compared with MQTT over TCP without
TLS.
3. There is no overhead compared with MQTT over TCP without TLS.

Summary

In this chapter, we generated a private certificate authority, a server certificate, and client certificates to
enable TLS transport security and TLS client authentication with Mosquitto. Communications between the
MQTT clients and the MQTT server are encrypted.

We worked with OpenSSL to generate the digital certificates. We tested the MQTT TLS configuration
with MQTT.fx, MQTT-spy, and the Mosquitto command-line utilities. We forced Mosquitto to use only a
specific TLS version.

There are many other security topics related to MQTT servers and Mosquitto. We will work with some of
them in the forthcoming chapters, in which we will develop applications that will use MQTT in different
programming languages.

Now that you have understood how to encrypt communications between the MQTT clients and the
Mosquitto server, we will control a drone with Python and MQTT, which is what we are going to discuss
in the next chapter.

Chapter 3. Controlling a Drone with Python

In this chapter, we will write Python code to control a drone with MQTT messages. We will write code
that will be able to run on different popular IoT platforms. We will:

Understand the requirements to control a drone with MQTT
Define the topics and commands to control a drone
Install paho-mgqtt for Python

Connect the client to the MQTT server with Python
Understand callbacks

Subscribe to topics with Python

Create a class to represent a drone

Receive messages with Python

Process commands with Python

Work with the network loop with Python

Send messages with Python

Understanding the requirements to control a
drone with MQTT

In the previous chapters, we learned how MQTT works in detail. We understood how to establish a
connection between an MQTT client and an MQTT server. You learned what happens when we subscribe
to topic filters and when a publisher sends messages to specific topics. We installed and secured a
Mosquitto server.

Now, we will use Python as our main programming language to generate MQTT clients that will act as
publishers and subscribers. We will connect a Python MQTT client to the MQTT server and we will
process commands to control a drone with MQTT messages.

We will use TLS encryption and TLS authentication because we don't want any MQTT client to be able to
send commands to our drone. We want our Python code to run on many platforms because we will use the
same code base to control drones that use the following IoT boards:

e Raspberry Pi 3

e Raspberry Pi 2 Model B
¢ Inte] Edison

¢ Inte] Galileo Gen 2

¢ Intel Joule 570x

¢ Intel Joule 550x

Depending on the platform, each drone is going to provide additional features because some boards are
more powerful compared with other boards. However, we will focus on the basic features to keep our
example simple and to stay concentrated on MQTT. Then, we will be able to use this project as a
baseline for other solutions that require us to run code on an IoT board that runs Python code, has to
connect to an MQTT server, and has to process commands.

The code that runs on the boards that power the drones must be able to process commands received in
messages in a specific topic. We will use JSON strings in the payloads.

A client application also written in Python must be able to control one or more drones. We will also write
the client application in Python and it will publish MQTT messages with JSON strings to the topic for
each drone. The client application must display the results of executing each command. Each drone must
publish a message to a specific topic whenever a command is successfully executed.

Defining the topics and commands

We will use the following topic name to publish the commands for a drone: commands/dronename, where
dronename must be replaced with a unique name assigned to a drone. For example, if we assign droneo1
as the name for a drone that is powered by an Intel Joule 570x board, we will have to publish commands
to the commands/drone0@1 topic and the code that runs on this board will subscribe to this topic to
receive messages with commands and react to them.

We will use the following topic name to make the drones publish details about the successfully executed
commands: processedcommands/dronename, where dronename must be replaced with a unique name
assigned to a drone. For example, if we assign dronepi03 as the name for a drone that is powered by a
Raspberry Pi 3 board, the client that wants to receive information about successfully processed
commands has to subscribe to the processedcommands/dronepi03 topic.

The commands will be sent in a JSON string with a key-value pair. The key must be equal to COMMAND and
the value must specify any of the following valid commands. When the command requires additional
parameters, the parameter name must be included in the next key and the value for this parameter in the
value for this key.

e TAKE_OFF: Take off the drone.

e LAND: Land the drone.

e LAND_IN_SAFE_PLACE: Land the drone in a safe place that is configured for the drone.

e MOVE_UP: Make the drone move up.

e MOVE_DOWN: Make the drone move down.

e MOVE_FORWARD: Make the drone move forward.

e MOVE_BACK: Make the drone move back.

e MOVE_LEFT: Make the drone move left.

e MOVE_RIGHT: Make the drone move right.

e ROTATE_RIGHT: Make the drone rotate to the right. We must specify the degrees we want the drone to
rotate right in the value for the DEGREES key.

e ROTATE_LEFT: Make the drone rotate to the left. We must specify the degrees we want the drone to
rotate left in the value for the DEGREES key.

® SET_MAX_ALTITUDE. Set the maximum altitude that we allow for the drone. We must specify the
desired maximum altitude in feet in the value for the FEET key.

® SET_MIN_ALTITUDE. Set the minimum altitude that we allow for the drone. We must specify the
desired minimum altitude in feet in the value for the FEET key.

The following line shows an example of the payload for the command that takes off the drone:
{"COMMAND": "TAKE_OFF"}

The following line shows an example of the payload for the command that sets the maximum altitude for
the drone to 20 feet:

{"COMMAND": "SET_MAX_ALTITUDE", "FEET": 20}

We have all the necessary details to start coding with Python.

Installing paho-mqtt for Python

The Eclipse Paho project provides an open source client implementation of MQTT. The project includes
a Python client, also known as the Paho Python Client or Eclipse Paho MQTT Python client library. This

Python client has been contributed from the Mosquitto project and was originally known as the Mosquitto
Python Client.

The following is the web page for the Eclipse Paho project:http://www.eclipse.org/paho.

The following is the web page for the Eclipse Paho MQTT Python client library version 1.2, that is, the
paho-mqtt module version 1.2: https://pypi.python.or i/paho-mqtt/1.2.

Tip

We can use paho-mqtt in many modern IoT boards that support either Python 2.7.x or Python 3.x. For
example, we can install paho-mqtt on Raspberry Pi boards, such as Raspberry Pi 3, and on Intel IoT
boards, such as the Intel Joule, Intel Edison, and Intel Galileo. We just need to make sure that pip is
installed to make it easier to install paho-mgtt. You can use your development computer to run the
examples or any of the mentioned boards. You will need Python 2.7.x or Python 3.x installed on your
development computer.

It is good practice to create a Python virtual environment and activate it before installing packages. This
way, you can isolate the environment in which you are developing the sample application. To keep the
example simple, we won't include all the instructions to create virtual environments in Python. However,
in case you want to work with a virtual environment, make sure that you activate it before moving forward
with the next steps.

In case you are going to work with an IoT board to run the example, make sure that you run all the
commands in the SSH terminal or the Terminal window that runs on the board. In case you use your
development computer, run the commands on a Terminal in macOS or Linux, or a Command Prompt in
Windows. Make sure that you have activated your virtual environment in case you decided to work with
one.

Now, we will use the pip installer to install paho-mqgtt 1.2. We just need to run the following command
in the SSH terminal or the local terminal window we are using with the board, or in the computer we are
using to install the package:

pip install paho-mqtt
Tip
In case you are working with Intel boards, take into account that you must install pip before running the

previous commands. On Raspberry Pi 3 boards, pip is already installed. If you are using your computer,
the Python installation usually includes pip.

In case you have Python installed in the default folder in Windows and you aren't working with a Python

http://www.eclipse.org/paho
https://pypi.python.org/pypi/paho-mqtt/1.2

virtual environment, you will have to run the previous command in an Administrator Command Prompt.

In case you aren't working with a Python virtual environment in Raspbian (Raspberry Pi default operating
system), you will have to run the following command:

sudo pip install paho-mqtt

The last lines for the output will indicate that the paho-mqtt package has been successfully installed. The
output will be similar to the next lines but not exactly the same because it will vary based on the platform
in which you are running the command:

Collecting paho-mqtt Downloading paho-mqtt-1.2.tar.gz (41kB) 100%

| #HH B HH B HHH R AR U R AR H SR H SR HH##H# | 45kB 147kB/s Installing collected packages:
paho-mqtt Running setup.py install for paho-mqtt Successfully installed paho-
mqtt-1.2

Connecting the client to the MQT'T server with
Python

First, we will use paho_mqtt to create an MQTT client that connects to the Mosquitto MQTT server. We
will write a few lines of Python code to establish a secured connection and subscribe to a topic.

In the previous chapter, we secured our Mosquitto server, and therefore, we will use the digital
certificates we had created to authenticate the client. Most of the time, we will work with an MQTT
server that uses TLS, and therefore, it is a good idea to learn how to establish a connection with TLS and
TLS authentication. It is easier to establish an unsecured connection with an MQTT server, but it won't be
the most common scenario we will face when developing applications that work with MQTT.

First, we need to copy the following files we had created in the previous chapter to a directory in the
computer or device we will use to run a Python script. We saved the files in a directory called
certificates. Create a python_certificates directory in the computer or board you are going to use
as the MQTT client for this example. Copy the following three files to this new directory:

e ca.crt: Certificate authority certificate file
e device00l.crt: Client certificate file
e device001.key: Client key

The following lines show a sample code that establishes a connection with an MQTT server, subscribes
to the test/drone01 topic filter, and prints all the messages received in the subscribed topic filter. You
have to replace the value, /Users/gaston/certificates, inthe certificates_path string with the
path to the python_certificates directory you created. In addition, replace the value for
mgtt_server_host with the IP address for the Mosquitto server or any other MQTT server you might
decide to use. The code file for the sample is included in the mqtt_essentials gaston_hillar_ 03
folder, in the mqtt_essentials_example03_01.py file:

import paho.mqtt.client as mqtt
import os.path

Replace /Users/gaston/certificates with the path

in which you saved the certificate authoritity file,

the client certificate file and the client key
certificates_path = "/Users/gaston/certificates"
ca_certificate = os.path.join(certificates_path, "ca.crt")
client_certificate = os.path.join(certificates_path, "device0@O@1l.crt")
Replace localhost with the IP for the Mosquitto

or other MQTT server

mqtt_server_host = "localhost"

mgtt_server_port = 8883

mqtt_keepalive = 60

def on_connect(client, userdata, rc):

print("Connect result: {}".format(mgtt.connack_string(rc)))
client.subscribe("test/drone0l1")

def on_subscribe(client, userdata, mid, granted_qgos):
print("Subscribed with QoS: {}".format(granted_qgos[0]))

def on_message(client, userdata, msg):
payload_string = msg.payload.decode('utf-8")
print("Topic: {}. Payload: {}".format(
msg.topic,
str(msg.payload)payload_string))

if __name__ == "__main__
client = mqtt.Client(protocol=mqtt.MQTTv311)
client.on_connect = on_connect
client.on_subscribe = on_subscribe
client.on_message = on_message
client.tls_set(ca_certs = ca_certificate,
certfile=client_certificate,
keyfile=client_key)
client.connect_async(host=mqtt_server_host,
port=mqtt_server_port,
keepalive=mqtt_keepalive)
client.loop_forever()

The previous code uses the recently installed paho-mqtt module to establish an encrypted connection
with the MQTT server, subscribe to the test/droneo61 topic filter, and run the code when we receive
messages in the topic. We will use this code to understand the basics of paho-mqtt.

The first line imports paho.mqgtt.client as mqtt. This way, whenever we use the mqtt alias, we will
be referencing paho.mqtt.client. Then, the code declares the certificates_path variable initialized
with a string, that is, with the path in which you saved the certificate authority file, the client certificate
file, and the client key. The code declares the following string variables with the full path to the
certificate and key files we need to configure TLS and TLS client authentication: ca_certificate,
client_certificate, and client_key. The call to os.path.join makes it easy to join the path
specified inthe certificates_path variable with the file name and generate the full path. The
os.path.join function works for any platform, and therefore, we don't have to worry about whether to
use a slash (/) or a backslash () to join the path with the file name. Sometimes, we can develop and test in
Windows and then run the code on an IoT board that can use different Unix flavors. The usage of
os.path.join makes our job easier in these scenarios in which we switch between different platforms.

The mqtt_server_host, mqtt_server_port and mqtt_keepalive variables specify the IP address for
the MQTT server (the Mosquitto server), the port that we want to use (8883) and the number of seconds
for the keep alive option. It is very important to replace localhost with the IP address for the MQTT
server. We specify 8883 for mqtt_server_port because we use TLS and this is the default port for
MQTT over TLS, as we learned in the previous chapter.

Understanding callbacks

When we declare a function, we pass this function as an argument to another function or method, or we
assign this function to an attribute, and then some code calls this function at some time; this mechanism is
known as callback. The name callback is used because the code calls back a function at some time.

The code declares three functions that we will specify as callbacks:

e on_connect: This function will be called when the MQTT client receives a CONNACK response from
the MQTT server, that is, when a connection has been successfully established with the MQTT
server.

e on_subscribe: This function will be called when the MQTT client receives a SUBACK response
from the MQTT server, that is, when a subscription has been successfully completed.

e on_message: This function will be called when the MQTT client receives a PUBLISH message from
the MQTT server. Whenever the MQTT server publishes a message, based on the subscriptions for
the client, this function will be called.

The code for the main block creates an instance of the mqtt.client class (paho.mgtt.client.Client)
that represents an MQTT client and that we will use to communicate with an MQTT broker. If we use the
default parameters, we would work with MQTT version 3.1. We want to work with MQTT version 3.1.1,
and therefore, we specified mqtt.MQTTv311 as the value for the protocol argument.

Then, the code assigns the on_connect function to the client.on_connect attribute, the on_message
function to the client.on_message attribute, and the on_subscribe function to the
client.on_subscribe attribute.

The call to the client.tls_set method configures encryption and authentication options. It is very
important to call this method before running the client.connect method. We specify the full string paths
to the certificate authority certificate file, the client certificate, and the client key in the ca_certs,
certfile and keyfile arguments. The ca_certs argument name is a bit confusing, but we just need to
specify the string path to the certificate authority certificate file, not multiple certificates.

Finally, the main block calls the client.connect_async method and specifies the values for the host,
port, and keepalive arguments. This way, the code asks the MQTT client to establish a connection to
the specified MQTT server.

The connect_async method runs with an asynchronous execution, and therefore, it is a non-blocking call.
The equivalent method with a synchronous execution is the connect method. After a connection has been
successfully established with the MQTT server, the specified callback in the client.on_connect
attribute will be executed, that is, the on_connect function. This function receives the mqtt.Client
instance that established the connection with the MQTT server in the client argument.

Tip

If you want to establish a connection with an MQTT server that isn't using TLS, you don't need to call the

client.tls_set method and use the appropriate port; by default, it will be 1883.

Subscribing to topics with Python

The code calls the client.subscribe method with "test/drone®1" as an argument to subscribe to this
specific single topic and the qos argument set to 2 to request a QoS level of 2.

Tip

In this case, we will only subscribe to one topic. However, it is very important to know that we are not
limited to subscribe to a single topic filter; we may subscribe to many topic filters with a single call to the
subscribe method.

After the MQTT server confirms the successful subscription to the specified topic filter, the specified
callback in the client.on_subscribe attribute will be executed, that is, the on_subscribe function.
This function receives a list of integers in the granted_qos argument that provides the QoS level that the
MQTT server has granted for each of the topic filter subscription requests. The code in the
on_subscribe function displays the QoS level granted by the MQTT server for the topic filter we
specified.

Whenever there is a new message received that matches the topic filter to which we have subscribed, the
specified callback inthe client.on_messsage attribute will be executed, that is, the on_message
function. This function receives the mqtt.Client instance that established the connection with the MQTT
server in the client argument and an mqtt.MQTTMessage instance in the msg argument. The
mgtt.MQTTMessage class describes an incoming message.

In this case, whenever the on_message function is executed, the value in msg. topic will always match
"test/drone0®1" because we just subscribed to a single topic and no other topic name will match the
topic filter. However, if we had subscribed to a topic filter or many topic filters with which more than
one topic may match, it would be always necessary to check the topic in which the message was sent and
in which we are receiving the message.

The code in the on_message function prints the topic for the message that has been received, msg. topic,
and the string representation of the payload for the message, that is, the msg.payload attribute decoded to
an UTF-8 string and saved in the payload_string variable.

Finally, the main block calls the client.loop_forever method that calls the loop method for us in an
infinite blocking loop. At this point, we only want to run the MQTT client loop in our program. We will
receive the messages whose topic matches the topic to which we have subscribed.

Make sure that the Mosquitto server or any other MQTT server you might want to use for this example is
running. Then, execute the following line to start the example in any computer or device that you want to
use as the MQTT client. Note that you might need to use python3 instead of python, based on your
configuration:

python mqtt_essentials_example03_01.py

In case you see a traceback with SSLError similar to the following lines, it means that the MQTT server

hostname or IP doesn't match the value specified for the Common Name attribute when you generated the
server certificate file named server.crt. Make sure that you check the IP address for the MQTT server
(Mosquitto server) and generate the server certificate file and key again with the appropriate IP address
specified for common Name, as explained in the previous chapter, in case you are working with the self-
signed certificates we generated in the previous chapter:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Library/Python/2.7/site-packages/paho/mqtt/client.py", line 612, in
connect
return self.reconnect()
File "/Library/Python/2.7/site-packages/paho/mqtt/client.py", line 751, in
reconnect
self._tls_match_hostname()
File "/Library/Python/2.7/site-packages/paho/mqtt/client.py", line 2331, in
_tls _match_hostname
raise ssl.SSLError('Certificate subject does not match remote hostname.')

Now, follow these steps to use the MQTT.fx GUI utility to publish two messages to the test/droned1
topic:

1. Launch MQTT.fx and establish a connection with the MQTT server by following the steps you
learned in the previous chapter.

2. Click Publish and enter test/drone01 in the dropdown on the left-hand side of the Publish button.

Click QoS 2 on the right-hand side of the Publish button.

4. Enter the following text in the textbox below the Publish button: {"COMMAND": "TAKE_OFF"}. Then,
click the Publish button. MQTT.fx will publish the entered text to the specified topic.

5. Enter the following text in the textbox below the Publish button: {"COMMAND": "LAND"}. Then, click
the Publish button. MQTT.fx will publish the entered text to the specified topic.

w

In case you don't want to work with the MQTT.fx utility, you can run two mosquitto_pub commands to
generate MQTT clients that publish messages to the topic. You just need to open another Terminal in
macOS or Linux, or another Command Prompt in Windows, go to the directory in which Mosquitto is
installed, and run the following commands. In this case, it isn't necessary to specify the -d option.
Replace localhost with the IP for the MQTT server. Remember to replace ca.crt, device®@1.crt,
and device001. key with the full path to these files created in the certificates directory:

mosquitto_pub -h localhost -V mqttv311l -p 8883 --cafile ca.crt --cert device0O0l.crt
--key device001.key-t test/drone®1 -m '{"COMMAND": "TAKE_OFF"}' -q 2 --tls-version
tlsvi.2-d

mosquitto_pub -h localhost -V mqttv311l -p 8883 --cafile ca.crt --cert device0O0l.crt
--key device001.key-t test/drone®@1 -m '{"COMMAND": "LAND"}' -q 2 --tls-version
tlsvi.2-d

Go to the device and window in which you executed the Python script. You will see the following output:

Connect result: Connection Accepted.

Subscribed with QoS: 2

Topic: test/drone0l1. Payload: {"COMMAND": "TAKE_OFF"}
Topic: test/drone0l1. Payload: {"COMMAND": "LAND"}

The Python program successfully established a secured and encrypted connection with the MQTT server
and became a subscriber to the test/drone®1 topic with a granted QoS level of 2. The program
displayed the two messages it has received in the test/drone01 topic.

Press Ctrl+C to stop the execution of the program. The generated MQTT client will close the connection
with the MQTT server.

Creating a class to represent a drone

Now, we will write Python code that will run on the different IoT boards. Remember to copy the files we
have created in the previous chapter to a directory in the computer or device that will represent the board
that controls a drone and that we will use to run a Python script. We saved the files in a directory called
certificates. Create a python_certificates directory in the computer or board you are going to use
as the MQTT client for this example. Copy the following three files to this new directory:

e ca.crt: Certificate authority certificate file
e device00l.crt: Client certificate file
e device001.key: Client key

We will create the following two classes:

e Drone: This class will represent a drone and provides methods that will be called whenever a
command has to be processed. In order to keep the example simple, our methods will just print the
actions that the drone executes after each method is called to the console output. A real-life class that
represents a drone would interact with the actuators, sensors, and the other different components of
the drone, whenever each method is called.

e DroneCommandProcessor: This class will represent a command processor that will establish a
connection with an MQTT server, subscribe to a topic in which the MQTT client will receive
messages with commands, analyze the incoming messages, and delegate the execution of the
commands to an associated instance of the Drone class. The broneCommandProcessor class will
declare many static methods that we will specify as the callbacks for the MQTT client.

The following lines declare many variables with the values that identify each of the supported commands
for the drone. In addition, the code declares many variables with the key string we will use to specify a
command and the key we will use to specify a successfully processed command. All these variables are
defined with all letters uppercase because we will use them as constants. Save the code in a file named
commands . py. The code file for the sample is included in the mqtt_essentials _gaston_hillar_03
folder, in the command. py file:

Key strings

COMMAND_KEY = "COMMAND"
SUCCESFULLY_PROCESSED_COMMAND_KEY = "SUCCESSFULLY_PROCESSED_COMMAND"
Command strings

CMD_TAKE_OFF = "TAKE_OFF"

CMD_LAND = "LAND"

CMD_LAND_IN_SAFE_PLACE = "LAND_IN_SAFE_PLACE"
CMD_MOVE_UP = "MOVE_UP"

CMD_MOVE_DOWN = "MOVE_DOWN"

CMD_MOVE_FORWARD = "MOVE_FORWARD"
CMD_MOVE_BACK = "MOVE_BACK"

CMD_MOVE_LEFT = "MOVE_LEFT"

CMD_MOVE_RIGHT = "MOVE_RIGHT"
CMD_ROTATE_RIGHT = "ROTATE_RIGHT"
CMD_ROTATE_LEFT = "ROTATE_LEFT"
CMD_SET_MAX_ALTITUDE = "SET_MAX_ALTITUDE"
CMD_SET_MIN_ALTITUDE = "SET_MIN_ALTITUDE"

KEY_DEGREES = "DEGREES"
KEY_FEET = "FEET"

The following lines declare the necessary imports and the same variables we used in the previous
example to establish the connection with the MQTT server. You have to replace the value
/Users/gaston/certificates inthe certificates_path string with the path to the
python_certificates directory you created. In addition, replace the value for the mqtt_server_host
with the IP address for the Mosquitto server or other MQTT server you might decide to use. The code file
for the sample is included in the mqtt_essentials gaston_hillar_03 folder, in the
mqtt_essentials_example03_02.py file:

from command import *

import paho.mqtt.client as mqtt
import os.path

import time

import json

Replace /Users/gaston/certificates with the path

in which you saved the certificate authoritity file,

the client certificate file and the client key
certificates_path = "/Users/gaston/certificates"
ca_certificate = os.path.join(certificates_path, "ca.crt")
client_certificate = os.path.join(certificates_path, "device0@O@1l.crt")
Replace localhost with the IP for the Mosquitto

or other MQTT server

mgtt_server_host = "localhost"

mgtt_server_port = 8883

mqtt_keepalive = 60

The COMMAND_KEY variable defines the key string that defines what the code will understand as the
command. Whenever we receive a message that includes the specified key string, we know that the value
associated with this key in the dictionary will indicate the command that the message wants the code
running in the board to be processed. The MQTT client won't receive messages as dictionaries, and
therefore, it is necessary to convert them from strings to dictionaries when they are not just a string.

The SUCCESSFULLY_PROCESSED_COMMAND_KEY variable defines the key string that defines what the code
will use as a successfully processed command key in a response message published to the appropriate
topic. Whenever we publish a message that includes the specified key string, we know that the value
associated to this key in the dictionary will indicate the command that the board has successfully
processed.

The following lines declare the Drone class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, inthe mqtt_essentials_example03_02.py file:

class Drone:
def __init__ (self, name):
self.name = name
self.min_altitude
self.max_altitude

0
30

def print_with_name_prefix(self, message):
print("{}: {}".format(self.name, message))

def take_off(self):
self.print_with_name_prefix("Taking off")

def land(self):
self.print_with_name_prefix("Landing")

def land_in_safe_place(self):
self.print_with_name_prefix("Landing in a safe place")

def move_up(self):
self.print_with_name_prefix("Moving up")

def move_down(self):
self.print_with_name_prefix("Moving down")

def move_forward(self):
self.print_with_name_prefix("Moving forward")

def move_back(self):
self.print_with_name_prefix("Moving back")

def move_left(self):
self.print_with_name_prefix("Moving left")

def move_right(self):
self.print_with_name_prefix("Moving right")

def rotate_right(self, degrees):
self.print_with_name_prefix("Rotating right {} degrees".format(degrees))

def rotate_left(self, degrees):
self.print_with_name_prefix("Rotating left {} degrees".format(degrees))

def set_max_altitude(self, feet):
self.max_altitude = feet
self.print_with_name_prefix("Setting maximum altitude to {}
feet".format(feet))

def set_min_altitude(self, feet):
self.min_altitude = feet
self.print_with_name_prefix("Setting minimum altitude to {}
feet".format(feet))

We have to specify the drone's name in the name required argument. The constructor, that is, the __init
method, saves the received name in an attribute with the same name. Then, the constructor sets the initial
values for two attributes: min_altitude and max_altitude.

The Drone class declares the print_with_name_prefix method, which receives a message in the
message argument and prints it with the value saved in the name attribute as a prefix. The other methods
defined in this class call the print_with_name_prefix method to print messages indicating the actions

that the drone is doing with the drone's name as a prefix.

Receiving messages with Python

We will use the recently installed paho-mqtt module to subscribe to a specific topic and run code when
we receive messages in the topic. We will create a DroneCommandProcessor class to represent a
command processor associated to an instance of the previously coded Drone class, configure the MQTT
client, the subscription to the client, and declare the code for the callbacks that are going to be executed
when certain events are fired.

We will split the code for the broneCommandProcessor class in many code snippets to make it easier to
understand each code section. The following lines declare the broneCommandProcessor class and its
constructor, that is, the __init__ method. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, inthe mqtt_essentials_example03_02.py file:

class DroneCommandProcessor:
commands_topic = ""
processed_commands_topic = ""
active_instance = None

def __init__(self, name, drone):
self.name = name
self.drone = drone
DroneCommandProcessor.commands_topic = "commands/{}".format(self.name)
DroneCommandProcessor.processed_commands_topic =
"processedcommands/{}".format(self.name)
self.client = mqtt.Client(protocol=mqtt.MQTTv311)
DroneCommandProcessor.active_instance = self
self.client.on_connect = DroneCommandProcessor.on_connect
self.client.on_message = DroneCommandProcessor.on_message
self.client.tls_set(ca_certs = ca_certificate,
certfile=client_certificate,
keyfile=client_key)
self.client.connect(host=mqtt_server_host,
port=mqtt_server_port,
keepalive=mqtt_keepalive)

We have to specify a name for the command processor and the Drone instance that the command
processor will control in the name and drone required arguments. The constructor, that is, the __init_
method, saves the received name and drone in attributes with the same names. Then, the constructor sets
the values for the commands_topic and processed_commands_topic class attributes. The constructor
uses the received name to determine the topic name for the commands and for the successfully processed
commands, based on the specifications we discussed earlier. The MQTT client will receive messages in
the topic name saved in the command_topic class attribute and will publish messages to the topic name
saved in the processed_commands_topic class attribute.

Then, the constructor creates an instance of the mqtt.client class (paho.mqtt.client.Client) that
represents an MQTT client and that we will use to communicate with an MQTT broker and save it to the
client attribute (self.client). As it happened in our previous example, we want to work with MQTT
version 3.11, and therefore, we specified mqtt.MQTTv311 as the value for the protocol argument.

The code also saves a reference to this instance in the active_instance class attribute because we have
to access the instance in the static methods that the constructor will specify as callbacks for the different
events that the MQTT client fires. We want to have all the methods related to the drone command
processor in the DroneCommandProcessor class.

Then, the code assigns the on_connect static method (DroneCommandProcessor.on_connect) to the
self.client.on_connect attribute and the on_message static method
(DroneCommandProcessor.on_message) to the self.client.on_message attribute. Static methods do
not receive either self of cls as the first argument, and therefore, we can use them as callbacks with the
required number of arguments.

The call to the self.client.tls_set method configures encryption and authentication options. Finally,
the constructor calls the client.connect method and specifies the values for the host, port, and
keepalive arguments. This way, the code asks the MQTT client to establish a connection to the specified
MQTT server. Remember that the connect method runs with a synchronous execution, and therefore, it is
a blocking call.

The following lines declare the on_connect static method that is part of the DroneCommandProcessor
class. The code file for the sample is included in the mqtt_essentials_gaston_hillar_03 folder, in
the mqtt_essentials_example03_02.py file:

@staticmethod
def on_connect(client, userdata, flags, rc):
print("Connected to the MQTT server")
client.subscribe(
DroneCommandProcessor.commands_topic,
gos=2)
client.publish(
topic=DroneCommandProcessor.processed_commands_topic,
payload="{} is listening to
messages".format(DroneCommandProcessor.active_instance.name))

After a connection has been successfully established with the MQTT server, the specified callback in the
self.client.on_connect attribute will be executed, that is, the on_connect static method (marked
with the @staticmethod decorator). This static method receives the mgtt.Client instance, which
established the connection with the MQTT server in the client argument. The code calls the
client.subscribe method with DroneCommandProcessor.commands_topic as an argument to
subscribe to the topic specified in the commands_topic class attribute and specifies a QoS level of 2 for
the subscription.

Finally, the code in the on_connect static method calls the client.publish method with
DroneCommandProcessor.processed_commands_topic as the topic argument and a message string in
the payload argument. This way, we publish a string message that specifies that the drone is listening to
messages in the topic related to successfully processed commands. The message starts with the drone
name.

