

MQTT	Essentials	-	A	Lightweight	IoT	Protocol

Table	of	Contents

MQTT	Essentials	-	A	Lightweight	IoT	Protocol
Credits
About	the	Author
Acknowledgment
About	the	Reviewer
www.PacktPub.com

Why	subscribe?
Customer	Feedback
Dedication
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Lightweight	Messaging	with	MQTT	3.1.1	and	Mosquitto
Understanding	convenient	scenarios	for	the	MQTT	protocol
Working	with	the	publish-subscribe	pattern
Working	with	message	filtering
Understanding	the	MQTT	puzzle	--	clients,	servers,	and	connections
Installing	a	Mosquitto	broker	on	Ubuntu	Linux
Installing	a	Mosquitto	broker	on	macOS
Installing	a	Mosquitto	broker	on	Windows
Subscribing	to	topics
Publishing	messages
Unsubscribing	from	topics
Working	with	best	practices	when	creating	topics
Understanding	wildcards
Learning	about	the	different	Quality	of	Service	levels
Working	with	at	least	once	delivery
Working	with	exactly	once	delivery
Test	your	knowledge
Summary

2.	Securing	an	MQTT	Mosquitto	Server
Securing	a	Mosquitto	server

Generating	a	private	certificate	authority	to	use	TLS	with	Mosquitto
Creating	a	certificate	for	the	Mosquitto	server
Configuring	TLS	transport	security	in	Mosquitto
Testing	the	MQTT	TLS	configuration	with	MQTT.fx
Testing	the	MQTT	TLS	configuration	with	MQTT-spy
Creating	a	certificate	for	each	MQTT	client
Configuring	TLS	client	certificate	authentication	in	Mosquitto
Testing	the	MQTT	TLS	client	authentication	with	MQTT.fx
Testing	the	MQTT	TLS	configuration	with	MQTT-spy
Forcing	the	TLS	protocol	version
Test	your	knowledge
Summary

3.	Controlling	a	Drone	with	Python
Understanding	the	requirements	to	control	a	drone	with	MQTT
Defining	the	topics	and	commands
Installing	paho-mqtt	for	Python
Connecting	the	client	to	the	MQTT	server	with	Python
Understanding	callbacks
Subscribing	to	topics	with	Python
Creating	a	class	to	represent	a	drone
Receiving	messages	with	Python
Processing	commands	with	Python
Sending	messages	with	Python
Working	with	the	network	loop	with	Python
Test	your	knowledge
Summary

4.	Interacting	with	Sensors	in	Java
Understanding	the	requirements
Defining	the	topics	and	commands
Installing	the	Eclipse	Paho	Java	Client
Creating	a	security	helper	class	to	establish	a	TLS	secured	connection
Configuring	a	TLS	secured	connection	in	Java
Working	with	asynchronous	notifications	and	callbacks	in	Java
Subscribing	to	topics	and	understanding	notification	events	in	Java
Processing	commands	that	interact	with	sensors	in	Java
Working	with	last	will	and	testament	in	Java
Publishing	messages	with	commands	to	target	sensors
Test	your	knowledge
Summary

5.	Controlling	Home	Automation	in	JavaScript
Understanding	the	requirements
Defining	the	topics	and	commands	to	control	home	automation
Enabling	WebSockets	for	a	Mosquitto	server
Testing	WebSockets	with	the	Eclipse	Paho	client	JavaScript	utility
Understanding	the	Eclipse	Paho	JavaScript	asynchronous	client

Creating	an	HTML	5	web	page	to	control	LEDs
Publishing	messages	to	target	remote	devices	in	JavaScript
Processing	the	received	messages	in	JavaScript
Working	with	WebSockets	to	connect	to	the	MQTT	server
Subscribing	to	topics	in	JavaScript
Processing	commands	that	interact	with	LEDs	in	Node.js
Running	the	home	automation	web	application
Debugging	asynchronous	code	with	Chrome	Developer	Tools	(CDT)	in	JavaScript
Securing	MQTT	over	WebSockets	with	TLS
Test	your	knowledge
Summary

6.	Interacting	with	Actuators	in	Swift
Understanding	the	requirements
Defining	topics	and	commands
Enabling	connections	without	TLS	for	a	Mosquitto	server
Installing	the	CocoaMQTT	client	library	to	create	a	new	iOS	app
Building	the	UI	for	the	iOS	app	that	will	control	an	actuator
Understanding	the	CocoaMQTT	client	in	Swift	3
Connecting	to	the	MQTT	server	and	subscribing	to	topics	in	Swift
Publishing	messages	to	target	actuators	in	Swift
Processing	commands	that	interact	with	actuators	in	Node.js
Running	the	iOS	app	that	controls	an	actuator	with	MQTT
Debugging	events	in	Swift
Test	your	knowledge
Summary

A.	Exersise	Answers
Chapter	1,	Lightweight	Messaging	with	MQTT	3.1.1	and	Mosquitto
Chapter	2,	Securing	an	MQTT	Mosquitto	Server
Chapter	3,	Controlling	a	Drone	with	Python
Chapter	4,	Interacting	with	Sensors	in	Java
Chapter	5,	Controlling	Home	Automation	in	JavaScript
Chapter	6,	Interacting	with	Actuators	in	Swift

MQTT	Essentials	-	A	Lightweight	IoT	Protocol

MQTT	Essentials	-	A	Lightweight	IoT	Protocol
Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

First	published:	April	2017

Production	reference:	1050417

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham

B3	2PB,	UK.

ISBN	978-1-78728-781-5

www.packtpub.com

http://www.packtpub.com

Credits
Author

Gastón	C.	Hillar

Copy	Editor

Muktikant	Garimella

Reviewer

Ben	Howes

Project	Coordinator

Ulhas	Kambali

Commissioning	Editor

Smeet	Thakkar

Proofreader

Safis	Editing

Acquisition	Editor

Reshma	Raman

Indexer

Aishwarya	Gangawane

Content	Development	Editor

Vikas	Tiwari

Graphics

Abhinash	Sahu

Technical	Editor

Jijo	Maliyekal

Production	Coordinator

Arvindkumar	Gupta

About	the	Author
Gastón	C.	Hillar	is	Italian	and	has	been	working	with	computers	since	he	was	eight.	He	began
programming	with	the	legendary	Texas	TI-99/4A	and	Commodore	64	home	computers	in	the	early	80s.	He
has	a	bachelor's	degree	in	computer	science	(graduated	with	honors),	and	an	MBA	(graduated	with	an
outstanding	thesis).	At	present,	Gastón	is	an	independent	IT	consultant	and	freelance	author	who	is	always
looking	for	new	adventures	around	the	world.

He	has	been	a	senior	contributing	editor	at	Dr.	Dobb’s	and	has	written	more	than	a	hundred	articles	on
software	development	topics.	Gastón	was	also	a	former	Microsoft	MVP	in	technical	computing.	He	has
received	the	prestigious	Intel®	Black	Belt	Software	Developer	award	eight	times.

He	is	a	guest	blogger	at	Intel®	Software	Network	(http://software.intel.com).	You	can	reach	him	at
gastonhillar@hotmail.com	and	follow	him	on	Twitter	at	http://twitter.com/gastonhillar.	Gastón’s	blog
is	http://csharpmulticore.blogspot.com.

He	lives	with	his	wife,	Vanesa,	and	his	two	sons,	Kevin	and	Brandon.

http://software.intel.com
http://twitter.com/gastonhillar
http://csharpmulticore.blogspot.com

Acknowledgment
At	the	time	of	writing	this	book,	I	was	fortunate	to	work	with	an	excellent	team	at	Packt	Publishing,	whose
contributions	vastly	improved	the	presentation	of	this	book.	Reshma	Raman	allowed	me	to	provide	her
ideas	for	a	book	dedicated	to	MQTT,	and	I	jumped	into	the	exciting	project	of	teaching	the	features	of	one
of	the	most	important	protocols	for	IoT	projects	with	examples	in	many	different	programming	languages.
Vikas	Tiwari	helped	me	realize	my	vision	for	this	book	and	provided	many	sensible	suggestions	regarding
the	text,	the	format,	and	the	flow.	The	reader	will	notice	his	great	work.	It’s	been	great	working	with
Reshma	and	Vikas	in	another	project	and	I	can’t	wait	to	work	with	them	again.	I	would	like	to	thank	my
technical	reviewers	and	proofreaders	for	their	thorough	reviews	and	insightful	comments.	I	was	able	to
incorporate	some	of	the	knowledge	and	wisdom	they	have	gained	in	their	many	years	in	the	software
development	industry.	This	book	was	possible	because	they	gave	valuable	feedback.

The	entire	process	of	writing	a	book	requires	a	huge	number	of	lonely	hours.	I	wouldn’t	be	able	to	write
an	entire	book	without	dedicating	some	time	to	play	soccer	against	my	sons,	Kevin	and	Brandon,	and	my
nephew,	Nicolas.	Of	course,	I	never	won	a	match.	However,	I	did	score	a	few	goals.

About	the	Reviewer
Ben	Howes	is	the	founder	and	lead	consultant	at	Zoetrope	Ltd,	a	specialist	IoT	consultancy	and	product
development	firm	in	the	UK.	Ben	has	been	creating	connected	hardware	for	over	10	years	and	has	worked
across	projects	spanning	from	start-ups	to	multinational	deployments.

I’d	like	to	thank	Richard	Webb,	my	co-founder,	for	starting	Zoetrope	with	me.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,
you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for
more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of
free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

	

	

	

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books	and
video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development	and	advance
your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our	editorial	process.	To	help	us
improve,	please	leave	us	an	honest	review	on	this	book's	Amazon	page	at
https://www.amazon.com/dp/1787287815.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at
customerreviews@packtpub.com.	We	award	our	regular	reviewers	with	free	eBooks	and	videos	in
exchange	for	their	valuable	feedback.	Help	us	be	relentless	in	improving	our	products!

https://www.amazon.com/dp/1787287815

Dedication
To	my	sons,	Kevin	and	Brandon,	and	my	wife,	Vanesa

Preface
MQTT	is	the	preferred	IoT	publish-subscribe	lightweight	messaging	protocol.	If	you	develop	IoT,	web
applications,	mobile	apps,	or	a	combination	of	these	solutions,	you	must	learn	how	MQTT	and	its
lightweight	messaging	system	work.	Of	course,	it	is	extremely	important	to	take	security	into	account
when	working	with	this	protocol.

Most	of	the	times,	when	you	work	with	IoT	solutions,	you	won’t	be	using	a	single	programming	language.
Instead,	you	will	use	a	combination	of	different	programming	languages	and	code	running	on	different	IoT
boards	that	might	use	diverse	operating	systems.	MQTT	has	its	own	specific	vocabulary	and	different
working	modes.	Learning	MQTT	is	challenging	because	it	includes	too	many	abstract	concepts	that
require	real-life	examples	to	be	easy	to	understand.

This	book	will	allow	you	to	dive	deep	into	the	latest	version	of	the	MQTT	protocol:	3.1.1.	You	will	learn
to	work	with	Mosquitto	MQTT	server,	command-line	tools,	and	GUI	tools	to	allow	you	to	understand
how	everything	works	with	MQTT	and	the	possibilities	that	this	protocol	provides	for	your	projects.	You
will	learn	security	best	practices	and	you	will	use	them	for	a	Mosquitto	MQTT	server.

This	book	will	provide	you	with	examples	in	the	following	programming	languages,	which	are	extremely
popular	in	IoT,	web	applications,	and	mobile	apps:	Python,	Java,	HTML	5,	JavaScript,	Node.js,	and
Swift	3.	You	will	control	a	drone,	interact	with	sensors,	control	home	automation,	and	interact	with
actuators	by	exchanging	MQTT	messages	with	the	different	programming	languages	and	client	libraries.

You	will	be	able	to	run	the	examples	on	a	wide	range	of	modern	IoT	boards,	such	as	Raspberry	Pi	3,
Raspberry	Pi	2	Model	B,	Raspberry	Pi	Zero,	Intel	Joule,	Intel	Edison,	and	Intel	Galileo	Gen	2.	However,
any	other	board	that	supports	the	programming	languages	explained	in	the	book	will	be	able	to	run	the
samples.

What	this	book	covers
Chapter	1,	Lightweight	Messaging	with	MQTT	3.1.1	and	Mosquitto,	starts	our	journey	towards
understanding	the	MQTT	protocol.	You	will	learn	convenient	scenarios	for	this	protocol,	the	details	of	the
publish-subscribe	pattern,	and	message	filtering.	You	will	learn	basic	concepts	related	to	MQTT	and
understand	the	different	components:	clients,	brokers	or	servers,	and	connections.	You	will	learn	to	install
a	Mosquitto	broker	or	server	on	Linux,	macOS,	and	Windows.	You	will	learn	best	practices	related	to
topics	and	single-level	and	multilevel	wildcards.	We	will	study	in	detail	the	different	Quality	of	Service
levels	supported	by	MQTT	and	when	it	is	convenient	to	use	each	of	them.	We	will	analyze	their
advantages	and	disadvantages.

Chapter	2,	Securing	an	MQTT	Mosquitto	Server,	covers	generating	a	private	certificate	authority,	a
server	certificate,	and	client	certificates	to	enable	TLS	transport	security	and	TLS	client	authentication
with	Mosquitto.	Communications	between	the	MQTT	clients	and	the	MQTT	server	will	be	encrypted.	We
will	work	with	OpenSSL	to	generate	the	digital	certificates.	We	will	test	the	MQTT	TLS	configuration
with	MQTT.fx,	MQTT-spy,	and	the	Mosquitto	command-line	utilities.	We	will	force	Mosquitto	to	use
only	a	specific	TLS	version.	This	way,	we	will	understand	how	to	encrypt	communications	between	the
MQTT	clients	and	the	Mosquitto	MQTT	server.

Chapter	3,	Controling	a	Drone	with	Python,	analyzes	the	requirements	for	controlling	a	drone	with
MQTT	messages.	We	will	define	the	topics	that	we	will	use	and	the	commands	that	will	be	part	of	the
messages’	payloads	to	control	a	drone.	Then,	we	will	work	with	the	Paho	Python	Client	to	write	Python
code	that	connects	an	MQTT	client	to	the	MQTT	server.	We	will	understand	the	methods	we	need	to	call
for	the	Paho	Python	Client	and	their	parameters.	We	will	analyze	how	callbacks	work	and	we	will	be
able	to	publish	messages	to	topics,	subscribe	to	topic	filters,	and	receive	and	process	messages.	We	will
write	code	that	processes	commands	for	a	drone	with	Python.	The	code	will	be	able	to	run	on	different
IoT	platforms,	including	Intel	Joule	boards	and	Raspberry	Pi	3,	and	also	on	any	computer	that	is	capable
of	executing	Python	2.7.x	or	Python	3.x.	We	will	work	with	the	network	loop	for	the	MQTT	client	in
Python.	We	will	work	with	a	GUI	utility,	command-line-based	utilities,	and,	finally,	with	Python	code	to
control	the	drone	and	display	the	feedback	provided	by	the	drone.

Chapter	4,	Interacting	with	Sensors	in	Java,	analyzes	the	requirements	for	controlling	sensors	wired	to
different	IoT	boards	with	MQTT	messages	and	Java	code.	We	will	define	the	topics	that	we	will	use	and
the	commands	that	will	be	part	of	the	messages’	payloads	to	control	sensors.	We	will	take	advantage	of
the	last	will	and	testament	feature	of	MQTT	with	Java.	We	will	work	with	the	Eclipse	Paho	Java	Client	to
write	Java	code	that	will	connect	a	non-blocking	(asynchronous)	MQTT	client	to	the	MQTT	server.	We
will	create	a	security	helper	class	to	establish	a	TLS	secured	connection,	and	we	will	work	with
asynchronous	notifications	and	callbacks	in	Java.	We	will	subscribe	to	topics,	understand	how
notification	events	work,	and	we	will	write	code	that	processes	commands	that	interact	with	sensors.
Finally,	we	will	work	with	a	GUI	utility	to	interact	with	our	Java	application	through	MQTT	messages.
We	will	be	able	to	turn	on	and	turn	off	the	sensors	and	retrieve	data	from	them.

Chapter	5,	Controlling	Home	Automation	in	JavaScript,	analyzes	the	requirements	to	control	LEDs
wired	to	different	IoT	boards	with	MQTT	messages	over	WebSockets.	We	will	define	the	topics	that	we
will	use	and	the	commands	that	will	be	part	of	the	message’s	payloads	to	set	the	colors	for	LEDs.	Then,

we	will	create	an	HTML	5	web	page	combined	with	JavaScript	and	the	Eclipse	Paho	JavaScript
asynchronous	client	to	control	LEDs.	We	will	write	code	to	publish	messages	to	target	remote	devices	in
JavaScript	and	we	will	be	able	to	process	received	messages	to	provide	feedback	to	the	user.	We	will
work	with	MQTT.js	to	write	a	Node.js	script	to	process	commands	that	simulate	the	interaction	with
LEDs	on	different	IoT	boards.	We	will	be	able	to	run	the	home	automation	web	application	and
understand	how	all	the	pieces	work	together	by	exchanging	MQTT	over	WebSockets	messages.	Finally,
we	will	understand	the	necessary	steps	to	work	with	MQTT	over	WebSockets	with	TLS.

Chapter	6,	Interacting	with	Actuators	in	Swift,	analyzes	the	requirements	for	controlling	actuators	wired
to	different	IoT	boards	with	MQTT	messages.	We	will	define	the	topics	that	we	will	use	and	the
commands	that	will	be	part	of	the	message’s	payloads	to	turn	on	and	turn	off	motors.	Then,	we	will	create
an	iOS	app	with	Xcode	and	Swift	3,	combined	with	the	CocoaMQTT	client,	to	control	a	motor.	We	will
write	code	to	publish	messages	to	target	remote	devices	in	Swift	3	and	we	will	be	able	to	process
received	messages	to	provide	feedback	to	the	user.	We	will	work	with	MQTT.js	to	write	a	Node.js	script
to	process	commands	that	simulate	the	interaction	with	motors	on	the	different	IoT	boards.	We	will	be
able	to	run	the	iOS	app	and	the	Node.js	script	and	understand	how	all	the	pieces	work	together	by
exchanging	MQTT	messages.

What	you	need	for	this	book
You	will	need	any	computer	or	device	capable	of	running	Python	3.x	or	greater,	Chrome	56.x	or	greater,
JDK	8	or	greater,	and	Node.js	6.7.x	or	greater.

In	order	to	work	with	Mosquitto	1.4.11	or	greater,	you	will	need	a	computer	with	any	of	the	operating
systems	supported	by	this	version	of	Mosquitto.	The	list	is	available	at	https://mosquitto.org/download/.

In	order	to	work	with	Xcode	8.x,	you	will	need	a	Mac	computer	capable	of	running	OS	X	10.11.5	or	later,
with	8	GB	RAM.

https://mosquitto.org/download/

Who	this	book	is	for
This	book	is	a	great	resource	for	developers	who	want	to	learn	more	about	the	MQTT	protocol	to	apply	it
to	their	individual	IoT	projects.	Prior	knowledge	of	working	with	IoT	devices	is	essential.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of	information.
Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"If	a	client	specifies	and	empty	value	as	the
ClientId."

A	block	of	code	is	set	as	follows:

#	Replace	localhost	with	the	IP	for	the	Mosquitto

#	or	other	MQTT	server

mqtt_server_host	=	"localhost"

mqtt_server_port	=	8883

mqtt_keepalive	=	60

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or	items	are
set	in	bold:

<div	id="led-2">

Select	color	for	LED	#2

Any	command-line	input	or	output	is	written	as	follows:

sudo	apt-get	update

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	"In	order	to	download	new	modules,	we	will	go	to
Files	|	Settings	|	Project	Name	|	Project	Interpreter."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.	To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the
book's	title	in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise	in	and	you	are
interested	in	either	writing	or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have
the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest	version
of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublishing/MQTT-
Essentials-A-Lightweight-IoT-Protocol.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books
and	videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in	this	book.
The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can	download	this	file
from
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting
http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form
link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be
accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and
enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and
we	will	do	our	best	to	address	the	problem.

Chapter	1.	Lightweight	Messaging	with	MQTT
3.1.1	and	Mosquitto
In	this	chapter,	we	will	start	our	journey	towards	the	usage	of	the	preferred	IoT	publish-subscribe
lightweight	messaging	protocol	in	diverse	IoT	solutions	combined	with	mobile	apps	and	web
applications.	We	will	learn	how	MQTT	and	its	lightweight	messaging	system	work.	We	will	learn	MQTT
basics,	the	specific	vocabulary	for	MQTT,	and	its	working	modes.	We	will	use	different	utilities	and
diagrams	to	understand	the	most	important	concepts	related	to	MQTT.	We	will:

Understand	convenient	scenarios	for	the	MQTT	protocol
Work	with	the	publish-subscribe	pattern
Work	with	message	filtering
Learn	basic	concepts	related	to	MQTT
Understand	the	MQTT	puzzle:	clients,	servers	or	brokers,	and	connections
Install	a	Mosquitto	MQTT	server	on	Linux,	macOS,	or	Windows
Publish	messages
Subscribe	to	topics
Unsubscribe	from	topics
Work	with	best	practices	when	creating	topics
Understand	wildcards
Learn	about	the	different	Quality	of	Service	levels
Work	with	at	least	once	delivery
Work	with	exactly	once	delivery

Understanding	convenient	scenarios	for	the
MQTT	protocol
Imagine	that	we	have	dozens	of	different	devices	that	must	exchange	data	between	them.	These	devices
have	to	request	data	to	other	devices	and	the	devices	that	receive	the	requests	must	respond	with	the
demanded	data.	The	devices	that	requested	the	data	must	process	the	data	received	from	the	devices	that
responded	with	the	demanded	data.

The	devices	are	Internet	of	Things	(IoT)	boards	that	have	dozens	of	sensors	wired	to	them.	We	have	the
following	IoT	boards	with	different	processing	powers:	Raspberry	Pi	3,	Raspberry	Pi	Model	B,	Intel
Edison,	and	Intel	Joule	570x.	Each	of	these	boards	has	to	be	able	to	send	and	receive	data.	In	addition,
we	want	many	mobile	devices	to	be	able	to	send	and	receive	data,	some	of	them	running	iOS	and	others
Android.	We	have	to	work	with	many	programming	languages.

We	want	to	send	and	receive	data	in	near	real	time	through	the	Internet	and	we	might	face	some	network
problems,	that	is,	our	wireless	networks	are	somewhat	unreliable	and	we	have	some	high-latency
environments.	Some	devices	have	low	power,	many	of	them	are	powered	by	batteries	and	their	resources
are	scarce.	In	addition,	we	must	be	careful	with	the	network	bandwidth	usage	because	some	of	the
devices	use	metered	connections.

Tip

A	metered	connection	is	a	network	connection	in	which	we	have	a	limited	amount	of	data	usage	per
month.	If	we	go	over	this	amount	of	data,	we	get	billed	extra	charges.