The following lines declare the on_message static method that is part of the DroneCommandProcessor

class. In this case, the code uses a chain of if and elif statements to make it easier to understand the
flow. However, a lookup table and a dictionary would provide an improved version. The code file for the
sample is included in the mqtt_essentials _gaston_hillar_03 folder, in the
mqtt_essentials_example03_02.py file:

@staticmethod
def on_message(client,
payload_string = msg.payload.decode('utf-8")
if msg.topic DroneCommandProcessor.commands_topic:
print("I've received the following message:
{0}".format(str(msg.payload_string)))
try:
message_dictionary = json.loads(msg.payload_string)
if COMMAND_KEY in message_dictionary:
command = message_dictionary[COMMAND_KEY]
drone = DroneCommandProcessor.active_instance.drone
is_command_processed = False
if command CMD_TAKE_OFF:
drone.take_off ()

userdata, msg):

is_command_processed = True
elif command == CMD_LAND:

drone.land()

is_command_processed = True

elif command CMD_LAND_IN_SAFE_PLACE:
drone.land_in_safe_place()

is_command_processed = True
elif command == CMD_MOVE_UP:
drone.move_up()
is_command_processed = True
elif command == CMD_MOVE_DOWN:
drone.move_down()
is_command_processed = True
elif command == CMD_MOVE_FORWARD:
drone.move_forward()
is_command_processed = True
elif command == CMD_MOVE_BACK:
drone.move_back()
is_command_processed = True
elif command == CMD_MOVE_LEFT:
drone.move_left()
is_command_processed = True
elif command == CMD_MOVE_RIGHT:
drone.move_right()
is_command_processed = True

elif command
degrees =

CMD_ROTATE_RIGHT:
message_dictionary[KEY_DEGREES]

drone.rotate_right(degrees)

is_command_processed
elif command
degrees =

= True

CMD_ROTATE_LEFT:
message_dictionary[KEY_DEGREES]

drone.rotate_left(degrees)

is_command_processed
elif command
feet =

= True

CMD_SET_MAX_ALTITUDE:
message_dictionary[KEY_FEET]

drone.set_max_altitude(feet)

is_command_processed

= True

elif command == CMD_SET_MIN_ALTITUDE:
feet = message_dictionary[KEY_FEET]
drone.set_min_altitude(feet)
is_command_processed = True

if is_command_processed:

DroneCommandProcessor.active_instance.publish_response_message(
message_dictionary)
else:
print("The message includes an unknown command.")
except ValueError:

msg is not a dictionary

No JSON object could be decoded

print("The message doesn't include a valid command.")

Whenever there is a new message received in the topic saved in the commands_topic class attribute to
which we have subscribed, the specified callback in the self.client.on_messsage attribute will be
executed, that is, the on_message static method (marked with the @staticmethod decorator). This static
method receives the mqtt.Client instance that established the connection with the MQTT broker in the
client argument and an mqtt.MQTTMessage instance in the msg argument. The mgtt.MQTTMessage class
describes an incoming message. First, the static method checks whether the msg. topic attribute, which
indicates the topic in which the message has been received, matches the value in the commands_topic
class attribute. In this case, whenever the on_message method is executed, the value inmsg. topic will
always match the value in the topic class attribute because we just subscribed to one topic. However, if
we subscribe to more than one topic, it is always necessary to check in which topic the message was sent
and in which one we are receiving the message. Hence, we included the code to give a clear idea of how
to check the topic for the received message.

The code prints the string representation of the payload for the message that has been received, that is, the
msg.payload attribute decoded to an UTF-8 string and saved in the payload_string variable. Then, the
code assigns the result of the json.loads function to deserialize payload_string to a Python object and
assigns the results to the message_dictionary local variable. In case the contents of payload_string
are not JSON, a ValueError exception will be captured; the code will print a message indicating that the
message doesn't include a valid command and no more code will be executed in the static method. In case
the contents of payload_string are JSON, we will have a dictionary in the message_dictionary local
variable.

Then, the code checks whether the value saved in the COMMAND_KEY string is included in the
message_dictionary dictionary. If the expression evaluates to True, it means that the JSON message
converted to a dictionary includes a command that we have to process. However, before we can process
the command, we have to check which is the command, and therefore, it is necessary to retrieve the value
associated with the key equivalent to the value saved in the COMMAND_KEY string. The code is capable of
running specific code when the value is any of the commands that we received as requirements.

The code uses the active_instance class attribute that has a reference to the active
DroneCommandProcessor instance to call the necessary methods for either drone, based on the command
that has to be processed. We had to declare the callbacks as static methods, and therefore, we use this

class attribute to access the active instance. Once the command has been successfully processed, the code
sets the is_command_processed flag to True. Finally, the code checks the value of this flag, and if it is
equal to True, the code calls the publish_response_message for the DroneCommandProcessor
instance saved in the active_instance class attribute.

Tip

Of course, in a real-life example, we should add more validations. The previous code is simplified to
allow us to keep our focus on MQTT.

The following lines declare the publish_response_message method that is a part of the
DroneCommandProcessor class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, inthe mqtt_essentials_example03_02.py file:

def publish_response_message(self, message):

response_message = json.dumps({

SUCCESFULLY_PROCESSED_COMMAND_KEY:
message [COMMAND_KEY]})

result = self.client.publish(
topic=self.__class__.processed_commands_topic,
payload=response_message)

return result

The publish_response_message method receives the message dictionary that has been received with
the command in the message argument. The method calls the json.dumps function to serialize a
dictionary to a JSON formatted string with the response message that indicates that the command has been
successfully processed. Finally, the code calls the client.publish method with the
processed_commands_topic variable as the topic argument and the JSON formatted string
(response_message) in the payload argument.

Tip

In this case, we are not evaluating the response received from the publish method. In addition, we are
using the default value for the qos argument that specifies the desired quality of service. Hence, we will
publish this message with a QoS level equal to 0. In more advanced scenarios, we should add code to
check the results of the method and add code to the on_publish callback that is fired when a message is
successfully published, as we did in our previous example. In this case, we use QoS level 2 for the
messages that we receive with the commands.

The following lines declare the process_commands method, which is a part of the
DroneCommandProcessor class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, inthe mqtt_essentials_example03_02.py file:

def process_commands(self):
self.client.loop()

The process_commands method calls the 1oop method for the MQTT client and ensures that

communication with the MQTT server is carried out. Think about the call to the loop method as
synchronizing your mailbox. Any pending messages to be published in the outgoing box will be sent and
any incoming messages will arrive to the inbox and the events that we have previously analyzed will be
fired. This way, the drone command processor will receive messages and process commands.

Finally, the following lines declare the main block of code. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, inthe mqtt_essentials_example03_02.py file:

if __name__ == "__main__
drone = Drone("drone01")
drone_command_processor = DroneCommandProcessor("drone@l1l", drone)
while True:
Process messages and the commands every 1 second
drone_command_processor.process_commands()
time.sleep(1)

The __main__ method creates an instance of the brone class named drone with "drone01" as the value
for the name argument. The next line creates an instance of the DroneCommandProcessor class named
drone_command_processor with "drone01"and the previously created Drone instance, drone, as the
values for the name and drone arguments. This way, drone_command_processor will delegate the
execution of the commands to the instance methods in drone.

The constructor for the broneCommandProcessor class will subscribe to the commands/drone@1 topic in
the MQTT server, and therefore, we must publish messages to this topic in order to send the commands
that the code will process. In addition, the constructor will publish a message to the
processedcommands/drone01 topic. Whenever a command is successfully processed, new messages
will be published to the processedcommands/drone@1 topic. Hence, we must subscribe to this topic to
check the commands that the drone has executed.

The while loop calls the drone_command_processor.process_commands method and sleeps for one
second. The process_commands method calls the 1oop method for the MQTT client to ensure that
communication with the MQTT server is carried out.

Tip
There is also a threaded interface that we can run by calling the 1oop_start method for the MQTT client.

This way, we can avoid multiple calls to the 1oop method. However, we call the 1oop method to make it
easier to debug the code and understand how everything works under the hood.

Processing commands with Python

Now, we want to make a drone process the following commands:

{"COMMAND": "SET_MAX_ALTITUDE", "FEET": 20}
{"COMMAND": "SET_MIN_ALTITUDE", "FEET": 10}
{"COMMAND": "TAKE_OFF"}

{"COMMAND": "MOVE_UP"}

{"COMMAND": "ROTATE_RIGHT", "DEGREES": 90}
{"COMMAND": "MOVE_RIGHT"}

{"COMMAND": "LAND"}

Make sure the Mosquitto server or any other MQTT server you might want to use for this example is
running,

Launch MQTT.fx and follow all the steps explained in the previous chapter to configure a connection with
TLS and TLS authentication. Then, click on the Connect button.

Click Subscribe and enter processed_commands/drone0@1 in the dropdown on the left-hand side of the
Subscribe button. Then, click the Subscribe button. MQTT.fx will display a new panel on the left-hand
side with the topic filter to which we have subscribed with a QoS level of 0.

Then, execute the following line to start the example in any computer or device that you want to use as the
MQTT client: python mqtt_essentials_example03_02.py

Keep the code running in your local computer or in the IoT board you have chosen to use for this example.

Go back to MQTT.fx and you will see that a message has arrived to the processedcommands/droned1
topic with the following payload: drone®1 is listening to messages. The following screenshot
shows the received message in MQTT.fx:

Publish | Subscribe | Scripts Broker Status Log

processedcommands/drone01 v w©w

processedcommands/drone01 1 processedcommands/drone01 1

Dump Messages Mute

processedcommands/drone01 1

QoS 0 25-01-2017 14:18:30.51510001

dronell is listening to messages

[>) JSON Hex Base64

In MQTT.fx, click Publish and enter commands/drone0@1 in the dropdown on the left-hand side of the
Publish button. Click QoS 2 because we want to use a QoS level of 2.

Enter the following text in the textbox below the Publish button: {"COMMAND": "SET_MAX_ALTITUDE",
"FEET": 203}.

Then, click the Publish button. MQTT.fx will publish the entered text to the specified topic with a QoS
level of 2.

Go to the window in which you can see the output generated by the Python code. In case you are running
the code in an IoT board, you might be using an SSH Terminal. In case you are running the code on your
local computer, go to the Terminal or Command Prompt, based on the operating system you are using. You
will see the following output: Connected to the MQTT server I've received the following message:
{"COMMAND": "SET_MAX_ALTITUDE", "FEET": 20} drone(01: Setting maximum altitude to
20 feet

The code has received the message with the command, the Drone instance executed the
set_max_altitude method with 20 as an argument, and the output displays the results of executing this
code.

Go back to MQTT.fx, click Subscribe, and you will see a new message has arrived to the
processedcommands/drone01 topic with the following payload:
{"SUCCESSFULLY_PROCESSED_COMMAND": "SET_MAX_ALTITUDE"}. The following screenshot shows the
received message in MQTT.fx:

Publish Subscribe_: Scripts Broker Status Log

processedcommands/drone01 v “Autoscroll o

processedcommands/drone01 2 processedcommands/drone01 1
|
Dump Messages Mute (QELETES

| processedcommands/drone01 2

processedcommands/drone01 2

QoS0 25-01-2017 14:24:41.51881912

{"SUCCESSFULLY PROCESSED COMMAND": "SET MAX ALTITUDE"}

\ Plain] JSON Hex Base64

Now, repeat the following procedure for each of the commands listed below. Remove the existing text and

enter the text for the JSON string in the textbox below the Publish button and then click the Publish button.
MQTT.fx will publish the entered text to the specified topic with a QoS level of 2:

e {"COMMAND": "SET_MIN_ALTITUDE", "FEET": 10}
{"COMMAND": "TAKE_OFF"}

{"COMMAND": "MOVE_UP"}

{"COMMAND": "ROTATE_RIGHT", "DEGREES": 90}
{"COMMAND": "MOVE_RIGHT"}

{"COMMAND": "LAND"}

Go to the window in which you can see the output generated by the Python code. You will see the
following output, which indicates that all the commands have been received and processed: Connected
to the MQTT server I've received the following message: {"COMMAND":
"SET_MAX_ALTITUDE", "FEET": 20} drone01: Setting maximum altitude to 20 feet I've
received the following message: {"COMMAND": "SET_MIN_ALTITUDE", "FEET": 10}
drone(01: Setting minimum altitude to 10 feet I've received the following message: {"COMMAND":
"TAKE_OFF"} drone01: Taking off I've received the following message: {"COMMAND":
"MOVE_UP"} drone01: Moving up I've received the following message: {"COMMAND":
"ROTATE_RIGHT", "DEGREES": 90} drone01: Rotating right 90 degrees I've received the
following message: {"COMMAND": "MOVE_RIGHT"} drone01: Moving right I've received the
following message: {"COMMAND": "LAND"} drone01: Landing

Go back to MQTT.fx, click Subscribe, and you will see a total of eight messages that have arrived to the
processedcommands/drone@1 topic. You can easily check the contents of the payload for each of the
received messages by clicking on the panel that represents each of them on the right-hand side of the
window. The following screenshot shows the last received message in MQTT.fx:

Publish | Subscribe | Scripts Broker Status Log

processedcommands/drone01 i e ro £

processedcommands/drone01 8 processedcommands/drone01 1

Dump Messages Mute QU0
processedcommands/drone01 2

processedcommands/drone01 3
processedcommands/drone01 4
processedcommands/drone01 5
processedcommands/drone01 6
processedcommands/drone01 7 3
pi i is/drone01 8
: processedcommands/drone01 8
QoS0 25-01-2017 14:56:05.537658...
{"SUCCESSFULLY PROCESSED COMMAND": "LAND"}
[ny JSON Hex Base64

Tip

MQTT.fx allows us to write scripts in JavaScript that make it easy to automate publishing multiple
messages to topics.

Now, we will use the Mosquitto command-line utilities to subscribe to the
processedcommands/drone01 topic and publish many JSON strings with the commands to the
commands/drone0@1 topic. This time, we will publish the following commands: {"COMMAND":
"SET_MAX_ALTITUDE", "FEET": 100} {"COMMAND": "SET_MIN_ALTITUDE", "FEET": 20}
{"COMMAND": "TAKE_OFF"} {"COMMAND": "MOVE_UP"} {"COMMAND": "MOVE_RIGHT"}
{"COMMAND": "MOVE_RIGHT"} {"COMMAND": "MOVE_LEFT"} {"COMMAND":
"MOVE_LEFT"} {"COMMAND": "LAND"}

Open another Terminal in macOS or Linux, or another Command Prompt in Windows, go to the directory
in which Mosquitto is installed, and run the following command. Replace localhost with the IP for the
MQTT server. Remember to replace ca.crt, device®01.crt, and device001.key with the full path to
these files created in the certificates directory. Leave the command running and it will display all the
messages received in the processedcommands/drone@1 topic: mosquitto_sub -V mqttv311 -p 8883 --
cafile ca.crt --cert device001.crt --key device001.key-t processedcommands/drone(1 --tls-version
tlsv1.2

Open another Terminal in macOS or Linux, or another Command Prompt in Windows, go to the directory
in which Mosquitto is installed, and run the following commands to publish messages with commands to
the commands/drone0@1 topic with a QoS level of 2. Make the replacements previously explained for the

mosquitto_sub command: moesquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version tlsv1l.2 -m

"{"COMMAND": "SET_MAX ALTITUDE", "FEET": 100}'

mosquitto_pub -h localhost -V mqttv31l -p 8883 --cafile ca
--key device001.key -t commands/drone@l -q 2 --tls-version
"SET_MIN_ALTITUDE", "FEET": 20}'

mosquitto_pub -h localhost -V mqttv31l -p 8883 --cafile ca.

--key device001.key -t commands/drone@l -q 2 --tls-version
"TAKE_OFF"}'

mosquitto_pub -h localhost -V mqttv31l -p 8883 --cafile ca.

--key device001.key -t commands/drone@l -q 2 --tls-version
"MOVE_UP"}'

mosquitto_pub -h localhost -V mqttv31l -p 8883 --cafile ca.

--key device001.key -t commands/drone@l -q 2 --tls-version
"MOVE_RIGHT"}'

mosquitto_pub -h localhost -V mqttv31l -p 8883 --cafile ca.

--key device001.key -t commands/drone@l -q 2 --tls-version
"MOVE_RIGHT"}'

mosquitto_pub -h localhost -V mqttv31l -p 8883 --cafile ca.

--key device001.key -t commands/drone@l -q 2 --tls-version
"MOVE_LEFT"}'

mosquitto_pub -h localhost -V mqttv31l -p 8883 --cafile ca.

--key device001.key -t commands/drone@l -q 2 --tls-version
"MOVE_LEFT"}'

mosquitto_pub -h localhost -V mqttv31l -p 8883 --cafile ca.

--key device001.key -t commands/drone0l -q 2 --tls-version
"LAND"} 1

.crt --cert
tlsvli.2 -m

crt --cert
tlsvli.2 -m

crt --cert
tlsvli.2 -m

crt --cert
tlsvli.2 -m

crt --cert
tlsvli.2 -m

crt --cert
tlsvli.2 -m

crt --cert
tlsvli.2 -m

crt --cert
tlsvli.2 -m

device0O1l.crt
' {"COMMAND" :

device0O1l.crt
' {"COMMAND" :

device0O1l.crt
' {"COMMAND" :

device0O1l.crt
' {"COMMAND" :

device0O1l.crt
' {"COMMAND" :

device0O1l.crt
' {"COMMAND" :

device0O1l.crt
' {"COMMAND" :

device0O1l.crt
' {"COMMAND" :

After you run the previous commands, the DroneCommandProcessor class will receive these commands
and process them. After a few seconds, you will see the following output in the window that is executing

the mosquitto_sub utility: drone01 is listening to messages

{"SUCCESSFULLY_PROCESSED_COMMAND": "SET_MAX_ ALTITUDE"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "SET_MIN_ALTITUDE"}

{"SUCCESSFULLY_PROCESSED_COMMAND":
{"SUCCESSFULLY_PROCESSED_COMMAND":
{"SUCCESSFULLY_PROCESSED_COMMAND":
{"SUCCESSFULLY_PROCESSED_COMMAND":
{"SUCCESSFULLY_PROCESSED_COMMAND":
{"SUCCESSFULLY_PROCESSED_COMMAND":
{"SUCCESSFULLY_PROCESSED_COMMAND":

"TAKE_OFF"}
"MOVE_UP"}

"LAND"}

"MOVE_RIGHT"}
"MOVE_RIGHT"}
"MOVE_LEFT"}
"MOVE_LEFT"}

Go to the window in which you can see the output generated by the Python code. You will see the

following output, which indicates that all the commands have been received and processed: I've received
the following message: {"COMMAND": "SET_MAX_ALTITUDE", "FEET": 100} drone01:
Setting maximum altitude to 100 feet I've received the following message: {"COMMAND":
"SET_MIN_ALTITUDE", "FEET": 20} drone01: Setting minimum altitude to 20 feet I've received
the following message: {"COMMAND": "TAKE_OFF"} drone(01: Taking off I've received the
following message: {"COMMAND": "MOVE_UP"} drone01: Moving up I've received the
following message: {"COMMAND": "MOVE_RIGHT"} drone01: Moving right I've received the
following message: {"COMMAND": "MOVE_RIGHT"} drone01: Moving right I've received the
following message: {"COMMAND": "MOVE_LEFT"} drone01: Moving left I've received the
following message: {"COMMAND": "MOVE_LEFT"} drone01: Moving left I've received the
following message: {"COMMAND": "LAND"} drone01: Landing

Sending messages with Python

We are coding in Python, and therefore, it makes sense to write code in Python to publish the commands to
control each drone and check the results of the execution of these commands. Of course, GUI utilities such
as MQTT.fx and the Mosquitto command-line utilities are extremely useful. However, after we know that
things are working as we expect, we can write the necessary code to perform tests in the same
programming language we are using to run the code on the IoT board.

We already wrote Python code that established a connection with the MQTT server, subscribed to a topic,
and printed the received messages. Now, we are going to code a Python client that will publish messages
to the commands/drone®1 topic and will subscribe to the processedcommands/drone01 topic. We will
code both a publisher and a subscriber. This way, we will be able to design applications that can talk to
IoT devices with MQTT messages, with Python as the programming language for the client applications.
Specifically, the applications will be able to communicate through an MQTT server with Python code in
all the publisher and subscriber devices.

We can run the Python client on any other computer or IoT board that is capable of executing Python 2.7.x
or Python 3.x.

We will create many functions that we will assign as the callbacks to the events in the MQTT client. In
addition, we will declare variables, a helper class, and a helper function to make it easy to publish a
message with a command and the required values for the command. The following lines show the code
that defines the variables, the helper class, and the functions. The code file for the sample is included in
the mqtt_essentials_gaston_hillar_03 folder, inthe mqtt_essentials_example03_03.py file:

from command import *

from command import *

import paho.mqtt.client as mqtt
import os.path

import time

import json

Replace /Users/gaston/certificates with the path

in which you saved the certificate authoritity file,

the client certificate file and the client key

certificates_path = "/Users/gaston/certificates"

ca_certificate = os.path.join(certificates_path, "ca.crt")
client_certificate = os.path.join(certificates_path, "device0O@1l.crt")
client_key = os.path.join(certificates_path, "device001l.key")
mqtt_server_host = "localhost"

mqtt_server_port = 8883

mqtt_keepalive = 60

drone_name = "droneol1"
commands_topic = "commands/{}".format(drone_name)
processed_commands_topic = "processedcommands/{}".format(drone_name)

class LoopControl:

is_last_command_processed = False

def on_connect(client, userdata, rc):
print("Connect result: {}".format(mqtt.connack_string(rc)))
client.subscribe(processed_commands_topic)

def on_message(client, userdata, msg):
if msg.topic == processed_commands_topic:
payload_string = msg.payload.decode('utf-8")
print(str(msg.payload_string))
if str(msg.payload_string).count(CMD_LAND_IN_SAFE_PLACE) > 0O:
LoopControl.is_last_command_processed = True

def on_subscribe(client, userdata, mid, granted_qgos):
print("Subscribed with QoS: {}".format(granted_qgos[0]))

def publish_command(client, command_name, key="", value=""):
if key:
command_message = json.dumps({
COMMAND_KEY: command_name,
key: value})
else:
command_message = json.dumps({
COMMAND_KEY: command_name})
result = client.publish(topic=commands_topic,
payload=command_message, qo0s=2)
return result

The code declares the same variables we used in the previous examples for the certificates path and files,
and the configuration for the MQTT server. Then, the code declares the drone_name variable that saves a
string with "drone01" and that we can easily replace with the name of the drone that we want to control.
Our main goal is to build and publish command messages to the topic specified in the commands_topic
variable. We will subscribe to the topic specified in the processed_commands_topic variable.

The LoopControl class declares a class attribute named is_last_command_processed, initialized to
False. We will use this class attribute as a flag to control the network loop.

The on_connect function is the callback that will be executed once a successful connection has been
established with the MQTT server. The code calls the subscribe method for the MQTT client received
inthe client argument to subscribe to the topic name saved in the processed_commands_topic witha
QoS level of 0.

The on_message function will be executed every time a new message arrives to the topic to which we
have subscribed. The function just prints the raw string with the payload of the received message. If the
string representation of the payload includes the string saved in the CMD_LAND_IN_SAFE_PLACE constant,
we assume that the last command was successfully executed and the code sets the
LoopControl.is_last_command_processed to True.

The on_subscribe function will be called when the subscription has been successfully completed.

The publish_command function receives the MQTT client, the command name, the key, and the value that
provides the necessary information to execute the command in the client, command_name, key, and
value required arguments. The function creates a dictionary and saves the results of serializing the
dictionary to a JSON formatted string in the command_message local variable. The COMMAND_KEY
constant is the first key for the dictionary, and command_name receives as an argument the value that
composes the first key-value pair. Then, the code calls the client.publish method to publish the
command_message JSON formatted string to the topic name saved in the commands_topic variable with
a QoS level of 2.

Working with the network loop with Python

Now, we will use the previously coded functions to write a __main__ method that publishes many
commands included in MQTT messages that the code controlling the drone will process. The following
lines show the code for the _ _main__ method, that is, the main block of code. The code file for the
sample is included in the mqtt_essentials _gaston_hillar_03 folder, in the
mqtt_essentials_example03_03.py file:

if == "__main__":
mgtt.Client(protocol=mqtt.MQTTv311)
.on_connect = on_connect
.on_subscribe = on_subscribe
client.on_message = on_message
client.tls_set(ca_certs = ca_certificate,
certfile=client_certificate,
keyfile=client_key)
client.connect(host=mqtt_server_host,
port=mqtt_server_port,
keepalive=mqtt_keepalive)

__hame___
client =
client
client

publish_command(client,
publish_command(client,
publish_command(client,
publish_command(client,
publish_command(client,
publish_command(client,

CMD_TAKE_OFF)

CMD_MOVE_UP)

CMD_ROTATE_LEFT, KEY_DEGREES, 90)
CMD_ROTATE_LEFT, KEY_DEGREES, 45)
CMD_ROTATE_LEFT, KEY_DEGREES, 45)
CMD_LAND_IN_SAFE_PLACE)

while LoopControl.is_last_command_processed False:
client.loop()
time.sleep(1)

client.disconnect()

client.loop()

The first lines of the code are similar to the first example. After calling the client.connect method, the
code calls the publish_command command many times to build and publish the messages with the
commands.

The while loop calls the client.loop method to ensure that communication with the MQTT server is
carried out, and then it sleeps for one second. After the last command is processed, the
LoopControl.is_last_command_processed class variable is set to False and the while loop ends it
execution. When this happens, the code calls the client.disconnect method and client.loop to make
sure that the disconnect request is processed.

In this case, we don't want the loop to run forever because we have a specific goal of processing a set of
commands, and then, we close the connection with the MQTT server.

Make sure that the code that controls droneo1 is running. Then, execute the following line to start the
Python client example in any computer or device that you want to use as the MQTT client:

python mqtt_essentials_example03_03.py

Go to the device and window in which you executed the previous Python script. You will see the

following output. The Python code will show all the messages received in the
processed_commands_topic. Inthis case, the program will end its execution after the drone indicates
that it has successfully processed the LAND_IN_SAFE_PLACE command:

Connect result: Connection Accepted.

Subscribed with QoS: 0
{"SUCCESSFULLY_PROCESSED_COMMAND": "TAKE_OFF"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "MOVE_UP"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "ROTATE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "ROTATE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "ROTATE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "LAND_IN_SAFE_PLACE"}

Go to the device and window in which you executed the Python script that controlled the drone, that is,
mgtt_essentials_example_03_02.py. You will see the following output:

I've received the following message: {"COMMAND": "TAKE_OFF"}

drone0l1: Taking off

I've received the following message: {"COMMAND": "MOVE_UP"}

drone@1: Moving up

I've received the following message: {"DEGREES": 90, "COMMAND": "ROTATE_LEFT"}
drone@l: Rotating left 90 degrees

I've received the following message: {"DEGREES": 45, "COMMAND": "ROTATE_LEFT"}
drone0l: Rotating left 45 degrees

I've received the following message: {"DEGREES": 45, "COMMAND": "ROTATE_LEFT"}
drone0l: Rotating left 45 degrees

I've received the following message: {"COMMAND": "LAND_IN_SAFE_PLACE"}
dronedl: Landing in a safe place

The following screenshot shows two Terminal windows running on a computer with macOS. The
Terminal on the right-hand side is displaying the debug messages for a Mosquitto server that runs on the
computer. The Terminal on the left-hand side displays the results of running the code for the Python client
that published the commands to the drone, that is, mqtt_essentials_example_03_03.py:

& Terminal Shell Edit View Window Help

Subscribed with QoS: @

{"SUCCESSFULLY_PROCESSED_COMMAND" :
{"SUCCESSFULLY_PROCESSED_COMMAND" :
{"SUCCESSFULLY_PROCESSED_COMMAND" :
{"SUCCESSFULLY_PROCESSED_COMMAND" :
{"SUCCESSFULLY_PROCESSED_COMMAND" :
{"SUCCESSFULLY_PROCESSED_COMMAND" :
Gastons-MacBook-Pro:Chapterd3 gastons JI

LN Chapler03 — -bash — 58x44
LUNneELL TESULLT LUNMMIELLLIUN ALLEPLEU.

"TAKE_OFF"}
"MOVE_UP" }
“ROTATE_LEFT"}
“ROTATE_LEFT"}
“ROTATE_LEFT"}
“LAND_IN_SAFE_PLACE"}

EEk Wed 11:41 PM

. mosguitlo cerls mosquilio - jusrilocal/elc)r 0/mosq to.coni BOwmdg]
1485398440 Hecelved PUBKEL Trom pano/ar@/Us/UrYruLsysly (Mia: &)
1485398446: Sending PUBREL to paho/4F@7D57DF9FDC39319 (Mid: 4)
1485398447: Received PUBREC from paho/4F@7D57DFOFDC39319 (Mid: 5)
1485398447: Sending PUBREL to paho/4F@7D57DFIFDC39319 (Mid: 5)
1485398447: Received PUBLISH from paho/4F@7D57DF9FDC39319 (d@, g@, r@
, m@, ‘processedcommands/drone®l’', ... (46 bytes})

1485398447: Sending PUBLISH to paho/18C27D@DCCFEDCD3DA (d@, qb, r@, m
@, 'processedcommands/drone@l’', ... (46 bytes))

1485398447: Received PUBCOMP from paho/4F@7D57DFOFDC39319 (Mid: 1)
1485398447: Received PUBREC from paho/4F@7D57DFOFDC39319 (Mid: 6)
1485398447: Sending PUBREL to paho/4F@7DS57DF9FDC39319 (Mid: 6)
1485398447: Received PUBLISH from paho/4F@7D57DF9FDC39319 (d@, g@, r@
, md, "processedcommands/drone®l', ... (45 bytes))

1485398447: Sending PUBLISH to paho/18C27D@DCCF6DCD3DA (d@, q@, r@, m
0, 'processedcommands/drone@l', ... (45 bytes))

1485398447: Received PUBCOMP from paho/4F@7D57DF9FDC39319 (Mid: 2)
1485398448: Received PUBLISH from paho/4F@7D57DF9FDC39319 (d@, q@, r@
, mB, ‘processedcommands/drone®l’', ... (49 bytes})

1485398448: Sending PUBLISH to paho/18C27D8DCCFBDCD3DA (d@, qb, r@, m
@, ‘'processedcommands/drone@l’, ... (49 bytes))

1485398448: Received PUBCOMP from paho/4F@7D57DF9FDC39319 (Mid: 3)
1485398448: Received PUBLISH from paho/4F@7D57DF9FDC39319 (de, q@, r@

, m@, ‘processedcommands/drone®l’', ... (49 bytes})

1485398448: Sending PUBLISH to paho/18C27D@DCCFBDCD3DA (d@, qb, r@, m
0, ‘processedcommands/drone@l’, ... (49 bytes))

1485398448: Received PUBCOMP from paho/4F@7D57DFSFDC39319 (Mid: 4)
1485398448: Received PUBLISH from paho/4F@7D57DF9FDC39319 (d@, q@, r@

, m@, 'processedcommands/drone@l’, ... (49 bytes))

1485398448: Sending PUBLISH to paho/18C27D@DCCFBDCD3DA (d@, g, r@, m
@, 'processedcommands/drone®l', ... (49 bytes))

1485398448: Received PUBCOMP from paho/4F@7D57DF9FDC39319 (Mid: 5)
1485398448: Received PUBLISH from paho/4F@7D57DF9FDC39319 (d@, g8, r@

, m@, ‘processedcommands/droneel’, ... (56 bytes))

1485398448: Sending PUBLISH to paho/18C27D@DCCFBDCD3DA (d@, g8, r@, m
@, ‘processedcommands/drone®l', ... (56 bytes))

1485398448: Received PUBCOMP from paho/4F@7D57DFOFDC39319 (Mid: 6)
1485398454: Received DISCONNECT from paho/18C27D@DCCFGDCD3DA
1485398454: Client paho/18C27D@DCCF6DCD3DA disconnected.