We	can	use	HTTP	requests	and	build	a	publish-subscribe	model	to	exchange	data	between	different
devices.	However,	there	is	a	protocol	that	has	been	specifically	designed	to	be	lighter	than	the	HTTP	1.1
protocol	and	work	better	when	unreliable	networks	are	involved	and	connectivity	is	intermittent.	The	MQ
Telemetry	Transport	(MQTT)	is	better	suited	for	this	scenario	in	which	many	devices	have	to	exchange
data	between	themselves	in	near	real	time	through	the	Internet	and	we	need	to	consume	the	least	possible
network	bandwidth.

The	MQTT	protocol	is	a	Machine-to-Machine	(M2M)	and	IoT	connectivity	protocol.	MQTT	is	a
lightweight	messaging	protocol	that	works	with	a	broker-based	publish-subscribe	mechanism	and	runs	on
top	of	Transmission	Control	Protocol	/	Internet	Protocol	(TCP/IP).

The	following	diagram	shows	the	MQTT	protocol	on	top	of	the	TCP/IP	stack:

	

	

	

Note

The	most	popular	versions	of	MQTT	are	3.1	and	3.1.1.	In	this	book,	we	will	work	with	MQTT	3.1.1.
Whenever	we	reference	MQTT,	we	are	talking	about	MQTT	3.1.1,	that	is,	the	newest	version	of	the
protocol.	The	MQTT	3.1.1	specification	has	been	standardised	by	the	OASIS	consortium.	In	addition,
MQTT	3.1.1	became	an	ISO	standard	(ISO/IEC	20922)	in	2016.

MQTT	is	lighter	than	the	HTTP	1.1	protocol,	and	therefore,	it	is	a	very	interesting	option	whenever	we
have	to	send	and	receive	data	in	near	real	time	with	a	publish-subscribe	model	and	we	require	the	lowest
possible	footprint.	MQTT	is	very	popular	in	IoT,	M2M,	and	embedded	projects,	but	it	is	also	gaining
presence	in	web	applications	and	mobile	apps	that	require	assured	messaging	and	an	efficient	message
distribution.	As	a	summary,	MQTT	is	suitable	for	the	following	application	domains	in	which	data
exchange	is	required:

Asset	tracking	and	management
Automotive	telematics
Chemical	detection
Environment	and	traffic	monitoring
Field	force	automation

Fire	and	gas	testing
Home	automation
In-Vehicle	Infotainment	(IVI)
Medical
Messaging
Point	of	Sale	(POS)	kiosks
Railway
Radio-Frequency	Identification	(RFID)
Supervisory	Control	and	Data	Acquisition	(SCADA)
Slot	machines

As	a	summary,	MQTT	was	designed	to	be	suitable	to	support	the	following	typical	challenges	in	IoT,
M2M,	embedded,	and	mobile	applications:

Be	lightweight	to	make	it	possible	to	transmit	high	volumes	of	data	without	huge	overheads
Distribute	minimal	packets	of	data	in	huge	volumes
Support	an	event-oriented	paradigm	with	asynchronous	bidirectional	low	latency	push	delivery	of
messages
Easily	emit	data	from	one	client	to	many	clients
Make	it	possible	to	listen	for	events	whenever	they	happen	(event-oriented	architecture)
Support	always-connected	and	sometimes-connected	models
Publish	information	over	unreliable	networks	and	provide	reliable	deliveries	over	fragile
connections
Work	very	well	with	battery-powered	devices	or	require	low	power	consumption
Provide	responsiveness	to	make	it	possible	to	achieve	near	real-time	delivery	of	information
Offer	security	and	privacy	for	all	the	data
Be	able	to	provide	the	necessary	scalability	to	distribute	data	to	hundreds	of	thousands	of	clients

Working	with	the	publish-subscribe	pattern
Before	we	dive	deep	into	MQTT,	we	must	understand	the	publish-subscribe	pattern,	also	known	as	the
pub-sub	pattern.	In	the	publish-subscribe	pattern,	a	client	that	publishes	a	message	is	decoupled	from	the
other	client	or	clients	that	receive	the	message.	The	clients	don't	know	about	the	existence	of	the	other
clients.	A	client	can	publish	messages	of	a	specific	type	and	only	the	clients	that	are	interested	in	specific
types	of	messages	will	receive	the	published	messages.

The	publish-subscribe	pattern	requires	a	broker,	also	known	as	server.	All	the	clients	establish	a
connection	with	the	broker.	The	client	that	sends	a	message	through	the	broker	is	known	as	the	publisher.
The	broker	filters	the	incoming	messages	and	distributes	them	to	the	clients	that	are	interested	in	the	type
of	received	messages.	The	clients	that	register	to	the	broker	as	interested	in	specific	types	of	messages
are	known	as	subscribers.	Hence,	both	publishers	and	subscribers	establish	a	connection	with	the	broker.

It	is	easy	to	understand	how	things	work	with	a	simple	diagram.	The	following	diagram	shows	one
publisher	and	two	subscribers	connected	to	a	broker:

	

	

	

A	Raspberry	Pi	3	board	with	an	altitude	sensor	wired	to	it	is	a	publisher	that	establishes	a	connection
with	the	broker.	An	iOS	smartphone	and	an	Android	tablet	are	two	subscribers	that	establish	a	connection
with	the	broker.

The	iOS	smartphone	indicates	to	the	broker	that	it	wants	to	subscribe	to	all	the	messages	that	belong	to	the
sensor1/altitude	topic.	The	Android	tablet	indicates	the	same	to	the	broker.	Hence,	both	the	iOS
smartphone	and	the	Android	tablet	are	subscribed	to	the	sensor1/altitude	topic.

Tip

A	topic	is	a	named	logical	channel	and	it	is	also	referred	to	as	a	channel	or	subject.	The	broker	will	send
publishers	only	the	messages	published	to	topics	to	which	they	are	subscribed.

The	Raspberry	Pi	3	board	publishes	a	message	with	100	feet	as	the	payload	and	sensor1/altitude	as	the
topic.	The	board,	that	is,	the	publisher,	sends	the	publish	request	to	the	broker.

Tip

The	data	for	a	message	is	known	as	payload.	A	message	includes	the	topic	to	which	it	belongs	and	the
payload.

The	broker	distributes	the	message	to	the	two	clients	that	are	subscribed	to	the	sensor1/altitude	topic:	the
iOS	smartphone	and	the	Android	tablet.

Publishers	and	subscribers	are	decoupled	in	space	because	they	don't	know	each	other.	Publishers	and
subscribers	don't	have	to	run	at	the	same	time.	The	publisher	can	publish	a	message	and	the	subscriber
can	receive	it	later.	In	addition,	the	publish	operation	isn't	synchronized	with	the	receive	operation.	A
publisher	requests	the	broker	to	publish	a	message	and	the	different	clients	that	have	subscribed	to	the
appropriate	topic	can	receive	the	message	at	different	times.	The	publisher	can	send	messages	as	an
asynchronous	operation	to	avoid	being	blocked	until	the	clients	receive	the	messages.	However,	it	is	also
possible	to	send	a	message	to	the	broker	as	a	synchronous	operation	with	the	broker	and	to	continue	the
execution	only	after	the	operation	was	successful.	In	most	cases,	we	will	want	to	take	advantage	of
asynchronous	operations.

A	publisher	that	requires	sending	a	message	to	hundreds	of	clients	can	do	it	with	a	single	publish
operation	to	a	broker.	The	broker	is	responsible	for	sending	the	published	message	to	all	the	clients	that
have	subscribed	to	the	appropriate	topic.	Because	publishers	and	subscribers	are	decoupled,	the
publisher	doesn't	know	whether	there	is	any	subscriber	that	is	going	to	listen	to	the	messages	it	is	going	to
send.	Hence,	sometimes	it	is	necessary	to	make	the	subscriber	become	a	publisher	too	and	to	publish	a
message	indicating	that	it	has	received	and	processed	a	message.	The	specific	requirements	depend	on	the
kind	of	solution	we	are	building.	MQTT	offers	many	features	that	make	our	lives	easier	in	many	of	the
scenarios	we	have	been	analyzing.

Working	with	message	filtering
The	broker	has	to	make	sure	that	subscribers	only	receive	the	messages	they	are	interested	in.	It	is
possible	to	filter	messages	based	on	different	criteria	in	a	publish-subscribe	pattern.	We	will	focus	on
analyzing	topic-based	filtering,	also	known	as	subject-based	filtering.

Consider	that	each	message	belongs	to	a	topic.	When	a	publisher	requests	the	broker	to	publish	a
message,	it	must	specify	both	the	topic	and	the	message.	The	broker	receives	the	message	and	delivers	it
to	all	the	subscribers	that	have	subscribed	to	the	topic	to	which	the	message	belongs.

The	broker	doesn't	need	to	check	the	payload	for	the	message	to	deliver	it	to	the	corresponding
subscribers;	it	just	needs	to	check	the	topic	for	each	message	that	has	arrived	and	needs	to	be	filtered
before	publishing	it	to	the	corresponding	subscribers.

A	subscriber	can	subscribe	to	more	than	one	topic.	In	this	case,	the	broker	has	to	make	sure	that	the
subscriber	receives	the	messages	that	belong	to	all	the	topics	to	which	it	has	subscribed.	It	is	easy	to
understand	how	things	work	with	another	simple	diagram.	The	following	diagram	shows	two	future
publishers	that	haven't	published	any	messages	yet,	a	broker	and	two	subscribers	connected	to	the	broker:

	

	

	

A	Raspberry	Pi	3	board	with	an	altitude	sensor	wired	to	it	and	an	Intel	Edison	board	with	a	temperature
sensor	wired	to	it	will	be	two	publishers.	An	iOS	smartphone	and	an	Android	tablet	are	two	subscribers
that	establish	a	connection	to	the	broker.

The	iOS	smartphone	indicates	to	the	broker	that	it	wants	to	subscribe	to	all	the	messages	that	belong	to	the
sensor1/altitude	topic.	The	Android	tablet	indicates	to	the	broker	that	it	wants	to	subscribe	to	all	the
messages	that	belong	to	any	of	the	following	two	topics:	sensor1/altitude	and	sensor42/temperature.
Hence,	the	Android	tablet	is	subscribed	to	two	topics	while	the	iOS	smartphone	is	subscribed	to	just	one
topic.

The	following	diagram	shows	what	happens	after	the	two	publishers	connect	and	publish	messages	to
different	topics	through	the	broker:

	

	

	

The	Raspberry	Pi	3	board	publishes	a	message	with	120	feet	as	the	payload	and	sensor1/altitude	as	the
topic.	The	board,	that	is,	the	publisher,	sends	the	publish	request	to	the	broker.	The	broker	distributes	the
message	to	the	two	clients	that	are	subscribed	to	the	sensor1/altitude	topic:	the	iOS	smartphone	and	the
Android	tablet.

The	Intel	Edison	board	publishes	a	message	with	75	F	as	the	payload	and	sensor42/temperature	as	the
topic.	The	board,	that	is,	the	publisher,	sends	the	publish	request	to	the	broker.	The	broker	distributes	the
message	to	the	only	client	that	is	subscribed	to	the	sensor42/temperature	topic:	the	Android	Tablet.
Thus,	the	Android	tablet	receives	two	messages.

Understanding	the	MQTT	puzzle	--	clients,
servers,	and	connections
The	MQTT	broker	is	known	as	MQTT	server	in	MQTT	3.1.1,	and	therefore,	we	will	refer	to	it	as	the
server.	However,	we	must	take	into	account	that	the	documentation	for	MQTT	servers,	tools	and	client
libraries	can	use	the	old	MQTT	broker	name	to	refer	to	the	server.

The	MQTT	server	uses	the	previously	explained	topic-based	filtering	to	filter	and	distribute	messages	to
the	appropriate	subscribers.	There	are	many	MQTT	server	implementations	that	provide	additional
message	filtering	features	by	providing	custom	plug-ins.	However,	we	will	focus	on	the	features	that	are
part	of	the	MQTT	requirements.

As	previously	explained,	in	MQTT	the	publishers	and	the	subscribers	are	completely	decoupled.
Publishers	and	subscribers	are	MQTT	clients	that	only	establish	a	connection	with	the	MQTT	server.	An
MQTT	client	can	be	both	a	publisher	and	a	subscriber	at	the	same	time,	that	is,	the	client	can	publish
messages	to	specific	topics	and	also	receive	messages	that	belong	to	the	topics	to	which	the	client	has
subscribed	to.

There	are	MQTT	client	libraries	available	for	the	most	popular	programming	languages	and	platforms.
One	of	the	most	important	things	that	we	must	consider	when	we	select	the	MQTT	client	library	is	the	list
of	MQTT	features	that	they	support	and	the	ones	that	we	need	for	our	solution.	Sometimes,	we	can	choose
between	many	libraries	for	a	specific	programming	language	and	platform	and	some	of	them	might	not
implement	all	the	features.	We	will	use	many	libraries	for	diverse	programming	languages	and	platforms
throughout	the	book	and	we	will	learn	how	to	evaluate	whether	a	library	is	suitable	or	not	for	our	needs.
Specifically,	we	will	work	with	Python,	Java,	JavaScript	and	Swift.

Any	device	that	has	a	TCP/IP	stack	and	is	capable	of	using	an	MQTT	library	can	become	an	MQTT
client,	that	is,	a	publisher,	a	subscriber	or	both	a	publisher	and	a	subscriber.	The	MQTT	library	makes	it
possible	for	the	device	to	talk	MQTT	on	top	of	TCP/IP	and	to	interact	with	specific	types	of	MQTT
servers.	For	example,	any	of	the	following	can	become	an	MQTT	client:	an	Arduino	board,	a	Raspberry
Pi	3	board,	an	Intel	Joule	board,	an	iPhone,	an	iPad,	a	laptop	running	Windows,	a	server	running	Linux,	a
Macbook	running	macOS,	and	Android	tablet,	among	other	devices.

There	are	many	MQTT	servers	available	for	the	most	popular	platforms,	including	Linux,	Windows	and
macOS.	Many	of	them	are	servers	that	can	work	as	MQTT	servers	among	other	features.	An	MQTT
server	might	implement	only	a	subset	of	the	MQTT	capabilities	and	might	have	specific	limitations.
Hence,	it	is	very	important	to	check	all	the	capabilities	we	will	require	in	our	solution	before	selecting	an
MQTT	server.	As	happens	with	other	middleware,	we	have	open	source	versions,	free	versions	and	paid
versions.	Thus,	we	also	have	to	make	sure	we	select	the	appropriate	MQTT	server	based	on	our	budget
and	our	specific	needs.

Throughout	this	book,	we	will	work	with	the	Eclipse	Mosquitto	MQTT	server
(http://www.mosquitto.org).	Mosquitto	is	an	open	source	MQTT	server	with	an	EPL/EDL	license	that	is
compatible	with	MQTT	versions	3.1	and	3.1.1.	We	can	take	advantage	of	everything	we	learn	with	any

http://www.mosquitto.org

other	MQTT	server	such	as	Erlang	MQTT	Broker	(EMQ),	also	known	as	EMQTT
(http://www.emqtt.io),	and	HiveMQ	(http://hivemq.com),	among	others.	In	addition,	we	might	use	our
knowledge	to	work	with	a	cloud-based	MQTT	server	such	as	CloudMQTT	(http://www.cloudmqtt.com).

The	MQTT	server	is	the	central	hub	of	the	publish/subscribe	model	we	previously	analyzed.	The	MQTT
server	is	responsible	of	the	authentication	and	authorization	of	the	MQTT	clients	that	will	be	able	to
become	publishers	and/or	subscribers	after	they	are	authenticated	and	authorized.	So,	the	first	thing	that	an
MQTT	client	must	do	is	to	establish	a	connection	with	the	MQTT	server.

In	order	to	establish	a	connection,	the	MQTT	client	must	send	a	CONNECT	control	packet	to	the	MQTT
server	with	a	payload	that	must	include	all	the	necessary	information	to	initiate	the	connection	and
proceed	with	the	authentication	and	authorization.	The	MQTT	server	will	check	the	CONNECT	packet,
perform	authentication	and	authorization	and	send	a	response	to	the	client	with	a	CONNACK	control
packet	that	we	will	analyze	in	detail	after	understanding	the	CONNECT	control	packet.	In	case	the
MQTT	client	sends	an	invalid	CONNECT	control	packet,	the	server	will	automatically	close	the
connection.

The	following	diagram	shows	the	interaction	between	an	MQTT	client	and	an	MQTT	server	to	establish	a
connection.

	

	

	

Tip

After	a	successful	connection	has	been	established	between	an	MQTT	client	and	an	MQTT	server,	the
server	will	keep	the	connection	open	until	the	client	loses	the	connection	or	sends	a	DISCONNECT
control	packet	to	the	server	to	close	the	connection.

http://www.emqtt.io
http://hivemq.com
http://www.cloudmqtt.com

The	CONNECT	control	packet	must	include	values	for	the	following	fields	in	the	payload	and	bits	for	a
special	flags	byte	that	is	included	in	the	control	packet.	We	want	to	understand	the	meaning	of	these	fields
and	flags	because	we	will	be	able	to	specify	their	values	when	we	work	with	MQTT	tools	and	MQTT
client	libraries.

ClientId:	The	client	identifier,	also	known	as	Client	ID,	is	a	string	that	identifies	each	MQTT	client
that	connects	to	an	MQTT	server.	Each	client	that	connects	to	the	MQTT	server	must	have	a	unique
ClientId	and	the	server	uses	it	to	identify	the	state	that	it	holds	related	to	the	MQTT	session
between	the	client	and	the	server.	If	a	client	specifies	an	empty	value	as	the	ClientId,	the	MQTT
server	must	generate	a	unique	ClientId	to	identify	the	client.	However,	this	behavior	depends	on
the	value	specified	for	the	CleanSession	field.
CleanSession:	The	clean	session	flag	is	a	boolean	value	that	specifies	what	happens	after	an
MQTT	client	disconnects	from	the	MQTT	server	and	then	reconnects.	If	CleanSession	is	set	to	1	or
true,	the	client	indicates	to	the	MQTT	server	that	the	session	will	only	last	as	long	as	the	network
connection	is	alive.	After	the	MQTT	client	disconnects	from	the	MQTT	server,	any	information
related	to	the	session	is	discarded.	A	new	connection	from	the	same	MQTT	client	to	the	MQTT
server	will	not	use	the	data	from	the	previous	session	and	will	be	a	new	clean	session.	If
CleanSession	is	set	to	0	or	false,	we	will	work	with	a	persistent	session.	In	this	case,	the	MQTT
server	stores	all	the	subscriptions	for	the	MQTT	client	and	when	the	MQTT	client	disconnects,	the
MQTT	server	stores	all	the	messages	that	arrive	with	specific	quality	of	service	levels	that	match
the	subscriptions	that	the	MQTT	client	had	at	the	time	the	disconnection	occurred.	This	way,	when
the	same	MQTT	client	establishes	a	new	connection	with	the	MQTT	server,	the	MQTT	client	will
have	the	same	subscriptions	and	will	receive	all	the	messages	that	it	couldn't	receive	when	it	lost	the
connection.	We	will	dive	deep	on	the	quality	of	service	level	for	the	messages	and	their	relationship
with	the	clean	session	flag	or	the	persistent	session	option	later.

Tip

When	the	clean	session	flag	is	set	to	0	or	false,	the	client	indicates	to	the	server	that	is	wants	a	persistent
session.	We	just	have	to	remember	a	clean	session	is	the	opposite	of	a	persistent	session.

UserName:	If	the	client	wants	to	specify	a	user	name	to	request	authentication	and	authorization	from
the	MQTT	server,	it	must	set	the	UserName	flag	to	1	or	true	and	specify	a	value	for	the	UserName
field.
password:	If	the	client	wants	to	specify	a	password	to	request	authentication	and	authorization	from
the	MQTT	server,	it	must	set	the	Password	flag	to	1	or	true	and	specify	a	value	for	the	Password
field.

Tip

We	will	dedicate	the	entire	next	chapter	to	MQTT	security,	and	therefore,	we	just	mention	the	fields	and
the	flags	that	are	included	in	the	CONNECT	control	packtet.

ProtocolLevel:	The	protocol	level	value	indicates	the	MQTT	protocol	version	that	the	MQTT
client	requests	the	MQTT	server	to	use.	Remember	we	will	always	work	with	MQTT	version	3.1.1.
KeepAlive:	KeepAlive	is	a	time	interval	expressed	in	seconds.	If	the	value	for	keep	alive	is	not
equal	to	0,	the	MQTT	client	commits	to	send	control	packets	to	the	server	within	the	time	specified

for	KeepAlive.	If	the	MQTT	client	doesn't	have	to	send	any	control	packet,	it	must	send	a	PINGREQ
control	packet	to	the	MQTT	server,	that	is,	a	ping	request	to	tell	the	MQTT	server	that	the	client
connection	is	alive.	The	MQTT	server	responds	to	the	PINGREQ	control	packet	with	a	PINGRESP
response	to	the	MQTT	client,	that	is,	a	ping	response	to	tell	the	MQTT	client	that	the	connection	with
the	MQTT	server	is	alive.	The	connection	is	closed	when	there	is	an	absence	of	any	of	these	control
packets.	If	the	value	for	keep	alive	is	0,	the	keep	alive	mechanism	is	turned	off.
Will,	WillQoS,	WillRetain,	WillTopic	and	WillMessage:	These	flags	and	fields	allow	the
MQTT	client	to	take	advantage	of	the	last	will	and	testament	feature	of	MQTT.	If	the	MQTT	client
sets	the	Will	flag	to	1	or	true,	it	specifies	that	it	wants	the	MQTT	server	to	store	a	last	will	message
associated	with	the	session.	The	WillQoS	flag	specifies	the	desired	quality	of	service	for	the	last
WillMessage	and	the	WillRetain	flag	indicates	whether	this	messsage	must	be	retained	when	it	is
published	or	not.	If	the	MQTT	client	sets	the	Will	flag	to	1	or	true,	it	must	specify	the	topic	for	the
WillMessage	and	the	message	in	the	WillTopic	and	WillMessage	fields.	If	the	MQTT	client	is
disconnected	or	loses	the	connection	with	the	MQTT	server,	the	MQTT	server	will	publish	the
message	specified	in	the	WillMessage	field	to	the	topic	indicated	in	the	WillTopic	field	with	the
chosen	quality	of	service.	We	will	analyze	this	feature	in	detail	later.

The	MQTT	server	will	process	a	valid	CONNECT	control	packet	and	it	will	respond	with	a	CONNACK
control	packet.	This	control	packet	will	include	values	for	the	following	flags	included	in	the	header.	We
want	to	understand	the	meaning	of	these	flags	because	we	will	be	able	to	retreive	their	values	when	we
work	with	MQTT	tools	and	MQTT	client	libraries.

SessionPresent:	If	the	MQTT	server	received	a	connection	request	with	the	CleanSession	flag
set	to	1	or	true,	the	value	for	the	SessionPresent	flag	will	be	0	or	false	because	no	stored
session	will	be	reused.	If	the	CleanSession	flag	was	set	to	0	or	false	in	the	connection	request,	the
MQTT	server	will	work	with	a	persistent	session	and	the	value	for	the	SessionPresent	flag	will
be	1	or	true	if	the	server	had	a	persistent	session	for	the	client	from	a	previous	connection	and
retrieves	it.	Otherwise,	SessionPresent	will	be	0	or	false.	The	MQTT	client	that	wanted	to	work
with	a	persistent	session	can	use	the	value	of	this	flag	to	determine	whether	it	has	to	request
subscription	to	the	desired	topics	or	whether	the	subscriptions	have	been	restored	from	the	persisted
session.
ReturnCode:	If	the	authorization	and	authentication	passed	and	the	connection	was	successfully
established,	the	value	for	ReturnCode	will	be	0.	Otherwise,	the	return	code	will	be	different	than	0
and	the	network	connection	between	the	client	and	the	server	will	be	closed.	The	following	table
shows	the	possible	values	for	ReturnCode	with	their	meaning.

ReturnCode
value Description

0 The	connection	was	accepted

1
The	connection	was	refused	because	the	MQTT	server	doesn't	support	the	MQTT	protocol	version	requested	by	the	MQTT
client	in	the	CONNECT	control	packet

2 The	connection	was	refused	because	the	ClientId	(client	identifier)	specified	has	been	rejected

3 The	connection	was	refused	because	the	network	connection	was	established	but	the	MQTT	service	isn't	available

4 The	connection	was	refused	because	the	user	name	or	password	values	are	malformed

5 The	connection	was	refused	because	authorization	failed

Installing	a	Mosquitto	broker	on	Ubuntu	Linux
Now,	we	will	learn	the	necessary	steps	to	install	a	Mosquitto	broker,	also	known	as	Mosquitto	MQTT
server	on	the	most	popular	operating	systems:	Linux,	macOS	and	Windows.	First,	we	will	start	with
Linux;	specifically,	we	will	work	with	Ubuntu	Linux.	In	case	you	want	to	work	with	a	different	Linux
distribution,	you	can	find	details	about	the	installation	procedure	in	the	Mosquitto	downloads	section:
http://mosquitto.org/download.

Follow	these	steps	to	install	a	Mosquitto	broker	on	Ubuntu	Linux.	Take	into	account	that	you	will	require
root	privileges:

1.	 Open	a	Terminal	window	and	run	the	following	command	to	add	the	Mosquitto	repository:	sudo	apt-
add-repository	ppa:mosquitto-dev/mosquitto-ppa

After	you	enter	the	password,	you	will	see	an	output	similar	to	the	next	lines	(the	temporary	file
names	will	be	different).

						gpg:	keyring	`/tmp/tmpj3a50p1p/secring.gpg'	created

						gpg:	keyring	`/tmp/tmpj3a50p1p/pubring.gpg'	created

						gpg:	requesting	key	262C4500	from	hkp	server	keyserver.ubuntu.com

						gpg:	/tmp/tmpj3a50p1p/trustdb.gpg:	trustdb	created

						gpg:	key	262C4500:	public	key	"Launchpad	mosquitto"	imported

						gpg:	Total	number	processed:	1

						gpg:															imported:	1		(RSA:	1)

						OK

2.	 Run	the	following	command	to	update	the	packages	with	the	recently	added	Mosquitto	repository.

						sudo	apt-get	update

You	will	see	an	output	similar	to	the	next	lines.

						Get:1	http://ppa.launchpad.net/mosquitto-dev/mosquitto-ppa/						ubuntu	

xenial	InRelease	[23,8	kB]

						Hit:2	http://security.ubuntu.com/ubuntu	xenial-security	InRelease

						Hit:3	http://ar.archive.ubuntu.com/ubuntu	xenial	InRelease

						Hit:4	http://ar.archive.ubuntu.com/ubuntu	xenial-updates	InRelease

						Get:5	http://ppa.launchpad.net/mosquitto-dev/						mosquitto-ppa/ubuntu	

xenial/main	amd64	Packages	[2.048	B]

						Hit:6	http://ar.archive.ubuntu.com/ubuntu	xenial-backports	InRelease

						Get:7	http://ppa.launchpad.net/mosquitto-dev/						mosquitto-ppa/ubuntu	

xenial/main	i386	Packages	[2.048	B]

						Get:8	http://ppa.launchpad.net/mosquitto-dev/mosquitto-ppa/						ubuntu	

xenial/main	Translation-en	[1.292	B]

						Fetched	29,2	kB	in	1s	(21,5	kB/s)

						Reading	package	lists...	Done

3.	 Now,	run	the	following	command	to	install	the	package	for	the	Mosquitto	server.

						sudo	apt-get	install	mosquitto

You	will	see	an	output	similar	to	the	next	lines.	Enter	Y	and	press	Enter	to	answer	the	question	and
complete	the	installation	process.

http://mosquitto.org/download

						Reading	package	lists...	Done

						Building	dependency	tree

						Reading	state	information...	Done

						The	following	additional	packages	will	be	installed:

								libev4	libuv1	libwebsockets7

						The	following	NEW	packages	will	be	installed:

								libev4	libuv1	libwebsockets7	mosquitto

						0	upgraded,	4	newly	installed,	0	to	remove	and	299	not	upgraded.

						8	not	fully	installed	or	removed.

						Need	to	get	274	kB	of	archives.

						After	this	operation,	714	kB	of	additional	disk	space	will	be	used.

						Do	you	want	to	continue?	[Y/n]

The	last	lines	should	include	a	line	that	says	Setting	up	mosquitto,	as	shown	in	the	following
lines:	Setting	up	mosquitto	(1.4.10-0mosquitto3)	...	Processing	triggers	for	libc-bin	(2.23-
0ubuntu3)	...	Processing	triggers	for	systemd	(229-4ubuntu7)	...	Processing	triggers	for
ureadahead	(0.100.0-19)	...

4.	 Run	the	following	command	to	install	the	Mosquitto	client	packages	that	will	allow	us	to	run
commands	to	publish	messages	to	topics	and	subscribe	to	topic	filters.

						sudo	apt-get	install	mosquitto-clients

You	will	see	an	output	similar	to	the	next	lines.	Enter	Y	and	press	Enter	to	answer	the	question	and
complete	the	installation	process.

						Reading	package	lists...	Done

						Building	dependency	tree

						Reading	state	information...	Done

						The	following	additional	packages	will	be	installed:

								libc-ares2	libmosquitto1

						The	following	NEW	packages	will	be	installed:

								libc-ares2	libmosquitto1	mosquitto-clients

						0	upgraded,	3	newly	installed,	0	to	remove	and	299	not	upgraded.

						Need	to	get	138	kB	of	archives.

						After	this	operation,	332	kB	of	additional	disk	space	will	be	used.

						Do	you	want	to	continue?	[Y/n]

The	last	lines	should	include	a	line	that	says	Setting	up	mosquitto-clients,	as	shown	in	the
following	lines:	Setting	up	libmosquitto1:amd64	(1.4.10-0mosquitto3)	...	Setting	up	mosquitto-
clients	(1.4.10-0mosquitto3)	...	Processing	triggers	for	libc-bin	(2.23-0ubuntu3)	...

5.	 Run	the	following	command	to	check	the	status	for	the	mosquitto	service	that	was	recently
installed.

						sudo	service	mosquitto	status

The	first	lines	of	the	output	should	be	similar	to	the	following	lines	with	an	active	(running)
status	displayed.	The	details	after	CGroup	indicate	the	command-line	that	started	the	service.	The	-c
option	followed	by	/etc/mosquitto/mosquitto.conf	specifies	that	Mosquitto	is	using	this
configuration	file.

						mosquitto.service	-	LSB:	mosquitto	MQTT	v3.1	message	broker

									Loaded:	loaded	(/etc/init.d/mosquitto;	bad;							vendor	preset:	

enabled)

									Active:	active	(running)

											Docs:	man:systemd-sysv-generator(8)

									CGroup:	/system.slice/mosquitto.service

																	└─17560	/usr/sbin/mosquitto	-c							

/etc/mosquitto/mosquitto.conf

You	can	also	run	the	following	command	to	check	whether	the	Mosquitto	MQTT	server	is	listening
at	the	default	port:	1883.

						netstat	-an	|	grep	1883

The	following	lines	show	the	results	of	the	previous	command	that	indicate	the	Mosquitto	MQTT
server	has	opened	an	IPv4	and	an	IPv6	listen	socket	on	port	1883:	tcp	0	0	0.0.0.0:1883	0.0.0.0:*
LISTEN	tcp6	0	0	:::1883	:::*	LISTEN

Installing	a	Mosquitto	broker	on	macOS
Follow	these	steps	to	install	a	Mosquitto	broker	on	macOS	(known	as	OS	X	before	version	Sierra):

1.	 In	case	you	don't	have	Homebrew	installed,	open	a	Terminal	window	and	run	the	command	indicated
in	the	Homebrew	homepage,	http://brew.sh	,	to	install	this	popular	package	manager	for	macOS.	The
following	command	will	do	the	job.	However,	it	is	convenient	to	check	the	Homebrew	homepage
and	check	all	the	detailed	instructions	that	are	always	updated	with	the	newest	versions	of	macOS
that	become	available.	In	case	you	already	have	Homebrew	installed,	move	to	the	next	step.

/usr/bin/ruby	-e	"$(curl	-fsSL

https://raw.githubusercontent.com/Homebrew

/install/master/install)"

2.	 Open	a	Terminal	window	and	run	the	following	command	to	request	Homebrew	to	install	Mosquitto:
brew	install	mosquitto

3.	 The	following	lines	show	the	last	messages	shown	in	the	Terminal	that	indicate	that	Homebrew	has
installed	Mosquitto	and	the	instructions	to	start	the	MQTT	server.

						==>	Installing	mosquitto	

						==>	Downloading	https://homebrew.bintray.com/bottles/mosquitto-						

1.4.10.el_capitan.bottle.tar.gz

						##	100.0%

						==>	Pouring	mosquitto-1.4.10.el_capitan.bottle.tar.gz

						==>	Caveats

						mosquitto	has	been	installed	with	a	default	configuration	file.

						You	can	make	changes	to	the	configuration	by	editing:

										/usr/local/etc/mosquitto/mosquitto.conf

						To	have	launchd	start	mosquitto	now	and	restart	at	login:

								brew	services	start	mosquitto

						Or,	if	you	don't	want/need	a	background	service	you	can	just	run:

								mosquitto	-c	/usr/local/etc/mosquitto/mosquitto.conf

						==>	Summary

								/usr/local/Cellar/mosquitto/1.4.10:	32	files,	618.3K

4.	 After	the	Mosquitto	installation	has	been	completed,	run	the	following	command	in	a	new	Terminal
window	to	launch	Mosquitto	with	the	default	configuration	file.	The	-c	option	followed	by
/usr/local/etc/mosquitto/mosquitto.conf	specifies	that	we	want	to	use	this	configuration
file.

						/usr/local/sbin/mosquitto	-c	/usr/local/etc/mosquitto/mosquitto.conf

The	following	is	the	output	after	you	run	the	previous	command:

						Gastons-MacBook-Pro:~	gaston$	/usr/local/sbin/mosquitto	-c							

/usr/local/etc/mosquitto/mosquitto.conf

						1482518967:	mosquitto	version	1.4.10							(build	date	2016-08-31	

20:09:41+0100)	starting

						1482518967:	Config	loaded	from							

/usr/local/etc/mosquitto/mosquitto.conf.

						1482518967:	Opening	ipv4	listen	socket	on	port	1883.

						1482518967:	Opening	ipv6	listen	socket	on	port	1883.

http://brew.sh

The	last	lines	indicate	the	Mosquitto	MQTT	server	has	opened	an	IPv4	and	an	IPv6	listen	socket	on
port	1883.	Leave	the	Terminal	window	opened	because	we	need	Mosquitto	running	on	the	local
computer	to	work	with	the	next	examples.

Installing	a	Mosquitto	broker	on	Windows
Follow	these	steps	to	install	a	Mosquitto	broker	on	Windows.	Take	into	account	that	you	will	require
Windows	Vista	or	higher	(Windows	7,	8,	8.1,	10	or	greater).

1.	 Download	the	executable	file	listed	under	Binary	Installation	and	Windows	that	provides	the	native
build	in	the	Mosquitto	downloads	web	page:	http://mosquitto.org/download	.	For	Moquitto	1.4.10,
the	file	name	is	mosquito-1.4.10-install-win32.exe.	You	must	click	or	tap	on	the	file	name	and
you	will	be	redirected	to	the	Eclipse	repository	with	many	mirror	options,	including	a	default
recommendation,	from	which	you	can	download	the	executable	file.

2.	 Run	the	previously	downloaded	executable	file	and	the	Mosquitto	Setup	Wizard	will	display	its
Welcome	dialog	box.	Click	Next	>	to	continue.	The	setup	wizard	will	display	the	dependencies	that
you	must	install:	OpenSSL	and	pthreads.	The	dialog	box	will	display	the	links	that	you	can	use	to
download	and	run	installers	for	these	two	requirements.

3.	 If	you	don't	have	Win32	OpenSSL	v1.0.2j	Light	installed	on	Windows,	go	to	the	Win32	OpenSSL
web	page:	http://slproweb.com/products/Win32OpenSSL.html	and	download	the	Win32	OpenSSL
v1.0.2k	Light	file	listed	in	a	table	under	Download	Win32	OpenSSL.	Do	not	download	the	Win64
version	because	you	will	need	the	Win32	version	to	make	it	possible	for	Mosquitto	to	have	its
dependencies.	If	you	already	have	Win32	OpenSSL	v1.0.2k	Light	installed,	advance	to	step	number
7.	For	Win32	OpenSSL	v1.0.2k	Light,	the	file	name	is	Win32OpenSSL_Light-1_0_2j.exe.	Run
the	downloaded	executable	file	and	OpenSSL	Light	(32-bit)	will	display	its	Welcome	dialog	box.
Click	Next	>	to	continue.

4.	 The	setup	wizard	will	display	the	License	Agreement.	Read	it,	select	I	Accept	the	agreement	and
click	Next	>.	Select	the	folder	in	which	you	want	to	install	OpenSSL	Light	(32-bit)	in	case	you	don't
want	to	use	the	default	folder.	Remember	the	folder	you	specify	because	you	will	need	to	copy	a	few
DLL	files	from	this	folder	later.	The	default	folder	is	C:OpenSSL-Win32.

5.	 Click	Next	>	to	continue,	specify	a	different	Start	Menu	folder	if	necessary	and	click	Next	>.	Select
The	OpenSSL	binaries	(/bin)	directory	as	the	desired	option	to	Copy	OpenSSL	DLLs	to.	This
way,	the	installation	will	copy	the	DLLs	to	a	bin	sub-folder	within	the	previously	specified	folder,
by	default,	C:OpenSSL-Win32bin.

6.	 Click	Next	>	to	continue.	Review	the	selected	installation	options	and	click	Install	to	complete	the
installation	for	OpenSSL	Light	(32-bit).	Finally,	consider	a	donation	to	the	Win32	OpenSSL	project
and	click	Finish	to	exit	setup.

7.	 Go	to	the	following	address	in	your	web	browser:	ftp://sources.redhat.com/pub/pthreads-win32/dll-
latest/dll/x86	.	The	browser	will	display	many	files	for	this	FTP	directory.	Right	click	on
pthreadVC2.dll	and	save	the	file	in	your	Downloads	folder.	You	will	have	to	copy	this	DLL	to	the
Mosquitto	installation	folder	later.

8.	 Now,	go	back	to	the	Mosquitto	Setup	window	and	click	Next	>	to	continue.	By	default,	Mosquitto
will	install	the	files	and	the	Mosquitto	Service.	Use	the	default	components	installation	options	and
click	Next	>	to	continue.

9.	 Select	the	folder	in	which	you	want	to	install	Mosquitto	in	case	you	don't	want	to	use	the	default
folder.	Remember	the	folder	you	specify	because	you	will	need	to	copy	a	few	DLL	files	to	this
folder	later.	The	default	folder	is	C:Program	Files	(x86)mosquitto.	Click	Install	to	complete
the	installation.	Once	the	installation	has	completed	click	Finish	to	close	the	Mosquitto	Setup

http://mosquitto.org/download
http://slproweb.com/products/Win32OpenSSL.html
ftp://sources.redhat.com/pub/pthreads-win32/dll-latest/dll/x86

Wizard.
10.	 Open	a	File	Explorer	window	and	go	to	the	bin	sub-folder	within	the	folder	in	which	you	installed

OpenSSL	Light	(32-bit),	by	default,	C:OpenSSL-Win32bin.
11.	 Copy	the	following	two	DLLs:	libeay32.dll	and	ssleay32.dll.	Now,	go	to	the	folder	in	which

you	installed	Mosquitto	and	paste	these	two	DLLs.	By	default,	the	Mosquitto	installation	folder	is
C:Program	Files	(x86)mosquitto.	You	will	need	to	provide	administrator	permission	to	paste
the	DLLs	in	the	default	folder.

12.	 Open	a	File	Explorer	window	and	go	to	your	Downloads	folder.	Copy	the	pthreads	DLL	you
downloaded	in	one	of	the	previous	steps:	pthreadVC2.dll.	Now,	go	to	the	folder	in	which	you
installed	Mosquitto	and	paste	this	DLL.	You	will	need	to	provide	administrator	permission	to	paste
the	DLL	in	the	default	Mosquitto	installation	folder.

13.	 Now	that	all	the	dependencies	are	included	in	the	Mosquitto	installation	folder,	it	is	necessary	to	run
the	installation	again	to	make	the	Mosquitto	Setup	configure	the	Windows	service.	Run	the
previously	downloaded	Mosquitto	installation	executable	again.	For	Moquitto	1.4.10,	the	file	name
is	mosquito-1.4.10-install-win32.exe.	Make	sure	you	specify	the	same	installation	folder	as
the	folder	in	which	you	copied	the	DLLs	and	that	the	Service	component	is	activated.	Click	Next	>
many	times	and	click	Install	to	complete	the	configuration	for	the	Windows	service.	Once	the
installation	has	completed	click	Finish	to	close	the	Mosquitto	Setup	Wizard.

14.	 Open	the	Services	application	in	Windows	and	search	for	the	service	whose	name	is	Mosquitto
Broker.	Right	click	on	the	service	name	and	select	Start.	The	Status	will	change	to	Running.	By
default,	the	service	is	configured	to	have	its	Startup	Type	set	to	Automatic.	If	you	don't	want	to
automatically	start	the	Mosquitto	Broker	service,	change	the	Startup	Type	to	Manual.	You	will	have
to	repeat	the	step	you	just	did	to	manually	start	the	service	before	working	with	Mosquitto	on	the
Windows	computer.

Open	a	Command	Prompt	window	and	run	the	following	command	to	check	whether	the	Mosquitto	MQTT
server	is	listening	at	the	default	port:	1883.

netstat	-an	|	findstr	1883

The	following	lines	show	the	results	of	the	previous	command	that	indicate	the	Mosquitto	MQTT	server
has	opened	an	IPv4	and	an	IPv6	listen	socket	on	port	1883:	TCP	0.0.0.0:1883	0.0.0.0:0	LISTENING
TCP	[::]:1883	[::]:0	LISTENING

Subscribing	to	topics
A	drone	is	an	IoT	device	that	interacts	with	many	sensors	and	actuators,	including	digital	electronic	speed
controllers	linked	to	engines,	propellers	and	servomotors.	A	drone	is	also	known	as	an	Unnamed	Aerial
Vehicle	(UAV).	Let's	imagine	that	we	have	to	monitor	many	drones.	Specifically,	we	have	to	display	their
altitude	and	the	speed	for	each	of	their	servomotors.	Not	all	of	the	drones	have	the	same	number	of
engines,	propellers	and	servomotors.	We	have	to	monitor	quadcopters	(4	propellers),	hexacopters	(6
propellers)	and	octocopters	(8	propellers).

Each	drone	will	publish	its	altitude	every	two	seconds	to	the	following	topic:
sensors/dronename/altitude,	where	dronename	must	be	replaced	by	the	name	assigned	to	each
drone.	For	example,	the	drone	named	drone01	will	publish	its	altitude	values	to	the
sensors/drone01/altitude	topic	and	the	drone	named	drone20	will	use	the
sensors/drone20/altitude	topic.

In	addition,	each	drone	will	publish	the	speed	for	each	of	its	rotors	every	two	seconds	to	the	following
topic:	sensors/dronename/speed/rotor/rotornumber,	where	dronename	must	be	replaced	by	the
name	assigned	to	each	drone	and	rotornumber	must	be	replaced	by	the	rotor	number	for	which	the	speed
is	going	to	be	published.	For	example,	the	drone	named	drone01	will	publish	its	speed	values	for	its
rotor	number	1	to	the	sensors/drone01/speed/rotor/1	topic.

We	will	use	the	mosquitto_sub	command-line	utility	included	in	Mosquitto	to	generate	a	simple	MQTT
client	that	subscribes	to	a	topic	and	print	all	the	messages	it	receives.	Open	a	Terminal	in	macOS	or
Linux,	or	a	Command	Prompt	in	Windows,	go	to	the	directory	in	which	Mosquitto	is	installed	and	run	the
following	command:

mosquitto_sub	-V	mqttv311	-t	sensors/drone01/altitude	-d

The	previous	command	will	create	an	MQTT	client	that	will	establish	a	connection	with	the	local	MQTT
server	and	then	will	make	the	client	subscribe	to	the	topic	specified	after	the	-t	option:
sensors/drone01/altitude.	We	specify	the	version	of	the	MQTT	protocol	that	we	want	to	use	when
the	client	establishes	the	connection	with	-V	mqttv311.	This	way,	we	indicate	the	MQTT	server	that	we
want	to	use	MQTT	version	3.1.1.	We	specify	the	-d	option	to	enable	debug	messages	that	will	allow	us	to
understand	what	happens	under	the	hoods.	We	will	analyze	additional	options	for	the	connection	and	the
subscription	later.

The	Terminal	or	Command	Prompt	window	will	display	debug	messages	similar	to	the	following	lines.
Take	into	account	that	the	generated	ClientId	will	be	different	from	the	one	shown	after	Client:
mosqpub/5449-Gastons-Ma.

Client	mosqsub/5449-Gastons-Ma	sending	CONNECT

Client	mosqsub/5449-Gastons-Ma	received	CONNACK

Client	mosqsub/5449-Gastons-Ma	sending	SUBSCRIBE	(Mid:	1,	Topic:	

sensors/drone01/altitude,	QoS:	0)

Client	mosqsub/5449-Gastons-Ma	received	SUBACK

Subscribed	(mid:	1):	0

The	Terminal	or	Command	Prompt	window	will	display	the	messages	published	to	the	topic	to	which	we
subscribed	as	they	arrive	from	the	MQTT	server	to	the	MQTT	client.	Keep	the	window	opened.	You	will
see	that	that	the	client	sends	PINGREQ	packets	to	the	MQTT	server	and	receives	PINQRESP	packets	from
the	MQTT	server.	The	following	lines	show	examples	of	the	messages	displayed	for	these	packets:

Client	mosqsub/5449-Gastons-Ma	sending	PINGREQ

Client	mosqsub/5449-Gastons-Ma	received	PINGRESP

MQTT.fx	is	a	GUI	utility	implemented	with	JavaFX	that	is	available	for	Windows,	Linux	and	macOS.
This	tool	allows	us	to	connect	with	an	MQTT	server,	subscribe	to	topic	filters,	see	the	received	messages
and	publish	messages	to	topics.	You	can	download	the	appropriate	version	for	your	operating	system	from
the	downloads	section	of	the	main	web	page	for	this	utility:	http://www.mqttfx.org	.