The next screenshot shows a Terminal window running on the Raspbian operating system on a Raspberry
Pi 3 board. The Raspberry Pi 3 is running the Python code that controls the drone, that is,
mgtt_essentials_example_03_02.py:

] # @ ‘-pi@raspbenypi ~/dr.. ||lt][drune] ‘ 9 = u\ﬁ) 02 42
: LIEIE

s Menu‘ ﬁ_@ =
-

J

File Edit Tabs Help
:~/drone $ python gaston_hillar_mqtt_03_02.py

Connected to the MQTT server

I've received the following message: {"COMMAND": "TAKE_OFF"}

drone@l: Taking off

I've received the following message: {"COMMAND": "MOVE_UP"}

drone@l: Moving up

I've received the following message: {"DEGREES": 90, "COMMAND": "ROTATE_LEFT"}

drone@l: Rotating left 90 degrees

I've received the following message: {"DEGREES": 45, "COMMAND": "ROTATE_LEFT"}

drone@l: Rotating left 45 degrees

I've received the following message: {"DEGREES": 45, "COMMAND": "ROTATE_LEFT"}

drone@l: Rotating left 45 degrees

I've received the following message: {"COMMAND": "LAND_IN_SAFE_PLACE"}

drone@l: Landing in a safe place

The next picture shows the Raspberry Pi 3 board that is running the code whose output was shown in the
previous screenshot. A computer is running the Mosquitto server:

a -
(RS TT R TR TR -

—

The following screenshot shows three Terminal windows running on a computer with macOS. The
Terminal in the upper-left corner displays an SSH terminal that is running the Python code controlling the
drone on an Intel Joule 570x board. That is, the board is running mqtt_essentials_example_03_02.py.
The Terminal in the lower-left corner displays the results of running the code for the Python client that
published the commands to the drone, that is, mqtt_essentials_example_03_03.py. The Terminal on
the right-hand side displays the debug messages for a Mosquitto server that is running on the computer:

®e gaston— sshroot@192.166.1.108 — 78=11

root@intel-corei7-64:~/drone# echo 'Running code on Intel Joule board'

Running code on Intel Joule board

root@intel-corei7-64:~/drone# python gaston_hillar_mqtt_83_02.py

Connected to the MQTT server

I've received the following message: {"COMMAND": "TAKE_OFF"}

drone@l: Taking off

I've received the following message: {"COMMAND": "“MOVE_UP"}

drone®l: Moving up

I've received the following message: {"DEGREES": 9@, "COMMAND": "ROTATE_LEFT"}
drone@l: Rotating left 9@ degrees

I've received the following message: {"DEGREES": 45, "COMMAND": "ROTATE_LEFT"}
drone@l: Rotating left 45 degrees

I've received the following message: {"DEGREES": 45, "COMMAND": "ROTATE_LEFT"}
drone®l: Rotating left 45 degrees

I've received the following message: {"COMMAND": "LAND_IN_SAFE_PLACE"}
drone@l: Landing in a safe place

Connect result: Connection Accepted.

Subscribed with QoS: @
{""SUCCESSFULLY_PROCESSED_COMMAND": "TAKE_OFF"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "“MOVE_UP"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "“ROTATE_LEFT"}
{""'SUCCESSFULLY_PROCESSED_COMMAND": “ROTATE_LEFT"}
{"'SUCCESSFULLY_PROCESSED_COMMAND": "“ROTATE_LEFT"}
{""SUCCESSFULLY_PROCESSED_COMMAND": "LAND_IN_SAFE_PLACE"}
Gastons-MacBook-Pro:chapter@3 gaston$

Bd: 6)

#4B85447731: Received PUBLISH from paho/7817AFDFGD4F497AT
| (d@, qo, r@, m@, 'processedcommands/drone@l', ... (45
ytes))

MB5447731: Sending PUBLISH ta paho/77@92268D99945D328 (
@, g8, ré, md, 'processedcommands/drone®l', ... (45 byt
15))

A485447731: Received PUBCOMP from paho/7817AFDFEDAF497AT
I (Mid: 2)

MAB5447732: Received PUBLISH from paho/7817AFDFGD4F49TAT
| (d®, qb, r@d, m@, 'processedcommands/drone®l’', ... (49
wtes))

MB85447732: Sending PUBLISH to paho/7708922680999450328 (
@, g, rd, md, 'processedcommands/drone@l’, ... (49 byt
5))

A85447732: Received PUBCOMP from paho/7817AFDFED4F49TAT
| (Mid: 3)

485447732: Received PUBLISH from paho/7817AFDFGD4F497A7
| (de, g@, r8, m@, 'processedcommands/drone@l’, ... (49

ytes))

485447732: Sending PUBLISH to paho/770922680999450328 (
@, q@, r@, md, 'processedcommands/drone@l’, ... (49 byt
i5))

485447732: Received PUBCOMP from paho/7817AFDFED4F497AT
t (Mid: 4)

A4B5447732: Received PUBLISH from paho/7817AFDFGD4F49TAT

'm (de, q@, r@, me, 'processedcommands/drone®l’, ... (49
Gastons-MacBook-Pro: chapter®3 gaston$ python gaston_hillar_mqtt_03_83.py |mytes))

485447732: Sending PUBLISH to paho/77892268099945D328 (

8, q9, r@, md, ‘processedcommands/drone@l’, ... (49 byt

s))

485447732: Received PUBCOMP from paho/7817AFDFBD4FAQ7AT

. (Mid: 5)

485447732: Received PUBLISH from paho/7817AFDFGD4F497A7
(dd, g, rd, m@, 'processedcommands/drone@l’, ... (56

ytes))

485447732: Sending PUBLISH to paho/776922680999450328 (

ﬂi qé, ré, m@d, 'processedcommands/drone@l’', ... (56 byt

5))

485447732: Received PUBCOMP from paho/7817AFDFGDAF497AT

. (Mid: 6)

485447737: Received DISCONMNECT from paho/77892268099945

328

485447737: Client paho/77@922680999450328 disconnected.

The next picture shows the Intel Joule 570x board that runs the code whose output was shown in the
previous screenshot. Remember that the Mosquitto server is running on a computer:

By

- - - - "
'aé‘nu-s..e:::w:cu.-.---

° . = | .
o\N'w o,

Test your knowledge

1. Which of the following Python modules is the Paho Python Client?
1. paho-mqtt.
2. paho-client-pip.
3. paho-python-client.

2. To establish a connection with an MQTT server that uses TLS, which method do you have to call for
the paho.mgtt.client.Client instance before calling connect?
1. connect_with_tls.
2. tls_set.
3. configure_tls.

3. After the paho.mqtt.client.Client instance establishes a connection with the MQTT server, the
callback assigned to which of the following attributes will be called?
1. on_connection.
2. on_connect.
3. connect_callback.

4. After the paho.mgtt.client.Client instance receives a message from one of the topic filters to
which it has subscribed, the callback assigned to which of the following attributes will be called?
1. on_message_arrived.
2. on_message.
3. message_arrived_callback.

5. Which of the following methods of a paho.mgtt.client.Client instance calls the loop method for
us in an infinite blocking loop?
1. infinite_loop.
2. loop_while_true.
3. loop_forever.

Summary

In this chapter, we analyzed the requirements for controlling a drone with MQTT messages. We defined
the topics that we will use and the commands that will be part of the messages' payloads to control a
drone. Then, we worked with the Paho Python Client to write Python code that connected an MQTT client
to the MQTT server.

We understood the methods we needed to call for the Paho Python Client and their parameters. We
analyzed how callback worked and we were able to publish messages to topics, subscribe to topic filters,
and receive and process messages.

We wrote code that processed commands for a drone with Python. The code is able to run on different IoT
platforms, including Intel Joule boards and Raspberry Pi 3, and also on any computer that is capable of
executing Python 2.7.x or Python 3.x. We worked with the network loop for the MQTT client in Python.
We worked with a GUI utility, command-line based utilities, and, finally, with Python code to control the
drone and display the feedback provided by the drone.

Now that we understand how to use Python to work with MQTT, we will use this protocol to interact with
sensors by using the Java programming language, which is what we are going to discuss in the next
chapter.

Chapter 4. Interacting with Sensors in Java

In this chapter, we will write Java code to control sensors with MQTT messages. We will write code that
will be able to run on different popular IoT platforms. We will:

Understand the requirements to control sensors with MQTT

Define the topics and commands to control sensors

Install the Eclipse Paho Java Client

Create a security helper class to establish a TLS secured connection
Configure a TLS secured connection in Java

Work with asynchronous notifications and callbacks in Java
Subscribe to topics and understand notification events in Java
Process commands that interact with sensors in Java

Work with last will and testament in Java

Publish messages with commands to target sensors

Understanding the requirements

In the previous chapters, we learned how MQTT works in detail. We understood how to establish a
connection between an MQTT client and an MQTT server. We learned what happened when we
subscribed to topic filters and when a publisher sent messages to specific topics. We installed and
secured a Mosquitto server. Then, we controlled a drone with Python.

Now, we will use Java as our main programming language to generate MQTT clients that will act as
publishers and subscribers. We will connect a Java MQTT client to the MQTT server and we will
process simple commands to control sensors with MQTT messages.We will use TLS encryption and TLS
authentication because we don't want any MQTT client to be able to send commands to sensors wired to
IoT boards. We want our Java code to run on many platforms because we will use the same code base to
control sensors that use the following IoT boards:

Raspberry Pi 3
Raspberry Pi 2 Model B
Inte] Edison

Inte] Galileo Gen 2

Intel Joule 570x

Intel Joule 550x

Each platform will work with different kinds of sensors. However, we will focus on the basic features to
keep our example simple and to stay concentrated on MQTT. Then, we will be able to use this project as
a baseline for other solutions that require us to run code on an IoT board that runs Java code, has to
connect to an MQTT server, and has to process commands.

The code that runs on the boards that have sensors wired to them must be able to process commands
received in messages in a specific topic. We will use strings with short commands in plain English in the
payloads.

A client application also written in Java must be able to control one or more sensors. We will also write
the client application in Java and it will publish MQTT messages with strings to the topic for each drone.
The client application must display the results of executing each command. Each IoT board must publish a
message to a specific topic whenever a command was successfully executed.

Defining the topics and commands

We will use the following topic name to publish the commands for the sensors wired to an IoT board:
commands/boards/boardname/sensors/sensorname , where boardname must be replaced with a
unique name assigned to a board and sensorname must be replaced with a unique name assigned to a
sensor. For example, if we assign location001 as the name for an Intel Joule 550x board and we assign
earthhumidity as the name for a humidity sensor wired to this board, we will have to publish
commands to the commands/boards/location@01/sensors/earthhumidity topic and the code that
runs on this board will subscribe to this topic to receive messages with commands and react to them. In
fact, the board can subscribe to commands/boards/location@01/sensors/+ to receive messages with
commands for all the sensors wired to the board named locationeoi.

We will use the following topic name to make the boards publish data retrieved from the sensors:
data/boards/boardname/sensors/sensorname , where boardname must be replaced with a unique
name assigned to a board and sensorname must be replaced with a unique name assigned to a sensor.
For example, if we assign location300 as the name for a Raspberry Pi 3 board, and we assign
sunlight as the name for a sunlight sensor wired to this board, the client that wants to receive data
retrieved from this sensor has to subscribe to the data/boards/location300/sensors/sunlight/+
topic because the sensors will provide data in different subtopics. Another option for the client is to
subscribe to data/boards/location300/sensors/# to subscribe to all the sensors and their different
subtopics. For example, the sunlight sensor will provide the following data:

¢ Visible light: The visible light will be published to the
data/boards/location300/sensors/sunlight/visiblelight topic

¢ Infrared light: The infrared light will be published to the
data/boards/location300/sensors/sunlight/ir topic

e Ultraviolet index: The ultraviolet light will be published to the
data/boards/location300/sensors/sunlight/uv topic

The commands will be sent as strings in plain English. We will have just two valid commands:

e TURN ON: Turn on the sensor and make the board start transmitting the data retrieved from this sensor
every 1 second to the appropriate topic

e TURN OFF: Turn off the sensor and make the board stop transmitting the data retrieved from this
sensor

The following line shows an example of the payload for the command that turns on a sensor: TURN ON

The following line shows an example of the payload for the visible light value retrieved from a sunlight
sensor: 250 Im

We will use the following topic name to make the boards publish their status:
status/boards/boardname, where boardname must be replaced with a unique name assigned to a
board. For example, if we assign 1ocation@65 as the name for an Intel Edison board, we will have to
subscribe to the status/boards/location@05 topic and the code that runs on this board will publish its

status to this topic. When the board subscribes to the appropriate topics to listen to messages with
commands, it will publish a message with the payload, ONLINE, to this topic. This message will be
published as a retained message with a QoS level of 2. We will take advantage of the last will and
testament feature to publish a message with the payload, OFFLINE, to this topic whenever the connection
between the MQTT client running on the board and the MQTT server is lost or the application stops its
execution. We analyzed the last will and testament feature in Chapter 1, Lightweight Messaging with
MQTT 3.1.1 and Mosquitto.

We have all the necessary details to start coding with Java. First, we will develop a simple Java
application that subscribes to a topic and displays the received messages. Then, we will create the Java
application that can control sensors based on the previously explained requirements.

Installing the Eclipse Paho Java Client

The Eclipse Paho project provides an open source client implementation of MQTT. The project includes
a Java client, also known as the Paho Java Client or Eclipse Paho Java client.

The following is the web page for the Eclipse Paho project:_http://www.eclipse.org/paho

The following is the web page for the Eclipse Paho Java client: https://eclipse.org/paho/clients/java
Tip

We can use the Eclipse Paho Java client in many modern IoT boards that support Java. For example, we
can install and use this client on Raspberry Pi boards, such as Raspberry Pi 3, and on Intel IoT boards,
such as the Intel Joule, Intel Edison, and Intel Galileo. We just need to make sure that Java is installed.
You can use your development computer to run the examples or any of the mentioned boards. You will
need Java 8 or a later version installed on your development computer.

This Java client provides both a blocking (synchronous) and a non-blocking (asynchronous) API. The
blocking API is a wrapper of the non-blocking API that makes all the necessary things to make the code
wait until each method has a result. We will work with the non-blocking (asynchronous) API because it is
the one that we will use most of the times. This API is more complex than the blocking API due to the
asynchronous execution of its methods and the need to work with callbacks. However, once you learn the
non-blocking API, you can easily switch to the blocking API in case you need to use it.

The most complex task with this API is to establish a secure connection with an MQTT server. The Paho
Java Client uses standard Java TLS/SSL mechanisms, and therefore, we will use the Bouncy Castle
libraries. You can read more information about these libraries at http://www.bouncycastle.org .

To use the Paho Java Client in combination with the Bouncy Castle libraries, we can start a Maven
project in our favorite IDE and add the following lines to the pom.xm1 file. We must add the lines before
</project>. In case you don't want to work with Maven, you can check the documentation for the Paho
Java Client and the Bouncy Castle libraries to download the appropriate versions and use them in your
projects. The following XML shows the new lines that you must add to the pom. xm1 file. The code file for
the sample is included inthe mqtt_essentials_gaston_hillar_04 folder, in the Javaoi folder:

<repositories>
<repository>
<id>Eclipse Paho Repo</id>
<url>https://repo.eclipse.org/content/repositories/paho-
releases/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.eclipse.paho</groupId>
<artifactId>org.eclipse.paho.client.mqttv3</artifactId>
<version>1.1.0</version>
</dependency>
<dependency>

http://www.eclipse.org/paho
https://eclipse.org/paho/clients/java
http://www.bouncycastle.org

<groupId>org.bouncycastle</groupId>
<artifactId>bcmail-jdkl5on</artifactId>
<version>1.56</version>

</dependency>

<dependency>
<groupId>org.bouncycastle</groupId>
<artifactId>bcpkix-jdkl5on</artifactId>
<version>1.56</version>

</dependency>

<dependency>
<groupId>org.bouncycastle</groupId>
<artifactId>bcprov-jdkl5on</artifactId>
<version>1.56</version>

</dependency>

<dependency>
<groupId>commons-codec</groupId>
<artifactId>commons-codec</artifactId>
<version>1.9</version>

</dependency>

</dependencies>

Note

The sample has been tested with the version numbers specified in the previous lines that are included in
the pom. xml file. The code works with Java 8 and Java 9.

After you make the previous changes in the pom. xm1 file, the following . jar files will be added to the
Maven dependencies for the Maven project:

® org.eclipse.paho.client.mqttv301.1.0.jar
® bcmail-jdk1l50n-1.56.jar

® bcpkix-jdki50n-1.56.jar

® bcprov-jdki50on-1.56.jar

® commons-codec-1.9.jar

Creating a security helper class to establish a
TLS secured connection

Now, we will create a new security helper class named SecurityHelper, which will provide many
static methods that we will use to make it easy to establish a TLS secured connection with an MQTT
server. We will use the recently added dependencies for the Bouncy Castle libraries to load the
certificates and key files.

The public static CreateSocketFactory method will receive the file names for the certificate authority
certificate, the client certificate, and the client key. The method will load all these files, generate the
appropriate instances from them, and return an instance of java.net.ssl.SSLSocketFactory.

Tip

It is very important to avoid being confused by the old SSL name. We will be working with TLS version
1.2, but Java has the old java.net.ssl.SSLSocketFactory that has been upgraded to work with the
latest TLS versions (but it didn't change its name from SSL to TLS to keep compatibility with the previous
versions).

The securityHelper class will provide the following private static methods that will make it easier to
understand the code in the public static createSocketFactory method:

e getKeyFactoryInstance: This returns a java.key.KeyFactory instance that converts
public/private keys of the RSA algorithm.

® createx509CertificateFromFile: This method receives a certificate file name, loads its
contents, generates an instance of java.security.cert.x509Certificate from this file, and
returns the created instance. Other methods will call the createx509CertificateFromFile method
to generate an X509Certificate instance from a certificate authority certificate file or from a client
certificate file.

e createPrivateKeyFromPemFile: This method receives a key file name in the PEM format, loads
its contents, generates an instance of java.Security.PrivateKey from this file, and returns the
created instance. This method will allow us to create a PrivateKey instance from the client key file.

e createKeyManagerFactory: This method receives a client certificate file name, a client key file
name, and a client key password, and calls the previously explained
createx509CertificateFromFile and createPrivateKeyFromPemFile methods to generate the
X509Certificate and PrivateKey instances. Then, the method uses these instances to specify the
certificate and key for an instance of the java.security.KeyStore instance and uses it to create
and return an instance of the java.net.ssl.KeyManagerFactory class.

e createTrustManagerFactory: This method receives a certificate authority certificate file name
and calls the previously explained createx509CertificateFromFile method to generate an
X509Certificate instance. Then, the method uses this instance to specify the certificate authority
certificate for an instance of the java.security.KeyStore instance and uses it to create and return
an instance of the java.net.ssl.TrustManagerFactory class.

We will split the code for the SecurityHelper class into many code snippets to make it easier to
understand each code section. The following lines declare all the necessary imports. The code file for the
sample is included in the mqtt_essentials _gaston_hillar_04 folder, in the
Java@1l/src/SecurityHelper.java file:

import java.io.File;

import java.io.FileInputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;

import java.security.KeyFactory;

import java.security.KeyStore;

import java.security.KeyStoreException;

import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;

import java.security.SecureRandom;

import java.security.Security;

import java.security.UnrecoverableKeyException;
import java.security.cert.Certificate;

import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;

import javax.net.ssl.KeyManager;

import javax.net.ssl.KeyManagerFactory;
import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLSocketFactory;
import javax.net.ssl.TrustManager;

import javax.net.ssl.TrustManagerFactory;

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.util.io.pem.PemObject;
import org.bouncycastle.util.io.pem.PemReader;

The following lines start the declaration of the SecurityHelper class. The code declares the
TLS_VERSION string constant with "TLSv1.2" as its value. We will work with TLS version 1.2 and we
will use this constant when it is necessary to specify the desired version of TLS/SSL in the code. The
code also declares the following three methods: getKeyFactoryInstance,
createX509CertificateFromFile, and createPrivateKeyFromPemFile methods. The code file for
the sample is included in the mqtt_essentials_gaston_hillar_04 folder, in the
Java@1l/src/SecurityHelper.java file:

public class SecurityHelper {
private final static String TLS_VERSION = "TLSv1.2";

private static KeyFactory getKeyFactoryInstance() throws NoSuchAlgorithmException {
return KeyFactory.getInstance("RSA");
}

private static X509Certificate createxX509CertificateFromFile(

final String certificateFileName) throws IOException, CertificateException

final File file = new java.io.File(certificateFileName);
if (!'file.isFile()) {
throw new IOException(
String.format("The certificate file %s doesn't
exist.", certificateFileName));
}
final CertificateFactory certificateFactoryX509 =
CertificateFactory.getInstance("X.509");
final InputStream inputStream = new FileInputStream(file);
final X509Certificate certificate = (X509Certificate)
certificateFactoryX509.generateCertificate(inputStream);
inputStream.close();

return certificate;

}

private static PrivateKey createPrivateKeyFromPemFile(final String keyFileName)
throws IOException, InvalidKeySpecException, NoSuchAlgorithmException
{
final PemReader pemReader = new PemReader(new FileReader(keyFileName));
final PemObject pemObject = pemReader.readPemObject();
final byte[] pemContent = pemObject.getContent();
pemReader.close();
final PKCS8EncodedKeySpec encodedKeySpec = new
PKCS8EncodedKeySpec(pemContent);
final KeyFactory keyFactory
final PrivateKey privateKey
return privateKey;

getKeyFactoryInstance();
keyFactory.generatePrivate(encodedKeySpec);

The createx509CertificateFromFile method receives the certificate file name in the
certificateFileName argument. First, the code creates a new java.io.File instance with the
received certificate file name as an argument. If the file exists, the next line calls the
CertificateFactory.getInstance method with "X.509" as an argument to generate a certificate
factory object that implements the X.509 certificate type and saves its reference in the
certificateFactoryX509 variable. Then, the code calls the generateCertificate method with the
file input stream to generate and return an X509Certificate instance from the received certificate file
name.

The createPrivateKeyFromPemFile method receives the key file name in the keyFileName argument.
First, the code creates a new Bouncy Castle PemReader instance to load the key file specified in the
keyFileName argument with this reader capable of loading the PEM format. The code generates a byte
array with the PEM content and saves it in the pemContent variable. The next line passes pemContent as
an argument to create a new instance of the PKCS8EncodedKeySpec class and saves it in the
encodedKeySpec variable. Then, the code calls the getKeyFactoryInstance static method defined in
the same class that provides a java.key.KeyFactoryinstance that allows the code to convert
public/private keys of the RSA algorithm, and saves the instance in the keyFactory variable. The call to
the keyFactory.generatePrivate method with encodedKeySpec as an argument generates a private

key object from the provided key specification. Finally, the code returns this generated private key object.

The following lines declare the createKeyManagerFactory and createTrustManagerFactory
methods within the SecurityHelper class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the Java®1/src/SecurityHelper. java file:

private static KeyManagerFactory createKeyManagerFactory(

final String clientCertificateFileName, final String
clientKeyFileName, final String clientKeyPassword)

throws InvalidKeySpecException, NoSuchAlgorithmException,
KeyStoreException, IOException, CertificateException, UnrecoverableKeyException

{
final X509Certificate clientCertificate =
createxX509CertificateFromFile(clientCertificateFileName);
final PrivateKey privateKey =
createPrivateKeyFromPemFile(clientKeyFileName);
final KeyStore keyStore =
KeyStore.getInstance(KeyStore.getDefaultType());
keyStore.load(null, null);
keyStore.setCertificateEntry("certificate", clientCertificate);
keyStore.setKeyEntry("private-key", privateKey,
clientKeyPassword.toCharArray(),
new Certificate[] { clientCertificate });
final KeyManagerFactory keyManagerFactory =
KeyManagerFactory.getInstance(KeyManagerFactory.getDefaultAlgorithm());
keyManagerFactory.init(keyStore, clientKeyPassword.toCharArray());

return keyManagerFactory;

}

private static TrustManagerFactory createTrustManagerFactory(
final String caCertificateFileName)
throws CertificateException, NoSuchAlgorithmException, IOException,
KeyStoreException

{

final X509Certificate caCertificate = (X509Certificate)
createxX509CertificateFromFile(caCertificateFileName);

final KeyStore keyStore =
KeyStore.getInstance(KeyStore.getDefaultType());

keyStore.load(null, null);

keyStore.setCertificateEntry("ca-certificate", caCertificate);

final TrustManagerFactory trustManagerFactory =
TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());

trustManagerFactory.init(keyStore);

return trustManagerFactory;

The createkeyManagerFactory method receives the client certificate file name in the
clientCertificateFileName argument, the client key file name in the clientkKeyFileName argument,
and the password for the client key in the clientKeyPassword argument. First, the code calls the
previously explained createx509CertificateFromFile method with clientCertificateFileName
as an argument to load the client certificate, generate the Xx509Certificate instance, and save its
reference in the clientCertificate variable.

The next line calls the previously explained createPrivateKeyFromPemFile method with
clientKeyFileName as an argument to load the private client key with PEM format, generate the
PrivateKey instance, and save its reference in the privateKey variable.

Then, the code creates an instance of the KeyStore class named keyStore, whose goal is to provide
storage facility for cryptographic keys and certificates. The call to the keyStore.setCertificateEntry
method assigns the trusted certificate saved in the clientCertificate variable to the "certificate"
alias. The call to the keyStore.setKeyEntry method assigns the key saved in the privateKey variable
to the "private-key" alias, sets its association with the certificate saved in clientCertificate, and
protects it with the password received in the clientKeyPassword argument.

Finally, the code creates an instance of the KeyManagerFactory class and then calls its init method
with keyStore and clientKeyPassword converted to a char array as the arguments to provide the
KeyStore instance and the password to the key manager factory. The code returns the created and
initialized key manager factory.

The createTrustManagerFactory method receives the certificate authority certificate file name in the
caCertificateFileName argument. First, the code calls the previously explained
createx509CertificateFromFile method with caCertificateFileName as an argument to load the
certificate authority certificate, generate the X509Certificate instance, and save its reference in the
caCertificate variable.

The next line creates an instance of the KeyStore class named keyStore, whose goal is to provide
storage facility for cryptographic keys and certificates. The call to the keyStore.setCertificateEntry
method assigns the trusted certificate authority certificate saved in the caCcertificate variable to the
"ca-certificate" alias.

Finally, the code creates an instance of the TrustManagerFactory class and then calls its init method
with keyStore as an argument to provide the KeyStore instance and to the trust manager factory. The
code returns the created and initialized trust manager factory.

The following lines complete the declaration of the SecurityHelper class and declare the public static
createSocketFactory method. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the Java®1/src/SecurityHelper. java file:

public static SSLSocketFactory createSocketFactory(
public static SSLSocketFactory createSocketFactory(
final String caCertificateFileName,
final String clientCertificateFileName,
final String clientKeyFileName) throws Exception

final String clientKeyPassword = "";
try
{
Security.addProvider (new BouncyCastleProvider());
final KeyManager|[] keyManagers =
createKeyManagerFactory(clientCertificateFileName, clientKeyFileName,
clientKeyPassword) .getKeyManagers();

final TrustManager[] trustManagers =
createTrustManagerFactory(caCertificateFileName).getTrustManagers();

final SSLContext context =
SSLContext.getInstance(TLS_VERSION);

context.init(keyManagers, trustManagers, new
SecureRandom());

return context.getSocketFactory();

}
catch (Exception e)
{
throw new Exception("I cannot create the TLS socket
factory.", e);
}

}
}

The createSocketFactory method receives the certificate authority certificate file name in the
caCertificateFileName argument, the client certificate file name inthe clientCertificateFileName
argument, and the client key file name in the clientKeyFileName argument. The method declares the
clientKeyPassword string with an empty string as its value because we haven't used a password for the
client key. In case you want to use a password, you can add the password as an argument to this helper
method. Then, the code calls the Security.addProvider method with a new BouncyCastleProvider
instance as an argument to add this instance to the security providers.

The next line calls the previously explained createKeyManagerFactory method with the appropriate
arguments to generate the KeyManager instance. The result is chained with a call to the getkeyManagers
method to include this instance in the new keyManagers array of KeyManager.

The next line calls the previously explained createTrustManagerFactory method with the appropriate
argument to generate the TrustManager instance. The result is chained with a call to the
getTrustManagers method to include this instance in the new trustManagers array of TrustManager.

Then, the code creates the TLS socket factory for the desired TLS version, that is, TLS version 1.2.
Remember that we create an SSLContext instance named context but we are working with TLS. The
call to context.init with keyManagers, trustManagers, and a new
java.security.SecureRandom.SecureRandom instance initializes the TLS socket factory with the
previously generated key manager and trust manager. Finally, the code returns the result of calling the
context.getSocketFactory method to return an SSLSocketFactory instance.

Configuring a TLS secured connection in Java

First, we will use the asynchronous API provided by the Paho Java client to create an MQTT
asynchronous client that connects to the Mosquitto MQTT server. We will write a few lines of Java code
to establish a secured connection, subscribe to a topic, and display the payload for the messages received
in this topic. The synchronous API provided by the Paho Java client is simpler to use, but in most cases,
we will want to use the non-blocking asynchronous API. Hence, we will focus on the asynchronous APIL

In Chapter 2, Securing an MQTT Mosquitto Server , we have secured our Mosquitto server, and
therefore, we will use the digital certificates we have created to authenticate the client. Most of the times,
we will work with an MQTT server that uses TLS, and therefore, it is a good idea to learn how to
establish a connection with TLS and TLS authentication. It is easier to establish an unsecured connection
with an MQTT server, but it won't be the most common scenario we will face when developing
applications that work with MQTT.

First, we need to copy the following files we have created in Chapter 2, Securing an MQTT Mosquitto
Server , to a directory in the computer or device we will use to run the Java application. We saved the
files in a directory called certificates. Create a java_certificates directory in the computer or
board you are going to use as the MQTT client for this example. Copy the following three files to this new
directory:

e ca.crt: Certificate authority certificate file
e device00l.crt: Client certificate file
e device001.key: Client key

Now, we will create the main class named Main that uses the asynchronous API of the Paho Java Client
and the previously coded SecurityHelper class to establish an encrypted connection with an MQTT
server. Then, the class subscribes to the commands/1ights/ledo1 topic filter and prints all the messages
received in the subscribed topic filter.