Now,	we	will	use	the	MQTT.fx	GUI	utility	to	generate	another	MQTT	client	that	subscribes	to	the	same
topic,	sensors/drone01/altitude,	and	displays	all	the	messages	it	receives.	Follow	the	next	steps:

1.	 Launch	MQTT.fx,	select	local	mosquitto	in	the	dropdown	located	at	the	upper-left	corner	and	click
on	the	configuration	icon	at	the	right-hand	side	of	this	dropdown	and	at	the	left-hand	side	of	the
Connect	button.	MQTT.fx	will	display	the	Edit	Connection	Profiles	dialog	box	with	different
options	for	the	connection	profile	named	local	mosquitto.	We	analyzed	many	of	these	options	when
we	learned	about	the	data	that	the	MQTT	client	sends	to	the	MQTT	server	to	establish	a	connection.

2.	 Make	sure	the	General	button	is	pressed	and	deactivate	the	MQTT	Version	Use	Default	checkbox.
Make	sure	3.1.1	is	selected	in	the	dropdown	below	MQTT	Version.	This	way,	we	indicate	to	the
MQTT	server	that	we	want	to	use	MQTT	version	3.1.1.	Notice	that	the	Client	ID	textbox	specifies
MQTT_FX_Client.	This	is	the	ClientId	value	that	MQTT.fx	will	send	to	the	MQTT	server
(Mosquitto)	in	the	CONNECT	control	packet.	The	following	screenshot	shows	the	dialog	box	with	the
selected	options:

	

http://www.mqttfx.org

	

	
3.	 Click	OK	and	then	click	on	the	Connect	button.	MQTT.fx	will	establish	a	connection	with	the	local

Mosquitto	server.	Notice	that	the	Connect	button	is	disabled	and	the	Disconnect	button	is	enabled
because	the	client	is	connected	to	the	MQTT	server.

4.	 Click	Subscribe	and	enter	sensors/drone01/altitude	in	the	dropdown	at	the	left-hand	side	of	the
Subscribe	button.	Then,	click	the	Subscribe	button.	MQTT.fx	will	display	a	new	panel	at	the	left-
hand	side	with	the	topic	to	which	we	have	subscribed,	as	shown	in	the	next	screenshot.

	

	

	

In	case	you	don't	want	to	work	with	the	MQTT.fx	utility,	you	can	run	another	mosquitto_sub	command	to
generate	another	MQTT	client	that	subscribes	to	the	topic	and	print	all	the	messages	it	receives.	You	just
need	to	open	another	Terminal	in	macOS	or	Linux,	or	another	Command	Prompt	in	Windows,	go	to	the
directory	in	which	Mosquitto	is	installed	and	run	the	following	command	again.	In	this	case,	it	isn't
necessary	to	specify	the	-d	option.

mosquitto_sub	-V	mqttv311	-t	sensors/drone01/altitude

Now,	we	have	two	MQTT	clients	subscribed	to	the	same	topic:	sensors/drone01/altitude.	Now,	we
will	understand	what	happens	under	the	hoods	when	a	client	subscribes	to	a	topic.

The	MQTT	client	sends	a	SUBSCRIBE	packet	to	the	MQTT	server	with	a	packet	identifier	(PacketId)	in
the	header	and	one	or	more	pairs	of	a	topic	filter	and	the	desired	quality	of	service	level	in	the	payload.

Note

The	quality	of	service	is	known	as	QoS.

Hence,	a	single	SUBSCRIBE	packet	can	request	the	MQTT	server	to	subscribe	a	client	to	many	topics.	The
SUBSCRIBE	packet	must	include	at	least	one	topic	filter	and	QoS	pair	to	comply	with	the	protocol.

In	the	two	cases	in	which	we	requested	a	subscription,	we	used	a	specific	topic	name	as	the	value	for	the
topic	filter,	and	therefore,	we	request	the	MQTT	server	to	subscribe	to	a	single	topic.	We	will	learn	about
the	usage	of	wildcards	in	topic	filters	later.

We	used	the	default	options,	and	therefore,	the	quality	of	service	requested	is	the	default	level	of	0.	We
will	dive	deep	on	the	QoS	levels	later.	Now,	we	will	stay	focused	on	the	simplest	subscription	cases.	If
the	QoS	level	is	equal	to	0,	the	value	for	the	PacketId	field	will	be	0.	In	case	the	QoS	level	is	equal	to	1
or	2,	the	packet	identifier	will	have	a	number	value	to	identify	the	packet	and	make	it	possible	to	identify
the	responses	related	to	this	packet.

The	MQTT	server	will	process	a	valid	SUBSCRIBE	packet	and	it	will	respond	with	a	SUBACK	packet	that
indicates	the	subscribe	acknowledgement	and	confirms	the	receipt	and	processing	of	the	SUBSCRIBE
packet.	The	SUBACK	packet	will	include	the	same	packet	identifier	(PacketId)	in	the	header	that	was
received	in	the	SUBSCRIBE	packet.	The	SUBACK	packet	will	include	one	return	code	for	each	pair	of	a
topic	filter	and	the	desired	QoS	level	received	in	the	SUBSCRIBE	packet.	The	number	of	return	codes	will
match	the	number	of	topic	filters	included	in	the	SUBSCRIBE	packet.	The	following	table	shows	the
possible	values	for	these	return	codes.	The	first	three	return	codes	indicate	a	successful	subscription	and
each	value	specifies	the	maximum	QoS	that	can	be	delivered	based	on	the	requested	QoS	and	the	MQTT
server	possibilities	to	grant	it.

ReturnCode	value Description

0 Successfully	subscrib	with	a	maxium	QoS	of	0

1 Successfully	subscrib	with	a	maxium	QoS	of	1

2 Successfully	subscrib	with	a	maxium	QoS	of	2

128 Failed	to	subscribe

If	the	subscription	was	successful,	the	MQTT	server	will	start	sending	every	published	message	that
matches	the	topic	filters	specified	in	the	subscription	to	the	MQTT	client	with	the	QoS	specified	in	the
return	code.

The	following	diagram	shows	the	interaction	between	an	MQTT	client	and	an	MQTT	server	to	subscribe
to	one	or	many	topic	filters.

	

	

	

Publishing	messages
We	will	use	the	mosquitto_pub	command-line	utility	included	in	Mosquitto	to	generate	a	simple	MQTT
client	that	publishes	a	message	to	a	topic.	Open	a	Terminal	in	macOS	or	Linux,	or	a	Command	Prompt	in
Windows,	go	to	the	directory	in	which	Mosquitto	is	installed	and	run	the	following	command:

mosquitto_pub	-V	mqttv311	-t	sensors/drone01/altitude	-m		"10	f"	-d

The	previous	command	will	create	an	MQTT	client	that	will	establish	a	connection	with	the	local	MQTT
server	and	then	will	make	the	client	publish	a	message	to	the	topic	specified	after	the	-t	option:
sensors/drone01/altitude.	We	specify	the	payload	for	the	message	after	the	-m	option:	"10	f".	We
specify	the	version	of	the	MQTT	protocol	that	we	want	to	use	when	the	client	establishes	the	connection
with	-V	mqttv311.	This	way,	we	indicate	the	MQTT	server	that	we	want	to	use	MQTT	version	3.1.1.
We	specify	the	-d	option	to	enable	debug	messages	that	will	allow	us	to	understand	what	happens	under
the	hoods.	We	will	analyze	additional	options	for	the	connection	and	the	publication	later.

The	Terminal	or	Command	Prompt	window	will	display	debug	messages	similar	to	the	following	lines.
Take	into	account	that	the	generated	ClientId	will	be	different	from	the	one	shown	after
Client:mosqpub/5303-Gastons-Ma.	After	publishing	the	message,	the	client	disconnects.

Client	mosqpub/5308-Gastons-Ma	sending	CONNECT

Client	mosqpub/5308-Gastons-Ma	received	CONNACK

Client	mosqpub/5308-Gastons-Ma	sending	PUBLISH	(d0,	q0,	r0,	m1,	'drones/altitude',	

...	(5	bytes))

Client	mosqpub/5308-Gastons-Ma	sending	DISCONNECT

Now,	we	will	use	the	MQTT.fx	GUI	utility	to	generate	another	MQTT	client	that	publishes	another
message	to	the	same	topic,	sensors/drone01/altitude.	Follow	the	next	steps:

1.	 Go	to	the	MQTT.fx	window	in	which	you	established	a	connection	and	subscribed	to	a	topic.
2.	 Click	Publish	and	enter	sensors/drone01/altitude	in	the	dropdown	at	the	left-hand	side	of	the

Publish	button.
3.	 Enter	the	following	text	in	the	textbox	below	the	Publish	button:	20	f,	as	shown	in	the	following

screenshot:

	

	

	
4.	 Then,	click	the	Publish	button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.

In	case	you	don't	want	to	work	with	the	MQTT.fx	utility,	you	can	run	another	mosquitto_pub	command	to
generate	another	MQTT	client	that	publishes	a	message	to	the	topic.	You	just	need	to	open	another
Terminal	in	macOS	or	Linux,	or	another	Command	Prompt	in	Windows,	go	to	the	directory	in	which
Mosquitto	is	installed	and	run	the	following	command.

mosquitto_pub	-V	mqttv311	-t	sensors/drone01/altitude	-m	"20	f"

Now,	go	back	to	the	Terminal	or	Command	Prompt	window	in	which	you	executed	the	mosquitto_sub
command	and	subscribed	to	the	sensors/drone01/atitude	topic.	You	will	see	lines	similar	to	the
following	ones:

Client	mosqsub/5532-Gastons-Ma	received	PUBLISH	(d0,	q0,	r0,	m0,	

'sensors/drone01/altitude',	...	(4	bytes))

10	f

Client	mosqsub/5532-Gastons-Ma	received	PUBLISH	(d0,	q0,	r0,	m0,	

'sensors/drone01/altitude',	...	(4	bytes))

20	f

If	we	clean	up	the	debug	messages	that	start	with	the	Client	prefix,	we	will	see	just	the	next	two	lines.
These	lines	show	the	payloads	for	the	two	messages	that	we	received	as	a	result	of	our	subscription	to	the
sensors/drone01/altitude	topic.

10	f

20	f

Go	to	the	MQTT.fx	window	and	click	Subscribe.	You	will	see	2	at	the	right-hand	side	of	the	title	for	the
topic	filter	used	to	subscribe	in	the	panel	located	at	the	left-hand	side	of	the	window.	MQTT.fx	is	telling
you	that	you	have	received	two	messages	in	the	sensors/drone01/altitude	topic.	Click	on	this	panel
and	MQTT.fx	will	display	all	the	received	messages	at	the	right-hand	side	of	the	panel.	MQTT.fx	will
display	a	number	at	the	right-hand	side	of	each	message	to	specify	the	message	number	since	we	started
the	subscription	to	the	topic	filter.	Click	on	each	message	and	MQTT.fx	will	display	the	QoS	level	for	the
message	(0),	the	date	and	time	that	it	was	received	and	the	payload	for	the	message	in	the	default	plain
string	format.	The	following	picture	shows	the	payload	for	the	second	message	that	has	been	received	by
the	subscriber	generated	by	MQTT.fx.

	

	

	

We	created	two	publishers	and	each	of	them	published	a	message	to	the	same	topic:
sensors/drone01/altitude.	The	two	subscribers	for	this	topic	received	both	messages.	Now,	we	will
understand	what	happens	under	the	hoods	when	a	client	publishes	a	message	to	a	topic.

The	MQTT	client	that	has	already	established	a	connection	sends	a	PUBLISH	packet	to	the	MQTT	server
with	a	header	that	includes	the	following	fields	and	flags.	We	want	to	understand	the	meaning	of	these
fields	and	flags	because	we	will	be	able	to	specify	some	of	their	values	when	we	work	with	MQTT	tools
and	MQTT	client	libraries.

PacketId:	If	the	QoS	level	is	equal	to	0,	the	value	for	this	field	will	be	0	or	it	won't	be	present.	In
case	the	QoS	level	is	equal	to	1	or	2,	the	packet	identifier	will	have	a	number	value	to	identify	the
packet	and	make	it	possible	to	identify	the	responses	related	to	this	packet.
Dup:	If	the	QoS	level	is	equal	to	0,	the	value	for	this	field	will	be	0.	In	case	the	QoS	level	is	equal	to
1	or	2,	the	MQTT	client	library	or	the	MQTT	server	can	resend	a	message	that	was	previously
published	by	the	client	when	the	subscribers	haven't	ackowledged	the	first	message.	Whenever	there
is	an	attempt	to	resend	a	message	that	has	already	been	published,	the	value	for	the	Dup	flag	must	be
1	or	true.
QoS:	Specifies	the	QoS	level	for	the	message.	We	will	dive	deep	on	the	quality	of	service	level	for
the	messages	and	their	relationship	with	many	other	flags	later.	So	far,	we	have	been	working	with
QoS	level	0.
Retain:If	the	value	for	this	flag	is	set	to	1	or	true,	the	MQTT	server	will	store	the	message	with	its
specified	QoS	level.	Whenever	new	MQTT	clients	subscribers	to	a	topic	filter	that	matches	the	topic

for	the	stored	or	retained	message,	the	last	stored	message	for	this	topic	will	be	sent	to	the	new
subscriber.	If	the	value	for	this	flag	is	set	to	0	or	false,	the	MQTT	server	won't	store	the	message
and	won't	replace	a	retained	message	with	the	same	topic	in	case	there	is	one	message	retained	for
this	topic.
TopicName:	A	string	with	the	topic	name	to	which	the	message	must	be	published.	Topic	names	have
a	hierarchy	structure	where	slashes	(/)	are	used	as	delimiters.	In	our	examples,	the	value	for
TopicName	was	"sensors/drone01/altitude".	We	will	analyze	best	practices	for	topic	names
later.

Tip

The	payload	contains	the	actual	message	that	the	MQTT	client	wants	the	MQTT	server	to	publish.	MQTT
is	data	agnostic,	and	therefore,	we	can	send	any	binary	data	and	we	don't	have	restrictions	such	as	those
imposed	by	JSON	or	XML.	Of	course,	we	can	use	these	or	others	to	organize	the	payloads	if	we	wish.	In
our	examples,	we	sent	a	string	that	included	a	number	that	represented	the	altitude	followed	by	a	space
and	an	"f"	that	indicates	the	unit	of	measure	is	feet.

The	MQTT	server	will	read	a	valid	PUBLISH	packet	and	it	will	respond	with	a	packet	only	for	QoS
levels	greater	than	0.	In	case	the	QoS	level	is	0,	the	MQTT	will	not	respond.	The	MQTT	server	will
determine	all	the	subscribers	whose	subscribed	topic	matches	the	topic	name	specified	for	the	message
and	the	server	will	publish	the	message	to	these	clients.

The	following	diagram	shows	the	interaction	between	an	MQTT	client	and	an	MQTT	server	to	publish	a
message	with	a	QoS	level	of	0.

	

	

	

The	other	QoS	levels	have	a	different	flow	with	additional	interaction	between	the	publisher	and	the
MQTT	server	and	increased	overheads	that	we	will	analyze	later.

Unsubscribing	from	topics
Whenever	we	don't	want	a	subscriber	to	receive	more	messages	whose	destination	topic	name	matches
one	or	more	topic	filters,	the	subscriber	can	send	a	request	to	unsubscribe	to	a	list	of	topic	filters	to	the
MQTT	server.	Obviously,	unsubscribing	from	topic	filters	is	the	opposite	operation	of	subscribing	to
topic	filters.	We	will	use	the	MQTT.fx	GUI	utility	to	unsubscribe	the	MQTT	client	from	the
sensors/drone01/altitude	topic.	Follow	the	next	steps:

1.	 Go	to	the	MQTT.fx	window	in	which	you	established	a	connection	and	subscribed	to	a	topic.
2.	 Click	Subscribe.
3.	 Click	on	the	panel	that	displays	the	sensors/drone01/altitudetopic	name	at	the	left-hand	side	of

the	window.	Then,	click	on	the	Unsubscribe	button	located	in	this	panel.	The	following	screenshot
shows	this	button.

	
4.	 MQTT.fx	will	unsubscribe	the	client	from	the	sensors/drone01/altitude	topic,	and	therefore,	the

client	won't	receive	any	new	message	published	to	the	sensors/drone01/altitude	topic.

Now,	we	will	use	the	MQTT.fx	GUI	utility	to	use	the	MQTT	client	to	publish	another	message	to	the
sensors/drone01/altitude	topic.	Follow	the	next	steps:

1.	 Go	to	the	MQTT.fx	window	in	which	you	established	a	connection	and	subscribed	to	a	topic.
2.	 Click	Publish	and	enter	sensors/drone01/altitude	in	the	dropdown	at	the	left-hand	side	of	the

Publish	button.
3.	 Then,	click	the	Publish	button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.
4.	 Enter	the	following	text	in	the	textbox	below	the	Publish	button:	30	f,	as	shown	in	the	following

screenshot:

	

In	case	you	don't	want	to	work	with	the	MQTT.fx	utility,	you	can	run	a	mosquitto_pub	command	to
generate	another	MQTT	client	that	publishes	a	message	to	the	topic.	You	just	need	to	open	another
Terminal	in	macOS	or	Linux,	or	another	Command	Prompt	in	Windows,	go	to	the	directory	in	which
Mosquitto	is	installed	and	run	the	following	command.

mosquitto_pub	-V	mqttv311	-t	sensors/drone01/altitude	-m	"30	f"

Now,	go	back	to	the	MQTT.fx	window	and	click	Subscribe.	The	client	has	unsubscribed	from	the
sensors/drone01/altitude	topic	before	we	published	a	new	message	to	this	topic,	and	therefore,	this
published	message	isn't	displayed.

Go	back	to	the	Terminal	or	Command	Prompt	window	in	which	you	executed	the	mosquitto_sub
command	and	subscribed	to	the	sensors/drone01/atitude	topic.	You	will	see	lines	similar	to	the
following	ones:

Client	mosqsub/5532-Gastons-Ma	received	PUBLISH	(d0,	q0,	r0,	m0,	

'sensors/drone01/altitude',	...	(4	bytes))

30	f

This	client	is	still	subscribed	to	the	sensors/drone01/altitude	topic,	and	therefore,	it	received	the
message	with	the	payload	of	"30	f".

The	MQTT	client	sends	an	UNSUBSCRIBE	packet	to	the	MQTT	server	with	a	packet	identifier	(PacketId)
in	the	header	and	one	or	more	topic	filters	in	the	payload.	The	main	difference	with	a	SUBSCRIBE	packet
is	that	it	isn't	necessary	to	include	the	QoS	level	for	each	topic	filter	because	the	MQTT	client	just	wants
to	unsubscribe.

Tip

After	an	MQTT	client	unsubscribes	from	one	or	more	topic	filters,	the	MQTTserver	still	keeps	the
connection	opened	and	the	subscriptions	to	the	topic	filters	that	don't	match	the	topic	filters	specified	in
the	UNSUBSCRIBE	packet	payload	will	continue	working.

Hence,	a	single	UNSUBSCRIBE	packet	can	request	the	MQTT	server	to	unsubscribe	a	client	from	many
topics.	The	UNSUBSCRIBE	packet	must	include	at	least	one	topic	filter	in	the	payload	to	comply	with	the
protocol.

In	the	previous	example	in	which	we	requested	the	MQTT	server	to	unsubscribe,	we	used	a	specific	topic
name	as	the	value	for	the	topic	filter,	and	therefore,	we	requested	the	MQTT	server	to	unsubscribe	from	a
single	topic.	As	previously	mentioned,	we	will	learn	about	the	usage	of	wildcards	in	topic	filters	later.

The	packet	identifier	will	have	a	number	value	to	identify	the	packet	and	make	it	possible	to	identify	the
response	related	to	this	UNSUBSCRIBE	packet.	The	MQTT	server	will	process	a	valid	UNSUBSCRIBE
packet	and	it	will	respond	with	an	UNSUBACK	packet	that	indicates	the	unsubscribe	acknowledgement	and
confirms	the	receipt	and	processing	of	the	UNSUBSCRIBE	packet.	The	UNSUBACK	packet	will	include	the
same	packet	identifier	(PacketId)	in	the	header	that	was	received	in	the	UNSUBSCRIBE	packet.

The	MQTT	will	remove	any	topic	filter	that	matches	exactly	any	of	the	specified	topic	filters	in	the
UNSUBSCRIBE	packet's	payload	for	the	specific	client	that	sent	the	packet.	The	topic	filter	match	must	be
exact	to	be	deleted.	After	the	MQTT	server	deletes	a	topic	filter	from	the	subscription	list	for	the	client,
the	server	stops	adding	new	messages	to	be	published	to	the	client.	Only	messages	that	have	already
started	delivery	to	the	client	with	QoS	levels	of	1	or	2	will	be	published	to	the	client.	In	addition,	the
server	might	publish	existing	messages	that	have	been	buffered	for	their	distribution	to	the	subscriber.

The	following	diagram	shows	the	interaction	between	an	MQTT	client	and	an	MQTT	server	to
unsubscribe	from	one	or	many	topic	filters.

	

Working	with	best	practices	when	creating	topics
We	already	know	that	MQTT	allows	us	to	publish	messages	on	topics.	A	publisher	always	has	to	to
specify	the	topic	name	to	which	a	message	will	be	published.	The	easiest	way	to	understand	topic	names
in	MQTT	is	to	think	about	them	like	paths	in	a	file	system.

If	we	have	to	save	dozens	of	files	that	have	information	about	different	types	of	sensors	for	a	diverse
number	of	drones,	we	can	create	a	hierarchy	of	directories	or	folders	to	organize	all	the	files	that	we	will
save.	We	can	create	a	directory	named	sensors,	then	one	sub-directory	for	each	drone,	such	as	drone01,
and	finally	a	sub-directory	with	the	sensor	name,	such	as	altitude.	The	path	in	macOS	or	Linux	will	be
sensors/drone01/altitude	because	these	operating	systems	use	a	forward	slash	(/)	as	a	delimiter.	In
Windows,	the	path	will	be	sensorsdronealtitude	because	this	operating	system	uses	a	backslash	()	as
a	delimiter.

Then,	we	will	save	the	files	that	have	information	about	the	altitude	sensor	for	the	drone	named	drone01
in	the	created	path.	Instead	of	saving	files	in	a	path,	we	can	think	about	publishing	a	message	to	a	path	and
use	the	same	mechanism	we	use	to	organize	files	in	paths	to	arrange	messages	in	topics.

Instead	of	directories	or	folders,	a	topic	has	topic	levels,	specifically,	a	hierarchy	of	topic	levels	and	the
slashes	(/)	are	used	as	delimiters,	that	is,	topic	level	separators.	If	we	use	sensors/drone01/altitude
as	the	topic	name,	sensors	is	the	first	topic	level,	drone01	is	the	second	topic	level	and	altitude	is	the
third	topic	level.

Tip

Topic	names	are	case-sensitive,	and	therefore,	sensors/drone01/altitude	is	different	from
sensors/Drone01/altitude,	Sensors/drone01/altitude	and	Sensors/Drone01/Altitude.	In	fact,
the	four	strings	will	be	considered	as	four	individual	topic	names.	We	must	make	sure	we	select	a	casing
scheme	for	the	topic	names	and	we	use	it	for	all	the	topic	names	and	topic	filters.

We	can	use	any	UTF-8	character	in	topic	names	with	the	exception	of	the	two	wildcard	characters	that	we
will	analyze	later:	the	plus	sign	(+)	and	hash	(#).	Hence,	we	must	avoid	+	and	#	in	the	topic	names.
However,	it	is	a	good	practice	to	restrict	the	character	set	to	avoid	unexpected	problems	with	client
libraries.	For	example,	we	can	avoid	accents	and	characters	that	are	not	common	in	English	as	we	do
whenever	we	build	URLs.	It	is	possible	to	use	these	characters	but	be	sure	that	you	can	face	issues	when
using	them.

We	should	avoid	creating	topics	starting	with	the	dollar	sign	($)	because	many	MQTT	servers	publish
statistics	data,	related	to	the	servers,	in	topics	that	start	with	$.	Specifically,	the	first	topic	level	is	$SYS.

We	must	maintain	consistency	when	sending	messages	to	different	topic	names	as	we	do	when	we	save
files	in	different	paths.	For	example,	if	we	want	to	publish	the	altitude	for	a	drone	named	drone20,	we
will	use	sensors/drone20/altitude.	We	must	use	the	same	topic	levels	that	we	used	for	the	same	goal
for	drone01	and	just	change	the	drone	name	from	drone01	to	drone20.	It	would	be	a	really	bad	practice
to	use	a	topic	with	a	different	structure	or	inconsistent	casing,	such	as	altitude/sensors/drone20	or

Sensors/Drone20/Altitude.	We	have	to	take	into	account	that	we	can	subscribe	to	multiple	topics	by
using	topic	filters,	and	therefore,	it	is	very	important	to	create	topic	names	accordingly.

Understanding	wildcards
When	we	analyzed	the	subscription	operation,	we	learn	that	an	MQTT	client	can	subscribe	to	one	or	more
topic	filters.	In	case	we	specify	a	topic	name	as	a	topic	filter,	we	will	only	subscribe	to	a	single	topic.	We
can	take	advantage	of	the	following	two	wildcards	to	create	topic	filters	that	subscribe	to	all	the	topics
that	match	the	filter:

Plus	sign	(+):	It	is	a	single	level	wildcard	that	matches	any	name	for	a	specific	topic	level.	We	can
use	this	wildcard	instead	of	specifying	a	name	for	any	topic	level	in	the	topic	filter.
Hash	(#):	It	is	a	multi	level	wildcard	that	we	can	use	only	at	the	end	of	the	topic	filter,	as	the	last
level	and	matches	any	topic	whose	first	levels	are	the	same	as	the	topic	levels	specified	at	the	left-
hand	side	of	the	#	symbol.

For	example,	in	case	we	want	to	receive	all	the	messages	related	to	the	altitudes	for	all	the	drones,	we
can	use	the	+	single	level	wildcard	instead	of	a	specific	drone	name.	We	can	use	the	following	topic
filter:	sensors/+/altitude.

If	we	publish	messages	to	the	following	topics,	the	subscriber	that	used	the	sensors/+/altitude	topic
filter	will	receive	all	of	them:

sensors/drone01/altitude

sensors/drone02/altitude

sensors/superdrone01/altitude

sensors/thegreatestdrone/altitude

The	subscriber	to	the	sensors/+/altitude	topic	filter	won't	receive	messages	sent	to	any	of	the
following	topics,	because	they	won't	match	the	topic	filter.

sensors/drone01/speed/rotor/1

sensors/superdrone01/speed/rotor/2

sensors/superdrone01/remainingbattery

In	case	we	want	to	receive	all	the	messages	related	to	all	the	sensors	for	the	drone	named	drone01,	we
can	use	the	#	multi	level	wildcard	after	the	drone	name	and	the	slash	(/).	We	can	use	the	following	topic
filter:	sensors/drone01/#.

If	we	publish	messages	to	the	following	topics,	the	subscriber	that	used	the	sensors/drone01/#	topic
filter	will	receive	all	of	them:

sensors/drone01/altitude

sensors/drone01/speed/rotor/1

sensors/drone01/speed/rotor/2

sensors/drone01/speed/rotor/3

sensors/drone01/speed/rotor/4

sensors/drone01/remainingbattery

We	used	a	multi	level	wildcard,	and	therefore,	no	matter	the	additional	topic	levels	after
sensors/drone01/,	we	will	receive	all	of	them.

The	subscriber	to	the	sensors/drone01/#	topic	filter	won't	receive	messages	sent	to	any	of	the
following	topics,	because	they	won't	match	the	topic	filter.	None	of	the	following	has	sensors/drone01/
as	a	prefix,	and	therefore,	they	don't	match	the	topic	filter.

sensors/drone02/altitude

sensors/superdrone01/altitude

sensors/thegreatestdrone/altitude

sensors/drone02/speed/rotor/1

sensors/superdrone02/speed/rotor/2

sensors/superdrone02/remainingbattery

Obviously,	we	must	be	careful	when	we	use	any	wildcard	because	we	might	be	subscribing	to	a	huge
number	of	topics	with	a	single	topic	filter.	We	have	to	avoid	subscribing	to	topics	aren't	of	interest	to	the
client	to	avoid	wasting	unnecessary	bandwidth	and	the	broker	server	resources.

We	will	use	these	wildcards	in	subscriptions	later	to	analyze	how	different	QoS	levels	work	with	MQTT.

Learning	about	the	different	Quality	of	Service
levels
Now	that	we	understand	how	the	connection,	subscription	and	publication	works	in	combination	with
topic	names	and	the	topic	filters	with	wildcards,	we	can	dive	deep	on	the	QoS	levels.	So	far,	we	have
analyzed	how	both	the	subscription	and	publication	worked	with	a	QoS	level	equal	to	0.	Now,	we	will
understand	what	this	number	means	and	how	things	work	when	we	use	the	other	available	QoS	levels	for
the	publication	and	the	subscription.

Note

Remember	that	publication	involves	publishing	from	the	MQTT	client	to	the	MQTT	server	and	then	from
the	server	to	the	subscribed	client.It	is	very	important	to	understand	that	we	can	publish	with	a	QoS	level
and	subscribe	with	another	QoS	level.	Hence,	there	is	a	QoS	level	for	the	publish	process	between	the
publisher	and	the	MQTT	server	and	another	QoS	level	for	the	publish	process	between	the	MQTT	server
and	the	subscriber.	We	will	use	sender	and	receiver	to	identify	the	parties	involved	in	a	message	delivery
for	the	different	QoS	levels.	In	the	publish	process	between	the	publisher	and	the	MQTT	server,	the
publisher	will	be	the	sender	and	the	MQTT	server	the	receiver.	In	the	publish	process	between	the	MQTT
server	and	the	subscriber,	the	sender	will	be	the	MQTT	server	and	the	receiver	will	be	the	subscriber.

Based	on	the	QoS	level,	we	have	differences	in	the	meaning	of	a	successfully	delivered	message	in	the
MQTT	protocol	between	the	involved	parties.	The	QoS	level	is	the	agreement	between	a	sender	and	a
receiver	of	a	message	about	the	guarantees	of	actually	delivering	the	message.	These	warranties	might
include	the	number	of	times	that	a	message	might	arrive	and	the	possibility	or	not	of	duplicates.	MQTT
supports	the	following	three	possible	QoS	levels:

0,	At	most	once	delivery:	This	QoS	level	offers	the	same	warranty	as	the	underlying	TCP	protocol.
The	message	is	not	acknowledged	by	the	receiver	or	destination.	The	sender	just	sends	the	message
to	the	destination	and	nothing	else	happens.	The	sender	neither	stores	nor	schedules	new	deliveries
for	any	messages	that	might	fail	to	reach	the	destination.	The	key	advantage	of	this	QoS	level	is	that
it	has	the	lowest	possible	overhead,	compared	to	the	other	QoS	levels.
1,	At	least	once	delivery:	This	QoS	level	adds	a	confirmation	requirement	to	the	destination	that
has	to	receive	the	message.	This	way,	QoS	level	1	provides	a	warranty	that	the	message	will	be
delivered	at	least	once	to	the	subscriber.	One	of	the	key	disadvantages	of	this	QoS	level	is	that	it
might	generate	duplicates,	that	is,	the	same	message	might	be	sent	more	than	once	to	the	same
destination.	The	sender	stores	the	message	until	it	receives	an	acknowledgement	from	the	subscriber.
In	case	the	sender	doesn't	receive	the	acknowledgement	within	a	specific	time,	the	sender	will
publish	the	message	again	to	the	receiver.	The	final	receiver	must	have	the	necessary	logic	to	detect
duplicates	in	case	they	shouldn't	be	processed	twice.
2,	Exactly	once	delivery:	This	QoS	level	provides	a	warranty	that	the	message	is	delivered	only
once	to	the	destination.	QoS	level	2	has	the	highest	overhead,	compared	to	the	other	QoS	levels.
This	QoS	level	requires	two	flows	between	the	sender	and	the	receiver.	A	message	published	with
QoS	level	2	is	considered	successfully	delivered	after	the	sender	is	sure	that	it	has	been	successfully
received	once	by	the	destination.

Sometimes,	we	just	want	messages	to	be	delivered	with	the	least	possible	bandwidth	usage,	we	have	a
very	reliable	network	and	it	doesn't	matter	if	for	some	reason	a	few	messages	are	lost.	In	these	cases,
QoS	level	0	is	the	appropriate	choice.

In	other	cases,	the	messages	are	extremely	important	because	they	represent	commands	to	control	an	IoT
device,	the	network	is	unreliable	and	we	must	make	sure	that	the	message	reaches	the	destination.	In
addition,	a	duplicate	command	might	generate	a	big	problem	because	we	don't	want	the	IoT	device	to
process	a	specific	command	twice.	In	these	cases,	QoS	level	2	is	going	to	be	the	appropriate	choice.

Note

If	a	publisher	works	with	a	QoS	level	higher	than	the	QoS	level	specified	by	the	subscriber,	the	MQTT
server	will	have	to	downgrade	the	QoS	level	to	the	lowest	level	that	the	specific	subscriber	is	using	when
it	publishes	the	message	from	the	MQTT	server	to	this	subscriber.	For	example,	if	we	use	QoS	level	2	to
publish	a	message	from	the	publisher	to	the	MQTT	server	but	one	subscriber	has	requested	QoS	level	1
when	making	the	subscription,	the	publication	from	the	MQTT	server	to	this	subscriber	will	use	QoS
level	1.

Working	with	at	least	once	delivery
First,	we	will	use	wildcards	to	subscribe	to	a	topic	filter	with	QoS	level	1	and	then	we	will	publish	one
message	to	a	topic	name	that	will	match	the	topic	filter	with	QoS	level	1.	This	way,	we	will	analyze	how
both	publishing	and	subscription	work	with	QoS	level	1.

We	will	use	the	mosquitto_sub	command-line	utility	included	in	Mosquitto	to	generate	a	simple	MQTT
client	that	subscribes	to	a	topic	filter	with	QoS	level	1and	prints	all	the	messages	it	receives.	Open	a
Terminal	in	macOS	or	Linux,	or	a	Command	Prompt	in	Windows,	go	to	the	directory	in	which	Mosquitto
is	installed	and	run	the	following	command:

mosquitto_sub	-V	mqttv311	-t	sensors/+/altitude	-q1	-d

The	previous	command	will	create	an	MQTT	client	that	will	establish	a	connection	with	the	local	MQTT
server	and	then	will	make	the	client	subscribe	to	the	topic	filter	specified	after	the	-t	option:
sensors/+/altitude.	We	specify	that	we	want	to	use	QoS	level	1	to	subscribe	to	the	topic	filter	with
the	-q	1	option.	We	specify	the	-d	option	to	enable	debug	messages	that	will	allow	us	to	understand	what
happens	under	the	hoods	and	the	differences	with	publishing	a	message	with	QoS	level	0.

The	Terminal	or	Command	Prompt	window	will	display	debug	messages	similar	to	the	following	lines.
Take	into	account	that	the	generated	ClientId	will	be	different	from	the	one	shown	after	Client
mosqsub/1795-Gastons-Ma.	Notice	that	QoS:	1	indicates	that	the	subscription	is	done	with	QoS	level
1.

Client	mosqsub/1795-Gastons-Ma	sending	CONNECT

Client	mosqsub/1795-Gastons-Ma	received	CONNACK

Client	mosqsub/1795-Gastons-Ma	sending	SUBSCRIBE	(Mid:	1,	Topic:	

sensors/+/altitude,	QoS:	1)

Client	mosqsub/1795-Gastons-Ma	received	SUBACK

Subscribed	(mid:	1):	1

We	will	use	the	mosquitto_pub	command-line	utility	included	in	Mosquitto	to	generate	a	simple	MQTT
client	that	publishes	a	message	to	a	topic	with	QoS	level	1	instead	of	the	QoS	level	0	that	we	used	when
we	published	messages	before.	Open	a	Terminal	in	macOS	or	Linux,	or	a	Command	Prompt	in	Windows,
go	to	the	directory	in	which	Mosquitto	is	installed	and	run	the	following	command:

mosquitto_pub	-V	mqttv311	-t	sensors/drone02/altitude	-m		"65	f"	-q	1	-d

The	previous	command	will	create	an	MQTT	client	that	will	establish	a	connection	with	the	local	MQTT
server	and	then	will	make	the	client	publish	a	message	to	the	topic	specified	after	the	-t	option:
sensors/drone02/altitude.	We	specify	the	payload	for	the	message	after	the	-m	option:"65	f".	We
specify	that	we	want	to	use	QoS	level	1	to	publish	the	message	with	the	-q	1	option.	We	specify	the	-d
option	to	enable	debug	messages	that	will	allow	us	to	understand	what	happens	under	the	hoods	and	the
differences	with	publishing	a	message	with	QoS	level	0.

The	Terminal	or	Command	Prompt	window	will	display	debug	messages	similar	to	the	following	lines.
Take	into	account	that	the	generated	ClientId	will	be	different	from	the	one	shown	after	Client:

mosqpub/1516-Gastons-Ma.	After	publishing	the	message,	the	client	disconnects.

Client	mosqpub/1516-Gastons-Ma	sending	CONNECT

Client	mosqpub/1516-Gastons-Ma	received	CONNACK

Client	mosqpub/1516-Gastons-Ma	sending	PUBLISH	(d0,	q1,	r0,	m1,	

'sensors/drone02/altitude',	...	(4	bytes))

Client	mosqpub/1516-Gastons-Ma	received	PUBACK	(Mid:	1)

Client	mosqpub/1516-Gastons-Ma	sending	DISCONNECT

The	previous	lines	show	that	the	generated	MQTT	client	sends	a	PUBLISH	packet	to	the	MQTT	server	and
then	receives	a	PUBACK	package	from	the	server.

Now,	go	back	to	the	Terminal	or	Command	Prompt	window	in	which	you	executed	the	mosquitto_sub
command	and	subscribed	to	the	sensors/+/atitude	topic	filter.	You	will	see	lines	similar	to	the
following	ones:

Client	mosqsub/1795-Gastons-Ma	received	PUBLISH	(d0,	q1,	r0,	m1,	

'sensors/drone02/altitude',	...	(4	bytes))

Client	mosqsub/1795-Gastons-Ma	sending	PUBACK	(Mid:	1)

65	f

The	previous	lines	show	that	the	generated	MQTT	client,	that	is,	the	subscriber,	received	a	PUBLISH
packet	from	the	MQTT	server	and	then	sent	a	PUBACK	package	to	the	server	to	acknowledge	the	message.
If	we	clean	up	the	debug	messages	that	start	with	the	Client	prefix,	we	will	see	just	the	last	line	that
shows	the	payloads	for	the	message	that	we	received	as	a	result	of	our	subscription	to	the
sensors/+/altitude	topic	filter:	65	f.

The	MQTT	client	that	has	already	established	a	connection,	that	is,	the	publisher,	sends	a	PUBLISH	packet
to	the	MQTT	server	with	the	header	we	have	already	described,	QoS	set	to	1,	and	including	a	PacketId
numeric	value	that	will	be	unique	for	this	client.	At	this	time,	the	publisher	will	consider	the	PUBLISH
packet	identified	with	the	PacketId	as	an	unacknowledged	PUBLISH	packet.

The	MQTT	server	reads	a	valid	PUBLISH	packet	and	it	will	respond	to	the	publisher	with	a	PUBACK
packet	with	the	same	PacketId	value	that	has	been	used	for	the	PUBLISH	packet.	Once	the	publisher
receives	the	PUBACK	packet,	it	discards	the	message	and	the	MQTT	server	is	responsible	of	publishing	it
to	the	appropriate	subscribers.

The	following	diagram	shows	the	interaction	between	a	publisher	and	an	MQTT	server	to	publish	a
message	with	a	QoS	level	of	1.

	

	

	

The	MQTT	server	can	start	publishing	messages	to	the	appropriate	subscribers	before	it	sends	the
PUBACK	packet	to	the	publisher.	Hence,	when	the	publisher	receives	the	PUBACK	packet	from	the	MQTT
server,	it	doesn't	mean	that	all	the	subscribers	have	received	the	message.	It	is	very	important	to
understand	the	meaning	of	this	PUBACK	packet.

For	each	subscriber	to	which	the	message	has	to	be	published,	the	MQTT	server	will	send	a	PUBLISH
packet	and	the	subscriber	must	acknowledge	the	reception	of	the	message	by	sending	a	PUBACK	packet	to
the	MQTT	server.	The	following	diagram	shows	the	interaction	between	an	MQTT	server	and	the
subscribers	when	a	message	is	published	with	a	QoS	level	of	1.

	

	

	

If	the	application	is	able	to	tolerate	duplicates	and	we	have	to	make	sure	that	the	messages	arrive	at	least
once	to	the	subscribers,	QoS	level	1	is	an	excellent	choice.	In	case	there	is	no	way	to	handle	duplicates,
we	have	to	use	QoS	level	2.

Working	with	exactly	once	delivery
First,	we	will	use	wildcards	to	subscribe	to	a	topic	filter	with	QoS	level	2	and	then	we	will	publish	one
messages	to	a	topic	that	will	match	the	topic	filter	with	QoS	level	2.	This	way,	we	will	analyze	how	both
publishing	and	subscription	work	with	QoS	level	2.

We	will	use	the	mosquitto_sub	command-line	utility	included	in	Mosquitto	to	generate	a	simple	MQTT
client	that	subscribes	to	a	topic	filter	with	QoS	level	1	and	prints	all	the	messages	it	receives.	Open	a
Terminal	in	macOS	or	Linux,	or	a	Command	Prompt	in	Windows,	go	to	the	directory	in	which	Mosquitto
is	installed	and	run	the	following	command:

mosquitto_sub	-V	mqttv311	-t	sensors/drone03/#	-q	2	-d

The	previous	command	will	create	an	MQTT	client	that	will	establish	a	connection	with	the	local	MQTT
server	and	then	will	make	the	client	subscribe	to	the	topic	filter	specified	after	the	-t	option:
sensors/drone03/#.	We	specify	that	we	want	to	use	QoS	level	1	to	subscribe	to	the	topic	filter	with	the
-q	2	option.	We	specify	the	-d	option	to	enable	debug	messages	that	will	allow	us	to	understand	what
happens	under	the	hoods	and	the	differences	with	publishing	a	message	with	QoS	levels	0	and	1.

The	Terminal	or	Command	Prompt	window	will	display	debug	messages	similar	to	the	following	lines.
Take	into	account	that	the	generated	ClientId	will	be	different	from	the	one	shown	after	Client
mosqsub/1795-Gastons-Ma.	Notice	that	QoS:	2	indicates	that	the	subscription	is	done	with	QoS	level
2.

Client	mosqsub/2017-Gastons-Ma	sending	CONNECT

Client	mosqsub/2017-Gastons-Ma	received	CONNACK

Client	mosqsub/2017-Gastons-Ma	sending	SUBSCRIBE	(Mid:	1,	Topic:	sensors/drone03/#,	

QoS:	2)

Client	mosqsub/2017-Gastons-Ma	received	SUBACK

Subscribed	(mid:	1):	2

We	will	use	the	mosquitto_pub	command-line	utility	included	in	Mosquitto	to	generate	a	simple	MQTT
client	that	publishes	a	message	to	a	topic	with	QoS	level	2	instead	of	the	QoS	levels	0	and	1	that	we	used
when	we	published	messages	before.	Open	a	Terminal	in	macOS	or	Linux,	or	a	Command	Prompt	in
Windows,	go	to	the	directory	in	which	Mosquitto	is	installed	and	run	the	following	command:

mosquitto_pub	-V	mqttv311	-t	sensors/drone03/speed/rotor/1	-m		"362	f"	-q	2	-d

The	previous	command	will	create	an	MQTT	client	that	will	establish	a	connection	with	the	local	MQTT
server	and	then	will	make	the	client	publish	a	message	to	the	topic	specified	after	the	-t	option:
sensors/drone03/speed/rotor/1.	We	specify	the	payload	for	the	message	after	the	-m	option:	"362
f".	We	specify	that	we	want	to	use	QoS	level	2	to	publish	the	message	with	the	-q	2	option.	We	specify
the	-d	option	to	enable	debug	messages	that	will	allow	us	to	understand	what	happens	under	the	hoods
and	the	differences	with	publishing	a	message	with	QoS	levels	0	and	1.

The	Terminal	or	Command	Prompt	window	will	display	debug	messages	similar	to	the	following	lines.
Take	into	account	that	the	generated	ClientId	will	be	different	from	the	one	shown	after	Client:

mosqpub/2026-Gastons-Ma.	After	publishing	the	message,	the	client	disconnects.

Client	mosqpub/2026-Gastons-Ma	sending	CONNECT

Client	mosqpub/2026-Gastons-Ma	received	CONNACK

Client	mosqpub/2026-Gastons-Ma	sending	PUBLISH	(d0,	q2,	r0,	m1,	

'sensors/drone03/speed/rotor/1',	...	(5	bytes))

Client	mosqpub/2026-Gastons-Ma	received	PUBREC	(Mid:	1)

Client	mosqpub/2026-Gastons-Ma	sending	PUBREL	(Mid:	1)

Client	mosqpub/2026-Gastons-Ma	received	PUBCOMP	(Mid:	1)

Client	mosqpub/2026-Gastons-Ma	sending	DISCONNECT

The	previous	lines	show	that	the	generated	MQTT	client,	that	is,	the	publisher,	had	the	following	packet
exchanges	with	the	MQTT	server:

1.	 The	publisher	sent	a	PUBLISH	packet	to	the	MQTT	server.
2.	 The	publisher	received	a	PUBREC	packet	from	the	MQTT	server.
3.	 The	publisher	sent	a	PUBREL	packet	to	the	MQTT	server.
4.	 The	publisher	received	a	PUBCOMP	packet	from	the	MQTT	server.