We will split the code for the Main class into many code snippets to make it easier to understand each
code section. The following lines declare all the necessary imports. The code file for the sample is
included in the mqtt_essentials_gaston_hillar_04 folder, in the Java®1/src/Main. java file:

import javax.net.ssl.SSLSocketFactory;

import javax.net.ssl.SSLSocketFactory;

import org.eclipse.paho.client.mqttv3.IMgttActionListener;
import org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;

import org.eclipse.paho.client.mqttv3.IMqttToken;

import org.eclipse.paho.client.mqttv3.MgttAsyncClient;

import org.eclipse.paho.client.mqttv3.MgttConnectOptions;

import org.eclipse.paho.client.mqttv3.MgttException;

import org.eclipse.paho.client.mqttv3.MgttMessage;

import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

The following lines start the declaration of the Main class and show the first lines of the static main

method. You have to replace the value for the mqttServerHost with the IP address for the Mosquitto
server or any other MQTT server you might decide to use. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the Java®1/src/Main. java file:

public class Main {
public static void main(String[] args) {
try {
final MqttConnectOptions mgttConnectOptions = new
MgttConnectOptions();
mgttConnectOptions.setMqttVersion(
MgttConnectOptions.MQTT_VERSION_3_1 1);
mgttConnectOptions.setKeepAliveInterval/(
MgttConnectOptions.KEEP_ALIVE_INTERVAL_DEFAULT);
MemoryPersistence memoryPersistence = new
MemoryPersistence();

// Replace localhost with the IP for the Mosquitto
// or other MQTT server
final String mgttServerHost = "localhost";

final int mqttServerPort = 8883;

final String mqgttServerURI = String.format(
"ssl://%s:%d",
mqttServerHost,
mgttServerPort);

// In case you don't need security:
// final int mqttServerPort = 8883;
// final String mqttServerURI = String.format(

// "ftp://%s:%d",
// mgttServerHost,
// mgttServerPort);

// We can specify our own client id
// instead of calling the generateClientId method
final String mqttClientId =
MgttAsyncClient.generateClientId();
MgttAsyncClient mgttAsyncClient = new MgttAsyncClient(
mqttServerURI,
mgttClientId,
memoryPersistence);
final String topic_for_led®1 = "commands/lights/led01";

First, the code creates an instance of the org.eclipse.paho.client.mqttv3.MgttConnectOptions
class named mqttConnectOptions that stores the values for the different options we can configure when
we want to connect with an MQTT server. If we used the default parameters, we would work with MQTT
version 3.1. We want to work with MQTT version 3.1.1, and therefore, we specify
MgttConnectOptions.MQTT_VERSION 3 1 1 as an argument for
mgttConnectOption.setMqttVersion.

We want to work with MQTT version 3.1.1 interval configuration option. However, we wrote code to
call the mgttConnectOptions.setKeepAliveInterval method to make it easy to work with other
values in case we need to. We just need to change the value sent as an argument to this method.

Tip

You can call other methods that start with the set prefix for mqttConnectOptions to set the values for
other configuration options, such as specifying a user name and a password for authentication. In this
case, we are just working with TLS client authentication.

The next line creates an instance of the
org.eclipse.paho.client.mqttv3.persist.MemoryPersistence class named
memoryPersistence. The Paho Java Client provides a pluggable persistence mechanism that makes it
possible for the client to store the messages. In this case, we will work with a QoS level of 0, and we
will use memory persistence for the messages to keep the code simpler. However, we will move to a QoS
level of 2 later, and we will explore and configure other pluggable persistence options that will be
suitable for this QoS level. All the pluggable persistence mechanisms are classes that implement the
MgttClientPersistence interface.

Then, the code declares the values for the variables that specify the MQTT server host name or IP,
mgttServerHost, the MQTT server port, mqttServerPort, and the MQTT server URI,
mqttServerURI, built with the values of the other two variables. The next line calls the
MgttAsyncClient.generateClientId method to generate a unique client ID and save it in the

mgttClientId variable. We might also decide to specify our own client ID instead of calling this
method.

The next line creates an instance of the org.eclipse.paho.client.mqttv3.MgttAsyncClient class
named mgttAsyncClient with the MQTT server URI, the previously generated client ID, and the
memory persistence option as the arguments. This instance will be the entry point for our MQTT
asynchronous client.

Finally, the last line declares the topic_for_led01 variable with "commands/lights/led@1" as its
value. We will subscribe to this topic.

The following lines continue the declaration of the public static main method. You have to replace the
value, /Users/gaston/certificates, inthe certificatesPath string with the path to the
java_certificates directory you created. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the Java®1/src/Main. java file:

// Replace /Users/gaston/certificates with the path

// in which you saved the certificate authority file,

// the client certificate file and the client key

final String certificatesPath =
"/Users/gaston/certificates";

final String caCertificateFileName =
String.join(java.io.File.separator, certificatesPath, "ca.crt");

final String clientCertificateFileName =
String.join(java.io.File.separator, certificatesPath, "device001l.crt");

final String clientKeyFileName =
String.join(java.io.File.separator, certificatesPath, "device001.key");

// In case you don't need security,

// you don't need to create an SSLSocketFactory instance

SSLSocketFactory socketFactory;
try {
socketFactory = SecurityHelper.createSocketFactory(
caCertificateFileName,
clientCertificateFileName,
clientKeyFileName);
} catch (Exception el) {
el.printStackTrace();
return;
}
// In case you don't need security, you don't have to call
// the setSocketFactory method
mgttConnectOptions.setSocketFactory(socketFactory);

The code declares the certificatesPath variable initialized with a string with the path in which you
saved the certificate authority file, the client certificate file, and the client key. The code declares the
following string variables with the full path to the certificate and key files we need to configure TLS and
TLS client authentication: caCertificateFileName, clientCertificateFileName, and clientKey.
The call to String.join with java.io.File.separator as the first argument makes it easy to join the
path specified in the certificatesPath variable with each filename and to generate the full path. The
java.io.File.separator string provides the appropriate name separator in the platform, and therefore,
we don't have to worry about whether to use a slash (/) or a backslash () to join the path with the file
name. Whenever we work with IoT related projects, sometimes, we can develop and test in Windows and
then run the code on an IoT board that can use different Unix flavors. In other cases, we can develop on
macOS or Linux and then run the code in a board that uses Windows IoT Core. The usage of
java.io.File.separator makes our job easier in these scenarios, in which we switch between

different platforms.

Then, the code calls the previously analyzed SecurityHelper.createSocketFactory method with the
variables that hold the full path to the certificate and key files as arguments. This way, the code generates
the SSLSocketFactory instance and saves its reference in the socketFactory variable. Finally, the next
line calls the mqttConnectOptions.setSocketFactory method with socketFactory as an argument to
specify the socket factory we want to use for the connection with the MQTT server.

Working with asynchronous notifications and
callbacks in Java

The following lines continue the declaration of the public static main method. The code file for the

sample is included in the mqtt_essentials_gaston_hillar_04 folder, inthe Java®1/src/Main.java
file:

mgttAsyncClient.setCallback(new MqttCallback() {
@Override
public void connectionLost(Throwable cause) {
cause.printStackTrace();
}

@Override
public void deliveryComplete(IMqttDeliveryToken

}

@Override
public void messageArrived(String topic,
MgttMessage message) throws Exception {

token) {

if (!topic.equals(topic_for_led01)) {
return;
}

String messageText =
new String(message.getPayload(),
"UTF-8");
System.out.println(
String.format("Topic: %s. Payload:
%S",
topic,
messageText));

1)

The code calls the mqttAsyncClient.setCallback method with an anonymous subclass of the
MgttCallback class as an argument. The setCallback method requires an argument of the
org.eclipse.paho.client.mgttv3.MgttCallback type. The anonymous class that implements the
MgttCallback interface provides implementations for the following three methods required by the
interface:

e connectionLost: When the MQTT client loses the connection, this method will be executed.

e messageArrived: When a message has arrived from the MQTT server, this method will be
executed. It is very important to understand that in the QoS levels that require an acknowledgement
to the MQTT server, the MQTT server won't send this acknowledgement until the messageArrived
method completes its execution. The method receives the topic for the message that has arrived in the
topic argument of type String. In addition, the method receives an instance of the
org.eclipse.paho.client.mgttv3.MgttMessage class in the message argument that
encapsulates all the data related to the arrived message.

e deliveryComplete: When the delivery for a message has been completed and all the
acknowledgements required by the QoS level have been received, this method will be executed. The
method receives an instance of a class that implements the
org.eclipse.paho.client.mgttv3.ImqttDeliveryToken interface inthe token argument. We
will discuss tokens later.

Note

We must call the setCallback method before we establish the connection with the MQTT server. In this
case, we pass an anonymous class as an argument to the setCallback method because we want all the
code to be included within the main method. In other cases, we can create a class that implements the
required interface and pass an instance of this class as an argument to the setCallback method.

In this case, the code just prints the stack trace for the cause that made the MQTT client lose the
connection. We don't execute any code when the delivery for a message has been completed.

The messageArrived method checks whether the topic for the received message matches the value
saved in the topic_for_ledo1 variable. In case they match, the next line creates a new String with the
byte array returned by the message.getPayload method and UTF-8 as the encoding, and saves it in the
messageText variable. Finally, the code prints the topic and the payload for the message.

The following lines end the public static main method and the Main class. The code file for the sample is
included in the mqtt_essentials_gaston_hillar_04 folder, in the Java®1/src/Main. java file:

// In this case, we don't use the token
IMgttToken mqttConnectToken = mgttAsyncClient.connect(
mgttConnectOptions,
null,
new IMqttActionListener () {
@Override
public void onSuccess(IMqttToken
asyncActionToken) {
System.out.println(
String.format(
"Successfully
connected"));
try {
// In this case, we
don't use the token

IMgttToken
subscribeToken = mgttAsyncClient.subscribe(
topic_for_ledo1l,
0,
null,
new

IMgttActionListener() {
@Override

public void onSuccess(IMqttToken asyncActionToken) {

System.out.println(

String.format(

"Subscribed to the %s topic with QoS: %d",
topic_for_led01,

asyncActionToken.getGrantedQos()[0]));

}
@Override
public void onFailure(IMqttToken asyncActionToken,
Throwable exception) {
exception.printStackTrace();
}

1)
} catch (MgttException e) {

e.printStackTrace();

}

@Override
public void onFailure(IMqttToken
asyncActionToken,
Throwable exception) {
exception.printStackTrace();

3
1)
} catch (MqgqttException e) {
e.printStackTrace();
3

}

The code calls the mqttAsyncClient.connect method withmgttConnectOptions and an anonymous
class that implements the IMgttActionListener interface as the value for the callback argument. The
connect method requires the callback argument of the
org.eclipse.paho.client.mqttv3.IMqttActionListener type. The anonymous class provides
implementations for the following two methods required by the IMgttActionListener interface:

e onSuccess: When the MQTT client has successfully completed the action, this method will be
executed. The method receives an instance of a class that implements the
org.eclipse.paho.client.mgttv3.ImqttToken interface inthe asyncActionToken argument.
We can compare this instance with the IMgttToken returned by the method that starts the
asynchronous action to use the same code to check for the successful execution of many asynchronous
actions. In this case, the onSuccess method will be executed when the connection has been
successfully established with the MQTT server.

e onFailure: When an asynchronous operation requested to the MQTT client fails, this method will
be executed. As happens in the onSuccess method, the onFailure method also receives an
asyncActionToken argument with the IMgttToken instance, which identifies the asynchronous
operation that has failed.

Subscribing to topics and understanding
notification events in Java

The onSuccess method prints a message indicating that the client has successfully connected with the
MQTT server and then calls the mqttAsyncClient.subscribe method with topic_for_ledoe1 as the
argument that specifies the topic filter to subscribe to @ for the argument that specifies the desired QoS
level, null for the usercontext argument, and another anonymous class that implements the
IMgttActionListener interface as the value for the callback argument. As happened with the connect
method, the subscribe method requires the callback argument of the
org.eclipse.paho.client.mgttv3.IMqttActionListener type. The anonymous class provides
implementations for the previously explained two methods required by the IMgttActionListener
interface: onSuccess and onFailure.

The code in the onSuccess method prints a message indicating that the client has subscribed to the topic
filter and the granted QoS level. The asyncActionToken.getGrantedQoS() method returns an array of
int that provides the QoS level that the MQTT server has granted for each of the topic filter subscription
requests.

Tip

In this case, we pass an anonymous class as an argument to both the connect and subscribe methods
because we want all the code to be included within the main method. In other cases, we can create a class
that implements the required interface. It is also possible to take advantage of the tokens to use the same
code base to process successful and failed executions for different asynchronous operations with the same
code base. The token indicates the specific asynchronous operation that has fired the method. In the
sample code we have written, we didn't check the tokens because we used a specific anonymous class for
each asynchronous operation.

Make sure the Mosquitto server or any other MQTT server you might want to use for this example is
running. Use your favorite Java IDE to run the example on any computer, or build a . jar file with all the
dependencies included and launch it on any computer or device that you want to use as the MQTT client,
with a command similar to the following line. In case you don't run the example on the same computer on
which you are running the MQTT server, remember to change the value for the mqttServerHost string in
the main method of the Main class. You must also copy the certificate files and the . jar file to the device.
The next line uses Sensors01-0.0.1-SNAPSHOT. jar as the jar file for the previous example: java -
jarSensors01-0.0.1-SNAPSHOT.jar

In case you see a stack trace with a javax.net.ssl.SSLHandshakeException exception as a result,
make sure you check that the MQTT server hostname or IP matches the value specified for the Common
Name attribute when you generated the server certificate file named server.crt. Make sure that you
check the IP address for the MQTT server (Mosquitto server) and generate the server certificate file and
key again with the appropriate IP address specified for Ccommon Name, as explained in Chapter 2,
Securing an MQTT Mosquitto Server , in case you are working with the self-signed certificates we

generated in the aforementioned chapter.

Now, follow these steps to use the MQTT.fx GUI utility to publish two messages to the
commands/lights/led01 topic:

1. Launch MQTT.fx and establish a connection with the MQTT server by following the steps we
learned in Chapter 2, Securing an MQTT Mosquitto Server.

2. Click Publish and enter commands/1ights/1ledo1 in the dropdown on the left-hand side of the

Publish button.

Click QoS 0 on the right-hand side of the Publish button.

4. Enter the following text in the textbox below the Publish button: TURN ON. Then, click the Publish
button. MQTT.fx will publish the entered text to the specified topic.

5. Enter the following text in the textbox below the Publish button: TURN OFF. Then, click the Publish
button. MQTT.fx will publish the entered text to the specified topic.

w

In case you don't want to work with the MQTT.fx utility, you can run two mosquitto_pub commands to
generate MQTT clients that publish messages to the topic. You just need to open another Terminal in
macOS or Linux, or another Command Prompt in Windows, go to the directory in which Mosquitto is
installed, and run the following commands. Replace 1ocalhost with the IP for the MQTT server.
Remember to replace ca.crt, device®01.crt, and device001.key with the full path to these files
created in the java_certificates directory: mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile
ca.crt --cert device001.crt --key device001.key-t test/drone01 -m "TURN ON' -q 0--tls-version
tlsvl.2 -d

mosquitto_pub -h localhost -V mqttv311l -p 8883 --cafile ca.crt --cert device0O0l.crt
--key device001.key-t test/drone@l -m 'TURN OFF' -q O--tls-version tlsvi.2 -d

Go to the device and window in which you executed the Java application. You will see the following
output: Successfully connected Subscribed to the commands/lights/led01 topic with QoS: 0 Topic:
commands/lights/led01. Payload: TURN ON Topic: commands/lights/led01. Payload: TURN OFF

The Java application successfully established a secure and encrypted connection with the MQTT server
and became a subscriber to the commands/lights/led01 topic with a granted QoS level of 0. The
program displayed the two messages it has received in the commands/1lights/1ledo1 topic.

Press Ctrl+C to stop the execution of the program or use the appropriate command in case you are running
the Java application in your favorite IDE. The generated MQTT client will close the connection with the
MQTT server.

Processing commands that interact with sensors
in Java

Now that you have understood how to work with the Paho Java Client, its non-blocking API, and its
callbacks, we can develop the Java application that will process the commands that interact with sensors,
based on the previously explained requirements.

We can start another Maven project in our favorite IDE and make the same edits to the pom.xm1 file that
we did in our previous example to use the Paho Java Client with the Bouncy Castle libraries. In addition,
we must include the previously coded securityHelper class. The code file for the sample is included in
the mgtt_essentials_gaston_hillar_04 folder, in the Javae2 folder.

Now, we will create a new class named SensorsManager that implements the previously analyzed
MgttCallback interface, specifically the org.eclipse.paho.client.mqttv3.MgttCallback
interface. The class will process the messages that the MQTT client receives, provide many methods that
will process the commands included in these messages, and simulate the retrieval of values from two
Sensors.

The SensorsManager class will provide the following methods:

e publishMessage: This method publishes the payload specified as a string to the indicated topic
with a QoS level and a retained flag value. The method uses an UTF-8 encoding to transform the
string into a bytes array, uses the asynchronous client to publish the message, and passes the received
IMgttActionListener instance as the callback for events related to the publication of the message.
We will use this method to make it easier to publish messages to different topics with diverse QoS
levels.

e publishProcessedCommandMessage: This method publishes a message to the appropriate topic,
indicating that a command has been successfully processed. The method ends up calling the
previously explained publishMessage method to publish the message.

e messageArrived: When a message has arrived from the MQTT server, this method will be
executed. This method processes the TURN ON and TURN OFF commands, and based on these
commands and the topics in which the commands were received, the code changes the value of the
flags that determine whether the sensors must publish data every 1 second or not.

e loop: This method checks the Boolean values for the flags that determine whether the sensors must
publish data every 1 second or not. In order to keep the example simple, the code generates pseudo-
random values to simulate that it is retrieving data from the sensors and, based on the values of the
flags, publishes messages with the data for the sensors in the different topics that we described when
we analyzed the requirements for the application.

We will split the code for the SensorsManager class into many code snippets to make it easier to
understand each code section. The following lines declare all the necessary imports. The code file for the
sample is included in the mqtt_essentials _gaston_hillar_04 folder, in the
Java@2/src/SensorsManager . java file: package com.packt.mqttessentials.Sensors02;

import org.eclipse.paho.client.mqttv3.IMqttActionListener; import

org.eclipse.paho.client. mqttv3.IMqttDeliveryToken; import

org.eclipse.paho.client. mqttv3.MqttAsyncClient; import org.eclipse.paho.client.mqttv3.MqttCallback;
import org.eclipse.paho.client.mqttv3.MqttException; import
org.eclipse.paho.client.mqttv3.MqttMessage;

import java.io.UnsupportedEncodingException; import java.util.concurrent. ThreadL.ocalRandom;

The following lines start the declaration of the SensorsManager class. The code declares the many string
constants, private fields, and the two volatile Boolean flags that indicate whether the sunlight sensor is
turned on and whether the earth humidity sensor is turned on: isSunlightSensorTurnedon and
isEarthHumiditySensorTurnedon. The code also declares the constructor for this class. The code file
for the sample is included in the mqtt_essentials _gaston_hillar_04 folder, in the
Java0@l/src/SensorsManager . java file: public class SensorsManager implements MqttCallback {
private static final String SENSOR_EARTH_HUMIDITY = "earthhumidity"; private static final String
SENSOR_SUNLIGHT = "sunlight"; private static final String TOPIC_SEPARATOR = "/"; private final
String boardCommandsTopic; private final String boardDataBaseTopic; private final String encoding;

private final MqttAsyncClient asyncClient; private final String earthHumidityTopic; private final String
visibleLightTopic; private final String infraredLightTopic; private final String ultraVioletIndexTopic;
private volatile boolean isSunlightSensorTurnedOn = false; private volatile boolean
isEarthHumiditySensorTurnedOn = false; public SensorsManager(final MqttAsyncClient asyncClient,
final String boardCommandsTopic, final String boardDataBaseTopic, final String encoding) {
this.boardCommandsTopic = boardCommandsTopic; this.boardDataBaseTopic = boardDataBaseTopic;
this.encoding = encoding;

this.asyncClient = asyncClient;

// Build and save the topic names that we will use to publish the data from the sensors
this.earthHumidityTopic = this.boardDataBaseTopic.concat(SENSOR_EARTH_HUMIDITY); final String
sunlightDataBaseTopic = boardDataBaseTopic.concat(SENSOR_SUNLIGHT); this.visibleLightTopic =
String.join(TOPIC_SEPARATOR, sunlightDataBaseTopic, "visiblelight"); this.infraredLightTopic =
String.join(TOPIC_SEPARATOR, sunlightDataBaseTopic, "ir"); this.ultraVioletIndexTopic =
String.join(TOPIC_SEPARATOR, sunlightDataBaseTopic, "uv"); }

The constructor receives the asynchronous client (asyncClient), the topic that we will use for the
commands (boardCommandsTopic), the prefix for the topic that we will use to publish the data for the
sensors (boardDataBaseTopic), and the encoding we are using for strings in the payload (encoding).
The constructor saves all these received arguments in fields with the same names. Then, the constructor
builds and saves the topic names that we will use to publish the data from the sensors.

The following lines declare the publishMessage and publishProcessedCommandMessage methods
within the SensorsManager class. The code file for the sample is included in the
mgtt_essentials_gaston_hillar_04 folder, in the Java®2/src/SensorsManager . java file: public
IMgttDeliveryToken publishMessage(final String topic, final String textForMessage,
IMgqttActionListener actionListener, final int qos, final boolean retained) {

byte[] bytesForPayload;
try {

bytesForPayload = textForMessage.getBytes(this.encoding); return asyncClient.publish(topic,
bytesForPayload, qos, retained, null, actionListener); } catch (UnsupportedEncodingException e) {

e.printStackTrace();

return null;

} catch (MqttException e) {
e.printStackTrace();

return null;

}
}

public void publishProcessedCommandMessage (final String sensorName, final String command) {
final String topic = String.format("%s/%s", boardCommandsTopic, sensorName); final String
textForMessage = String.format(

"%s successfully processed command: %s", sensorName, command); publishMessage(topic,
textForMessage, null, 0, false); }

The following lines declare the three methods required by the Mgt tCallback interface within the
SensorsManager class: connectionLost, deliveryComplete and messageArrived. The code file for
the sample is included in the mqtt_essentials_gaston_hillar_04 folder, in the
Java02/src/SensorsManager.java file: @Override

public void connectionLost(Throwable cause) {

cause.printStackTrace();

}

@Override
public void deliveryComplete(IMqttDeliveryToken token) {
}

@Override

public void messageArrived(String topic, MqttMessage message) throws Exception {
String messageText = new String(message.getPayload(), encoding); System.out.println(
String.format("Topic: %s. Payload: %s", topic,

messageText));

/I A message has arrived from the MQTT broker // The MQTT broker doesn't send back // an
acknowledgment to the server until // this method returns cleanly

if ('topic.startsWith(boardCommandsTopic)) {
// ' The topic for the arrived message doesn't start with boardTopic return;

}

final boolean isTurnOnMessage = messageText.equals("TURN ON"); final boolean isTurnOffMessage =
messageText.equals("TURN OFF"); boolean isInvalidCommand = false;

boolean isInvalidTopic = false;

/I Extract the sensor name from the topic String sensorName = topic.replaceFirst(boardCommandsTopic,
""M).replaceFirst(TOPIC_SEPARATOR, ""); switch (sensorName) {

case SENSOR_SUNLIGHT:

if (isTurnOnMessage) {

isSunlightSensorTurnedOn = true; } else if (isTurnOffMessage) {
isSunlightSensorTurnedOn = false; } else {

isInvalidCommand = true;

}

break;

case SENSOR_EARTH_HUMIDITY:

if (isTurnOnMessage) {

isEarthHumiditySensorTurnedOn = true; } else if (isTurnOffMessage) {

isEarthHumiditySensorTurnedOn = false; } else {

isInvalidCommand = true;

}
break;

default:

isInvalidTopic = true;

}

if (lisInvalidCommand && !isInvalidTopic) {
publishProcessedCommandMessage(sensorName, messageText); }

}

The following lines declare the 1oop method and finish the declaration of the SensorsManager class.
The code file for the sample is included in the mqtt_essentials_gaston_hillar_04 folder, in the
Java@2/src/SensorsManager . java file: public void loop() {

if (isEarthHumiditySensorTurnedOn) {

// Retrieve the humidity level from the sensor // In this case, we just generate a random number final int
humidityLevel = ThreadLocalRandom.current().nextInt(1, 101); // Publish the message to the appropriate
topic publishMessage(earthHumidityTopic, String.format("%d %%", humidityLevel), null, 0, false); }

if (isSunlightSensorTurnedOn) {

// Retrieve the visible light level from the sensor // In this case, we just generate a random number final
int visibleLight = ThreadLocalRandom.current().nextInt(201, 301); // Publish the message to the
appropriate topic publishMessage(visibleLightTopic, String.format("%d Im", visibleLight), null, 0,
false);

// Retrieve the infrared light level from the sensor // In this case, we just generate a random number final
int infraredLight = ThreadLocalRandom.current().nextInt(251, 281); // Publish the message to the
appropriate topic publishMessage(infraredLightTopic, String.format("%d Im", infraredLight), null, 0,
false);

// Retrieve the ultraviolet (UV) index from the sensor // In this case, we just generate a random number
final int ultraVioletIndex = ThreadLocalRandom.current().nextInt(0, 16); // Publish the message to the
appropriate topic publishMessage(ultraVioletIndexTopic, String.format("%d UV Index",
ultraVioletIndex), null, 0, false); }

}

Working with last will and testament in Java

Now, we will take advantage of the last will and testament feature. We will create the main class named
Main that uses the asynchronous API of the Paho Java Client, the previously coded SecurityHelper
class to establish an encrypted connection with an MQTT server, and the SensorsManager class to
process the received messages with commands. The code will configure a message to be sent as the last
will when the connection is lost. In addition, the Main class will call the loop method for a
SensorsManager instance to publish messages with data retrieved from the sensors when they are turned
on with the appropriate commands.

We will split the code for the Main class into many code snippets to make it easier to understand each
code section. The following lines declare all the necessary imports. The code file for the sample is
included in the mqtt_essentials_gaston_hillar_04 folder, in the Java®2/src/Main. java file:

package com.packt.mgttessentials.Sensors02;
import java.io.UnsupportedEncodingException;
import javax.net.ssl.SSLSocketFactory;

import org.eclipse.paho.client.mqttv3.IMgttActionListener;

import org.eclipse.paho.client.mqttv3.IMqttToken;

import org.eclipse.paho.client.mqttv3.MgttAsyncClient;

import org.eclipse.paho.client.mqttv3.MgttConnectOptions;

import org.eclipse.paho.client.mqttv3.MgttException;

import org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence;

The following lines start the declaration of the Main class and show the first lines of the static main
method. You have to replace the value for the mqttServerHost with the IP address for the Mosquitto
server or any other MQTT server you might decide to use. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the Java®2/src/Main. java file:

public class Main {

public class Main {
private final static String BOARD_NAME = "location@01";
private final static String ENCODING_FOR_PAYLOAD = "UTF-8",;

public static void main(String[] args) {

final String boardCommandsTopic =
String.format("commands/boards/%s", BOARD_NAME);

final String boardDataBaseTopic = String.format("data/boards/%s/",
BOARD_NAME) ;

final String boardStatusTopic = String.format("status/boards/%s",
BOARD_NAME) ;

final String commandsTopicFilter = String.format("%s/+",
boardCommandsTopic);

try {
final MqttConnectOptions mgttConnectOptions = new

MgttConnectOptions();
mgttConnectOptions.setMqttVersion(

MgttConnectOptions.MQTT_VERSION_3_1 1);
mgttConnectOptions.setKeepAliveInterval/(
MgttConnectOptions.KEEP_ALIVE_INTERVAL_DEFAULT);

// Last will message configuration
final String lastWillMessageText = "OFFLINE";
byte[] bytesForPayload;
try {
bytesForPayload =
lastWillMessageText.getBytes(ENCODING_FOR_PAYLOAD);
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
return;
}
mgttConnectOptions.setWill(boardStatusTopic,
bytesForPayload, 2, true);

MgttDefaultFilePersistence filePersistence = new
MgttDefaultFilePersistence();

// Replace localhost with the IP for the Mosquitto server
// or other MQTT server
final String mqttServerHost = "localhost";

final int mqttServerPort = 8883;

final String mqgttServerURI = String.format(
"ssl://%s:%d",
mqttServerHost,
mgttServerPort);

// In case you don't need security:
// final int mqttServerPort = 8883;
// final String mqttServerURI = String.format(

// "ftp://%s:%d",
// mgttServerHost,
// mgttServerPort);

// We can specify our own client id
// instead of calling the generateClientId method
//final String mqttClientId =
MgttAsyncClient.generateClientId();
final String mqttClientId = BOARD_NAME;
MgttAsyncClient mgttAsyncClient = new MgttAsyncClient(
mqttServerURI,
mgttClientId,
filePersistence);

First, the code builds many strings with the topics that we will use to subscribe and publish messages.
Then, the code creates an instance of the org.eclipse.paho.client.mqttv3.MqttConnectOptions
class named mqttConnectOptions, which stores the values for the different options we can configure
when we want to connect with an MQTT broker. If we used the default parameters, we would work with
MQTT version 3.1. We want to work with MQTT version 3.1.1, and therefore, we specify
MgttConnectOptions.MQTT_VERSION 3 1 1 as an argument for
mgttConnectOption.setMqttVersion.

Then, the code configures the last will message by calling the mgqttConnectOptions.setWill method
with the topic, the bytes for the payload, the QoS level set to 2, and true as the value for the retained
flag. This way, if the client connection is interrupted or the Java application stops running, the configured
last will message will be sent to the specified topic indicating that the board is offline.

The next line creates an instance of the
org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence class named
filePersistence. In this case, we want to use file persistence to store the messages because we will
publish some messages with a QoS level of 2. We use the default directory for the file that persists the
messages. You can explore the different configurations based on your needs.

Then, the code declares the values for the variables that specify the MQTT server host name or IP,
mgttServerHost, the MQTT server port, mqttServerPort, and the MQTT server URI,
mqttServerURI, built with the values of the other two variables. The next line sets the board name as the
value for the mqttclientId variable. This way, we specify a fixed value for our client ID.

The next line creates an instance of the org.eclipse.paho.client.mqttv3.MqgttAsyncClient class
named mqttAsyncClient with the MQTT server URI, the previously specified client ID, and the file

persistence option as the arguments. This instance will be the entry point for our MQTT asynchronous
client.

The following lines continue the declaration of the public static main method. You have to replace the
value, /Users/gaston/certificates, inthe certificatesPath string with the path to the
java_certificates directory you created. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the Java®2/src/Main. java file:

// Replace /Users/gaston/certificates with the path
// in which you saved the certificate authority file,
// the client certificate file and the client key
final String certificatesPath =
"/Users/gaston/certificates";
final String caCertificateFileName =
String.join(java.io.File.separator, certificatesPath, "ca.crt");
final String clientCertificateFileName =
String.join(java.io.File.separator, certificatesPath, "device00l.crt");
final String clientKeyFileName =
String.join(java.io.File.separator, certificatesPath, "device001.key");
// In case you don't need security,
// you don't need to create an SSLSocketFactory instance
SSLSocketFactory socketFactory;
try {
socketFactory = SecurityHelper.createSocketFactory(
caCertificateFileName,
clientCertificateFileName,
clientKeyFileName);
} catch (Exception el) {
el.printStackTrace();
return;
}
// In case you don't need security, you don't have to call
// the setSocketFactory method

mgttConnectOptions.setSocketFactory(socketFactory);

SensorsManager sensorsManager = new
SensorsManager (mgttAsyncClient,
boardCommandsTopic, boardDataBaseTopic,
ENCODING_FOR_PAYLOAD);

mgttAsyncClient.setCallback(sensorsManager);

The first lines of code are similar to the code we analyzed in the previous example. The last lines create
an instance of the SensorsManager class named sensorsManager and then call the
mgttAsyncClient.setCallback method with this instance as an argument.