Now,	go	back	to	the	Terminal	or	Command	Prompt	window	in	which	you	executed	the	mosquitto_sub
command	and	subscribed	to	the	sensors/drone03/#	topic	filter.	You	will	see	lines	similar	to	the
following	ones:

Client	mosqsub/2017-Gastons-Ma	received	PUBLISH	(d0,	q2,	r0,	m1,	

'sensors/drone03/speed/rotor/1',	...	(5	bytes))

Client	mosqsub/2017-Gastons-Ma	sending	PUBREC	(Mid:	1)

Client	mosqsub/2017-Gastons-Ma	received	PUBREL	(Mid:	1)

362	f

Client	mosqsub/2017-Gastons-Ma	sending	PUBCOMP	(Mid:	1)

The	previous	lines	show	that	the	generated	MQTT	client,	that	is,	the	subscriber,	had	the	following	packet
exchanges	with	the	MQTT	server:

1.	 The	subscriber	received	a	PUBLISH	packet	from	the	MQTT	server.
2.	 The	subscriber	sent	a	PUBREC	packet	to	the	MQTT	server.
3.	 The	subscriber	received	a	PUBREL	packet	from	the	MQTT	server.
4.	 The	subscriber	sends	a	PUBCOMP	packet	to	the	MQTT	server	after	it	successfully	received	the

message	with	the	payload.

If	we	clean	up	the	debug	messages	that	start	with	the	Client	prefix,	we	will	see	just	the	last	line	that
shows	the	payloads	for	the	message	that	we	received	as	a	result	of	our	subscription	to	the
sensors/drone03/#	topic	filter:	362	f.

The	MQTT	client	that	has	already	established	a	connection,	that	is,	the	publisher	sends	a	PUBLISH	packet
to	the	MQTT	server	with	the	header	we	have	already	described,	QoS	set	to	2,	and	including	a	PacketId
numeric	value	that	will	be	unique	for	this	client.	At	this	time,	the	publisher	will	consider	the	PUBLISH
packet	identified	with	the	PacketId	as	an	unacknowledged	PUBLISH	packet.

The	MQTT	server	reads	a	valid	PUBLISH	packet	and	it	will	respond	to	the	publisher	with	a	PUBREC

packet	with	the	same	PacketId	value	that	has	been	used	for	the	PUBLISH	packet.	The	PUBREC	packet
indicates	the	MQTT	server	accepted	the	ownership	of	the	message.	Once	the	publisher	receives	the
PUBREC	packet,	it	discards	the	message	and	it	will	store	the	PacketId	related	to	the	message	and	the
PUBREC	packet.

The	publisher	sends	a	PUBREL	packet	to	the	MQTT	server	as	a	response	to	the	received	PUBREC	packet.
This	PUBREL	packet	will	be	considered	unacknowledged	until	it	receives	the	PUBCOMP	packet	related	to
the	PacketId	from	the	MQTT	server.	Finally,	the	MQTT	server	sends	a	PUBCOMP	packet	with	the
PacketId	to	the	publisher	and	at	this	point,	both	the	publisher	and	the	MQTT	server	are	sure	that	the
message	has	been	successfully	delivered.

The	following	diagram	shows	the	interaction	between	a	publisher	and	an	MQTT	server	to	publish	a
message	with	a	QoS	level	of	2.

	

	

	

For	each	subscriber	with	QoS	level	2	to	which	the	message	has	to	be	published,	the	MQTT	server	will
send	a	PUBLISH	packet	and	the	same	packet	exchange	that	we	have	analyzed	between	the	publisher	and
the	MQTT	server	will	happen	between	the	MQTT	server	and	the	subscriber.	However,	in	this	case,	the
MQTT	server	is	the	one	that	acts	as	a	publisher	and	starts	the	flow.	The	following	diagram	shows	the
interaction	between	an	MQTT	server	and	the	subscribers	when	a	message	is	published	with	a	QoS	level
of	2.

	

	

	

If	the	application	isn't	able	to	tolerate	duplicates	and	we	have	to	make	sure	that	the	messages	arrive	only
once	to	the	subscribers,	QoS	level	2	is	the	appropriate	choice.	However,	magic	comes	with	a	price:	we
must	take	into	account	that	QoS	level	2	has	the	highest	overhead,	compared	to	the	other	QoS	levels.

Test	your	knowledge
1.	 MQTT	runs	on	top	of:

1.	 The	MQIP	protocol.
2.	 The	TCP/IP	protocol.
3.	 The	IoT	protocol.

2.	 The	data	for	an	MQTT	message	is	known	as:
1.	 Payload.
2.	 Packet.
3.	 Upload.

3.	 In	MQTT	version	3.1.1,	the	broker	is	named:
1.	 MQTT	agent.
2.	 MQTT	client.
3.	 MQTT	server.

4.	 QoS	level	0	for	MQTT	means:
1.	 Exactly	once	delivery
2.	 At	most	once	delivery
3.	 At	least	once	delivery

5.	 QoS	level	1	for	MQTT	means:
1.	 Exactly	once	delivery
2.	 At	most	once	delivery
3.	 At	least	once	delivery

6.	 QoS	level	2	for	MQTT	means:
1.	 Exactly	once	delivery
2.	 At	most	once	delivery
3.	 At	least	once	delivery

Summary
In	this	chapter,	we	started	our	journey	toward	understanding	the	MQTT	protocol.	We	understood
convenient	scenarios	for	this	protocol,	the	details	of	the	publish/subscribe	pattern	and	message	filtering.
We	learned	basic	concepts	related	to	MQTT	and	understood	the	different	components:	clients,	brokers
and	connections.

We	learned	to	install	a	Mosquitto	broker	or	server	on	Linux,	macOS	and	Windows.	We	used	the	default
configuration	to	learn	how	everything	works	under	the	hoods	while	using	Mosquitto.	This	way,	it	will	be
easier	for	us	to	use	the	client	libraries	in	different	programming	languages	to	publish	MQTT	messages
and	subscribe	to	MQTT	topic	filters.

We	learned	best	practices	related	to	topics,	single	level	and	multi	level	wildcards.	We	studied	in	detail
the	different	Quality	of	Service	levels	supported	by	MQTT	and	when	it	is	convenient	to	use	each	of	them.
We	analyzed	their	advantages	and	disadvantages.

Now	that	we	understood	how	the	MQTT	basics	work,	we	will	learn	how	to	secure	an	MQTT	server	and
to	follow	best	practices	related	to	security,	which	is	what	we	are	going	to	discuss	in	the	next	chapter.

Chapter	2.	Securing	an	MQTT	Mosquitto	Server
In	this	chapter,	we	will	secure	a	Mosquitto	server.	We	will	work	with	digital	certificates	to	encrypt	all	the
data	sent	between	the	MQTT	clients	and	the	server.	To	secure	the	server,	we	will:

Generate	a	private	certificate	authority	to	use	TLS	with	Mosquitto
Create	a	certificate	for	the	Mosquitto	server
Configure	TLS	transport	security	in	Mosquitto
Test	the	MQTT	TLS	configuration	with	MQTT.fx
Test	the	MQTT	TLS	configuration	with	MQTT-spy
Create	a	certificate	for	each	MQTT	client
Configure	TLS	client	certificate	authentication	in	Mosquitto
Test	the	MQTT	TLS	client	authentication	with	MQTT.fx
Test	the	MQTT	TLS	configuration	with	MQTT-spy
Force	the	TLS	protocol	version

Securing	a	Mosquitto	server
Security	for	IoT,	mobile,	and	web	applications	is	an	extremely	important	topic	that	deserves	entire	books
dedicated	to	it.	Each	solution	has	its	own	security	requirements,	and	it	is	very	important	to	consider	all	of
them	when	developing	each	component	of	the	solution.

If	we	use	MQTT	to	publish	values	that	are	neither	confidential	nor	critical	for	other	applications,	our	only
concern	may	be	to	keep	control	over	the	maximum	number	of	subscribers	to	topics	to	make	sure	that	the
messages	are	always	available.	This	way,	we	can	avoid	the	failure	of	MQTT	in	delivering	messages	to	a
huge	number	of	subscribers.

However,	most	of	the	times,	we	won't	be	working	on	a	solution	that	can	share	the	data	with	the	entire
world	without	limitations	and	doesn't	need	to	care	about	data	confidentiality	and	integrity	in	addition	to
data	availability.	Imagine	that	we	are	working	on	a	solution	that	includes	a	mobile	app	that	allows	users
to	control	a	huge	drone.	If	the	drone	flies	the	wrong	way,	we	can	do	harm	to	real	people.	We	cannot	allow
any	unknown	publisher	to	be	able	to	send	messages	to	the	topics	that	allow	us	to	control	the	drone.	We
have	to	make	sure	that	the	right	person	is	controlling	the	drone	and	that	the	commands	sent	as	part	of	the
messages	cannot	be	altered	by	an	intruder	in	the	middle	of	the	road.

Tip

The	different	levels	of	security	come	at	a	price,	that	is,	there	is	always	an	additional	overhead.	Hence,	we
should	always	keep	a	balance	to	avoid	overheads	that	can	make	the	entire	solution	unfeasible	and
unusable.	Whenever	we	add	more	security,	we	will	require	additional	bandwidth	and	we	will	add	a
processing	overhead	to	the	clients	and	the	server.	We	have	to	take	into	account	that	some	cryptographic
algorithms	that	work	without	problems	in	modern	smartphones	aren't	suitable	for	IoT	boards	with	a
constrained	processing	power.	Sometimes,	the	security	requirements	can	force	us	to	use	specific
hardware,	such	as	more	powerful	IoT	boards.	We	definitely	have	to	consider	security	before	purchasing
all	the	hardware	for	our	solution.

Another	important	thing	that	we	must	take	into	account	is	that	many	security	levels	require	maintenance
tasks,	which	might	be	unfeasible	in	certain	cases	or	extremely	difficult	to	achieve	in	other	cases.	For
example,	if	we	decide	to	use	a	certificate	for	each	device	that	will	become	a	client	of	the	MQTT	server,
we	will	have	to	generate	and	distribute	a	certificate	for	each	device.	We	have	to	access	the	filesystem	for
the	device	to	copy	new	files	to	it.	In	case	we	have	to	invalidate	a	certificate,	it	would	be	necessary	to
provide	a	new	certificate	to	the	affected	device.	Consider	a	situation	in	which	all	the	devices	are
distributed	in	different	locations,	which	are	difficult	to	access;	we	must	have	a	mechanism	to	remotely
access	the	device	and	be	able	to	provide	it	with	the	new	certificate.	This	task	would	also	require	security
because	we	don't	want	anybody	else	to	access	the	device's	filesystem.	Thus,	things	can	become	extremely
complex	once	we	start	analyzing	all	the	security	requirements	and	the	possible	and	necessary	maintenance
tasks.

Each	MQTT	server	or	broker	implementation	can	provide	specific	security	features.	We	will	work	with
some	of	the	features	provided	by	Mosquitto	out	of	the	box.	Specific	security	requirements	might	make	us
decide	to	work	with	a	specific	MQTT	server	or	broker	implementation.

When	we	work	with	Mosquitto,	we	can	implement	security	in	the	following	levels:

Network:	We	can	use	a	Virtual	Private	Network	(VPN)	to	extend	a	private	network	across	the
Internet.
Transport:	MQTT	uses	TCP	as	the	transport	protocol,	and	therefore,	by	default,	the	communications
aren't	encrypted.	Transport	Layer	Security	(TLS)	is	usually	referred	to	as	TLS/SSL,	because
Secure	Socket	Layers	(SSL)	is	its	predecessor.	We	can	use	TLS	to	secure	and	encrypt
communications	between	the	MQTT	clients	and	the	MQTT	server.	The	usage	of	TLS	with	MQTT	is
sometimes	referred	to	as	MQTTS.	TLS	allows	us	to	provide	both	privacy	and	data	integrity.	We	can
use	TLS	client	certificates	to	provide	authentication.
Application:	At	this	level,	we	can	take	advantage	of	the	features	included	in	MQTT	to	provide
application-level	authentication	and	authorization.	We	can	use	ClientId	(Client	Identifier)	to
identify	each	client	and	combine	it	with	user	name	and	password	authentication.	We	can	add
additional	security	mechanisms	at	this	level.	For	example,	we	can	encrypt	the	message	payload
and/or	add	integrity	checks	to	ensure	data	integrity.	However,	the	topic	would	still	be	unencrypted,
and	therefore,	TLS	is	the	only	way	of	making	sure	that	everything	is	encrypted.	We	can	work	with
plugins	to	provide	more	complex	authentication	and	authorization	mechanisms.	We	can	grant	or	deny
permissions	to	each	user	to	control	which	topics	they	can	subscribe	to	and	which	topics	they	can
publish	messages	to.

Tip

The	most	popular	MQTT	implementations	provide	support	for	TLS.	However,	make	sure	that	you	check
the	features	before	selecting	the	appropriate	MQTT	server	for	your	solution.

We	won't	cover	all	the	security	topics	because	it	would	require	one	or	more	entire	books	dedicated	to
these	topics.	Instead,	we	will	focus	on	the	most	common	features	used	in	transport-level	security	first,	and
then,	we	will	move	to	application-level	security.	The	usage	of	VPNs	is	out	of	the	scope	of	this	book.
However,	you	must	consider	their	usage	based	on	your	specific	needs.	We	will	use	Mosquitto	for	our
examples,	but	you	can	follow	many	similar	procedures	for	any	other	MQTT	server	you	decide	to	use.
Everything	we	will	learn	will	be	useful	for	any	other	MQTT	server	that	provides	support	for	the	same
security	features	that	we	will	use	with	Mosquitto.

Generating	a	private	certificate	authority	to	use
TLS	with	Mosquitto
So	far,	we	have	been	working	with	a	Mosquitto	server	with	its	default	configuration	that	listens	on	port
1883	and	uses	TCP	as	the	transport	protocol.	The	data	sent	between	each	MQTT	client	and	server	isn't
encrypted.	There	are	no	restrictions	to	subscribers	or	publishers.	If	we	open	the	firewall	ports	and
redirect	the	ports	in	the	router,	any	MQTT	client	that	has	our	IP	can	publish	to	any	topic	and	can	subscribe
to	any	topic.

In	our	examples	in	the	previous	chapter,	we	didn't	make	any	changes	in	our	configurations	to	allow
incoming	connections	to	port	1883,	and	therefore,	we	didn't	open	our	Mosquitto	server	to	the	Internet.

We	want	to	use	TLS	with	MQTT	and	Mosquitto.	This	way,	we	will	make	sure	that	we	can	trust	the	MQTT
server	because	we	have	confidence	that	it	is	who	it	says;	our	data	will	be	private	because	it	will	be
encrypted,	and	it	will	have	integrity	because	it	won't	be	altered	in	the	middle	of	the	road.	In	case	you	have
experience	with	the	HTTP	protocol,	we	will	make	the	same	shift	we	do	when	we	move	from	using	HTTP	to
HTTPS.

Websites	purchase	certificates	from	major	certificate	authorities.	In	case	we	want	to	use	a	purchased
certificate	for	the	server,	we	don't	need	to	generate	our	own	certificates.	In	fact,	it	is	the	most	convenient
option	when	we	have	an	MQTT	server	made	public.

We	will	use	the	free	OpenSSL	utility	to	generate	the	necessary	certificates	for	the	server	to	enable	TLS
with	Mosquitto.	OpenSSL	is	already	installed	in	macOS	and	most	modern	Linux	distributions.	In
Windows,	we	already	installed	OpenSSL	as	one	of	the	prerequisites	for	Mosquitto.	The	usage	of	the
OpenSSL	utility	deserves	an	entire	book,	and	therefore,	we	will	just	focus	on	generating	the	certificate	we
need	with	the	most	common	options.	In	case	you	have	any	specific	security	needs,	make	sure	that	you	dive
deep	into	the	necessary	options	to	achieve	the	goals	with	OpenSSL.

Specifically,	we	will	generate	an	X.509	digital	certificate	that	uses	the	X.509	Public	Key	Infrastructure
(PKI)	standard.	This	digital	certificate	allows	us	to	confirm	that	a	specific	public	key	belongs	to	the
subject	included	within	the	certificate.	There	is	an	identity	that	issues	the	certificate	and	its	details	are
also	included	in	the	certificate.

The	digital	certificate	is	valid	only	within	a	specific	period,	and	therefore,	we	must	take	into	account	that
a	digital	certificate	will	expire	some	day	and	we	will	have	to	provide	a	new	certificate	to	replace	the
expired	one.	There	are	specific	data	requirements	for	the	certificate	based	on	the	specific	X.509	version
that	we	use.	According	to	the	version	and	to	the	options	we	use	to	generate	the	certificates,	we	may	need
to	provide	specific	data.

We	will	be	running	commands	to	generate	different	X.509	digital	certificates	and	we	will	provide	all	the
necessary	details	that	will	be	included	in	the	certificate.	We	will	understand	all	the	data	that	the
certificate	will	have	when	we	create	them.

We	will	create	our	own	private	certificate	authority,	also	known	as	CA.	We	will	create	a	root	certificate
and	then	we	will	generate	the	server	key.

Tip

Check	the	directory	or	folder	in	which	you	have	installed	OpenSSL.	In	macOS,	OpenSSL	is	installed	in
/usr/bin/openssl.	However,	it	is	an	old	version	and	it	is	necessary	to	install	a	newer	version	before
running	the	commands.	It	is	possible	to	install	the	new	version	with	the	homebrew	package	manager.	In
Windows,	the	OpenSSL	version	we	have	installed	as	a	prerequisite	has	the	openssl.exe	executable	file
in	the	default	C:OpenSSL-Win32bin	folder.	Use	the	full	path	to	OpenSSL	in	each	of	the	next	commands
that	start	with	openssl.

Create	a	new	directory	named	certificates	and	change	the	necessary	permissions	for	this	directory	to
make	sure	that	only	you	can	access	its	contents.

Open	the	Terminal	in	macOS	or	Linux,	or	the	Command	Prompt	in	Windows,	and	go	to	the	previously
created	directory,	certificates.	Run	the	following	command	to	create	a	2,048-bit	root	key	and	save	it
in	the	ca.key	file:	openssl	genrsa	-out	ca.key	2048

The	following	lines	show	a	sample	output	generated	by	the	previous	command:	Generating	RSA	private
key,	2048	bit	long	modulus
..+++
......+++	e	is	65537	(0x10001)

The	previous	command	will	generate	the	private	root	key	in	the	ca.key	file.	Make	sure	that	you	keep	this
file	private	because	anybody	who	has	this	file	will	be	able	to	generate	certificates.	It	is	also	possible	to
password-protect	this	file	by	using	other	options	with	openssl.	However,	as	previously	explained,	we
will	follow	the	necessary	steps	to	use	TLS,	and	you	can	explore	additional	options	related	to	OpenSSL
and	certificates.

Go	to	the	Terminal	in	macOS	or	Linux,	or	the	Command	Prompt	in	Windows.	Run	the	following	command
to	self-sign	the	root	certificate.	The	next	command	uses	the	previously	created	2,048-bit	private	key	saved
in	the	ca.key	file	and	generates	a	ca.crt	file	with	the	self-signed	X.509	digital	certificate.	The
command	makes	the	self-signed	certificate	valid	for	3,650	days.	The	value	is	specified	after	the	-days
option:	openssl	req	-x509	-new	-nodes	-key	ca.key	-sha256	-days	3650	-out	ca.crt

Tip

In	this	case,	we	specified	the	-sha256	option	to	use	SHA-256	hash	functions.	If	we	want	increased
security,	we	can	use	the	-sha512	instead	of	-sha256	in	all	the	cases	in	which	we	are	using	-sha256.
This	way,	we	will	use	SHA-512	hash	functions.	However,	we	must	take	into	account	that	SHA-512	might
not	be	appropriate	for	certain	power-constrained	IoT	devices.

After	you	enter	the	previous	command,	OpenSSL	asks	information	that	will	be	incorporated	in	the
certificate.	You	have	to	enter	the	information	and	press	Enter.	In	case	you	don't	want	to	enter	specific
information,	just	enter	a	dot	(.)	and	press	Enter.	It	is	possible	to	pass	all	the	values	as	arguments	for	the

openssl	command,	but	it	makes	it	a	bit	difficult	to	understand	what	we	are	doing.	In	fact,	it	is	also
possible	to	use	fewer	calls	to	the	openssl	command	to	perform	the	previous	tasks.	However,	we	will	run
a	few	more	steps	to	understand	what	we	are	doing.

The	following	lines	show	the	sample	output	and	the	questions	with	sample	answers.	Remember	that	we
are	generating	our	private	certificate	authority:	You	are	about	to	be	asked	to	enter	information	that
will	be	incorporated	into	your	certificate	request.	What	you	are	about	to	enter	is	what	is	called	a
Distinguished	Name	or	a	DN.	There	are	quite	a	few	fields	but	you	can	leave	some	blank	For	some
fields	there	will	be	a	default	value,	If	you	enter	'.',	the	field	will	be	left	blank.	-----	Country	Name	(2
letter	code)	[AU]:US	State	or	Province	Name	(full	name)	[Some-State]:CALIFORNIA	Locality
Name	(eg,	city)	[]:SAN	FRANCISCO	Organization	Name	(eg,	company)	[Internet	Widgits	Pty
Ltd]:CERTIFICATE	AUTHORITY	Organizational	Unit	Name	(eg,	section)	[]:.	Common	Name
(e.g.	server	FQDN	or	YOUR	name)	[]:CERTIFICATE	AUTHORITY	Email	Address
[]:certificate@example.com

Run	the	following	command	to	display	the	data	and	details	for	the	generated	certificate	authority
certificate	file:	openssl	x509	-in	ca.crt	-noout	-text

The	following	lines	show	the	sample	output,	which	displays	details	about	the	signature	algorithm,	the
issuer,	the	validity,	the	subject,	the	extensions,	and	the	constraints:	Certificate:	Data:	Version:	3	(0x2)
Serial	Number:	ff:db:b4:d7:fa:30:00:bf	Signature	Algorithm:	sha256WithRSAEncryption	Issuer:
C=US,	ST=CALIFORNIA,	L=SAN	FRANCISCO,	O=CERTIFICATE	AUTHORITY,
CN=CERTIFICATE	AUTHORITY/emailAddress=certificate@example.com	Validity	Not	Before:
Jan	17	22:10:24	2017	GMT	Not	After	:	Jan	15	22:10:24	2027	GMT	Subject:	C=US,
ST=CALIFORNIA,	L=SAN	FRANCISCO,	O=CERTIFICATE	AUTHORITY,	CN=CERTIFICATE
AUTHORITY/emailAddress=certificate@example.com	Subject	Public	Key	Info:	Public	Key
Algorithm:	rsaEncryption	RSA	Public	Key:	(2048	bit)	Modulus	(2048	bit):
00:db:92:26:c1:fc:60:83:f1:c1:01:5e:46:e8:27:	a8:e1:6e:08:02:65:05:ac:3e:d9:ad:22:8e:73:88:
3e:bf:16:b7:56:d7:44:87:e6:59:95:91:63:40:6a:	7c:fc:4f:db:48:b2:eb:d0:ca:ef:2d:6a:16:b9:31:
fc:8e:ce:e9:9b:e8:d7:1c:16:81:17:b8:93:c2:e2:	7c:14:0e:aa:4d:c4:75:38:4e:80:50:47:6d:fa:52:
c6:0c:98:2f:93:af:da:36:67:60:34:79:80:7e:cd:	03:da:c8:23:3d:e0:74:96:37:3c:0f:1d:fd:eb:e9:
b9:d2:4b:00:e8:a4:d9:f6:e1:d2:51:e7:e5:74:29:	dc:3d:68:84:93:47:7a:cf:6e:92:e3:10:db:73:95:
7c:d4:c7:54:b0:10:bd:5c:0f:1e:0a:c1:bd:d9:25:	d8:0d:d2:c2:30:92:90:6c:2d:4c:59:17:e0:d9:06:
7d:c2:2a:b7:80:b8:cf:09:7b:23:e9:ed:8e:75:78:	b7:8f:9e:87:17:a6:17:2d:c0:68:86:0d:97:5e:ab:
5f:8d:d2:66:a7:11:0e:89:51:9c:9e:be:22:3f:f2:	bd:ca:03:c5:da:5d:d0:09:20:9b:55:60:23:6b:3c:
67:de:99:8a:ef:0a:62:7f:92:8d:88:c9:01:70:b8:	3d:eb	Exponent:	65537	(0x10001)	X509v3
extensions:	X509v3	Subject	Key	Identifier:
60:E5:C6:17:15:F8:2B:54:B2:DA:33:25:61:D4:4B:E3:DC:D9:70:6B	X509v3	Authority	Key
Identifier:	keyid:60:E5:C6:17:15:F8:2B:54:B2:DA:33:25:61:D4:4B:E3:DC:D9:70:6B
DirName:/C=US/ST=CALIFORNIA/L=SAN	FRANCISCO/O=CERTIFICATE
AUTHORITY/CN=CERTIFICATE	AUTHORITY/emailAddress=certificate@example.com
serial:FF:DB:B4:D7:FA:30:00:BF	X509v3	Basic	Constraints:	CA:TRUE	Signature	Algorithm:
sha256WithRSAEncryption	b8:b5:dc:71:b4:7f:66:f4:c0:d2:8f:0a:87:63:4f:b3:74:b0:
37:dd:5a:20:10:01:1c:91:ba:fa:71:47:b7:ad:ec:37:69:c1:
31:79:58:70:89:f2:d4:67:b3:a6:64:e2:75:0d:48:d1:fc:df:

67:3d:e7:cc:fa:9c:6d:65:ef:39:b2:74:76:11:4b:b5:23:3f:
b3:cb:af:7a:eb:33:d0:4c:da:ed:1e:40:4b:33:7b:ed:25:ba:
9a:5a:d9:45:36:54:b7:25:b2:96:37:32:be:b1:f5:fa:1b:0f:
e4:29:7a:bd:c5:78:da:cc:ff:f0:3b:16:71:13:b0:ee:6c:04:
79:b0:33:56:c6:ac:28:d7:0b:7e:0e:ca:f0:7d:56:0f:59:e8:
5a:f9:49:66:1b:b8:7e:a1:31:07:ed:f6:0c:ec:9a:1e:82:73:
26:c5:2b:a9:c5:44:ef:b3:a4:7d:98:23:3e:f0:5b:ba:af:b6:
bf:0c:c8:be:75:c9:a6:07:2e:4d:47:2d:71:80:fc:fd:42:e2:
18:0d:4d:65:7e:6f:27:42:65:79:83:f9:74:11:c6:70:32:6f:
d9:98:5c:54:e5:eb:b6:68:7b:93:25:56:ef:11:d4:2f:61:d1:
43:4f:b9:69:1c:2d:d2:e0:99:e5:12:be:20:c1:54:fe:b8:ea:	c9:f0:27:d9

After	running	the	previous	commands,	we	will	have	the	following	two	files	in	the	certificates
directory:

ca.key:	Certificate	authority	key
ca.crt:	Certificate	authority	certificate	file

Tip

The	certificate	authority	certificate	file	is	in	a	Privacy	Enhanced	Mail	(PEM)	format.	We	must	remember
this	format	because	some	MQTT	utilities	will	require	us	to	specify	whether	the	certificate	is	in	the	PEM
format	or	not.	A	wrong	value	in	this	option	won't	make	the	MQTT	client	establish	a	connection	with	an
MQTT	server	that	uses	a	certificate	in	PEM	format.

Creating	a	certificate	for	the	Mosquitto	server
Now	that	we	have	a	private	certificate	authority,	we	can	create	the	certificate	for	the	Mosquitto	server,
that	is,	a	certificate	for	the	computer	that	will	run	the	MQTT	server.

First,	we	must	generate	a	new	private	key	that	will	be	different	from	the	private	key	we	generated	for	our
own	private	certificate	authority.

Go	to	the	Terminal	in	macOS	or	Linux,	or	the	Command	Prompt	in	Windows.	Run	the	following	command
to	create	a	2,048-bit	key	and	save	it	in	the	server.key	file:	openssl	genrsa	-out	server.key	2048

The	following	lines	show	a	sample	output	generated	by	the	previous	command:	Generating	RSA	private
key,	2048	bit	long	modulus
..+++
......+++	e	is	65537	(0x10001)

The	previous	command	will	generate	the	private	key	in	the	server.key	file.	Go	back	to	the	Terminal	in
macOS	or	Linux,	or	the	Command	Prompt	in	Windows.	Run	the	following	command	to	generate	a
certificate	signing	request,	also	known	as	CSR.	The	next	command	uses	the	previously	created	2,048-bit
private	key	saved	in	the	server.key	file	and	generates	a	server.csr	file:	openssl	req	-new	-key
server.key	-out	server.csr

After	you	enter	the	previous	command,	OpenSSL	asks	for	information	that	will	be	incorporated	in	the
certificate.	You	have	to	enter	the	information	and	press	Enter.	In	case	you	don't	want	to	enter	specific
information,	just	enter	a	dot	(.)	and	press	Enter.	In	this	case,	the	most	important	value	is	Common	Name.
Enter	the	IPv4	or	IPv6	address	for	the	computer	that	is	running	the	Mosquitto	server	in	this	field.

The	following	lines	show	the	sample	output	and	the	questions	with	sample	answers.	Do	not	forget	to	enter
the	appropriate	value	for	Common	Name:	You	are	about	to	be	asked	to	enter	information	that	will	be
incorporated	into	your	certificate	request.	What	you	are	about	to	enter	is	what	is	called	a
Distinguished	Name	or	a	DN.	There	are	quite	a	few	fields	but	you	can	leave	some	blank	For	some
fields	there	will	be	a	default	value,	If	you	enter	'.',	the	field	will	be	left	blank.	-----	Country	Name	(2
letter	code)	[AU]:US	State	or	Province	Name	(full	name)	[Some-State]:CALIFORNIA	Locality
Name	(eg,	city)	[]:PALO	ALTO	Organization	Name	(eg,	company)	[Internet	Widgits	Pty
Ltd]:MQTT	SERVER	Organizational	Unit	Name	(eg,	section)	[]:MQTT	Common	Name	(e.g.
server	FQDN	or	YOUR	name)	[]:192.168.1.101	Email	Address	[]:mqttserver@example.com	Please
enter	the	following	'extra'	attributes	to	be	sent	with	your	certificate	request	A	challenge	password
[]:.	An	optional	company	name	[]:Mosquitto

Go	to	the	Terminal	in	macOS	or	Linux,	or	the	Command	Prompt	in	Windows.	Run	the	following	command
to	sign	the	previously	created	certificate	signing	request,	that	is,	the	server.csr	file.	The	next	command
also	uses	the	self-signed	X.509	digital	certificate	for	the	certificate	authority	and	its	private	key	that	we
generated	before:	the	ca.crt	and	ca.key	files.	The	command	generates	a	server.crt	file	with	the
signed	X.509	digital	certificate	for	the	Mosquitto	server.	The	command	makes	the	signed	certificate	valid
for	3,650	days.	The	value	is	specified	after	the	-days	option:	openssl	x509	-req	-in	server.csr	-CA

ca.crt	-CAkey	ca.key	-CAcreateserial	-out	server.crt	-days	3650	-sha256

Tip

As	we	did	when	we	created	the	self-signed	X.509	digital	certificate	for	the	certificate	authority,	we	also
specify	the	-sha256	option	to	use	SHA-256	hash	functions	for	the	Mosquitto	server	certificate.	You	can
use	the	-sha512	option	instead	of	-sha256	in	case	you	want	to	use	SHA-512	hash	functions	for	increased
security.

The	following	lines	show	a	sample	output	generated	by	the	previous	command.	The	values	shown	after
the	subject	will	be	different	in	your	configuration	because	you	entered	your	own	values	when	you
generated	the	certificate	signing	request	that	was	saved	in	the	server.csr	file:	Signature	ok
subject=/C=US/ST=CALIFORNIA/L=PALO	ALTO/O=MQTT
SERVER/OU=MQTT/CN=192.168.1.101/emailAddress=mqttserver@example.com	Getting	CA
Private	Key

Run	the	following	command	to	display	the	data	and	details	for	the	generated	server	certificate	file:
openssl	x509	-in	server.crt	-noout	-text

The	following	lines	show	the	sample	output	that	displays	details	about	the	signature	algorithm,	the	issuer,
the	validity,	the	subject,	and	the	signature	algorithms:	Certificate:	Data:	Version:	1	(0x0)	Serial
Number:	87:f1:cb:ae:43:c3:17:ee	Signature	Algorithm:	sha256WithRSAEncryption	Issuer:	C=US,
ST=CALIFORNIA,	L=SAN	FRANCISCO,	O=CERTIFICATE	AUTHORITY,	CN=CERTIFICATE
AUTHORITY/emailAddress=certificate@example.com	Validity	Not	Before:	Jan	18	14:29:48	2017
GMT	Not	After	:	Jan	16	14:29:48	2027	GMT	Subject:	C=US,	ST=CALIFORNIA,	L=PALO	ALTO,
O=MQTT	SERVER,	OU=MQTT,	CN=192.168.1.101/emailAddress=mqttserver@example.com
Subject	Public	Key	Info:	Public	Key	Algorithm:	rsaEncryption	RSA	Public	Key:	(2048	bit)	Modulus
(2048	bit):	00:df:f6:e3:92:27:44:c0:93:56:70:e1:ec:97:c0:
fc:24:df:73:a1:4b:d9:a5:d9:30:0c:63:06:8b:4c:	69:91:42:fc:41:a1:ba:13:b9:8b:0d:b1:89:80:48:
20:b7:61:c0:4b:be:92:66:c8:a5:f4:67:b3:7e:05:	ed:59:1c:1e:a1:6f:db:3b:1b:16:c8:cd:93:d7:c8:
28:0d:20:73:12:9e:1d:ad:30:af:97:a7:4e:be:1b:	90:48:d6:8c:d4:04:1a:3f:a1:2e:4a:dc:b2:d8:32:
f1:c9:83:8a:d7:15:a1:da:58:69:38:f3:0b:50:b0:	f6:42:c2:8d:c3:32:4a:20:e7:f6:3d:f2:59:70:d9:
da:13:59:aa:4f:1a:83:e8:e4:9a:82:ca:db:81:89:	4b:06:48:94:c2:8a:10:0b:7d:c8:d7:2e:c4:25:54:
60:b3:13:77:f2:99:dc:1c:26:d5:99:d2:24:57:3e:	6e:80:c5:e7:49:30:2a:01:d4:b0:19:ef:48:ec:f5:
0f:8b:af:52:f6:0c:6e:91:2d:d8:e5:5b:49:cc:9a:	79:d7:13:1e:b2:c2:5b:d2:3c:b7:71:f3:f6:9c:50:
25:97:da:0c:7a:24:4a:7e:0a:6a:02:5f:ba:2d:b3:	5d:0b:e6:e2:d7:0c:7d:31:c3:28:68:3c:02:31:0d:
8d:33	Exponent:	65537	(0x10001)	Signature	Algorithm:	sha256WithRSAEncryption
72:3b:9b:e7:c0:17:66:a2:3b:52:b6:12:74:e5:1d:21:fd:fc:
b3:09:9c:b1:f2:97:15:5e:44:0e:3f:ee:c3:e4:61:00:4f:16:
99:58:19:72:3c:3d:54:df:f8:2c:6c:51:2c:7f:50:f7:4b:24:
2e:cc:2f:f6:ee:43:97:b0:d5:05:a9:89:18:ac:18:26:28:45:
3c:0f:6e:ae:54:6a:1f:da:71:34:2e:01:79:5b:3b:14:f0:cd:
70:11:4c:4d:e5:36:89:e0:b2:2f:64:b5:44:05:65:94:35:a4:
0f:21:e8:ff:07:27:89:e6:02:cf:f7:51:68:2c:e0:c2:c2:0c:
dd:26:56:70:bc:26:64:ab:7e:cc:c0:0c:0b:bf:da:91:22:05:
71:41:af:af:c7:47:7a:cb:cd:cd:f3:49:bb:bb:ca:52:f5:56:

d3:75:33:c6:9f:fb:a8:35:87:3e:d5:13:37:b4:c5:d4:19:64:
ab:f2:5d:b7:06:d8:c8:54:95:cd:f2:02:74:d7:49:62:55:73:
b3:80:78:85:c2:6b:aa:68:96:95:4c:c4:3c:3e:20:ed:4a:8f:
84:34:51:28:99:01:d1:4d:21:4d:8f:97:7a:47:8c:b0:8e:4a:
59:f6:21:44:da:af:54:84:b9:ce:95:b9:21:35:14:a6:45:2f:	e5:bc:37:84

After	running	the	previous	commands,	we	will	have	the	following	three	files	in	the	certificates
directory:

server.key:	Server	key
server.csr:	Server	certificate	signing	request
server.crt:	Server	certificate	file

Tip

The	server	certificate	file	is	in	PEM	format,	as	happened	with	the	certificate	authority	certificate	file.

Configuring	TLS	transport	security	in	Mosquitto
Now,	we	will	configure	Mosquitto	to	use	TLS	transport	security	and	work	with	encrypted
communications	with	different	clients.	Note	that	we	haven't	generated	certificates	for	the	clients,	and
therefore,	we	won't	use	client	certificates	for	authentication.	This	way,	any	client	that	has	the	ca.crt	file
will	be	able	to	establish	a	communication	with	the	Mosquitto	server.

Go	to	the	Mosquitto	installation	directory	and	create	a	new	subdirectory	named	certificates.	In
Windows,	you	will	need	administrator	privileges	to	access	the	default	installation	folder.

Copy	the	following	files	from	the	certificates	directory,	in	which	we	have	saved	the	certificate
authority	certificate	and	the	server	certificate,	to	the	certificates	subdirectory	we	recently	created
within	the	Mosquitto	installation	directory:

ca.crt

server.crt

server.key

In	case	you	are	running	the	Mosquitto	server	in	a	Terminal	window	in	macOS	or	Linux,	press	Ctrl	+	C	to
stop	it.	In	Windows,	stop	the	appropriate	service.	If	you	are	running	the	Mosquitto	server	in	Linux,	run	the
following	command	to	stop	the	service:

sudo	service	mosquitto	stop

Go	to	the	Mosquitto	installation	directory	and	open	the	mosquitto.conf	configuration	file.	By	default,
all	the	lines	for	this	file	are	commented,	that	is,	they	start	with	a	hash	sign	(#).	The	default	value	for	each
setting	is	indicated	and	commented.	This	way,	we	easily	know	all	the	default	values.	The	settings	are
organized	in	different	sections.

Tip

It	is	a	good	practice	to	make	a	backup	copy	of	the	exiting	mosquitto.conf	configuration	file	before
making	changes	to	it.	Whenever	we	make	changes	to	mosquitto.conf	it	is	a	good	idea	to	be	able	to
easily	roll	back	to	the	previous	configuration	if	something	goes	wrong.

In	macOS	or	Linux,	add	the	following	lines	at	the	end	of	the	configuration	file	and	make	sure	you	replace
/usr/local/etc/mosquitto/certificates	with	the	full	path	to	the	certificates	directory	we
created	within	the	Mosquitto	installation	folder:

#	MQTT	over	TLS

listener	8883

cafile	/usr/local/etc/mosquitto/certificates/ca.crt

certfile	/usr/local/etc/mosquitto/certificates/server.crt

keyfile	/usr/local/etc/mosquitto/certificates/server.key

In	Windows,	add	the	following	lines	at	the	end	of	the	configuration	file	and	make	sure	you	replace
C:Program	Files	(x86)mosquittocertificates	with	the	full	path	to	the	certificates	directory
we	created	within	the	Mosquitto	installation	folder:

#	MQTT	over	TLS

listener	8883

cafile	C:Program	Files	(x86)mosquittocertificatesca.crt

certfile	C:Program	Files	(x86)mosquittocertificatesserver.crt

keyfile	C:Program	Files	(x86)mosquittocertificatesserver.key

We	specified	the	8883	value	for	the	listener	option	to	make	Mosquitto	listen	for	incoming	network
connections	on	port	8883.	This	port	is	the	default	port	number	for	MQTT	with	TLS.

The	cafile	option	specifies	the	full	path	for	the	file	that	provides	a	PEM-encoded	certificate	authority
certificate	file:	ca.crt.

The	certfile	option	specifies	the	full	path	for	the	file	that	provides	a	PEM-encoded	server	certificate:
server.crt.

Finally,	the	keyfile	option	specifies	the	full	path	for	the	file	that	provides	a	PEM-encoded	server	keyfile:
server.key.

Save	the	changes	to	the	mosquitto.conf	configuration	file	and	launch	Mosquitto	again	with	the	same
mechanism	we	learned	for	Linux,	macOS,	and	Windows	in	the	previous	chapter.	The	Mosquitto	server
will	be	listening	on	port	8883	instead	of	1883.

We	will	use	the	mosquitto_sub	command-line	utility	included	in	Mosquitto	to	try	to	generate	a	simple
MQTT	client	that	subscribes	to	a	topic	and	prints	all	the	messages	it	receives.	We	will	use	the	default
configuration	that	will	try	to	establish	a	communication	with	the	Mosquitto	server	by	using	the	default
1883	port	without	a	certificate	authority	certificate	specified.	Open	the	Terminal	in	macOS	or	Linux,	or
the	Command	Prompt	in	Windows,	go	to	the	directory	in	which	Mosquitto	is	installed,	and	run	the
following	command:

mosquitto_sub	-V	mqttv311	-t	sensors/drone01/altitude	-d

The	mosquitto_sub	utility	will	display	the	following	error.	The	Mosquitto	server	is	not	accepting
connection	on	port	1883	anymore:

Error:	Connection	refused

Run	the	following	command	that	uses	the	-p	option	followed	by	the	port	number	that	we	want	to	use:
8883.	This	way,	we	will	try	to	connect	to	port	8883	instead	of	the	default	1883	port:

mosquitto_sub	-V	mqttv311	-p	8883	-t	sensors/drone01/altitude	-d

The	mosquitto_sub	utility	will	display	debug	messages	indicating	that	it	is	sending	the	CONNECT
packet	to	the	MQTT	server.	However,	the	connection	will	never	be	established	because	Mosquitto	will
display	the	following	error.	The	Mosquitto	server	is	not	accepting	connection	on	port	1883
anymore.	Press	Ctrl+C	to	stop	the	utility	trying	to	connect.

The	following	command	specifies	the	certificate	authority	certificate	file	after	the	--cafile	option	in
addition	to	indicating	that	we	want	to	use	port	8883.	You	just	have	to	replace	ca.crt	with	the	full	path	to

the	ca.crt	file	you	created	in	the	certificates	directory.	For	example,	it	might	be
C:certificatesca.crt	in	Windows	or	/Users/gaston/certificates/ca.crt	in	macOS	or	Linux.
The	mosquitto_sub	utility	will	create	an	MQTT	subscriber	that	will	establish	an	encrypted	connection
with	Mosquitto:

mosquitto_sub	-V	mqttv311	-p	8883	--cafile	ca.crt-t	

sensors/drone01/altitude-d

With	a	similar	syntax,	we	will	use	the	mosquitto_pub	command-line	utility	included	in	Mosquitto	to
generate	a	simple	MQTT	client	that	publishes	a	message	to	a	topic	with	an	encrypted	connection.	Open
the	Terminal	in	macOS	or	Linux,	or	the	Command	Prompt	in	Windows,	go	to	the	directory	in	which
Mosquitto	is	installed,	and	run	the	following	command:

mosquitto_pub	-V	mqttv311	-p	8883	--cafile	ca.crt	-t	

sensors/drone01/altitude	-m	"150	f"	-d

Tip

Remember	to	replace	ca.crt	with	the	full	path	to	the	ca.crt	file	you	created	in	the	certificates
directory.

Testing	the	MQTT	TLS	configuration	with
MQTT.fx
Now,	we	will	use	the	MQTT.fx	GUI	utility	to	generate	another	MQTT	client	that	uses	an	encrypted
connection	to	publish	messages	to	the	same	topic,	sensors/drone01/altitude.	We	have	to	make
changes	to	the	connection	options	to	enable	TLS	and	specify	the	certificate	authority	certificate	file.
Follow	the	next	steps:

1.	 Launch	MQTT.fx,	select	local	mosquitto	in	the	dropdown	located	on	the	upper-left	corner,	and	click
on	the	configuration	icon	on	the	right-hand	side	of	this	dropdown	and	on	the	left-hand	side	of	the
Connect	button.	MQTT.fx	will	display	the	Edit	Connection	Profiles	dialog	box	with	different
options	for	the	connection	profile	named	local	mosquitto.

2.	 Change	the	value	specified	in	Broker	Port	from	1883	to	8883	.
3.	 Press	the	SSL/TLS	button.
4.	 Activate	the	Enable	SSL/TLS	checkbox.
5.	 Activate	the	CA	certificate	file	radio	button.
6.	 Enter	or	select	the	full	path	to	the	ca.crt	file	that	you	created	in	the	certificates	folder	in	the	CA

Certificate	File	textbox	and	click	OK.	The	following	screenshot	shows	the	dialog	box	with	the
selected	options:	

	

Click	on	the	Connect	button.	MQTT.fx	will	establish	an	encrypted	connection	with	the	local	Mosquitto
server.	Notice	that	the	Connect	button	is	disabled	and	the	Disconnect	button	is	enabled	because	the	client
is	connected	to	the	Mosquitto	server.
Click	Subscribe	and	enter	sensors/drone01/altitude	in	the	dropdown	on	the	left-hand	side	of	the

Subscribe	button.	Then,	click	the	Subscribe	button.	MQTT.fx	will	display	a	new	panel	on	the	left-hand
side	with	the	topic	to	which	we	have	subscribed.
Click	Publish	and	enter	sensors/drone01/altitude	in	the	dropdown	on	the	left-hand	side	of	the

Publish	button.
Enter	the	following	text	in	the	textbox	below	the	Publish	button:	400	f.
Then,	click	the	Publish	button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.
Click	Subscribe	and	you	will	see	the	published	message.

With	the	configuration	changes	we	have	made	to	the	Mosquitto	server,	any	client	that	has	the	certificate
authority	certificate	file,	that	is,	the	ca.crt	file	we	generated,	will	be	able	to	establish	a	connection	with
Mosquitto,	subscribe,	and	publish	to	topics.	The	data	sent	between	the	MQTT	clients	and	the	MQTT
server	is	encrypted.	In	this	configuration,	we	don't	require	the	MQTT	clients	to	provide	certificates	for
authentication.