The following lines end the public static main method and the Main class. The code file for the sample is
included in the mqtt_essentials_gaston_hillar_04 folder, in the Java®2/src/Main. java file:

// In this case, we don't use the token
IMgttToken mqttConnectToken = mgttAsyncClient.connect(
mgttConnectOptions,
null,
new IMqttActionListener () {
@Override
public void onSuccess(IMqttToken
asyncActionToken) {
System.out.println(
String.format(
"Successfully
connected"));
try {
// In this case, we
don't use the token

IMgttToken
subscribeToken = mgttAsyncClient.subscribe(
commandsTopicFilter,
2,
null,
new

IMgttActionListener() {

@Override

public void onSuccess(IMqttToken asyncActionToken) {
System.out.println(

String.format(

"Subscribed to the %s topic with QoS: %d",
asyncActionToken.getTopics()[0],
asyncActionToken.getGrantedQos()[0]));

// Publish a retained message indicating the board is online

sensorsManager.publishMessage(boardStatusTopic, "ONLINE", null, 2, true);

}
@Override
public void onFailure(IMqttToken asyncActionToken,
Throwable exception) {
exception.printStackTrace();
}

1)
} catch (MgttException e) {

e.printStackTrace();

}

@Override
public void onFailure(IMqttToken
asyncActionToken,
Throwable exception) {
// This method is fired when an
operation failed
exception.printStackTrace();

1)

while (true) {
sensorsManager.loop();

try {
Thread.sleep(1000);

} catch (InterruptedException e) {
System.err.format(
"Sleep interruption: %s",
e.toString());

}
}
} catch (MgttException e) {
e.printStackTrace();

}
}

The code calls the mqttAsyncClient.connect method withmgttConnectOptions and an anonymous
class that implements the IMgttActionListener interface as the value for the callback argument. The
connect method requires the callback argument of the
org.eclipse.paho.client.mgttv3.IMqttActionListener type. The anonymous class provides
implementations for the following two methods required by the IMgttActionListener interface:
onSuccess and onFailure.

The onSuccess method prints a message indicating that the client has successfully connected with the

MQTT server and then calls the mqttAsyncClient.subscribe method with commandsTopicFilter as
the argument, which specifies the topic filter to subscribe to, 2 for the argument that specifies the desired
QoS level, null for the usercontext argument, and another anonymous class that implements the
IMgttActionListener interface as the value for the callback argument. The anonymous class provides
implementations for the previously explained two methods required by the IMgttActionListener
interface: onSuccess and onFailure.

The code in the onSuccess method prints a message indicating that the client has subscribed to the topic
filter and the granted QoS level. Then, the code calls the sensorsManager . publish method to publish a
retained message, indicating that the board is online with a QoS level of 2.

After the code calls the mqttAsyncClient.connect method, the method runs a while loop forever. The
loop calls the sensorsManager . loop method to check the values for the flags that determine whether the
method must publish the values for the different sensors to the appropriate topics or not. Then, the loop
calls the Thread. sleep method to make the thread sleep for 1 second.

Publishing messages with commands to target
Sensors

Make sure the Mosquitto server or any other MQTT server you might want to use for this example is
running. Use your favorite Java IDE to run the example in any computer or build a . jar file with all the
dependencies included and launch it in any computer or device that you want to use as the MQTT client
with a command similar to the following line. In case you don't run the example in the same computer in
which you are running the MQTT server, remember to change the value for the mqttServerHost string in
the main method of the Main class. You must also copy the certificate files and the . jar file to the device.
The next line uses Sensors02-0.0.1-SNAPSHOT. jar as the JAR file for the previous example: java -jar
Sensors02-0.0.1-SNAPSHOT.jar

Now, follow these steps to use the MQTT.fx GUI utility to subscribe to many topics and publish messages
with commands to two topics to control the sensors.

1. Launch MQTT.fx and establish a connection with the MQTT server by following the steps you
learned in Chapter 2, Securing an MQTT Mosquitto Server.

2. Click Subscribe, click QoS 2,and enter status/boards/location001 inthe dropdown on the left-
hand side of the Subscribe button. Then, click the Subscribe button. MQTT.fx will display a new
panel on the left-hand side with the topic filter to which we have subscribed with QoS level 2 and a
message with ONLINE as a payload. We subscribed after the code that published this message was
executed. However, the message appears in our subscription because it was published with the
retained flag set to true. The following screenshot shows the message displayed in MQTT.fx after
we subscribe to the topic:

Publish | Subscribe | Scripts Broker Status Log

status/boards/location001 v roll TR,

status/boards/location001 1 status/boards/location001 1

Dump Messages LR Unsubscribe

status/boards/location001 1

QoS 2 07-02-2017 01:25:53.5153615
ONLINE

\ y JSON Hex Base64

* Enter data/boards/location001/# in the dropdown on the left-hand side of the Subscribe button.
Then, click QoS 0 and the Subscribe button. MQTT.fx will display a new panel on the left-hand side with
the topic filter to which we have subscribed with QoS level 0. No messages will appear that match this
topic filter because the Java application has the two sensors turned off and they aren't publishing data.

e Click Publish and enter commands/boards/location001/sunlight inthe dropdown on the left-hand
side of the Publish button.

e Click QoS 2 on the right-hand side of the Publish button.

» Enter the following text in the textbox below the Publish button: TURN ON. Then, click the Publish
button. MQTT.fx will publish the entered text to the specified topic. This way, the Java application will
turn on the sunlight sensor and it will start publishing data to the
data/boards/location@01/sunlight/uv, data/boards/location@01/sunlight/visiblelight,
and data/boards/location®01/sunlight/ir topics.

* Enter commands/boards/location@@1/earthhumidity inthe dropdown on the left-hand side of the
Publish button.

o Enter the following text in the textbox below the Publish button: TURN ON. Then, click the Publish
button. MQTT.fx will publish the entered text to the specified topic. This way, the Java application will
turn on the sunlight sensor and it will start publishing data to the
data/boards/location@@1/earthhumidity topic.

» Click Subscribe and you will see many messages that match the data/boards/location@01/# topic
filter. The following screenshot shows many of the messages received that match the topic filter after we
turned on the sensors through commands in messages:

Publish | Subscribe | Scripts Broker Status Log

data/boards/locationQ01/# v " Autoscro v

data/boards/location001/# 1679 data/boards/location001/sunlight/visiblelight 1674

data/boards/location001/#
Dump Messages Mute

data/boards/location001/sunlight/fir 1675

status/boards/location001 1 datafboards/location001/#

Dump Messages Mute

data/boards/location001/sunlight/uv 1676
data/boards/location001/#

data/boards/location001/earthhumidity 1677
data/boards/location001/#
datafboards/location001/sunlight/visiblelight 1678
data/boards/location001/#
data/boards/location001/sunlight/ir 1679
data/boards/location001/#

data/boards/location001/sunlight/uv 1680
data/boards/location001/#

data/boards/location001/sunlight/uv 1680
data/boards/location001/#

QoS0 07-02-2017 01:52:34.6754183

5 UV Index

l Plain] JSON Hex Base64

* (Click Publish and enter commands/boards/location01/sunlight inthe dropdown on the left-hand
side of the Publish button.

» Enter the following text in the textbox below the Publish button: TURN 0FF. Then, click the Publish
button. MQTT.fx will publish the entered text to the specified topic. This way, the Java application will
turn off the sunlight sensor and it will stop publishing data to the
data/boards/location@01/sunlight/uv, data/boards/location@01/sunlight/visiblelight,
and data/boards/location®01/sunlight/ir topics.

» Click Subscribe and you will see that only the messages for the
data/boards/location@01/earthhumidity topic are arriving and matching the
data/boards/location001/# topic filter. The following screenshot shows many of the messages
received that match the topic filter after we turned off the sunlight sensor through a command in a
message:

Publish | Subscribe | Scripts Broker Status Log

data/boards/location001/# v [toscroll N A

data/boards/location001/# 2545 data/boards/location001/earthhumidity 2540

data/boards/location001/#
Dump Messages Mute

S datafboards/location001/earthhumidity 2541
status/boards/location001 d data/boards/location001/#
Dump Messages ~ Mute (QEUEUIEEiEEY | data/boards/location001/earthhumidity 2542

data/boards/locationD01/#
data/boards/location001/earthhumidity 2543
data/boards/location001/#
datafboards/location001/earthhumidity 2544
data/boards/location001/#
datafboards/location001/earthhumidity 2545

data/boards/location001/#

datafboards/location001/earthhumidity 2546
data/boards/location001/#

data/boards/location001/earthhumidity 2546

data/boards/location001/#
QoS 0 07-02-2017 01:58:01.7081253

88 %

5 i y JSON Hex Base64

-

Go to the device and the window in which you executed the Java application. You will see the following
output: Successfully connected Subscribed to the commands/boards/location001/+ topic with QoS: 2
Topic: commands/boards/location001/sunlight. Payload: TURN ON Topic:
commands/boards/location001/sunlight. Payload: sunlight successfully processed command: TURN
ON Topic: commands/boards/location001/earthhumidity. Payload: TURN ON Topic:
commands/boards/location001/earthhumidity. Payload: earthhumidity successfully processed
command: TURN ON Topic: commands/boards/location001/sunlight. Payload: TURN OFF Topic:
commands/boards/location001/sunlight. Payload: sunlight successfully processed command: TURN
OFF

Press Ctrl+C to stop the execution of the program or use the appropriate command in case you are
running the Java application in your favorite IDE. The generated MQTT client will close the connection
with the MQTT server and the configured last will message will be sent to the
status/boards/location@01 topic.

Go back to MQTT.fx and click Subscribe. You will see that a message with OFFLINE as the payload has
arrived to the status/boards/locatione01 topic. The following screenshot shows the configured last
will message that has arrived in MQTT.fx:

Publish _Subscribe} Scripts Broker Status Log

status/boards/location001 -

data/boards/location001/# 2683 datafboards/location001/earthhumidity

s || data/boardsflocation001/#
Dump Messages Mute Unsubscribe SESERIRUA IO

datafboards/location001/earthhumidity

status/boards/location001 datajboards/location001/#

Dump Messages Mute (U0 | datafboards/location001/earthhumidity
data/boards/location001/#

data/boards/location001/earthhumidity
data/boards/location001/#

data/boards/location001/earthhumidity
data/boards/location001/#

data/boards/location001/earthhumidity
data/boards/location001/#

status/boards/location001

2682

2683

2684

2685

status/boards/location001

QoS 2
OFFLINE

07-02-2017 02:00:20.7220346

JSOMN

Hex

Base64

2685

Test your knowledge

1. The Eclipse Paho Java Client provides:
1. Only a blocking (synchronous) APL
2. Only a non-blocking (asynchronous) APL.
3. Both a blocking (synchronous) and a non-blocking (asynchronous) APL.

2. Inthe Paho Java API, an instance of Mgt tAsyncClient represents:
1. The synchronous MQTT client.
2. The asynchronous MQTT client.
3. The asynchronous MQTT message.

3. After the Mgt tAsyncClient instance establishes a connection with the MQTT server, which of the
following methods declared in the IMqttActionListener interface will be called?
1. onSuccess.
2. connectCallback.
3. onConnect.

4. After the MgttAsyncClient instance receives a message from one of the topic filters to which it has
subscribed, which of the following methods declared in the MgttCallback interface will be called?
1. onSuccess.
2. onMessage.
3. messageArrived.

5. Which of the following methods of an MgttConnectOptions instance allows you to set a last will
message?
1. setLastWillMessage.
2. setlLastWill.
3. setwill.

Summary

In this chapter, we analyzed the requirements to control sensors wired to different IoT boards with MQTT
messages. We defined the topics that we would use and the commands that would be part of the messages'
payloads to control sensors. We decided to take advantage of the last will and testament feature of MQTT.
Then, we worked with the Eclipse Paho Java Client to write Java code that connected a non-blocking
(asynchronous) MQTT client to the MQTT server.

We created a security helper class to establish a TLS secured connection and we worked with
asynchronous notifications and callbacks in Java. We subscribed to topics, understood how notification
events worked, and we wrote code that processed commands that interacted with sensors.

Finally, we worked with a GUI utility to interact with our Java application through MQTT messages. We
were able to turn the sensors on and off and retrieve data from them.

Now that we have understood how to use Java to work with MQTT, we will use MQTT over WebSockets
to control home automation with an HTML 5 web page, JavaScript, and Node.js, which is what we are
going to discuss in the next chapter.

Chapter 5. Controlling Home Automation in
JavaScript

In this chapter, we will write JavaScript code to control home automation with MQTT messages. We will
write code that will be able to run on web browsers. In addition, we will use Node.js to write code that
runs on IoT boards, receives MQTT messages and controls devices wired to the boards. We will:

Understand the requirements to control home automation with MQTT and WebSockets
Define the topics and commands to control home automation
Enable WebSockets for a Mosquitto server

Understand the Eclipse Paho JavaScript asynchronous client
Create an HTML 5 web page to control LEDs

Publish messages to target remote devices in JavaScript
Process the received messages in JavaScript

Work with WebSockets to connect to the MQTT server
Subscribe to topics in JavaScript

Process commands that interact with LEDs in Node.js

Run the home automation web application

Debug the home automation web application

Secure MQTT over WebSockets with TLS

Understanding the requirements

Now, we want to be able to control home automation in any web browser. Hence, we have to be able to
send and receive MQTT messages in these web browsers. There are no W3C standards for implementing
MQTT support in web browsers. No major web browser has implemented direct MQTT support.
Luckily, MQTT over WebSockets makes it possible for us to encapsulate MQTT messages on
WebSockets and use any modern web browser that supports WebSockets as a client for an MQTT server
that also provides support for WebSockets.

Tip

Mosquitto provides support for MQTT over WebSockets. However, we must enable this support by
making changes in the configuration file. In case you don't want to work with Mosquitto, you must make
sure that the MQTT server you use provides support for MQTT over WebSockets to work with this
example.

First, we will create a web page with HTML 5 and JavaScript code to generate an MQTT client that will
act as a publisher and subscriber. We will connect a JavaScript MQTT client to the MQTT server via
WebSockets, and we will generate commands to control lights with MQTT messages.

These commands will allow us to change the colors of many lights wired to different IoT boards that will
run JavaScript Node.js code to subscribe to topics and process the messages with the commands. In this
case, we will connect a Node.js MQTT client to the MQTT server via WebSockets, and we will process
the received commands. We want our JavaScript code to run on many platforms because we will use the
same code base to change the colors of lights that use the following IoT boards. It is possible to install
and run Node.js in all of these boards:

Raspberry Pi 3
Intel Edison
Intel Joule 570x
Intel Joule 550x

Each platform will work with different kinds of lights and other elements that we will control as part of
our home automation solution. However, we will focus on the basic features that will allow us to change
the colors of LEDs (Light Emitting Diodes) to keep our example simple and to stay concentrated on
MQTT over WebSockets. Then, we will be able to use this project as a baseline for other solutions that
require us to run code on an IoT board that runs JavaScript Node.js code, has to connect to an MQTT
server via WebSockets, and process commands.

The code that runs on the boards that have LEDs wired to them must be able to process commands
received in messages in a specific topic. We will use JSON strings in the payloads.

The client application, that is, the web page, must allow us to select the desired color for different LEDs
that might be connected to different boards. The client application doesn't need to know the board to
which each LED is wired. The JavaScript code in the web page will publish MQTT messages with JSON
strings to the topic for each LED. The client application must display the results of executing each

command. Each IoT board must publish a message to a specific topic whenever a command is
successfully executed.

Defining the topics and commands to control
home automation

We will use the following topic name to publish the commands for an LED:
home/control/leds/lednumber, where lednumber must be replaced with a unique numeric ID
assigned to an LED wired to a board. For example, if we assign 1 as the ID for an LED that is wired to an
Intel Joule 570x board, we will have to publish commands to the home/control/leds/1 topic and the
code that runs on this board will subscribe to this topic to receive messages with commands and react to
them.

Note that the topic name doesn't include details about the board and just focuses on the ID assigned to the
LED. This is a specific requirement because it is necessary to make it possible to change the board to
which the LEDs are wired without requiring edits in the client code. The client code doesn't have to know
anything about the boards. Hence, the code that runs on the IoT boards must subscribe to all the topics for
the different LEDs that they have wired. Of course, everything we have learned so far about MQTT, that
is, topics and filters, will provide you with many ideas on how to organize the topics. In this case, we are
just using one possible solution that is definitely not the best one but will allow us to learn how MQTT
works over WebSockets. The solution has been chosen for simplicity rather than scalability.

We will use the following topic name to make the IoT boards publish details about the successfully
executed commands: home/results/leds/lednumber, where lednumber must be replaced with a
unique numeric ID assigned to an LED wired to the board. For example, if we assign 5 as the ID for an
LED that is wired to a Raspberry Pi 3 board, the client that wants to receive information about
successfully processed commands has to subscribe to the home/results/leds/5 topic.

The commands will be sent in a JSON string with a key-value pair. Our example will support just one
command that allows us to set the color for an LED. The key will always be "color" and the value will
be the desired RGB (short for Red Green Blue) color as a hexadecimal string.

The following line shows an example of the payload for a command that makes an LED display the red
color:

{"Color": "FF0O0O"}
The following line shows an example of the payload for a command that makes an LED display the blue

color:

{"Color": "QOOOFF"}

We have all the necessary details to start coding with HTML 5, JavaScript, and Node.js.

Enabling WebSockets for a Mosquitto server

Now, we will configure Mosquitto to work with WebSockets. First, we will work with WebSockets
without TLS, and therefore, the communications between the client and Mosquitto through WebSockets
will be unsecure. This way, any client that knows the host name and port will be able to establish a
communication with the Mosquitto server.

In case you are running the Mosquitto server in a Terminal window in macOS or Linux, press Ctrl+C to
stop it. In Windows, stop the appropriate service.

Go to the Mosquitto installation directory and open the mosquitto.conf configuration file. In Chapter 2,
Securing an MQTT Mosquitto Server, we learned that it is a good practice to make a backup copy of the
existing mosquitto.conf configuration file before making changes to it. This way, we can easily roll
back to the previous configuration if something goes wrong.

In macOS, Linux, or Windows, add the following lines at the end of the configuration file:

listener 9001 0.0.0.0 protocol websockets

We specified the 9001 value for the 1istener option to make Mosquitto listen for incoming network
connections on port 9001. This port is a very common port number for MQTT over WebSockets.

The protocol option is the next line after we defined the new listener and specified websockets as the
desired protocol to use on port 9001. This way, we enable Mosquitto's support for MQTT over
WebSockets on port 9001.

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again with the same
mechanism we learned for Linux, macOS, and Windows in Chapter 1, Lightweight Messaging with
MQTT 3.1.1 and Mosquitto . The Mosquitto server will add WebSockets support on port 9001 to the
previously configured listener that will still work with MQTT with TLS on port 8883. It is very important
to understand that the certificates we configured for the listener that work on port 8883 do not apply to the
WebSaockets listener on port 9001. Each listener has its own TLS configuration. In this case, we aren't
using TLS for WebSockets on port 9001.

Testing WebSockets with the Eclipse Paho client
JavaScript utility

We will use the Eclipse Paho client JavaScript utility to generate a simple MQTT over WebSockets client
on a web browser. We will make this client subscribe to a topic and print all the messages it receives.
Follow the next steps:

1. Open a web browser in the same computer in which you are running the Mosquitto server and

navigate to http://www.ecli pse.org/paho/clients/js/utility .

Enter localhost in Host.

Enter 9001 in Port.

Make sure /ws is specified in Path.

Make sure the TLS checkbox is unchecked. The following screenshot shows the web page with the
appropriate values for the connection options:

ok WS

@ ® < 5] P www.eclipse.org/paho/clients/js/utility/ 2 (4] M] +

% eC“pse pahoo Components ~ Documentation ~ Community ~

Connection - Disconnected.

Host Port Client ID
localhost 9001 js-utility-QYdoo Connect
Path Username Password Keep-Alive Timeout TLS Clean Session
s 60 3 9
Last Will Topic QoS Retain Last Will Message

» Click Connect. The web page will display Connected to: localhost:9001/ws as, followed by the
Client ID that was automatically generated.

* Go to the Subscribe panel. Enter home/control/leds/1 in Topic, below Subscribe.

e Select 2 in the QoS dropdown below Subscribe. The following screenshot shows the Subscribe panel
with the appropriate values for the subscription options:

http://www.eclipse.org/paho/clients/js/utility

Subscribe

Topic home/control/leds/1

QoS 2

4pr

Subscribe Unsubscribe

Click the Subscribe button.

Go to the Publish Message panel. Enter home/control/leds/1 in Topic, below Publish Message.
Select 2 in the QoS dropdown below Publish Message.

Enter the following text in the Message textbox below Publish Message: {"Color": "FFAGA0"}.
The following screenshot shows the Publish Message panel with the appropriate values for the
message publication options:

Publish Message

Topic QoS Retain
home/control/leds/1 7. A Publish
Message

{"Color": "FFAOAQ"}

* Click the Publish button. The web page will use MQTT over WebSockets to publish the message. The
web page is a subscriber to the topic to which we published the message, and therefore, we will see the
message displayed in the Last Messages panel at the bottom of the page. The following screenshot shows
the Last Messages panel with the message that has arrived and matched the subscription's topic filter we
specified:

Last Messages

Topic Payload Time QoS
home/control/leds/1 {"Color": "FFAOAQ"} 2017-02-23T04:52:25.2447Z 2
History

Clear History
Topic Payload Time Qos

home/control/leds/1 {"Color": "FFAOAQ"} 2017-02-23T04:52:25.2447Z 2

With the configuration changes we have made to the Mosquitto server, any client that uses MQTT over
WebSockets will be able to establish a connection with Mosquitto, and subscribe and publish to topics.

Remember that with the configuration we are using, the data sent between the MQTT over WebSocket
clients and the MQTT server isn't encrypted.

Understanding the Eclipse Paho JavaScript
asynchronous client

In Chapter 4, Interacting with Sensors in Java, you learned that the Eclipse Paho project provides an
open source client implementation of MQTT, and you worked with its Java client. The project also
includes a JavaScript client, also known as the Paho JavaScript client or Eclipse Paho JavaScript client.
The web page for the Eclipse Paho project is http://www.eclipse.org/paho. The web page for the Eclipse
Paho JavaScript client is http://eclipse.org/paho/clients/js. This JavaScript client provides only a non-
blocking (asynchronous) APIL.

The previous web page uses the Eclipse Paho JavaScript client to allow us to subscribe to topic filters
and publish messages to topics. Now, we will use the same JavaScript client in a new web page.

Tip

In this case, you will download the plain library. Take into account that you can also consume the plain
library and the minified library from cdnjs.com, as explained in the previously mentioned web page for
this library.

The JavaScript client exposes a single object name in the global namespace. The global Paho.MQTT
module has a single public function named client. This function returns a Paho.MQTT.client object
based on the specified connection details.

The Paho JavaScript API is composed of the following two main objects:

® Paho.MQTT.Client: This object represents the asynchronous MQTT over WebSockets client and
allows us to specify the callbacks that notify the application when specific events occur, such as a
new message arriving and a connection being established with the MQTT server.

e Paho.MQTT.Message: This object encapsulates an MQTT message with its topic and its payload. It
is very important to understand that the Paho JavaScript API uses the destination name to refer to the
topic for a message.

http://www.eclipse.org/paho
http://eclipse.org/paho/clients/js

Creating an HTML 5 web page to control LEDs

First, we will create a new HTML 5 file called home_automation.html. The web page will also use a
pure JavaScript color picker: JSColor. The main web page for JSColor is http://jscolor.com . The
following lines show the code for the single web page for our web application. The code file for the
sample is included in the mqtt_essentials_gaston_hillar_05 folder, in the home_automation.html

file:

<html>
<head">
<script src="paho.javascript-1.0.2/mgttws31.js"></script">
<script src="jscolor-2.0.4/jscolor.js""></script>
<script src="home_automation.js""></script>
<title">MQTT over WebSockets Sample</title>
</head>

<body>
<div id="status"">Not connected with MQTT Server</div>
<div id="led-1">

Select color for LED #1

<input class="jscolor" onchange="APP.HomeAutomation.Manager.updatelLed(1,
this.jscolor)" value="FFFFFF">
<svg height="100" width="100">
<circle id="status-circle-led-1" cx="50" cy="50" r="40" stroke="black"
stroke-width="3" fill="#FFFFFF" />
</svg>
<div id="status-message-led-1">
</div>
</div>

<div id="led-2">

Select color for LED #2

<input class="jscolor" onchange="APP.HomeAutomation.Manager.updatelLed(2,
this.jscolor)" value="FFFFFF">
<svg height="100" width="100">
<circle id="status-circle-led-2" cx="50" cy="50" r="40" stroke="black"
stroke-width="3" fill="#FFFFFF" />
</svg>
<div id="status-message-led-2">
</div>
</div>

<div id="1led-3">

Select color for LED #3

<input class="jscolor" onchange="APP.HomeAutomation.Manager.updatelLed(3,
this.jscolor)" value="FFFFFF">
<svg height="100" width="100">
<circle id="status-circle-led-3" cx="50" cy="50" r="40" stroke="black"

http://jscolor.com/

stroke-width="3" fill="#FFFFFF" />
</svg>
<div id="status-message-led-3">
</div>
</div>

</body>
</html>

<script>

document .addEventListener ("DOMContentLoaded", function(event) {
APP .HomeAutomation.Manager.connect();

1)

</script>

The first lines load the following three scripts:

e mqttws31.js: This is the Paho JavaScript client script file

e jscolor.js: This is the JSColor script file

e home_automation.js: This is a script file that we will create later and that will declare the
APP.HomeAutomation.Manager object

The body section declares a div element whose id is status and will change its text when a connection
is successfully established with the MQTT server.

Then, the code declares three div elements with almost the same code: 1ed-1, 1led-2, and led-3. Each
div element represents an LED. In this case, we repeated the code and we just replaced the LED number
in the different parts of the code. However, in a real-life application, you will work with a framework
that will allow you to use templates to generate these pieces of code where just one identifier changes.
We want to keep things simple and use HTML 5 and JavaScript without any additional templates or
frameworks.

Each div that represents an LED declares an input element with the jscolor class that will display the
JSColor pure JavaScript color picker. When the user clicks or taps on this input element, a color picker
will be displayed, and a click on a tap or a color will fire the code specified for onchange. The
following line shows the code that runs for the first LED:

APP.HomeAutomation.Manager .updatelLed(1, this.jscolor)

The line calls the APP.HomeAutomation.Manager.updatelLed function with the LED identifier as an
argument (1) and a string with the selected color from the color picker (this.jscolor).

In addition, the div that represents an LED declares an SVG circle whose id is status-circle-led-,
followed by the LED identifier. Whenever the IoT board successfully updates the color for the LED and
publishes a status message, the web page will receive this message and update the fill color for the circle
with the color the user has chosen.

Finally, the div that represents an LED declares a div element whose id is status-message-1led-,

followed by the LED identifier. The web page will change its text indicating the color that has been set
for the LED in the IoT board.

The script element at the end of the code uses pure JavaScript to call the
APP.HomeAutomation.Manager.connect function once the page DOM (short for Document Object
Model) is ready for the JavaScript code to execute. In case you are working with jQuery, you can call this
function withina $(document).ready block. However, we want to keep the example with pure
JavaScript.

Note

In order to keep the example simple and focused on the code, we don't create a CSS file with styles for
the different elements and/or classes declared in the HTML 5 file.

Publishing messages to target remote devices in
JavaScript

Now, we will create a new JavaScript file named home_automation. js that will provide an
APP.HomeAutomation.Manager object with many strings, objects, and functions that we will use to make
it easy to establish a connection with MQTT over WebSockets. The functions will work with the Paho
JavaScript client.

We will split the code for the home_automation. js file in many code snippets to make it easier for us to
understand each code section. The following lines start the declaration of the
APP.HomeAutomation.Manager object. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_05 folder, in the home_automation. js file:

var APP = APP || {3};
var APP = APP || {};
APP.HomeAutomation = APP.HomeAutomation || {};

APP.HomeAutomation.Manager = {
ledCommandBaseTopic: "home/leds/",
ledResultBaseTopic: "home/results/leds/",

// Replace with the host name for the MQTT Server

host: "localhost",

// Replace with the port number for MQTT over WebSockets the MQTT Server

port: 90601,

clientId: "home-web-" + clientId: "home-web-" +
Math.random().toString(16).substr(2, 8),

mgttConnectOptions: {
timeout: 3,
// I want to use MQTT Version 3.1.1
mgttVersion: 4,
mgttVersionExplicit: true,
// For TLS security, you just need to set useSSL to True
// and install the necessary certificates
// useSSL: true,
useSSL: false,
cleanSession: true

iy

The previous code declares many variables that we will use within the functions declared in the
APP.HomeAutomation.Manager object. The mqttConnectOptions object specifies values for the
different options that we will use to establish a connection with the MQTT Server. We will pass this
object as an argument when we ask the Paho JavaScript client to connect with the MQTT server. We
specify the necessary values to work with MQTT version 3.1.1, use a clean session, and work with an
unsecured connection.

The following lines declare the updateLed, onConnectionLost, onMessageArrived, and
onMessageDelivered functions within the APP.HomeAutomation.Manager object and
createTrustManagerFactory. The code file for the sample is included in the

mqtt_essentials_gaston_hillar_05 folder, in the home_automation. js file:

updatelLed: function(ledId, jscolor) {
updatelLed: function(ledId, jscolor) {
console.log('I will send ' + jscolor + ' to LED #' + ledId);
var payload = {
"Color": jscolor.toString()

+;

payloadString = JSON.stringify(payload);

message = new Paho.MQTT.Message(payloadString);
message.destinationName = this.ledCommandBaseTopic + ledId;
message.qos = 0;

this.client.send(message);

3
onConnectionLost: function(responseObject) {

if (responseObject.errorCode !== 0)

console.log("onConnectionLost: " + responseObject.errorMessage);

Iy
onMessageArrived: function(message) {

console.log("Message arrived for topic: " + message.destinationName + ",

with the following payload: " + message.payloadString);
if

(!'message.destinationName.startswWith(APP.HomeAutomation.Manager.ledResultBaseTopic)

) {

return;
}
var ledNumber =
message.destinationName.replace(APP.HomeAutomation.Manager.ledResultBaseTopic, "");
var payload = JSON.parse(message.payloadString);
if (ledNumber && payload.Color) {
// Update the status for the LED that has successfully changed its
color
var statusLedDiv = document.getElementById("status-message-led-" +
ledNumber);
//statusLedDiv.style.backgroundColor = "#" + payload.Color;
statusLedDiv.textContent = "LED's color set to #" + payload.Color;
var statusLedCircle = document.getElementById("status-circle-led-" +
ledNumber);
statusLedCircle.style.fill = "#" + payload.Color;

iy

onMessageDelivered: function(message) {

iy

The updateLed function receives the LED ID and the RGB color as a hexadecimal string in the 1edId
and jscolor arguments. The code prints a message to the console log indicating that it will send the color
received in jscolor to the LED identifier received in the 1edId argument. Then, the code creates a new
object named payload with "Color" as the key and the result of jscolor.toString() as the value. The
next line calls the JSON.stringify function with payload as an argument to generate the JSON string
representation of the object and to save it in the payloadString variable.

Then, the code creates a new Paho.MQTT.Message instance named message with payloadString as an
argument. Then, the code sets the value of the message.destinationName attribute to
this.ledCommandBaseTopic, concatenated with the value received in the 1edId argument. The
destinationName attribute for a Paho.MQTT.Message instance specifies the topic to which a message
has to be published.

The default value for the QoS level for a message is 0. However, the next line sets the value for the
message.qos attribute to 0 to make it easy to change it if we want to work with other QoS levels.

The connect function that we will analyze later creates a Paho.MQTT.Client instance and saves it in
this.client. Finally, the updateLed function calls the this.client.send function with the message as
an argument to publish the MQTT message. The function runs with an asynchronous execution, and after
the message is successfully delivered, the Paho.MQTT.Client instance will execute the callback function
assigned to the client.onMessageDelivered attribute in the connect function. Remember that a
delivered message has a different meaning according to the QoS level that we use to publish a message.

The onConnectionLost function receives a responseObject object as an argument. This function prints
a message to the console log with the value of the responseObject.errorMessage attribute when the
responseObject.errorCode attribute is not equal to o.

Processing the received messages in JavaScript

The onMessageArrived function receives a Paho.MQTT.Message instance in the message argument. The
code prints a message to the console log indicating that a message has arrived with the destination topic
and the payload string included in the message.destinationName and message.payloadString
attributes.

Then, the code checks whether message.destionationName starts with
APP.HomeAutomation.Manager.ledResultBaseTopic to make sure that the message's destination topic
is the one defined for the results of the commands related to LEDs.

Note

In this case, the code only subscribes to the topic filters that we defined for publishing messages with the
results of the commands related to LEDs. However, we include this code to understand how we should
check the message.destinationName value when we subscribe to multiple topics that have different
goals.

Then, the code retrieves the LED ID from the message's topic and saves it in the ledNumber variable. The
code removes APP.HomeAutomation.Manager.ledResultBaseTopic from
message.destinationName to retrieve the LED ID. For example, if the value for
message.destinationName is "home/results/leds/1", the code replaces "home/results/leds/"
with an empty string and the resulting string, "1", is the LED ID.

The next line calls JSON.parse with message.payloadString as an argument to parse the message's
payload string and create an object from the received JSON string. The line saves the resulting object in
the payload variable. In this case, we don't validate the content of message.payloadString to make
sure that it is a valid JSON in order to keep the example simple.

Then, the code checks whether 1edNumber and payload.Color have values. If they have values, the
function uses pure JavaScript to update the status message and the circle's fill color for the LED that has
successfully changed its color. The code retrieves the element whose ID is equal to "status-message-
led" concatenated with 1ledNumber and saves it in the statusLedDiv variable. The next line changes the
value of the statusLedDiv.textContent attribute to indicate that the LED's color has been set to the
color indicated in payload.Color. This way, the user will know that the color that he selected in the
corresponding color picker in the web application has been set to the LED.

Finally, the code retrieves the element whose ID is equal to "status-circle-1led" concatenated with
ledNumber and saves itinthe statusLedCircle variable. The next line assigns "#" concatenated with
payload.Color to the statusLedCircle.style.fill attribute to use the same color that has been set
to the LED as the fill color for the circle that represents the LED in the web application.

The onMessageDelivered function receives a Paho.MQTT.Message instance in the message argument.
In this case, the function has an empty body because we don't want to run code when a message has been
successfully delivered.

Working with WebSockets to connect to the
MQTT server

The following lines declare the onConnectSuccess and connect functions within the
APP.HomeAutomation.Manager object. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_05 folder, in the home_automation. js file:

onConnectSuccess: function(invocationContext) {
onConnectSuccess: function(invocationContext) {
// Update the status text
document.getElementById("status").textContent = "Connected with the MQTT
Server";
// Now, subscribe to home/results/leds/1, home/results/leds/2 and
// home/results/leds/3
var client = invocationContext.invocationContext.client;
for (var 1 = 1; i < 4; i++) {
client.subscribe("home/results/leds/" + 1i);
}

iy

connect: function() {
this.client = new Paho.MQTT.Client(this.host, this.port, this.clientId);
this.client.onConnectionLost = this.onConnectionlLost;
this.client.onMessageArrived = this.onMessageArrived;
this.client.onMessageDelivered = this.onMessageDelivered;
// I want to receive the client in the onSuccess and onFailure callbacks
// Hence, I save a reference to this.client in invocationContext
this.mqgttConnectOptions.invocationContext = {
client: this.client
Iy
this.mqttConnectOptions.onSuccess = this.onConnectSuccess;
this.mqttConnectOptions.onFailure = function (message) {
console.log("Connection has failed: " + message);

}

this.client.connect(this.mgttConnectOptions);

+;

The connect function creates a new instance of Paho.MQTT.Client with this.host, this.port, and
this.clientId as the arguments that specify the host, the port number, and the MQTT client ID. The
code saves this new instance inthe this.client attribute. It is very important to understand that creating
an instance of Paho.MQTT.Client doesn't establish a connection with the MQTT server. The
Paho.MQTT.Client instance saved in this.client represents an MQTT over the WebSockets client,
and we will use it to communicate with an MQTT server.

When we declare a function, we pass this function as an argument to another function or method, or we
assign this function to an attribute and then some code calls this function at some time. This mechanism is
known as callback. The name callback is used because the code calls back a function at some time.

The previous code snippets declared three functions that we will specify as callbacks:

e onConnectSuccess: This function will be called when the MQTT client receives a CONNACK
response from the MQTT server, that is, when a connection has been successfully established with
the MQTT server.

e onConectionLost: This function will be called when the MQTT client has lost connection with the
MQTT server.

e onMessageArrived: This function will be called when the MQTT client receives a PUBLISH
message from the MQTT server. Whenever the MQTT server publishes a message based on the
subscriptions for the client, this function will be called.

e onMessageDelivered: This function will be called when the MQTT client successfully delivers a
message.

Then, the code sets the values for the following attributes that specify the callbacks that we want to be
executed when certain events occur: onConnectionLost, onMessageArrived, and
onMessageDelivered. We want to receive this.client inthe onSuccess and onFailure callbacks,
and therefore, the code creates an object with this.client as the value for the client attribute and
assigns this object to the this.mgttConnectOptions.invocationContext attribute. We will use
this.mgttConnectOptions as an argument for the this.client.connect method and the value
specified for the invocationContext attribute will be sent as an argument whenever the client calls the
callbacks specified for onSuccess and onFailure.

The next two lines set the values for the onSuccess and onFailure attributes for
this.mgttConnectOptions. Finally, the code calls the this.client.connect function with
this.mgttConnectOptions as an argument. This way, the code asks the MQTT over the WebSockets
client to establish a connection with the MQTT server specified in this.mgttConnectOptions.

Note

The connect function runs with an asynchronous execution, and therefore, it is a non-blocking call.

Subscribing to topics in JavaScript

After a connection has been successfully established with the MQTT server, the specified callback in the
this.mgttConnectOptions.onSuccess attribute will be executed, that is, the onConnectSuccess
function. This function receives an invocationContext object as an argument. The code can access the
object we assigned to this.mgttConnectOptions.invocationContext in
invocationContext.invocationContext. Thus, the code can retrieve the instance of
Paho.MQTT.Client, which established the connection with the MQTT server in the
invocationContext.invocationContext.client attribute.

First, the onSuccess function updates the status text to indicate that the client is connected with the
MQTT server. Then, the code saves Paho.MQTT.Client, which established the connection in the client
variable. Finally, a for loop calls the client.subscribe method three times to subscribe to the
following topics: home/results/leds/1, home/results/leds/2, and home/results/leds/3.

Tip

The Paho JavaScript client allows us to subscribe to a single topic filter at a time, and therefore, we have
to make three calls to client.subscribe with the desired topic filter as an argument.

In this case, we don't specify any subscribe options because we will work with the default QoS level of
0, and we don't want to specify any callbacks for the success or failure of the subscription. However, we
must take into account that it is possible to specify an object with additional subscription options as a
second argument to the subscribe function.

Processing commands that interact with LEDs in
Node.js

Now that we have coded the web application that will allow the user to change the colors of the three
LEDs, we will write the Node.js code that will control the LEDs wired to the IoT board. We can run the
Node.js code in any computer or IoT board capable of running Node.js version 6.9.x or higher.

For this example, we have specified in the requirements that the LEDs would be wired to the following
IoT boards: Intel Edison, Intel Joule 550x, Intel Joule 570x, and Raspberry Pi 3 boards. All of these
boards can have Node.js installed and run the sample code. However, we can also run the code on many
other IoT boards.

MQTT.js is an open source library that allows us to work with MQTT over WebSockets and direct
MQTT with Node.js. The library is very easy to use and will allow us to process the received messages
and publish the results by writing just a few lines of code. The web page for the MQTT.js library is

http://www.npmjs.com.

Make sure you have Node.js installed in the computer or IoT board you will use to run this example.
Then, run the following command to install MQTT.js. Note that the code is tested with MQTT.js 2.3.1.
Based on your Node.js installation directory in macOS or Ubuntu Linux, you might need to run the next
command with sudo as a prefix, that is, you might need to run sudo npm install mqgtt. In Windows,
you might need to run the next command in a Command Prompt executed as an Administrator:

npm install mqtt

You will see an output similar to the following lines. However, the results might be different based on the
modules that you may have already installed:

mqtt@z 3.1 node_modules/mqtt
— inherits@2.0.3
— reinterval@1.1.0
— xtend@4.0.1
—— minimist@1.2.0
—— split2@2.1.1 (through2@2.06.3)
—— concat-stream@1.6.0 (typedarray@0.0.6)
—— commist@1.0.0 (leven@1.0.2)
—— readable-stream@2.2.2 (buffer-shims@1.0.0, util-deprecate@1.0.2,
string_decoder@0.10.31, process-nextick-args@1.0.7, isarray@1.0.0, core-util-
is@1.0.2)
—— mqtt-packet@5.2.1 (bl@1.2.0, process-nextick-args@1.0.7)
—— end-of-stream@1.1.0 (once@1.3.3)
—— pump@1.0.2 (once@1.4.0)
—— websocket-stream@3.3.3 (through2@2.0.3, ws@1.1.2, duplexify@3.5.0)
— help-me@1.0.1 (callback-stream@l.1.0, through2@2.0.3, glob-stream@5.3.5)

Now, we will create a new Node.js JavaScript file named leds_control.js. The code file for the
sample is included in the mqtt_essentials_gaston_hillar_05 folder, inthe leds_control. js file:

http://www.npmjs.com

var mqtt = require("mqgtt")

// Replace with the host name for the MQTT Server

var host = "localhost"

// Replace with the port number for MQTT over WebSockets the MQTT Server
var port = 9001

// If we want to work with TLS, we must use the next line

// because we must use wss:// instead of ws://

//var client = mqtt.connect("wss://" + host + ":" + port)
var client = mqtt.connect("ws://" + host + ":" + port)
var ledCommandBaseTopic = "home/leds/"

var ledResultBaseTopic = "home/results/leds/"

client.on("connect", function () {
console.log("I'm connected to the MQTT server")
var topicFilters = Array()
for (i = 1; 1 < 4; i++) {
topicFilters.push(ledCommandBaseTopic + 1i)

}

client.subscribe(topicFilters)

})

client.on('message', function (topic, message) {
// message is Buffer
var payloadString = message.toString()
console.log("Message arrived for topic: " + topic + ", with the following
payload: " + payloadString)
if (!topic.startswWith(ledCommandBaseTopic)) {
return;
3
var ledNumber = topic.replace(ledCommandBaseTopic, "")
var payload = JSON.parse(payloadString)
if (ledNumber && payload.Color) {
console.log("I've changed LED #" + ledNumber + " to " + payload.Color)
3

var resultMessagePayload = {
"Color": payload.Color
}

resultMessagePayloadString = JSON.stringify(resultMessagePayload)

client.publish(ledResultBaseTopic + ledNumber, resultMessagePayloadString)
)

First, the code requires mqtt and saves the object in the mqtt variable. Then, the code declares the host

and port variables with the host name for the MQTT server and the port number for MQTT over

WebSockets. Then, the code calls the mqtt.connect function withws://, followed by the host value, a

colon (:), and the port number. If we want to connect to localhost on port 9001, the value for this

argument will be ws://1localhost:9001. We specify ws as the protocol name because we want MQTT.js
to create a WebSockets over MQTT connection. The results of this function are assigned to the client

variable.

Then, the code specifies the callback function assigned to the connect event. This function will be called

after the client successfully establishes a connection with the MQTT server.

Note

After the MQTT over WebSockets client establishes a connection with the MQTT server,
client.connected will evaluate to true.

The function creates a topicFilters array with all the topics to which the client wants to subscribe to in
order to control the three LEDs. Then, the code calls the client.subscribe function with
topicFilters as an argument to subscribe to the following three topics with a single subscription
request: home/leds/1, home/leds/2, and home/leds/3. In this case, we use the default options for the
subscription because we will work with the default QoS level of 0.

Then, the code specifies the callback function assigned to the message event. This function will be called
whenever the client receives a message from the MQTT server. The function receives the following two
arguments:

e topic: This specifies the topic for the received message
e message: This is the buffer for the received message's payload

The function saves the results of calling message.toString to the payloadString variable. It is
necessary to call toString for message because the received message argument is a buffer, and we want
to work with the received message's payload as a string.

The code prints a message to the console log indicating that a message has arrived with the destination
topic and the payload string included in the topic argument and the payloadString variable.

Then, the code checks whether topic starts with ledCommandBaseTopic to make sure that the message's
destination topic is the one defined for the commands related to LEDs.

Tip

In this case, the code only subscribes to the topic filters that we defined for publishing messages with the
commands related to LEDs. However, we include this code to understand how we should check the
topic value when we subscribe to multiple topics that have different goals with MQTT.js.

Then, the code retrieves the LED ID from the message's topic and saves it in the ledNumber variable. The
code removes ledCommandBaseTopic from topic to retrieve the LED ID. For example, if the value for
topic is "home/results/leds/3" the code replaces "home/results/leds/" with an empty string and
the resulting string, "3", is the LED ID assigned to ledNumber.

The next line calls JSON.parse with payloadString as an argument to parse the message's payload
string and create an object from the received JSON string. The line saves the resulting object in the
payload variable. In this case, we don't validate the content of payloadString to make sure that it is a
valid JSON in order to keep the example simple.

Then, the code checks whether 1edNumber and payload.Color have values. In case they have values, the
function prints a message on the console log indicating that it has changed the LED number indicated by
the ledNumber variable to the color specified in the payload.Color attribute. In this case, a real-life

application would interact with another Node.js library to change the color for an LED wired to the
board. However, we want to stay focused on MQTT over WebSockets.

Then, the code creates a new object named resultMessagePayload with "Color" as the key and
payload.Color as the value. The next line calls the JSON. stringify function with
resultMessagePayload as an argument to generate the JSON string representation of the object and save
itinthe resultMessagePayloadString variable.

Finally, the code calls the client.publish function with 1edResultBaseTopic concatenated with
ledNumber and resultMessagePayloadString as the topic and payload arguments. This way, the code
requests the MQTT over WebSockets client to publish a message to the appropriate topic with the results
of the execution of the command. In this case, the results indicate the color that has been set to the LED.

Running the home automation web application

Make sure the Mosquitto server or any other MQTT server you might want to use for this example is
running. If you aren't working with Mosquitto, make sure you have enabled support for MQTT over
WebSockets. Then, execute the following line to start the Node.js example in any computer or device that
you want to use as the MQTT client that will process the commands received to control the three LEDs:

node leds_control.js

The Node.js script will establish a connection with the MQTT server, subscribe to the topics to which the
web application will publish the commands for the three LEDs, and display the following message:

I'm connected to the MQTT server

Leave the Node.js script running on the computer or device in which you executed it. Use another
computer or device to open a web browser and open the home_automation.html web page. The web
page will display the following message at the top Connected with the MQTT Server after the
JavaScript code has established a successful connection with the MQTT Server. The web page will
display three textboxes with FFFFFF as the initial value for the color and a white background. Whenever
we click or tap on these textboxes, we will be able to select a new color for the specific LED. The three
circles on the right-hand side of each color picker will be updated to display the color that has been set to
the specific LED after the Node.js script processes the received commands based on the selection made
in the color picker. The following screenshot shows the initial render for the web page:

@ © @ [N MQTT over WebSockets Sam;
< C @ file:///Users/gaston/Documents/Packt/MQTT/Chapter05/home_automation.html

Connected with the MQTT Server

Select color for LED #1 FFFFFF

Select color for LED #2 FFFFFF

Select color for LED #3 FFFFFF

Tip

It is convenient to open the Developer Console for the web browser to see the messages that the
JavaScript code will print on the console. This way, you will understand what happens under the hood.

Click or tap on the textbox on the right-hand side of Select color for LED #1. The web page will display
a color picker, as shown in the following screenshot:

Connected with the MQTT Server

Select color for LED #1 FFFrFF

Select color for LED #2

|

Select color for LED #3 FFFFFF

Click or tap on a specific color. The background color for the textbox will change to the selected color
and the hexadecimal string that represents the RGB color will be displayed as the text.

Go to the window in which you are checking the results of the Node.js script, and you will see messages
similar to the following. The value for the Color key will be different based on your selection in the
color picker.

Message arrived for topic: home/leds/2, with the following payload:
{"Color":"ffffeo"}

I've changed LED #2 to ff0000

Message arrived for topic: home/leds/3, with the following payload:
{"Color":"00ffe0"}

I've changed LED #3 to ff0000

The Node.js script has received a message in the home/leds/1 topic with a JSON string as the payload,
which requests the color for LED #1 to be set to ff0000 (255 for red, O for green, and O for blue). The
script processes the command and changes LED #1 to the specified color.

Now, go to the web browser where you left the home_automation.html web page. The JavaScript code
will receive the message published by the Node.js script to the home/results/leds/1 topic, and it will
update the status message for LED #1 and the related circle's background color. The following screenshot
shows the web page that filled the circle for LED #1 with the selected red color:

Connected with the MQTT Server

Select color for LED #1
LED's color set to #0000

Select color for LED #2 FFFFFF

Select color for LED #3 FFFFFF

The following screenshot shows the messages displayed in the JavaScript Developer Console for the
Chrome browser rendering the web page:

@ @ Developer Tools - file:///Users/gaston/Documents/Packt/MQTT/ChapterO5/home_automation.html

[ﬂ Elements Console Sources Network Timeline Profiles » :

© V¥ top v Preserve log

I will send ff0000 to LED #1 home automation.js:26
Message arrived for topic: home/results/leds/1, home_automation.js:45
with the following payload: {"Color":"ff0000"}

> |

Now, use the color pickers for LED #2 and LED #3 to select two different colors for these LEDs. First,
the textbox for the color pickers will change their background colors and then the status messages and the
circles will change, as was the case when we selected a different color for LED #1. The following
screenshot shows the three LEDs with new colors and their circles updated as a result of the exchange of
MQTT messages over WebSockets. We are able to control many LEDs through a web page:

Connected with the MQTT Server

Select color for LED #1 R
LED's color set to #0000

Select color for LED #2 FFFF00
LED's color set to #tff00

Select color for LED #3 boFFo0
LED's color set to #00£f00

The following screenshot shows the messages displayed in the JavaScript Developer Console for the
Chrome browser rendering the web page:

| @ @ Developer Tools - file:///Users/gaston/Documents/Packt/MQT T/Chapter05/home_automation.html

[x ﬂ Elements Console Sources Network Timeline Profiles » :

© W top v Preserve log

I will send ff0000 to LED #1 home_automation.js:26
Message arrived for topic: home/results/leds/1, home automation.js:45
with the following payload: {"Color":"ff0000"}
I will send ffffo@ to LED #2 home_automation.js:26
Message arrived for topic: home/results/leds/2, home automation.js:45
with the following payload: {"Color":"ffffee"}
I will send 00ffo@ to LED #3 home automation.js:26
Message arrived for topic: home/results/leds/3, home automation.js:45
with the following payload: {"Color":"0offee"}

Go to the window in which you are checking the results of the Node.js script and you will see additional
messages similar to the following. The value for the Color key will be different based on your selections

in the color pickers.

Go to the window in which you are checking the results of the Node.js script and you will see messages
similar to the following. The value for the Color key will be different based on your selection in the color
picker:

Message arrived for topic: home/leds/1, with the following payload:
{"Color":"ffoe00"}
I've changed LED #1 to ff0000

The following screenshot shows two Terminal windows and Google Chrome running on a computer with
macOS. The Terminal on the upper-left corner is displaying an SSH terminal that is running the Node.js
script controlling the LEDs on an Intel Joule 570x board. That is, the board is running 1eds_control. js.
The window on the lower-left corner is rendering the web page. The Terminal on the right-hand side is
displaying the debug messages for a Mosquitto server that is running on the computer:

root@intel-corei7-64:~/1leds# echo 'Running code on Intel Joule 57@x board' B /leds/3
Running code on Intel Joule 57@x board 1488337888: Sending SUBACK to home-web-82fa2

root@intel-corei7-64:~/1leds# node leds_control.js 024 :
I'm connected to the MQTT server 1488337901: Received PUBLISH from home-web-8

Message arrived for topic: home/leds/1, with the following payload: {"Color":"f 2fa2024 (do, qo, ro, me, 'home/leds/1', ...

£0000"} (18 bytes))

: 1488337901: Sending PUBLISH to mgttjs_9451f6
I've changed LED #1 to ff@000 _) 75 (de, q@, r@, m@, 'home/leds/1', ... (18 b
Message arrived for topic: home/leds/2, with the following payload: {"Color":"f ytes))
fffee"} 1488337901: Received PUBLISH from mqttjs_945
I've changed LED #2 to ffffee 1f675 (d@, g@, r@, m@, 'home/results/leds/1'
Message arrived for topic: home/leds/3, with the following payload: {"Color":"@ , ... (18 bytes))
affoe"} 1488337901: Sending PUBLISH to home-web-82fa
I've changed LED #3 to 0@ffee 2024 (de, q@, r@, m@, 'home/results/leds/1',
u ... (18 bytes))

1488337925: Received PUBLISH from home-web-8
® @ 3 MQTT over WebSackets Sam % © 2fa2024 (de, g@, r@, m@, 'home/leds/2', ...
(18 bytes))
e C @ file:///Users/gaston/Documents/Packt/MQTT/Chapter05/home_automation.htmi ¥ |1433337925: Sending PUBLISH to mgttjs_945176
. 75 (de, q@, r@, m@, 'home/leds/2', ... (18 b
Connected with the MQTT Server i ytes))

1488337925: Received PUBLISH from mgttjs_945
'1f675 (d@, q@, r@, m@, 'home/results/leds/2'
, --. (18 bytes))

. 1488337925: Sending PUBLISH to home-web-82fa
Select color for LED #1 R {2024 (de, qo, re, me, 'home/results/leds/2',
LED's color set to #0000 (18 bytes))

f1488337936: Received PUBLISH from home-web-8
' 2fa2024 (de, q@, r@, m@, 'home/leds/3', ...

§(18 bytes))
1488337936: Sending PUBLISH to mgttjs_945116
.75 (do, q@, r@, m@, 'home/leds/3', ... (18 b

Select color for LED #2 errro0 “ytes))

LED's color set to #H00 11488337936: Received PUBLISH from mqttjs_945
1f675 (d@, q@, r@, m@, ‘'home/results/leds/3'
., ... (18 bytes))
1 1488337936: Sending PUBLISH to home-web-82fa
2024 (de, q@, re, m@, 'home/results/leds/3',

Select color for LED #3 [06FFo0. f ... (18 bytes))

LED's color set to #00ff00 I

The next screenshot shows a Terminal window running on the Raspbian operating system on a Raspberry
Pi 3 board. The Raspberry Pi 3 is running the Node.js script that controls the LEDs, that is,
leds_control.js:

' Menu‘ @ = e | i_’ @ ‘-pi@raspberfypi ~/ho.. ||@[H0me-Dmpbux]
- . ~/home automation, ElER

File Edit Tabs Help
:~/home_automation $ node leds_control.js
I'm connected to the MQTT server
Message arrived for topic: home/leds/l, with the following payload: {"Color":"
ff0000"}
I've changed LED #1 to ff0000
Message arrived for topic: home/leds/2, with the following payload: {"Color":"
00ffob"}
I've changed LED #2 to 00ffCGb
Message arrived for topic: home/leds/3, with the following payload: {"Color":"
bc45ff"}
i've changed LED #3 to hc45ff

Debugging asynchronous code with Chrome
Developer Tools (CDT) in JavaScript

Any modern web browser allows us to easily debug JavaScript code. Now, we will use Chrome
Developer Tools (CDT) to debug the asynchronous JavaScript code that runs in our web application. You
can perform the same tasks with other browsers; you will just need to follow different steps.

Make sure that you are using Chrome to render the home_automation.html web page. In Chrome, select
the Chrome menu located on the upper-right corner of the window and then select More Tools |
Developer Tools. Chrome will display a window or a panel with the developer tools. The tools can be
undocked into a separate window, docked to the bottom of the main window, or docked to the right of the
main window.

Click on the Sources tab, navigate to home_automation.js, and click on this JavaScript file. The source
code for the JavaScript file will be displayed.

You can easily establish breakpoints by clicking on the line numbers. Click on the line number for the first
line of code within the onMessageArrived function. Specifically, click on the following line of code:

console.log("Message arrived for topic: " + message.destinationName + ", with
the following payload: " + message.payloadString);

Now, go to the web browser window where you left the home_automation.html web page. Use the
color picker for LED #1 to select a different color for this LED. After you select a new color, the Node.js
script will send a message with the color that has been set to the LED, the onMessageArrived function
will be called, and the debugger will hit the breakpoint we have set. The following screenshot shows the
debugger hitting the breakpoint:

[MQTT over WebSockets Sam x

€«

e @

x 4l

Sources

Console

Elements

onM A d: funct

return;

// Update the status

}
}l

62 i

{} Line 47, Column 20

| @ file:///Users/gaston/Documents/Packt/MQT T/Chapter05/home_automation.htm|

Paused in dehu_gger >

var ledNumber = message.destinationName.replace(APP.HomeAutomation.Manager.ledResultBaseTopic,
var payload = JSON.parse(message.payloadString);
if (ledNumber && payload.

Network Timeline Profiles Application Security Audits

[la home_automation.js X home_automation.html

ey,

Color) {
for the LED that has successfully changed its color

var statusLedDiv = document.getElementById("status-message-led-" + ledNumber);
//statusLedDiv.style.
statusLedDiv.textContent = "LED's color set to #' + payload.Color;

var statusLedCircle = document.getElementById("status-circle-led-" + ledNumber);
statusLedCircle.style.fill = “#" + payload.Color;

backgroundColor = "#" + payload.Color;

onMessageDelivered: function(message) {

Developer Tools - file:///Users/gaston/Documents(Packt/MQTT/Chapter05/home_automation.htmi

O]

ST S § ve @ () Async
(anonymous) mattws31.js:167

¥ Scope

¥ Local

ledNumber: undefined

» message: Message
payload: undefined
statuslLedCircle: undefined
statusLedDiv: undefined

» this: ClientImpl

> Global Window
¥ Breakpoints

¥ home_automation.js:45
console. log("Message arrived for..

» XHR Breakpoints
v DOM Breakpoints

You can use the Scope panel on the right-hand side of the debugger to check the values for the different

local variables. For example, you can inspect the message argument. You can press F10 to step over the
next function call and check the messages printed with console. log calls on the Console tab. Press F8
to resume script execution until any other breakpoint is hit.

The usage of the debugger makes it easier to understand when the callbacks are executed and takes
advantage of the interactive Console to dive deep into all the fields and properties of the different objects
that the Paho JavaScript API provides.

Securing MQTT over WebSockets with TLS

So far, we have been working with MQTT over WebSockets without TLS. We can change the
configuration and make simple edits to the code to work with MQTT over WebSockets with TLS and
enable encrypted communications.

In Chapter 2, Securing an MQTT Mosquitto Server , we secured our Mosquitto server, and therefore, we
can use the digital certificates we have created. However, it is very important to know that self-signed
certificates require more steps to be installed as trusted certificates in the different operating systems that
run the diverse web browsers that can use MQTT over WebSockets.

In this chapter, we saved the following files in a directory called certificates. We will use these file
names as a baseline for a sample configuration.

e ca.crt: Certificate authority certificate file
e device00l.crt: Client certificate file
e device001.key: Client key

In order to work with WebSockets over TLS and enable encrypted communications, it is necessary to
follow the next steps:

1. Configure the MQTT server to use WebSockets over TLS. In Mosquitto, it is necessary to specify the
values for cafile, certfile, and keyfile settings in the Mosquitto configuration file after the
definition of the listener with the WebSockets protocol. Then, it will be necessary to restart the
MQTT server.

2. Add the certificate authority certificate file (ca.crt) as a trusted certificate to the operating system
or web browser. In macOS, it is necessary to add the certificate authority certificate file to Keychain
Access to be able to use it. In addition, it is necessary to follow all the steps to make the web
browser trust the certificate authority certificate file when we work with self-signed certificates. It is
necessary to follow the required procedure for any computer or device that will establish a
connection with the MQTT server, including the IoT boards.

3. Set the value for the useSsL attribute to true in the connection options object we pass as an
argument to the connect function in the Paho JavaScript client. In the previous code example, you
must replace useSSL: false withuseSSL: true inthe code that declares the
mgttConnectOptions object.

4. When you use the Eclipse Paho client JavaScript utility, you must specify /wss in Path instead of
/ws. In addition, you must make sure the TLS checkbox is activated.

5. Replace ws with wss in the string that you pass as an argument for MQTT.js in Node.js. In the
previous example, you must replace var client = mgtt.connect("ws://" + host + ":" +
port) withvar client = mgtt.connect("wss://" + host + ":" + port).

In macOS, Linux, or Windows, we add the following lines at the end of the mosquitto.conf
configuration file.

listener 9001 0.0.0.0

protocol websockets

In order to make MQTT over WebSockets use TLS, we must add many lines after the previous lines. It is
very important that the lines are placed after the previous lines. In Chapter 2, Securing an MQTT
Mosquitto Server, you learned that it is a good practice to make a backup copy of the exiting
mosquitto.conf configuration file before making changes to it. This way, we can easily roll back to the
previous configuration if something goes wrong.

In macOS or Linux, we must add the following lines at the end of the configuration file and make sure that
we replace /usr/local/etc/mosquitto/certificates with the full path to the certificates directory
we created within the Mosquitto installation folder:

cafile /usr/local/etc/mosquitto/certificates/ca.crt
certfile /usr/local/etc/mosquitto/certificates/server.crt
keyfile /usr/local/etc/mosquitto/certificates/server.key

In Windows, add the following lines at the end of the configuration file and make sure that you replace
C:Program Files (x86)mosquittocertificates with the full pathto the certificates directory
we created within the Mosquitto installation folder:

cafile C:\Program Files (x86)\mosquitto\certificates\ca.crt

certfile C:\Program Files (x86)\mosquitto\certificates\server.crt
keyfile C:\Program Files (x86)\mosquitto\certificates\server.key

The cafile option specifies the full path for the file that provides a PEM-encoded certificate authority
certificate file: ca.crt.

The certfile option specifies the full path for the file that provides a PEM-encoded server certificate:
server.crt.

Finally, the keyfile option specifies the full path for the file that provides a PEM-encoded server
keyfile: server .key.

After you make all the changes, the application will be working with MQTT over WebSockets with TLS,
and only the web browsers and operating systems that use the certificate authority certificate file will be
able to establish a communication with the Mosquitto server.

Test your knowledge

1. The Eclipse Paho JavaScript client provides:
1. Only a non-blocking (asynchronous) APL
2. Only a blocking (synchronous) APIL.
3. Both a blocking (synchronous) and a non-blocking (asynchronous) APL.

2. Inthe Paho JavaScript API, the Paho.MQTT.Client object represents:
1. The synchronous MQTT over WebSockets client.
2. The asynchronous MQTT over WebSockets client.
3. The asynchronous MQTT over TCP client (no WebSockets).

3. After the Paho.MQTT.Client instance establishes a connection with the MQTT server, the callback
assigned to which of the following attributes of the connectOptions object passed as an argument
to the connect function will be called?

1. connectCallback.
2. onSuccess.
3. onConnect.

4. After the Paho.MQTT.Client instance receives a message from one of the topic filters to which it
has subscribed, the callback assigned to which of the following attributes of the connectoOptions
object passed as an argument to the connect function will be called?

1. onMessageReceived.
2. messageReceivedCallback.
3. onMessageArrived.

5. MQTT.js is an open source library that allows us to work with:
1. Both MQTT over WebSockets and direct MQTT with Node.js.
2. Only MQTT over WebSockets with Node.js.
3. Only direct MQTT with Node.js.

Summary

In this chapter, we analyzed the requirements for controlling LEDs wired to different IoT boards with
MQTT messages over WebSockets. We defined the topics that we would use and the commands that
would be part of the message's payloads to set the colors for the LEDs.

Then, we created an HTML 5 web page combined with JavaScript and the Eclipse Paho JavaScript
asynchronous client to control LEDs. We wrote code to publish messages to target remote devices in
JavaScript, and we were able to process the received messages to provide feedback to the user.

We worked with MQTT.js to write a Node.js script to process the commands that simulated the
interaction with LEDs on different IoT boards. We were able to run the home automation web application
and understand how all the pieces worked together by exchanging MQTT over WebSockets messages. We
debugged JavaScript asynchronous code with Chrome Developer Tools to understand the code that the
Paho JavaScript client executes when a new message arrives. Finally, we understood the necessary steps
to work with MQTT over WebSockets with TLS.

Now that we have understood how to use JavaScript and Node.js to work with MQTT over WebSockets,
we will use this protocol to interact with actuators by using the Swift programming language, which is
what we are going to discuss in the next chapter.

Chapter 6. Interacting with Actuators in Swift

In this chapter, we will write an iOS app in Swift 3 to control actuators with MQTT messages. In
addition, we will use Node.js to write code that runs on IoT boards, receives MQTT messages, and
controls motors wired to the boards. We will:

Understand the requirements to interact with actuators in Swift
Define the topics and commands to control actuators

Install the CocoaMQTT client library

Understand the CocoaMQTT client in Swift 3

Connect to the MQTT server and subscribe to topics in Swift
Publish messages to target actuators in Swift

Process commands that interact with actuators in Node.js

Run the iOS app that controls an actuator with MQTT

Run the home automation web application

Debug events in Swift

Understanding the requirements

In the previous chapters, you learned how MQTT works in detail. We understood how to establish a
connection between an MQTT client and an MQTT server. You learned what happens when you subscribe
to topic filters and when a publisher sends messages to specific topics. In this chapter, we will use
MQTT over TCP again, and we won't use MQTT over WebSockets.

Now, we will use Swift, specifically Swift 3, as our main programming language to generate MQTT
clients that will act as publishers and subscribers. We will connect an iOS app as an MQTT client to the
MQTT server, and we will process simple commands to control actuators with MQTT messages and
display status messages received from the boards that control the actuators.

In this case, we want to create a simple iOS app that we will use at home, and therefore, we won't be
working with TLS at all. Then, we will code a Node.js script that will run on the boards that have
actuators wired to them. In the previous chapter, we worked with the MQTT.js open source library to use
MQTT over WebSockets. However, this library also allows us to work with direct MQTT with Node.js.
Hence, we will use this library again to work with MQTT over TCP instead of MQTT over WebSockets.
The library is very easy to use and will allow us to process the received messages and publish the results
by writing just a few lines of code. The following is the web page for the MQTT.js library:
https://www.npmjs.com/package/mgqtt . In the previous chapter you learned how to install this library.

We can code to run on many platforms because we will use the same code base to control sensors that use
the following IoT boards:

Raspberry Pi 3
Raspberry Pi 2 Model B
Inte] Edison

Inte] Galileo Gen 2

Intel Joule 570x

Intel Joule 550x

Each platform will work with different kinds of actuators. However, we will focus on the basic features
to keep our example simple and to stay focused on MQTT. Then, we will be able to use this project as a
baseline for other solutions that require us to run code on an IoT board that runs a Node.js script to use
MQTT over TCP, has to connect to an MQTT server, and has to process commands.

The code that runs on boards with actuators wired to them must be able to process commands received in
messages in a specific topic. We will use strings with short commands in plain English in the payloads.

We will write a client iOS app in Swift to control one actuator and display the results of turning the
actuator on or off. Each IoT board must publish a message to a specific topic whenever a command is
successfully executed.

https://www.npmjs.com/package/mqtt

Defining topics and commands

We will use commands/boards/boardname/actuators/actuatorname as the topic name to publish the
commands for the actuators wired to an IoT board, where boardname must be replaced with a unique
name assigned to a board and actuatorname must be replaced with a unique name assigned to an
actuator. For example, if we assign inteledison01 as the name for an Intel Edison board and motore1
as the name for a motor controlled with this board, we will have to publish the commands to the
commands/boards/inteledison@l/actuators/motoro1 topic, and the code that runs on this board
will subscribe to this topic to receive messages with commands and react to them. In fact, the board can
subscribe to commands/boards/inteledison@1/actuators/+ to receive messages with commands for
all the actuators wired to the board named inteledison01.

The commands will be sent as strings in plain English. We will have just two valid commands:

e TURN ON: Turn on the actuator
e TURN OFF: Turn off the actuator

The following line shows an example of the payload for the command that turns on an actuator:

TURN ON

We will use status/boards/boardname as the topic name to make the boards publish the results of the
execution of the received commands, where boardname must be replaced with a unique name assigned to
a board. For example, if we assign raspberrypi301 as the name for a Raspberry Pi 3 board, the iOS
client app will have to subscribe to the status/boards/raspberrypi301 topic and the Node.js script
that runs on this board will publish, to this topic, the results of the execution of each command.

When an actuator is turned on, the board must publish a message string indicating the actuator name
followed by a message that says that the actuator has been turned on. When an actuator is turned off, the
board must publish a message string indicating the actuator name followed by a message that says that the
actuator has been turned off.

We have all the necessary details to start coding with Swift and then with Node.js. First, we will develop
a simple iOS app that can control an actuator, based on the previously explained requirements. Then, we
will write a Node.js script that will run on a board and will process the commands generated in the iOS

dapp.

Enabling connections without TLS for a
Mosquitto server

Now, we will configure Mosquitto to allow us to establish unsecured connections on port 1883, as it is
possible with the default configuration. Take into account that this configuration is not recommended in a
production environment and we just make it to work with a simpler configuration in an example that is
only going to be executed on our LAN.

In case you are running the Mosquitto server in a Terminal window in macOS or Linux, press Ctrl+C to
stop it. In Windows, stop the appropriate service. If you are running the Mosquitto server as a service in
Linux, run the following command to stop the service:

sudo service mosquitto stop

Go to the Mosquitto installation directory and open the mosquitto.conf configuration file. In Chapter 2,
Securing an MQTT Mosquitto Server, you learned that it is good practice to make a backup copy of the
existing mosquitto.conf configuration file before making changes to it. This way, we can easily roll
back to the previous configuration if something goes wrong.

In macOS, Linux, or Windows, add the following lines at the end of the configuration file:
listener 1883 protocol mqtt

We specified the 1883 value for the 1istener option to make Mosquitto listen for incoming network
connections on port 1883. This port is the default one for MQTT without TLS.

The protocol option is the next line, after we defined the new listener, and specifies MQTT as the desired
protocol to use on port 1883. This way, we enable Mosquitto's support for MQTT over TCP on port 1883
while we still have MQTT over WebSockets on port 9601 and MQTT with TLS on port 8883. Again, we
don't want this configuration in a production environment and we are only using it in our LAN.

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again with the same
mechanism that you learned for Linux, macOS, and Windows in Chapter 1, Lightweight Messaging with
MQITT 3.1.1 and Mosquitto. The Mosquitto server will add MQTT without TLS support on port 1883 to
the previously configured listeners that will still work with MQTT with TLS on port 8883 and with
MQTT over WebSockets on port 9001. It is very important to understand that the certificates we
configured for the listener that work on port 8883 and the certificates that work on port 9001 do not apply
to the MQTT listener on port 1883. Each listener has its own TLS configuration. In this case, we aren't
using TLS for MQTT on port 1883.

Installing the CocoaMQTT client library to
create a new iOS app

The CocoaMQTT client library is an open source MQTT version 3.1.1 client library for iOS and macQOS,
which is written in Swift 3. This client library provides a non-blocking (asynchronous) API. The GitHub

page for this client library is https://github.com/emqtt/CocoaMQTT .
Tip

You can use the CocoaMQTT client library to develop iOS and macOS apps with Swift 3. You will need
a Mac computer and Xcode 8 or greater to run the example.

The easiest way to create a new Xcode project that uses this API is to use the CocoaPods dependency
manager for Swift. In case you don't work with CocoaPods, you can easily install it following the detailed
instructions included on its main web page, that is, https://cocoapods.org .

Once you have CocoaPods installed in macOS, you are ready to create a simple iOS app, based on the
Single View Application template with Xcode.

Navigate to File | New | Project... in Xcode. Click iOS at the top of the Choose a template for your new
project dialog box. Select Single View Application and click on Next, as shown in the following
screenshot:

https://github.com/emqtt/CocoaMQTT
https://cocoapods.org

Choose a template for your new project:

m watchOS tvOS macOS Cross-platform @ Filter
Application
| E‘ | - . 00 : * see)
Single View Game Master-Detail Page-Based Tabbed
Application Application Application Application
oa ’ g) '
oo
Sticker Pack iMessage
Application Application
Framework & Library
L A A
e | L}
= SN
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library

Enter ControlActuators in Product Name, select Swift in language, and select Universal in Devices,
as shown in the next screenshot. This way, we will create an app that can run on iPad, iPod, and iPhone
devices. Then, click on Next:

Choose options for your new project:

Product Name: ControlActuators
Team: Gaston Hillar (Personal Team) 2
Organization Name: Packt

Organization Identifier: packtpub.com

Bundle Identifier: packtpub.com.ControlActuators
Language: Swift 5
Devices: Universal T

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous

Select the desired folder in which you want to create the new project folder, make sure that Don't add to
any project or workspace is selected in the Add to drop-down list if this option is shown in the dialog
box, and click on Create. Xcode will create the new project and all the related files. The following
screenshot shows the project navigator located on the left-hand side of the Xcode window:

%

O ® > ﬁﬁ% ControlActuators) g iPhone 7 Plus

1 = Q A © = b B

A4 @ ControlActuators

v ControlActuators
= AppDelegate.swift

FT

+ | ViewController.swift
Main.storyboard
1 Assets.xcassets
LaunchScreen.storyboard
=/ Info.plist
> ControlActuatorsTests

> Products

Now, let's take a look at the initial code for the two Swift source files included in the ControlActuators
module:

e AppDelegate.swift: This declares the AppDelegate class, and it is the entry point to our
application
e VviewController.swift: This declares the viewController class

The following lines show the initial code for the AppDelegate.swift source file that declares the
AppDelegate class without the comments that the template includes in each method:

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?
func application(_ application: UIApplication, didFinishLaunchingWithOptions

launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
return true

func applicationWillResignActive(_ application: UIApplication) {
func applicationDidEnterBackground(_ application: UIApplication) {
func applicationWillEnterForeground(_ application: UIApplication) {
func applicationDidBecomeActive(_ application: UIApplication) {

func applicationWillTerminate(_ application: UIApplication) {

The @UIApplicationMain attribute included at the top of the declaration of the AppDelegate class
indicates that the class is designated as the delegate of the shared UIApplication object in any iOS app.
The AppDelegate class is a subclass of the UIResponder class and conforms to the
UIApplicationDelegate protocol. The class declares a window stored property of the UIwindow type
optional (UIwindow?) and six instance methods. All the methods receive an application argument of the
UIApplication type, which is another subclass of UIResponder. The application argument will
always be the same instance of UIApplication that represents the current iOS app, that is, our app. The
application method receives a second argument named launchOptions, which provides a dictionary
with keys indicating the reason that your app was launched for. This method is the only one that has code
and just returns true.

Tip

By default, Swift 3 externalizes the first parameter. All the methods that receive an application
argument of the UTApplication type in the previous code suppress the externalization of the argument
label for the first parameter by adding an underscore (_) followed by a space before the parameter label
(application) in each method's declaration. This way, the code generates methods that we can call
without specifying the argument label for the first parameter, that is, with the default behavior that the
previous Swift versions used. The CocoaMQTT library follows the same approach and adds an
underscore (_) followed by a space before the first parameter labels in each method's declaration. It is
very important to know this because CocoaMQTT is written in Swift 3 and you might think it uses the
default behavior for Swift 3.

The following lines show the initial code for the viewController.swift source file that declares the
ViewController class without the comments that the template includes in each method:

import UIKit
class ViewController: UIViewController {

override func viewDidLoad() {

super.viewDidLoad ()

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
}

}

The viewController class is a subclass of the UTviewController class and overrides two
parameterless instance methods: viewDidLoad and didReceiveMemoryWarning. Both methods include a
line of code that calls the method with the same name in its superclass.

It is important to take into account that the UTViewController class, that is, the superclass for
ViewController is a subclass of the UIResponder class and conforms to the following protocols:
NSCoding, UIAppearanceContainer, UITraitEnvironment, UIContentContainer, and
UIFocusEnvironment.

Now, close the project we just created in Xcode, and quit Xcode.

Open a Terminal window and go to the folder in which the ControlActuators.xcodeproj file was
created. Run the following command to ask CocoaPods to generate a Podfile file for the current
directory. We will modify this file later to specify the dependencies for our project and finally install
them with CocoaPods:

pod init

After you run the previous command, CocoaPods will create a file named Podfile. Use your favorite
editor to add the following highlighted lines to this file and save the changes:

Uncomment the next line to define a global platform for your project
platform :ios, '9.0'

target 'ControlActuators' do

Comment the next line if you're not using Swift and don't want to use dynamic
frameworks

use_frameworks!

Pods for ControlActuators
pod 'CocoaMQTT', '~>1.0.11'

target 'ControlActuatorsTests' do
inherit! :search_paths
Pods for testing

end

end

Run the following command to install the project dependencies according to the previously modified
Podfile file. We specified that our project requires CocoaMQTT version 1.0.11 or greater. The
following command will install all the required dependencies for CocoaMQTT and then it will install
this library:

pod install

After CocoaPods downloads and installs all the necessary dependencies, you will see output similar to
the following lines:

Analyzing dependencies

Downloading dependencies

Installing CocoaAsyncSocket (7.5.1)

Installing CocoaMQTT (1.0.11)

Installing MSWeakTimer (1.1.0)

Generating Pods project

Integrating client project

[!] Please close any current Xcode sessions and use "ControlActuators.xcworkspace"
for this project from now on.

Sending stats

Pod installation complete! There is 1 dependency from the Podfile and 3 total pods
installed.

After the dependencies are installed, CocoaPods will generate a new workspace for the
ControlActuators project named ControlActuators.xcworkspace. Always open this workspace

instead of the project.

Now, launch Xcode and open the ControlActuators.xcworkspace workspace. The following
screenshot shows the project navigator located on the left-hand side of the Xcode window. Notice that the
workspace has two projects: ControlActuators and Pods. The Pods project includes the CocoaMQTT
library and its dependencies. You can easily check the source code for the different files that compose the
CocoaMQTT library. The following screenshot shows the project navigator located on the left-hand side
of the Xcode window with the two projects:

® 00 =3 A ControlActuators) i@ iPhone 7 Plus

0 = Q A ©

v & ControlActuators

= =

¥ | | ControlActuators
= AppDelegate.swift
2 ViewController.swift
. Main.storyboard
0 Assets.xcassets

. LaunchScreen.storyboard

= Info.plist
> ControlActuatorsTests
» | | Products
» | | Pods
» | Frameworks
v & Pods
b Podfile
» | Frameworks
V¥ | | Pods

> CocoaAsyncSocket
Vv, CocoaMQTT
h CocoaMQTT.h
2 CocoaMQTTFrame.swift
2 CocoaMQTTMessage.swift
» | Support Files
» | MSWeakTimer
» | | Products
» | Targets Support Files

Building the UI for the iOS app that will control
an actuator

Click on Main.storyboard in the Project Navigator on the left-hand side of the Xcode window. The
editor will switch to a design view that displays how the view will look. Click on View Controller under
View Controller Scene. Make sure that you see the Utilities pane on the right-hand side and check the
values for Identity Inspector. In order to do so, select View | Utilities | Show Identity Inspector or
press Command + Option + 3. The value for Class will be ViewController under Custom Class, as
shown in the following screenshot:

@

[

BERQAOEDE

¥ & ControlActuators

ControlActuators

& ControlActuators | [iPhone 7 Plus

M < L ControlActuators

¥ View Controller Scene

View Controller

s MppDelegate.swift
= ViewController. swift
Main.storyboard
Assets xcassets

LaunchScreen.storyboard

Top Layout Guide
Battom Layout Guide
View

First Responder

Exit

Storyboard Entry Point

ControlActuators | Build Succeeded | Yesterday at 11:52 PM

Co..tors Mai...ard Mai...se) » [5] View Contraller Scene

View Controller
Custom Class
Class
Module
Identity
Storyboard ID

Restoration ID

L @ T [@

ViewController

Info.plist
Use Storyboard ID
» [ControlActuatorsTests

The previously introduced viewController class is the custom class associated with the View
Controller tab in the main storyboard for the iOS app. We will add code to this class later.

Now, we want to add and connect a simple Ul element that will allow us to easily turn on and turn off a
motor, specifically, a UISwitch instance. A switch displays an element that shows the Boolean state of a
value. We can tap the control to toggle the value.

Make sure that the Object Library tab is visible in Library View, which Xcode displays in the bottom
half of the Utilities pane on the right-hand side. You just need to click on the Show the Object Library
button at the top of the bottom half. Click on the Filter textbox located at the bottom and type Switch.
Object Library will display all the objects that contain Switch, and the only one is Switch, as shown in
the following screenshot:

Document

Label
X
Object ID UDI-0Z-PCd
Lock Inherited - (Nothing) w
Notes = = = | = | — |L]{lL2]] ¥

O {1 @ (=

Switch - Displays an element showing the boolean state of
a value. Allows tapping the control to toggle the value.

HE (@) switch o

Drag Switch from the previously shown list to the rectangle that defines the view in the preview. Align
the new element to the right-hand side. This way, we will have a Switch component on the view in the

main storyboard, as shown in the following screenshot. Note that the class is UISwitch:

gn < & ControlActuators Co...ors Ma...ard Ma...se)) [5] Vie..ne Vie...ller View Switch O ® T 3 ©
v [Z] View Controller Scene Custom Class
v View Controller — Class | V)
Top Layout Guide Module |~]

Bottom Layout Guide
v View Identity
Switch
] First Responder
| Exit
Storyboard Entry Point

Restoration ID

User Defined Runtime Attributes

Key Path Type Value

+

Document

We added a Switch component on the view. Now, we have to expose the component to make it accessible
through code in the previously analyzed viewController class.

Navigate to View | Assistant Editor | Show Assistant Editor in the Xcode menu or simply click on the
button with two intersecting circles in the upper-right corner (the second button). Xcode will display the
source code for the ViewController class on the right-hand side of the view preview for the main
storyboard.

Press the Ctrl key and hold it while you drag the recently added Switch component from the view to the
blank line after the viewController class declaration. Xcode will display a line and a tooltip with the
following legend at the position to which you are dragging the mouse: Insert Outlet, Action, or Outlet
Collection. Release the Ctrl key, and Xcode will display a pop-up dialog box asking us for a name for the
new property and IBOutlet that it will create. Enter motorswitch in the Name textbox, make sure that
UlISwitch is selected in the Type dropdown, and then click on Connect:

N

=

Connection | Outlet < import UIKit
Object View Controller import CocoaMQTT
Name = motorSwitch class ViewController: UIViewController {
Type | UlSwitch V] override fur}c viewDidLoad(} {
super.viewDidLoad()
Storage | Weak // Do any additional setup after loading
Cancel Connect the view, typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be
recreated.

After we click on the Connect button, the following highlighted line will appear within the
ViewController class body. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder: class ViewController:
UlViewController { @IBOutlet weak var motorSwitch: UISwitch!

The new line uses the @IBoutlet decorator to indicate the outlet connection. The line declares a
motorSwitch stored property as a weak reference to an implicitly unwrapped optional uISwitch. The
weak keyword indicates Swift to use a weak reference, which allows the possibility of the object that the
property points at to become nil and avoids retain cycles.

The exclamation mark (!) after the UISwitch class name indicates that Xcode wants Swift to treat
motorSwitch as an implicitly unwrapped optional UISwitch. This way, the option will be automatically
unwrapped whenever the property is used. However, if it points to nil, it will trigger a runtime error.

You will notice there are two small circles on the left-hand side of the new line of code. If you let the
cursor hover over this small icon, Xcode will highlight the Switch component in the view connected to
this property. If you click on the icon, Xcode will display a tooltip with the story board name,
Main.storyboard, and the related component, Motor Switch, as shown in the following screenshot:

B M) B v.e v.r View Motor Switch | B2 < @) Automatic)) ViewController.swift ViewController -+ X

import UIKit
import CocoaMQTT

class ViewController: UIViewController {
B Main.storyboard — @) Motor Switch ?:)Ltih: UISwitch!
' super.viewDidLoad() -
// Do any additional setup after loading
the view, typically from a nib.
}

. override func didReceiveMemoryWarning() {
' super.didReceiveMemoryWarning()

// Dispose of any resources that can be
recreated.

We can easily interact with the Switch component through the recently added motorSwitch property in
our ViewController class.

Now, we want to add and connect another simple Ul element that will allow us to easily display the status
message we will receive from the board after we turn on or turn off the motor with the previously added
switch. We will add a Label instance. A label displays a variably sized amount of static text. Of course,
we are creating a very simple Ul to stay focused on MQTT. You will be able to use this example as a
baseline and generate a better user experience, combining a great Ul with MQTT messages.

Click on Main.storyboard in the Project Navigator on the left-hand side of the Xcode window. The
editor will switch to a design view that displays how the view will look. Click on View Controller under

View Controller Scene. Make sure that you see the Utilities pane on the right-hand side and check the
values for Identity Inspector.

Make sure that the Object Library tab is visible in Library View. You just need to click on the Show the
Object Library button at the top of the bottom half. Click on the Filter textbox located at the bottom and
type Label. Object Library will display all the objects that contain Label, and the only one is Label.

Drag Label from the list to the rectangle that defines the view in the preview. Align the new element to
the left-hand side and below the previously added switch. This way, we will have a Label component on
the view in the main storyboard. Note that the class is UILabel. Extend the width for the label to reach the
right-hand side of the view, as shown in the next screenshot. We want to make sure that the label is
capable of displaying the messages we receive from the boards that process the commands, without
truncating the text:

v [Z] View Controller Scene (]

View Controller
Top Layout Guide -
Bottom Layout Guide

View
Motor Switch
L Label
First Responder
Exit
Storyboard Entry Point

g.abel E

ooo

We added a Label component on the view. Now, we have to expose the component to make it accessible
through code in the previously analyzed viewController class.

Navigate to View | Assistant Editor | Show Assistant Editor in the Xcode menu or simply click on the
button with two intersecting circles in the upper-right corner (the second button). Xcode will display the
source code for the ViewController class on the right-hand side of the view preview for the main
storyboard.

Press the Ctrl key and hold it while you drag the recently added Label component from the view to the
blank line after the viewController class declaration. Xcode will display a line and a tooltip with the
following legend at the position to which you are dragging the mouse: Insert Outlet, Action, or Outlet
Collection. Release the Ctrl key, and Xcode will display a pop-up dialog box asking us for a name for the
new property and IBOutlet that it will create. Enter statusLabel in the Name textbox, make sure
UlLabel is selected in the Type dropdown, and then click on Connect:

Connection | Outlet - import UIKit

D -
g-abel GO Object View Controller import CocoaMQTT
Name | statusLabel class ViewController: UIViewController {
Type |UlLabel B @IBOutlet weak var motorSwitch:
_ UISwitch!
Storage | Weak override func viewDidLoad() {

super.viewDidLoad()

// Do any additional setup after
loading the view, typically
from a nib.

Cancel Connect

}

override func
didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that
can be recreated.

After we click on the Connect button, the following highlighted line will appear within the
ViewController class body. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder: class ViewController:
UlViewController { @IBOutlet weak var statusLabel: UILabel! @IBOutlet weak var motorSwitch:
UISwitch!

The new line uses the @IBoutlet decorator to indicate the outlet connection. The line declares a
statusLabel stored property as a weak reference to an implicitly unwrapped optional UILabel.

We can easily interact with the Label component through the recently added statusLabel property in our
ViewController class.

Understanding the CocoaMQTT client in Swift 3

The CocoaMQTT client is very easy to use. First, it is necessary to import CocoaMQTT, create an instance
of the CocoaMQTT class, specify the MQTT connection configuration values, and indicate an instance of a
class that conforms to the CocoaMQTTDelegate protocol. We can call the methods for the created
CocoaMQTT instance to subscribe to topics and publish messages.

Let's take a look at the code that declares the CocoaMQTTDelegate protocol: @objc public protocol
CocoaMQTTDelegate { func mqtt(_ mqtt: CocoaMQTT, didConnect host: String, port: Int) func mqtt(_
mqtt: CocoaMQTT, didConnectAck ack: CocoaMQTTConnAck) func mqtt(_ mqtt: CocoaMQTT,
didPublishMessage message: CocoaMQTTMessage, id: Ulnt16) func mqtt(_ mqtt: CocoaMQTT,
didPublishAck id: Ulnt16) func mqtt(_ mqtt: CocoaMQTT, didReceiveMessage message:
CocoaMQTTMessage, id: Ulnt16) func mqtt(_ mqtt: CocoaMQTT, didSubscribeTopic topic: String) func
mqtt(_ mqtt: CocoaMQTT, didUnsubscribeTopic topic: String) func mqttDidPing(_ mqtt: CocoaMQTT)
func mqttDidReceivePong(_ mqtt: CocoaMQTT) func mqttDidDisconnect(_ mqtt: CocoaMQTT,
withError err: Error?) @objc optional func mqtt(_ mqtt: CocoaMQTT, didReceive trust: SecTrust,
completionHandler: @escaping (Bool) -> Void) }

To make a class conform to the CocoaMQTTDelegate protocol, we must code many methods named mqtt
that receive different arguments. The code we define in these methods with the same name will be
executed when certain events related to the MQTT client occur. The usage of the same name might be
confusing when we start working, but we can easily understand when each method will be executed by
checking the external name of the second argument. The following list explains when each of the methods
is executed based on the external name of the second argument. The first argument, named mqtt, is the
CocoaMQTT instance that represents the MQTT client, and we can use it to call the available methods for
the client:

e didConnect: The mgtt method that includes this argument will be executed after the client has
established a connection with the MQTT server. The method receives the host and the port for the
MQTT server in the host and port arguments.

e didConnectAck: The mqtt method that includes this argument will be executed after the connection
with the MQTT server has been acknowledged. The method receives the results of the connection
acknowledgment in the ack argument of the CocoaMQTTConnAck enum type. If ack is equal to
CocoaMQTTConnAck.accept, it means that the connection has been successfully accepted by the
MQTT server. It is convenient to subscribe to the necessary topic filters by writing the appropriate
code in this method. This way, whenever a connection has been accepted, the client will always
subscribe to the appropriate topic filters.

e didPublishMessage: The mqtt method that includes this argument will be executed after a message
has been published to a topic. The message argument is an instance of the CocoaMQTTMessage class.
We can use the message . topic and message.string properties to access the topic and the string
representation of the payload for the published message. The id argument provides the ID for the
message that we can use to track the publish acknowledgement event for the message.

e didPublishAck: The mqtt method that includes this argument will be executed after the client
receives the publish acknowledgement from the MQTT server for the message whose ID is specified

in the id argument.

e didReceiveMessage: The mqtt method that includes this argument will be executed after a message
that matches one of the topic filters to which the client has subscribed to has been received. The
message argument is an instance of the CocoaMQTTMessage class. We can use the message. topic
and message.string properties to access the topic and the string representation of the payload for
the received message. The id argument provides the ID for the message.

e didSubscribeTopic: The mgtt method that includes this argument will be executed after the client
has subscribed to the topic filter specified in the topic argument.

e didUnsubscribeTopic: The mqtt method that includes this argument will be executed after the
client has unsubscribed from the topic filter specified in the topic argument.

In addition, to make a class conform to the CocoaMQTTDelegate protocol, we must code the following
three methods:

e mqttDidPing: This method is executed after the MQTT client has sent the PINGREQ control packet to
the MQTT server.

e mgttDidReceivePong: This method is executed after the MQTT server has sent the PINGRESP
response to the MQTT client.

e mgttDidDisconnect: This method is executed after the MQTT client disconnects from the MQTT
server. The err argument is an optional instance that conforms to the Error protocol and specifies
the details of the error that generated the disconnection.

Connecting to the MQTT server and subscribing
to topics in Swift

Now, we will add code to the viewController class to make it conform to the CocoaMQTTDelegate
protocol. In addition, we will add code to configure the MQTT client and establish a connection with the
MQTT server. We will split the code for the viewController class into many code snippets to make it
easier to understand each code section. The following lines specify all the necessary imports, start the
ViewController class declaration, and create many static type properties, the mqttClient property, and
the configureMQTTAndConnect method. The following lines show the code for the viewController
class defined in the viewController.swift file. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder:

import UIKit
import CocoaMQTT

class ViewController: UIViewController, CocoaMQTTDelegate {
@IBOutlet weak var statuslLabel: UILabel!
@IBOutlet weak var motorSwitch: UISwitch!

static let motor@l1CommandTopic =
"commands/boards/inteledison@l1/actuators/motorol"

static let motor@1StatusTopic = "status/boards/inteledison@1"

static let turnOnCommand = "TURN ON"

static let turnOffCommand = "TURN OFF"

var mqttClient: CocoaMQTT!

func configureMQTTAndConnect() {

let clientID = "iOSMotorControl-" + String(ProcessInfo().processIdentifier)
// Replace with the host name for the MQTT Server
let host = "localhost"

// Replace with the port number for MQTT over TCP (without TLS)
let port = UInt16(1883)
mgttClient = CocoaMQTT(clientID: clientID, host: host, port: port)
mgttClient.username = ""
mgttClient.password = ""
mgttClient.keepAlive = 60
mgttClient.delegate = self
mgttClient.connect()

}

The configureMQTTAndConnect method generates a client ID for the MQTT client and saves it in the
clientID constant. The next lines define the host and port constants and create an instance of the
CocoaMQTT class named mgttClient with clientID, host, and port as the values for the arguments that
have the same names. Then, the code sets the values for the username, password, keepAlive, and
delegate properties. The code specifies self as the value for the mqttClient.delegate property to
specify that we want to use the current instance as the delegate that conforms to the CocoaMQTTDelegate
protocol. Finally, the code calls the mqttclient.connect method to make the MQTT client establish a

connection with the MQTT server.

The following lines show the changes in the viewDidLoad method and declare two methods that are
required to make the viewController class conformto the CocoaMQTTDelegate protocol. The
following lines show the code for the viewController class defined in the viewController.swift
file. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder:

override func viewDidLoad() {
super.viewDidLoad ()
configureMQTTAndConnect ()

}

func mqtt(_ mqtt: CocoaMQTT, didConnect host: String, port: Int) {
// Connection established with the MQTT Server
print("Connected with MQTT Server \(host):\(port)")

}

func mqtt(_ mgtt: CocoaMQTT, didConnectAck ack: CocoaMQTTConnAck) {
// Connection acknowledged
print("Connection acknowledged \(ack)rawValue: \(ack.rawValue)")
if ack == .accept {
// Subscribe to the motor@lStatusTopic topic with QoS 0
mqtt.subscribe(type(of: self).motor0@1StatusTopic, qos:
CocoaMQTTQO0S.qos0)

}
}

The viewDidLoad method calls the previously explained configureMQTTAndConnect method after it
calls the super.viewDidLoad method. This way, after the view is loaded, the app will configure the
MQTT client and establish a connection with the MQTT server.

The code in the mqtt method with didConnect as the external name of the second argument prints a
message to the debug output, indicating that the MQTT client is connected with the MQTT server with the
host and port received as arguments.

The code in the mqtt method with didConnectAck as the external name of the second argument prints a
message to the debug output, indicating that the connection has been acknowledged with the value
received in the ack argument. If the value for the ack argument is equal to CocoaMQTTConnAck.accept, it
means that the connection was accepted by the MQTT server and we can subscribe to the desired topic
filters. If this happens, the code calls the mqtt.subscribe method with the motoreistatusTopic type
property as the value for the topic argument and CocoaMQTTQO0S. qos0 as the value for the qos argument.
This way, the code requests the MQTT client to subscribe to the desired topic with a QoS level of 0.

The following lines declare the remaining methods that are required to make the viewController class
conform to the CocoaMQTTDelegate protocol and end the declaration of the class. The following lines
show the code for the viewController class defined in the viewController.swift file. The code file
for the sample is included in the mqtt_essentials_gaston_hillar_06/ControlActuators folder:

func mqtt(_ mqtt: CocoaMQTT, didPublishMessage message: CocoaMQTTMessage, id:

UInti6) {
print("Message published to topic \(message.topic) with payload \
(message.string!)")

}

func mgqtt(_ mqtt: CocoaMQTT, didPublishAck id: UInt16) {
print("Publish acknowledged with id: \(id)")

}

func mqtt(_ mqtt: CocoaMQTT, didReceiveMessage message: CocoaMQTTMessage, id:
UInti6) {
print("Message received in topic \(message.topic) with payload \
(message.string!)")
if (message.topic == type(of: self).motor@lStatusTopic) {
statusLabel.text = "\(message.string!)"
}
}

func mgqtt(_ mqtt: CocoaMQTT, didSubscribeTopic topic: String) {
print("Subscribed to \(topic)")
}

func mgtt(_ mqtt: CocoaMQTT, didUnsubscribeTopic topic: String) {
print("Unsubscribed from \(topic)")

}

func mqttDidPing(_ mqtt: CocoaMQTT) {

}

func mgttDidReceivePong(_ mqgtt: CocoaMQTT) {
}

func mgttDidDisconnect(_ mqtt: CocoaMQTT, withError err: Error?) {
print("Disconnected from the MQTT Server")

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()

}
}

Most of the methods just print a message to the debug output and some of them are declared with empty
code because we don't want to pay attention to those specific events. The code in the mqtt method with
didReceiveMessage as the external name of the second argument prints a message to the debug output
indicating that the MQTT client has received a message in a topic with the string representation of the
payload. Then, the code checks whether the value of the message . topic property matches the value of
the motoroi1StatusTopic type property. If these values match, the code sets the statusLabel. text
property to the string representation of the payload of the received message. This way, whenever the app
receives a status update from the board, the app updates the text displayed in the statusLabel label.

Publishing messages to target actuators in Swift

Whenever the user changes the value for the motorsSwitch switch, we want to send a message to request
the board to turn on or turn off the motor.

Click on Main.storyboard in the Project Navigator on the left-hand side of the Xcode window. The
editor will switch to a design view that displays how the view will look. Click on View Controller under
View Controller Scene, then click on View, and finally on Motor Switch.

Navigate to View | Assistant Editor | Show Assistant Editor in the Xcode menu or simply click on the
button with two intersecting circles in the upper-right corner (the second button). Xcode will display the
source code for the ViewController class on the right-hand side of the view preview for the main
storyboard.

Right-click on Motor Switch and Xcode will display a popup that includes the sent events and the
associated actions for this component, as shown in the next screenshot:

v [2] View Controller Scene

v View Controller

~|| Top Layout Guide Ww =

_ Bottom Layout Guide -
v View
_ | Motor Switch Motor Switch
| L | Status Label Triggered Segues
& First Responder sction
@ Esit Outlet Collections

gestureRecognizers
Sent Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Primary Action Triggered

— Storyboard Entry Point

Touch Cancel
Touch Down

Touch Down Repeat
Touch Drag Enter

Touch Drag Exit

Touch Drag Inside

Touch Drag Outside

Touch Up Inside

Touch Up Outside

Value Changed

Referencing Outlets

motorSwitch »* View Controller
New Referencing Outlet

Referencing Outlet Collections

New Referencing Outlet Collection

O O@®@ O0000OO0OO0OOOOOOO O O

Click and drag the circle on the right-hand side of Value Changed from the previously shown popup to
the blank line after the viewController class declaration. Xcode will display a line and a tooltip with
the following legend at the position to which you are dragging the mouse: Insert Action. Release the
mouse button, and Xcode will display a pop-up dialog box asking us for a name for the new method and
IBAction that it will create. Enter motorSwitchChanged in the Name textbox, make sure that UISwitch
is selected in the Type dropdown, and then click on Connect. The following screenshot shows the values
specified in the pop-up dialog:

v [} View Contraller Scene import UIKit
import CocoaMQTT
v View Controller

Top Layout Guide 3 s m:t‘?_l internal class ViewController :
Bottom Layout Guide e e contaler UIViewController, CocoaMQTTDelegate
v | |view Name | motorSwitchChanged i
Mot MctRe Suie RR UISwitch s @IBOutlet weak internal var

ST Y Triggered Segues
] action
¥ Outlet Collections Arguments | Sender
gestureRecognizers

SCULLEE v Sent Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Primary Action Triggered

Event | Value Changed : statuslLabel: UILabel!

@IBOutlet weak internal var
Cancel Connect motorSwitch: UISwitch!
static internal let
motor@lCommandTopic: String

static internal let
motor@1StatusTopic: String

Touch Cancel

Touch Down static internal let turnOnCommand:

String

Touch Down Repeat
Touch Drag Enter

Touch Drag Exit static internal let turnOffCommand:

String

Touch Drag Inside
Touch Drag Outside
Touch Up Inside
Touch Up Outside

internal var mgttClient: CocoaMQTT!
Value Changed internal func

Referencing Outlets configureMQTTAndConnect()

motorSwitch = View Controller

New Referencing Outlet override internal func viewDidLoad()
¥ Referencing Outlet Collections

Mew Referencing Outlet Collection internal func mqtt(_ mgtt:

CocoaMQTT, didConnect host:

After we click on the Connect button, the following highlighted line will appear within the
ViewController class body. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder: class ViewController:
UlViewController { @IBAction func motorSwitchChanged(_ sender: UISwitch) { }

The new line uses the @IBAction decorator to indicate the action connection. The line declares a
motorSwitchChanged method that receives the UISwitch instance whose value has changed in the
sender argument.

Now, we will add code to the recently added motorSwitchChanged method to send a message to request
the board to turn on or turn off the motor, based on the new value that the component has in the ison
property. The following lines show the new code for the method. The code file for the sample is included
inthe mqtt_essentials_gaston_hillar_06/ControlActuators folder: @IBAction func
motorSwitchChanged(_ sender: UISwitch) { let messagePayload = sender.isOn ? type(of:
self).turnOnCommand : type(of: self).turnOff Command mqttClient.publish(type (of:
self).motor01CommandTopic, withString: messagePayload, qos: CocoaMQTTQOS.qos0, retained:
false, dup: false) }

First, the code declares a messagePayload constant that is assigned the value of the turnoncommand type
property if the value of sender.is0n is true. Otherwise, the constant is assigned the value of the
turnoffCommand type property. Then, the code calls the mqttclient.publish method with the
motor@lCommandTopic type property as the value for the topic argument, the messagePayload constant
as the value for the withString argument that specified the desired payload for the messages, and

CocoaMTTQOS. qos0 as the value for the qos argument. The other arguments are Boolean values set to
false. This way, we publish a message with the appropriate command, based on the selected value for
the switch. Whenever the user changes the value for the switch, the code in this method will be executed
and a message will be sent to the board that controls the motor.

Processing commands that interact with
actuators in Node.js

Now that we have coded the iOS app that will allow the user to turn on and turn off a motor, we will
write the Node.js code that will control the motor wired to the IoT board. We can run Node.js and the
code in any computer or IoT board capable of running Node.js version 6.9.x or higher.

For this example, we specified in the requirements that the motors would be wired to the following IoT
boards: Raspberry Pi 3, Raspberry Pi 2 Model B, Intel Edison, Intel Galileo Gen 2, Intel Joule 570x, and
Intel Joule 550x. All of these boards can have Node.js installed and run the sample code. However, we
can also run the code on many other IoT boards or even on our development computer.

In this example, we will use the MQTT.js open source library to work with direct MQTT with Node.js.
Make sure you have Node.js installed in the computer or IoT board you will use to run this example. If
you haven't worked with the example in the previous chapter, run the following command to install
MQTT.js. Notice that the code is tested with MQTT.js 2.3.1:

npm install mqtt

Now, we will create a new Node.js JavaScript file named actuators_control. js. The code file for the

sample is included in the mqtt_essentials_gaston_hillar_06 folder, inthe actuators_control.js
file:

var mqtt = require("mqgtt")

// Replace with the host name for the MQTT Server

var host = "localhost"

// Replace with the port number for MQTT over TCP (without TLS)
var port = 1883

var client = mqtt.connect("mqtt://" + host + ":" + port)

var boardName = "inteledison@1"

var actuatorCommandBaseTopic = "commands/boards/" + boardName + "/actuators/"
var actuatorResultTopic = "status/boards/" + boardName

var turnOnCommand = "TURN ON"

var turnOffCommand = "TURN OFF"

client.on("connect", function () {
console.log("I'm connected to the MQTT server")
client.subscribe(actuatorCommandBaseTopic + "+")

})

client.on('message', function (topic, message) {
// message is Buffer
var payloadString = message.toString()
console.log("Message arrived for topic: " + topic + ", with the following
payload: " + payloadString)
if (!topic.startswWith(actuatorCommandBaseTopic)) {
return;

}

var actuatorName = topic.replace(actuatorCommandBaseTopic, "")
if (actuatorName) {
var resultMessagePayloadString = ""
if (payloadString === turnOnCommand) {
console.log("I've turned ON " + actuatorName)
var resultMessagePayloadString = actuatorName + " has been turned on"
} else if (payloadString === turnOffCommand) {
console.log("I've turned OFF " + actuatorName)
var resultMessagePayloadString = actuatorName + " has been turned off"

}
if (resultMessagePayloadString) {

client.publish(actuatorResultTopic, resultMessagePayloadString)
}

})

First, the code requires mqtt and saves the object in the mqtt variable. Then, the code declares the host
and port variables with the host name for the MQTT server and the port number for direct MQTT. Then,
the code calls the mqtt.connect function withmqtt:// followed by the host value, a colon (:), and the
port number. In case we want to connect to localhost on port 1883, the value for this argument will be
mgtt://localhost:1883. We specify mqtt as the protocol name because we want MQTT.js to create a
direct MQTT connection. The results of this function are assigned to the client variable.

Then, the code specifies the callback function assigned to the connect event. This function will be called
after the client successfully establishes a connection with the MQTT server.

Tip

After the MQTT client establishes a connection with the MQTT server, client.connected will evaluate
fo true.

The function calls the client.subscribe function with the result of concatenating "+" to
actuatorCommandBaseTopic as an argument to subscribe to the commands/boards/actuators/+ topic
filer. In this case, we use the default options for the subscription because we will work with the default
QoS level of 0.

Then, the code specifies the callback function assigned to the message event. This function will be called
whenever the client receives a message from the MQTT server. The function receives the following two
arguments:

e topic: This specifies the topic for the received message
e message: This is the buffer for the received message's payload

The function saves the results of calling message.toString to the payloadString variable. It is
necessary to call toString for message because the received message argument is a buffer and we want
to work with the received message's payload as a string.

The code prints a message to the console log, indicating that a message has arrived with the destination
topic and the payload string included in the topic argument and the payloadString variable.

Then, the code checks whether topic starts with actuatorcommandBaseTopic to make sure that the
message's destination topic is the one defined for the commands related to actuators.

Tip

In this case, the code only subscribes to the topic filter we defined for publishing messages with the
commands related to actuators. However, we include this code to understand how we should check the
topic value when we subscribe to multiple topics that have different goals with MQTT.js.

Then, the code retrieves the actuator name from the message's topic and saves it in the actuatorName
variable. The code removes actuatorCommandBaseTopic from topic to retrieve the actuator's name.
For example, if the value for topic is "commands/boards/inteledison@1/motor01", the code
replaces "commands/boards/inteledison@1/" with an empty string and the resulting string,
"motor@1", is the actuator's name assigned to the actuatorName variable.

Then, the code checks whether actuatorName has a value. In case it has a value, the function checks
whether the command included in the message's payload string saved in the payloadString variable
matches either "TURN ON" or "TURN OFF". If payloadString matches any of these values, the code will
print a message to the console indicating it has performed the requested operation on the retrieved
actuator's name. In addition, the code will save a message to be published in the
resultMessagePayloadString variable.

Finally, the code calls the client.publish function with actuatorResultTopic and
resultMessagePayloadString as the topic and payload arguments. This way, the code requests the
MQTT client to publish a message to the appropriate topic with the results of the execution of the
command. In this case, the results indicate what happened with a specific actuator.

Running the iOS app that controls an actuator
with MQTT

Make sure the Mosquitto server or any other MQTT server you might want to use for this example is
running. In case you aren't working with Mosquitto, make sure you have enabled support for direct MQTT
without TLS. Then, execute the following line to start the Node.js example in any computer or device that
you want to use as the MQTT client that will process the commands received to control the motor:

node actuators_control.js

The Node.js script will establish a connection with the MQTT server, subscribe to the topics to which the
web application will publish the commands for the three LEDs, and display the following message:

I'm connected to the MQTT server

Leave the Node.js script running on the computer or device in which you executed it. Now, go to Xcode
and run the ControlActuators app that we previously coded in the simulator or in a compatible iOS
device.

Click or tap the switch to turn the motor on.

Go to the window in which you are checking the results of the Node.js script and you will see messages
similar to the following;

Message arrived for topic: commands/boards/inteledison@l1/actuators/motor01, with
the following payload: TURN ON
I've turned ON motoroil

The Node.js script has received a message in the
commands/boards/inteledison@l1/actuators/motor0l topic with a string as a payload that requests
the motor named motoro1 to be turned on. The script processes the command and publishes a status
message.

Now, go to the simulator or the iOS device in which you are running the iOS app. The MQTT client
created by this app will receive the message published by the Node.js script to the
status/boards/inteledison@1 topic and will update the status message with motor(1 has been
turned on. The following screenshot shows the app that changed the status message after the motor was
turned on:

@ iPhone 7 Plus - i0S 10.0 (14A345)
Gastons-MacBook-Pro:Chapter@6 gaston$ node actuators_control.js 8| carrier = 7:07 PM -
I'm connected to the MQTT server
Message arrived for topic: commands/boards/inteledison@l/actuators/m
otor@l, with the following payload: TURN ON
I've turned ON motor@l

motorQ1 has been turned on

You will see the following messages in the Xcode output panel:

Message published to topic commands/boards/inteledison0l1/actuators/motor0@1 with
payload TURN ON

Message received in topic status/boards/inteledison01 with payload motor01 has been
turned on

Go to the app and click or tap the switch again to turn the motor off.

Go to the window in which you are checking the results of the Node.js script, and you will see messages
similar to the following;

Message arrived for topic: commands/boards/inteledison@l1/actuators/motor01, with
the following payload: TURN OFF
I've turned OFF motoro1l

The Node.js script has received a message in the
commands/boards/inteledison@l1/actuators/motor0l topic with a string as a payload that requests
the motor named motoro1 to be turned off. The script processes the command and publishes a status
message.

Now, go to the simulator or the iOS device in which you are running the iOS app. The MQTT client
created by this app will receive the message published by the Node.js script to the
status/boards/inteledison@1 topic and will update the status message with motor(1 has been
turned off. The following screenshot shows the app that changed the status message after the motor was
turned off:

® iPhone 7 Plus - i0S 10.0 (14A345)
Gastons-MacBook-Pro:Chapter@6 gaston$ node actuators_control.js Bl Carrier 7:12 PM -
I'm connected to the MQTT server
Message arrived for topic: commands/boards/inteledison@l/actuators/m
otor@l, with the following payload: TURN ON
I've turned ON motorel
Message arrived for topic: commands/boards/inteledison@l/actuators/m
otor@l, with the following payload: TURN OFF
I've turned OFF motor@l

motor01 has been turned off

You will see the following messages in the Xcode output panel:

Message published to topic commands/boards/inteledison@l1/actuators/motor01 with
payload TURN OFF

Message received in topic status/boards/inteledison0l1 with payload motor@1 has been
turned off

Debugging events in Swift

Now, we will take advantage of Xcode's debugging features to understand how methods are called when
events occur.

Leave the application running on the simulator or the iOS device.
Open the source code for ViewController.swift.

Click on the left margin of the following line of code to establish a breakpoint at the first line of code in
the mqt t method with didReceiveMessage as the external name of the second argument:

print("Message received in topic (message.topic) with payload
(message.string!)")

Now, go to the iOS app and click or tap on the switch to turn on the motor again. After you change the
value for the switch, the Node.js script will send a message with the new status for the motor and the
mgtt method with didReceiveMessage as the external name of the second argument will be called. The
Xcode debugger will hit the breakpoint we have set. The following screenshot shows the debugger hitting
the breakpoint:

=i B ’.._ ControlActuators ControlActuators) » ViewController.swift » [[[] matt(_:didReceiveMessage:id:)

func mg mag gcoal idReceive essage message: Locoa essage, i nt
f tt(tt: C MQTT, didR M c MATTM d: UIntlé) {

= prlnt(“Message rece:wed in topic \(message.topic) with payload \(message.string!)") Thread 1: breakpoint 1.1
if (message.topic == type(of: self).motor@iStatusTopic) {
statusLabel.text = "\(message.string})"
}
}

func matt(_ mgtt: CocoaMQTT, didSubscribeTopic topic: String) {
print("Subscribed to \(topic)")

func mgtt(_ mgtt: CocoaMQTT, didUnsubscribeTopic topic: String) {
print("Unsubscribed from \{topic)")
}

func mgttDidPing(_ mgtt: CocoaMQTT) {
}

func mgttDidReceivePong(_ mgtt: CocoaMQTT) {

o & 2|0 P ControlActuators) ([Thread 1 ; [IT] 0 ViewController.mqtt(CocoaMQTT, didReceiveMessage : CocoaMQT TMessage, id : UInt18) -> ()

111 0x00006000001b3780 default_ttl: 1, info_ttl: @, debug ttl: 8, generate symptoms: @,
enable_oversize: 1, privacy_setting: 2, enable_private_data: @

ITiessags) 0x0000600000271200 2817-83-07 19:02:58.060341 contruuctuators[nzs 22360898] subsystem:
com.apple.UIKit, category: Gesture, enable_level: @, persist_level:

. 0 8, default_ttl: 1, info_ttl: @, debug_ttl: @, generate_symptoms: @,

=)'qas enable_oversize: 1, privacy_setting: 2, enable_private_data: @
2817-93-87 19:82:58.861589 ControlActuators[7725:2236898] subsystem:

con.ople.UIKit, category: GestureEnviranaent, ensble.lovel: o,

persist_level: @, default_ttl: 1, info_ttl: @, debug_ttl: @,
> P“'“d‘) generate_symptoms: ©, enable_oversize: 1, privacy_setting: 2,

hretmned- enable_private_data: @

X 2017-83-87 19:02:58.862012 ControlActuators[7725:2236098] subsystem:
com.apple.UIKit, category: GestureExclusion, enable_level: @,
fiewController) 0x000077d801d0a520 persist_level: 8, default_ttl: 1, info_ttl: @, debug_ttl: @,
generate_symptoms: ©, enable_oversize: 1, privacy_setting: 2,
enable_private_data: @

Message published to topic commands/boards/inteledison@l/actuators/
motor®@l with payload TURN ON

Message received in topic status/boards/inteledison®l with payload
motor®l has been turned on=Message published to topic commands/
boards/inteledison@l/actuators/motor@l with payload TURN OFF
Message received in topic status/boards/inteledison@l with payload
motor@l has been turned off

Message published to topic commands/boards/inteledison®l/actuators/
motor®l with payload TURN ON

(1ldb)

puto 3 [@ (D @ Filt All Output £ ® Filte Tir |10

¥ |\l message = (Cocoah
» ObjectiveC. NSObject

You can use all the features included in the debugger to check the values for the different arguments
received in the method and the local variables. For example, you can inspect the message argument to
understand all the data that the CocoaMQTTMessage instance encapsulates.

The usage of the debugger will make it easier to understand when the different methods are executed, and
you have a better understanding of the CocoaMQTT client. However, it is very important to take into
account that the MQTT server will disconnect the client if you pause the code longer than the value
specified for the timeout.

Test your knowledge

1. The CocoaMQTT client library is written in:
1. Objective-C.
2. Swift 2.
3. Swift 3.

2. Inthe CocoaMQTT client library, a CocoaMQTT instance represents:
1. The synchronous MQTT over WebSockets client.
2. The asynchronous MQTT over WebSockets client.
3. The asynchronous MQTT over TCP client (no WebSockets).

3. Which of the following methods does the CocoaMQTT client call after a message is received from
the MQTT server?
1. func mqtt(_ mgtt: CocoaMQTT, didReceiveMessage message: CocoaMQTTMessage,
id: uIntie) {.
2. func didReceiveMessage(_ mqtt: CocoaMQTT, message: CocoaMQTTMessage, id:
Uintie) {.
3. func mgtt(didReceiveMessage message: CocoaMQTTMessage, id: UInti6) {.

4. Which of the following properties of a CocoaMQTTMessage instance provides the string
representation of the message's payload?
1. pPayload.
2. payloadString.
3. String.

5. Which of the following properties of a CocoaMQTTMessage instance provides the message's
destination topic?
1. topic.
2. topicString.
3. String.

Summary

In this chapter, we analyzed the requirements to control actuators wired to different IoT boards with
MQTT messages. We defined the topics we would use and the commands that would be a part of the
message's payloads to turn the motors on and off.

Then, we created an iOS app with Xcode and Swift 3, combined with the CocoaMQTT client, to control
a motor. We wrote code to publish messages to target remote devices in Swift 3, and we were able to
process the received messages to provide feedback to the user.

We worked with MQTT.js to write a Node.js script to process commands that simulated the interaction
with motors on different IoT boards. We were able to run the iOS app and the Node.js script and
understand how all the pieces worked together by exchanging MQTT messages.

We understood how MQTT works in detail and we worked with direct MQTT and MQTT over
WebSockets. We worked with unsecured and secured communications. We worked with this protocol in
Python, Java, JavaScript, Node.js, and Swift. We were able to create code capable of running in the most
popular and powerful IoT boards. We could combine scripts, applications, web applications, and iOS
apps with code that controls sensors and actuators on IoT boards. You are now ready to use MQTT in all
kinds of projects in the most popular programming languages.

Appendix A. Exersise Answers

Chapter 1, Lightweight Messaging with MQTT
3.1.1 and Mosquitto

tions||JAnswers

Q Q o o e, o o
(@)) ul NS w N [g

Chapter 2, Securing an MQT'T Mosquitto Server

tions||JAnswers

Q Q o e, o o)
)] ~ w N —_ g

L
b
L
P
b |

Chapter 3, Controlling a Drone with Python

tions||JAnswers

Q Q o e, o o)
)] ~ w N —_ g

L
P
b
P
b |

Chapter 4, Interacting with Sensors in Java

Answers

Questions

Q1 3

Q2 2

Q3 1

Q4 3

Q5 3

Chapter 5, Controlling Home Automation in
JavaScript

Answers

Questions

Q1

Q2

N

Q3

Q4

Q5

Chapter 6, Interacting with Actuators in Swift

tions||JAnswers

Q Q o e, o o)
)] ~ w N —_ g

b
b
L
b
||

	MQTT Essentials - A Lightweight IoT Protocol
	Credits
	About the Author
	Acknowledgment
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Dedication
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Lightweight Messaging with MQTT 3.1.1 and Mosquitto
	Understanding convenient scenarios for the MQTT protocol
	Working with the publish-subscribe pattern
	Working with message filtering
	Understanding the MQTT puzzle -- clients, servers, and connections
	Installing a Mosquitto broker on Ubuntu Linux
	Installing a Mosquitto broker on macOS
	Installing a Mosquitto broker on Windows
	Subscribing to topics
	Publishing messages
	Unsubscribing from topics
	Working with best practices when creating topics
	Understanding wildcards
	Learning about the different Quality of Service levels
	Working with at least once delivery
	Working with exactly once delivery
	Test your knowledge
	Summary
	2. Securing an MQTT Mosquitto Server
	Securing a Mosquitto server
	Generating a private certificate authority to use TLS with Mosquitto
	Creating a certificate for the Mosquitto server
	Configuring TLS transport security in Mosquitto
	Testing the MQTT TLS configuration with MQTT.fx
	Testing the MQTT TLS configuration with MQTT-spy
	Creating a certificate for each MQTT client
	Configuring TLS client certificate authentication in Mosquitto
	Testing the MQTT TLS client authentication with MQTT.fx
	Testing the MQTT TLS configuration with MQTT-spy
	Forcing the TLS protocol version
	Test your knowledge
	Summary
	3. Controlling a Drone with Python
	Understanding the requirements to control a drone with MQTT
	Defining the topics and commands
	Installing paho-mqtt for Python
	Connecting the client to the MQTT server with Python
	Understanding callbacks
	Subscribing to topics with Python
	Creating a class to represent a drone
	Receiving messages with Python
	Processing commands with Python
	Sending messages with Python
	Working with the network loop with Python
	Test your knowledge
	Summary
	4. Interacting with Sensors in Java
	Understanding the requirements
	Defining the topics and commands
	Installing the Eclipse Paho Java Client
	Creating a security helper class to establish a TLS secured connection
	Configuring a TLS secured connection in Java
	Working with asynchronous notifications and callbacks in Java
	Subscribing to topics and understanding notification events in Java
	Processing commands that interact with sensors in Java
	Working with last will and testament in Java
	Publishing messages with commands to target sensors
	Test your knowledge
	Summary
	5. Controlling Home Automation in JavaScript
	Understanding the requirements
	Defining the topics and commands to control home automation
	Enabling WebSockets for a Mosquitto server
	Testing WebSockets with the Eclipse Paho client JavaScript utility
	Understanding the Eclipse Paho JavaScript asynchronous client
	Creating an HTML 5 web page to control LEDs
	Publishing messages to target remote devices in JavaScript
	Processing the received messages in JavaScript
	Working with WebSockets to connect to the MQTT server
	Subscribing to topics in JavaScript
	Processing commands that interact with LEDs in Node.js
	Running the home automation web application
	Debugging asynchronous code with Chrome Developer Tools (CDT) in JavaScript
	Securing MQTT over WebSockets with TLS
	Test your knowledge
	Summary
	6. Interacting with Actuators in Swift
	Understanding the requirements
	Defining topics and commands
	Enabling connections without TLS for a Mosquitto server
	Installing the CocoaMQTT client library to create a new iOS app
	Building the UI for the iOS app that will control an actuator
	Understanding the CocoaMQTT client in Swift 3
	Connecting to the MQTT server and subscribing to topics in Swift
	Publishing messages to target actuators in Swift
	Processing commands that interact with actuators in Node.js
	Running the iOS app that controls an actuator with MQTT
	Debugging events in Swift
	Test your knowledge
	Summary
	A. Exersise Answers
	Chapter 1, Lightweight Messaging with MQTT 3.1.1 and Mosquitto
	Chapter 2, Securing an MQTT Mosquitto Server
	Chapter 3, Controlling a Drone with Python
	Chapter 4, Interacting with Sensors in Java
	Chapter 5, Controlling Home Automation in JavaScript
	Chapter 6, Interacting with Actuators in Swift