Testing	the	MQTT	TLS	configuration	with
MQTT-spy
There	is	another	very	popular	utility	to	generate	MQTT	clients	that	can	subscribe	to	topics	and	publish	to
topics:	MQTT-spy.	This	utility	is	open	source	and	can	run	on	any	computer	that	has	Java	8	or	a	higher
version	installed	on	it.	You	can	find	more	information	about	MQTT-spy	at	http://kamilfb.github.io/mqtt-
spy.	The	options	to	establish	a	connection	with	an	MQTT	server	with	a	certificate	authority	certificate
file	are	similar	to	the	ones	we	analyzed	for	MQTT.fx.	However,	in	case	you	also	want	to	work	with	this
utility,	it	is	convenient	to	analyze	them	in	detail.

Now,	we	will	use	the	MQTT-spy	GUI	utility	to	generate	another	MQTT	client	that	uses	an	encrypted
connection	to	publish	messages	to	the	same	topic,	that	is,	sensors/drone01/altitude.	Follow	the	next
steps:

1.	 Launch	MQTT-spy.
2.	 Select	Connections	|	New	connection.	The	Connection	list	dialog	box	will	appear.
3.	 Click	on	the	Connectivity	tab	and	select	MQTT	3.1.1	in	the	Protocol	version	dropdown.	We	want

to	work	with	MQTT	version	3.1.1.
4.	 Click	on	the	Security	tab	and	on	the	TLS	tab	below	the	User	auth.	tab.
5.	 Select	CA	certificate	in	the	TLS/SSL	mode	dropdown.
6.	 Select	TLSv1.2	in	the	Protocol	dropdown.
7.	 Enter	or	select	the	full	path	to	the	ca.crt	file	that	you	created	in	the	certificates	folder	and	click

Open	connnection.	The	following	screenshot	shows	the	dialog	box	with	the	selected	options:	

	

http://kamilfb.github.io/mqtt-spy

MQTT-spy	will	close	the	dialog	box	and	will	display	a	new	tab	with	a	green	background	and	the
connection	name	that	appears	highlighted	and	selected	on	the	left-hand	side	in	the	Connection	list	dialog.
Make	sure	you	click	on	the	tab	for	the	new	connection.
Enter	sensors/drone01/altitude	in	the	Topic	dropdown.
Enter	the	following	text	in	the	Data	textbox:	540	f.	The	following	screenshot	shows	the	tab	for	the	new

connection	and	the	data	entered	in	the	different	controls:	

	
Click	the	Publish	button.	MQTT-spy	will	publish	the	entered	text	to	the	specified	topic,	and	you	will	be

able	to	see	the	message	in	both	the	MQTT.fx	subscriber	and	the	mosquitto-sub	subscriber.

Creating	a	certificate	for	each	MQTT	client
Now,	we	want	to	require	each	MQTT	client	to	provide	a	valid	certificate	to	establish	a	connection	with
the	MQTT	server.	This	way,	only	the	clients	that	have	a	valid	certificate	will	be	able	to	publish	or
subscribe	to	topics.	We	will	use	the	previously	created	private	certificate	authority	to	create	client
certificates	for	authentication.

We	will	generate	a	sample	certificate	for	our	local	computer	that	will	act	as	a	client.	We	can	follow	the
same	procedure	to	generate	additional	certificates	for	additional	devices	that	we	want	to	be	able	to
connect	to	the	Mosquitto	server.	We	just	need	to	use	a	different	name	for	the	file	and	use	a	different	device
name	in	the	corresponding	option.

Tip

We	must	use	the	same	certificate	authority	certificate	that	we	used	to	generate	the	server	certificate	to
generate	the	client	certificates.

First,	we	must	generate	a	new	private	key	that	will	be	different	from	the	private	keys	we	generated	for	our
own	private	certificate	authority	and	for	the	server	certificate.

Go	to	the	Terminal	in	macOS	or	Linux,	or	the	Command	Prompt	in	Windows.	Run	the	following	command
to	create	a	2,048-bit	key	and	save	it	in	the	device001.key	file.	To	repeat	this	procedure	for	other
devices,	replace	device001	with	any	other	name	that	identifies	the	device	that	will	use	the	certificate.	Do
this	in	all	the	following	commands	that	use	device001	for	different	file	names	and	values:	openssl
genrsa	-out	device001.key	2048

The	following	lines	show	a	sample	output	generated	by	the	previous	command:	Generating	RSA	private
key,	2048	bit	long	modulus
..+++
......+++	e	is	65537	(0x10001)

The	previous	command	will	generate	the	private	key	in	the	device001.key	file.	Go	back	to	the	Terminal
in	macOS	or	Linux,	or	the	Command	Prompt	in	Windows.	Run	the	following	command	to	generate	a
certificate	signing	request,	also	known	as	CSR.	The	next	command	uses	the	previously	created	2,048-bit
private	key	saved	in	the	device001.key	file	and	generates	a	device001.csr	file:	openssl	req	-new	-
key	device001.key	-out	device001.csr

After	you	enter	the	previous	command,	OpenSSL	asks	for	information	that	will	be	incorporated	in	the
certificate.	You	have	to	enter	the	information	and	press	Enter.	In	case	you	don't	want	to	enter	specific
information,	just	enter	a	dot	(.)	and	press	Enter.	In	this	case,	the	most	important	value	is	Common	Name.
Enter	the	device	name	in	this	field:	You	are	about	to	be	asked	to	enter	information	that	will	be
incorporated	into	your	certificate	request.	What	you	are	about	to	enter	is	what	is	called	a
Distinguished	Name	or	a	DN.	There	are	quite	a	few	fields	but	you	can	leave	some	blank	For	some
fields	there	will	be	a	default	value,	If	you	enter	'.',	the	field	will	be	left	blank.	-----	Country	Name	(2
letter	code)	[AU]:US	State	or	Province	Name	(full	name)	[Some-State]:CALIFORNIA	Locality

Name	(eg,	city)	[]:SAN	JOSE	Organization	Name	(eg,	company)	[Internet	Widgits	Pty	Ltd]:MQTT
CLIENT	001	Organizational	Unit	Name	(eg,	section)	[]:MQTT	CLIENT	001	Common	Name	(e.g.
server	FQDN	or	YOUR	name)	[]:MQTT	CLIENT	001	Email	Address
[]:mqttclient001@example.com	Please	enter	the	following	'extra'	attributes	to	be	sent	with	your
certificate	request	A	challenge	password	[]:.	An	optional	company	name	[]:.

Go	to	the	Terminal	in	macOS	or	Linux,	or	the	Command	Prompt	in	Windows.	Run	the	following	command
to	sign	the	previously	created	certificate	signing	request,	that	is,	the	client001.csr	file.	The	next
command	also	uses	the	self-signed	X.509	digital	certificate	for	the	certificate	authority	and	its	private	key
that	we	generated	before:	the	ca.crt	and	ca.key	files.	The	command	generates	a	client001.crt	file
with	the	signed	X.509	digital	certificate	for	the	MQTT	client.	The	command	makes	the	signed	certificate
valid	for	3,650	days.	The	value	is	specified	after	the	-days	option.	The	-addTrust	clientAuth	option
indicates	that	we	want	to	use	the	certificate	to	authenticate	a	client:	openssl	x509	-req	-in	device001.csr	-
CA	ca.crt	-CAkey	ca.key	-CAcreateserial	-out	device001.crt	-days	3650	-sha256	-addtrust
clientAuth

The	following	lines	show	a	sample	output	generated	by	the	previous	command.	The	values	shown	after
the	subject	will	be	different	in	your	configuration	because	you	entered	your	own	values	when	you
generated	the	certificate	signing	request	that	was	saved	in	the	device001.csr	file:	Signature	ok
subject=/C=US/ST=CALIFORNIA/L=SAN	JOSE/O=MQTT	CLIENT	001/OU=MQTT	CLIENT
001/CN=MQTT	CLIENT	001/emailAddress=mqttclient001@example.com	Getting	CA	Private	Key

Run	the	following	command	to	display	the	data	and	details	for	the	generated	server	certificate	file:
openssl	x509	-in	device001.crt	-noout	-text

The	following	lines	show	the	sample	output	that	displays	details	about	the	signature	algorithm,	the	issuer,
the	validity,	the	subject,	and	the	signature	algorithms:	Certificate:	Data:	Version:	1	(0x0)	Serial
Number:	87:f1:cb:ae:43:c3:17:ef	Signature	Algorithm:	sha256WithRSAEncryption	Issuer:	C=US,
ST=CALIFORNIA,	L=SAN	FRANCISCO,	O=CERTIFICATE	AUTHORITY,	CN=CERTIFICATE
AUTHORITY/emailAddress=certificate@example.com	Validity	Not	Before:	Jan	18	22:51:42	2017
GMT	Not	After	:	Jan	16	22:51:42	2027	GMT	Subject:	C=US,	ST=CALIFORNIA,	L=SAN	JOSE,
O=MQTT	CLIENT	001,	OU=MQTT	CLIENT	001,	CN=MQTT	CLIENT
001/emailAddress=mqttclient001@example.com	Subject	Public	Key	Info:	Public	Key	Algorithm:
rsaEncryption	RSA	Public	Key:	(2048	bit)	Modulus	(2048	bit):
00:a2:f0:b8:70:c6:9f:de:a0:42:27:fe:5c:86:2d:	73:a5:ae:1c:78:6c:bf:07:fe:bb:cc:a4:69:1d:3c:
10:01:ef:4d:2c:85:43:57:4d:a2:5a:1c:ea:8f:1d:	c2:73:4e:d8:27:31:78:9d:02:12:a9:2d:1b:2c:63:
fc:9f:41:94:06:f6:7d:9b:4b:8f:58:cb:bf:b6:ea:	1d:e5:e2:fd:18:64:9a:f6:0e:ba:f0:7a:ba:52:c0:
01:78:42:74:43:67:97:f4:db:80:a8:8b:e7:c0:c4:	e7:ce:e4:ba:f8:7e:17:4f:e0:28:9d:93:ad:37:74:
61:1b:fc:db:42:d1:36:31:11:47:9b:23:4f:37:d8:	54:e6:30:b7:f7:14:68:b7:e1:b3:43:43:f2:53:55:
e6:ee:bf:d0:61:15:d3:7e:d1:de:88:1a:00:1b:b3:	09:bd:0f:ea:f8:d6:15:3b:8f:df:2c:3f:d1:ec:fa:
3d:20:28:bb:82:ed:b2:3f:b7:db:c6:fb:99:16:70:	9a:2e:1c:3c:71:fd:ac:f0:ed:f1:ea:93:e6:2b:27:
88:91:bb:32:1a:bf:90:31:bb:52:1f:22:60:9b:3a:	16:d3:02:98:97:8e:b1:49:1c:c8:d7:0f:61:24:bf:
b1:ae:8c:fe:7d:99:6c:f4:d2:83:5e:63:77:4f:b4:	e7:db	Exponent:	65537	(0x10001)	Signature
Algorithm:	sha256WithRSAEncryption	3c:85:23:6a:a5:cb:eb:94:59:58:53:fe:d0:c4:26:75:76:9f:
fd:82:4b:5d:31:6a:a7:ba:08:75:96:f4:15:bf:e3:e2:7c:91:

bf:50:19:e9:aa:76:99:13:fe:85:6d:22:67:96:68:b6:f0:86:
06:cc:76:3c:79:4a:bc:1e:32:76:09:2e:82:93:b7:68:9c:1b:
23:85:2c:ce:d2:39:d6:d3:c3:9c:d6:bc:38:25:bb:3c:55:53:
a7:2f:58:d3:4d:9a:4c:86:78:7b:0f:6d:ea:8b:b3:0e:5c:2a:
59:86:8e:1f:29:07:10:e8:37:ae:69:7e:b0:1f:a7:b9:08:e0:
6e:aa:f9:a6:96:e0:e9:e4:4e:98:dc:a7:05:a1:ea:90:34:c9:
4a:4d:7f:91:73:7a:22:24:91:82:37:d8:f4:a8:2a:1b:bb:b2:
38:d5:27:ae:65:c5:e0:10:12:07:68:ca:ed:e9:27:1b:49:9b:
39:81:bf:f2:6b:eb:b2:09:eb:1f:3b:de:dd:93:81:6f:c2:5a:
4e:cd:b4:cd:05:fe:17:71:fb:fe:28:ba:55:4d:e4:91:64:fe:
d6:57:61:81:d7:78:ae:9c:65:26:3c:6e:bb:9e:76:10:cd:94:
44:92:1d:2d:e3:ff:57:fd:ab:24:b5:3c:cc:a8:76:0f:15:b3:	79:31:1f:ef

After	running	the	previous	commands,	we	will	have	the	following	three	new	files	in	the	certificates
directory:

device001.key:	Client	key
device001.csr:	Client	certificate	signing	request
device001.crt:	Client	certificate	file

Note

The	client	certificate	file	is	in	the	PEM	format,	as	happened	with	the	authority	certificate	file	and	the
server	certificate	file.

We	will	have	to	provide	the	following	three	files	to	any	device	that	we	want	to	be	able	to	connect	to	the
Mosquitto	server:

ca.crt

device001.crt

device001.key

Tip

Never	provide	additional	files	to	the	devices	that	have	to	establish	a	connection	with	the	MQTT	server.
You	don't	want	the	devices	to	be	able	to	generate	additional	certificates.	You	just	want	them	to
authenticate	with	a	valid	certificate.

The	openssl	utility	allows	us	to	provide	values	for	many	of	the	options	with	additional	command-line
options.	Hence,	it	is	possible	to	automate	many	of	the	previous	steps	to	make	it	easier	to	generate	multiple
device	certificates.

Configuring	TLS	client	certificate	authentication
in	Mosquitto
Now,	we	will	configure	Mosquitto	to	use	TLS	client	certificate	authentication.	This	way,	any	client	will
require	the	ca.crt	file	and	a	client	certificate	to	establish	a	communication	with	the	Mosquitto	server.

In	case	you	are	running	the	Mosquitto	server	in	a	Terminal	window	in	macOS	or	Linux,	press	CtrlC	to
stop	it.	In	Windows,	stop	the	appropriate	service.

Go	to	the	Mosquitto	installation	directory	and	open	the	mosquitto.conf	configuration	file.

In	macOS,	Linux.	or	Windows,	add	the	following	lines	at	the	end	of	the	configuration	file:

require_certificate	true	

We	specified	the	true	value	for	the	require_certificate	option	to	make	Mosquitto	require	a	valid
client	certificate	for	any	client	that	requests	a	connection	to	Mosquitto.

Save	the	changes	to	the	mosquitto.conf	configuration	file	and	launch	Mosquitto	again.	We	will	use	the
mosquitto_sub	command-line	utility	included	in	Mosquitto	to	generate	a	simple	MQTT	client	that
subscribes	to	a	topic	filter	and	prints	all	the	messages	it	receives.	The	following	command	specifies	the
certificate	authority	certificate	file,	the	client	certificate,	and	the	client	key.	You	have	to	replace	ca.crt,
device001.crt,	and	device001.key	with	the	full	path	to	these	files	created	in	the	certificates
directory.	However,	it	is	a	better	idea	to	copy	these	files	to	a	new	directory	as	if	we	were	working	with
the	files	that	will	only	be	available	to	the	device	that	wants	to	establish	a	connection	with	Mosquitto.	The
mosquitto_sub	utility	will	create	an	MQTT	subscriber	that	will	establish	an	encrypted	connection	with
Mosquitto	and	will	provide	the	client	certificate	and	client	key	to	perform	authentication.

mosquitto_sub	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	--key	

device001.key-t	sensors/+/altitude	-d

With	a	similar	syntax,	we	will	use	the	mosquitto_pub	command-line	utility	included	in	Mosquitto	to
generate	a	simple	MQTT	client	that	publishes	a	message	to	a	topic	that	will	match	the	previously
specified	topic	filter,	with	an	encrypted	connection	and	client	authentication.	Open	the	Terminal	in	macOS
or	Linux,	or	a	Command	Prompt	in	Windows,	go	to	the	directory	in	which	Mosquitto	is	installed,	and	run
the	following	command.	Remember	to	replace	ca.crt,	device001.crt,	and	device001.key	with	the
full	path	to	these	files	created	in	the	certificates	directory:

mosquitto_pub	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	--key	

device001.key-t	sensors/drone12/altitude	-m	"1350	f"	-d

Tip

Sometimes,	it	is	necessary	to	invalidate	a	client	certificate.	Mosquitto	allows	us	to	specify	a	PEM-
encoded	certificate	revocation	list	file.	We	have	to	specify	the	path	to	this	file	as	a	value	for	the	crlfile
option	in	the	Mosquitto	configuration	file.

Testing	the	MQTT	TLS	client	authentication
with	MQTT.fx
Now,	we	will	use	the	MQTT.fx	GUI	utility	to	generate	another	MQTT	client	that	uses	an	encrypted
connection	and	TLS	client	authentication	to	publish	messages	to	a	topic	that	matches	the	topic	filter	we
used	for	the	subscription,	sensors/drone25/altitude.	We	have	to	make	changes	to	the	connection
options	we	used	when	we	enabled	TLS	and	specify	the	client	certificate	and	client	key	files.	Follow	the
next	steps:

1.	 Launch	MQTT.fx,	select	local	mosquitto	in	the	dropdown	located	on	the	upper-left	corner,	and	click
on	the	configuration	icon	on	the	right-hand	side	of	this	dropdown	and	on	the	left-hand	side	of	the
Connect	button.	MQTT.fx	will	display	the	Edit	Connection	Profiles	dialog	box	with	different
options	for	the	connection	profile	named	local	mosquitto.

2.	 Make	sure	the	value	specified	in	Broker	Port	is	8883	.
3.	 Press	the	SSL/TLS	button.
4.	 Make	sure	the	Enable	SSL/TLS	checkbox	is	activated.
5.	 Activate	the	Self	signed	certificates	radio	button.
6.	 Enter	or	select	the	full	path	to	the	ca.crt	file	that	you	created	in	the	certificates	folder	in	the	CA

File	textbox.
7.	 Enter	or	select	the	full	path	to	the	device001.crt	file	that	you	created	in	the	certificates	folder

in	the	Client	Certificate	File	textbox.
8.	 Enter	or	select	the	full	path	to	the	device001.key	file	that	you	created	in	the	certificates	folder

in	the	Client	Key	File	textbox.
9.	 Make	sure	that	the	PEM	Formatted	checkbox	is	activated.	The	following	screenshot	shows	the

dialog	box	with	the	selected	options	and	sample	values	for	the	different	textboxes:	

	

Click	OK.	Then,	click	on	the	Connect	button.	MQTT.fx	will	establish	an	encrypted	connection	with	the
local	Mosquitto	server	by	using	the	certificate	and	key	files	we	have	specified.	Note	that	the	Connect
button	is	disabled	and	the	Disconnect	button	is	enabled	because	the	client	is	connected	to	the	Mosquitto
server.
Click	Subscribe	and	enter	sensors/+/altitude	in	the	dropdown	on	the	left-hand	side	of	the

Subscribe	button.	Then,	click	the	Subscribe	button.	MQTT.fx	will	display	a	new	panel	on	the	left-hand
side	with	the	topic	filter	to	which	we	have	subscribed.
Click	Publish	and	enter	sensors/drone40/altitude	in	the	dropdown	on	the	left-hand	side	of	the

Publish	button.
Enter	the	following	text	in	the	textbox	below	the	Publish	button:	1235	f.
Then,	click	the	Publish	button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.
Click	Subscribe	and	you	will	see	the	published	message.

Testing	the	MQTT	TLS	configuration	with
MQTT-spy
Now,	we	will	use	the	MQTT-spy	GUI	utility	to	generate	another	MQTT	client	that	uses	an	encrypted
connection	to	publish	messages	to	another	topic	that	will	match	the	sensors/+/altitude	topic	filter,
sensors/drone500/altitude.	Follow	the	next	steps:

1.	 Launch	MQTT-spy.
2.	 Select	Connections	|	New	connection	or	Connections	|	Manage	connections	in	case	you	were

already	running	MQTT-spy	or	have	saved	previous	settings.	The	Connection	list	dialog	box	will
appear.

3.	 Click	on	the	Connectivity	tab	and	make	sure	MQTT	3.1.1	is	selected	in	the	Protocol	version
dropdown.

4.	 Click	on	the	Security	tab	and	on	the	TLS	tab	below	the	User	auth.	tab.
5.	 Select	CA	certificate&	client	certificate/key	in	the	TLS/SSL	mode	dropdown.
6.	 Select	TLSv1.2	in	the	Protocol	dropdown.
7.	 Enter	or	select	the	full	path	to	the	ca.crt	file	that	you	created	in	the	certificates	folder	in	the	CA

certificate	file	textbox.
8.	 Enter	or	select	the	full	path	to	the	device001.crt	file	that	you	created	in	the	certificates	folder

in	the	Client	certificate	file	textbox.
9.	 Enter	or	select	the	full	path	to	the	device001.key	file	that	you	created	in	the	certificates	folder

in	the	Clientkey	file	textbox.
10.	 Activate	the	Client	key	in	PEM	format	checkbox.	Finally,	click	Open	connnection	or	Close	and

re-open	existing	connection.	The	following	screenshot	shows	the	dialog	box	with	the	selected
options	and	sample	values	for	the	textboxes:	

	

MQTT-spy	will	close	the	dialog	box	and	will	display	a	new	tab	with	a	green	background	and	the
connection	name,	which	appears	highlighted	and	selected	on	the	left-hand	side	in	the	Connection	list
dialog.	Make	sure	you	click	on	the	tab	for	the	new	connection.
Enter	sensors/drone500/altitude	in	the	Topic	dropdown.
Enter	the	following	text	in	the	Data	textbox:	1777	f.
Click	the	Publish	button.	MQTT-spy	will	publish	the	entered	text	to	the	specified	topic,	and	you	will	be

able	to	see	the	message	in	both	the	MQTT.fx	subscriber	and	the	mosquitto-sub	subscriber.

Tip

As	happens	with	any	security	configuration,	a	checkbox	that	isn't	activated	based	on	the	previous
instructions	won't	allow	the	MQTT	client	to	establish	a	connection	with	Mosquitto.	It	is	very	important	to
remember	that	the	certificates	use	the	PEM	format.

Forcing	the	TLS	protocol	version
It	is	a	good	practice	to	use	the	highest	possible	TLS	protocol	version.	By	default,	Mosquitto	accepts	TLS
1.0,	1.1,	and	1.2.	If	all	the	clients	are	capable	of	working	with	the	highest	TLS	protocol	version	supported
by	Mosquitto,	we	should	force	Mosquitto	to	use	only	the	highest	version.	This	way,	we	make	sure	that	we
won't	be	vulnerable	to	attacks	to	the	previous	TLS	versions.

Now,	we	will	make	the	necessary	changes	in	the	configuration	file	to	force	the	usage	of	TLS	1.2.	In	case
you	are	running	the	Mosquitto	server	in	a	Terminal	window	in	macOS	or	Linux,	press	Ctrl+C	to	stop	it.
In	Windows,	stop	the	appropriate	service.

Go	to	the	Mosquitto	installation	directory	and	open	the	mosquitto.conf	configuration	file.

In	macOS,	Linux,	or	Windows,	add	the	following	lines	at	the	end	of	the	configuration	file:

tls_version	tlsv1.2	

We	specified	the	tlsv1.2	value	for	the	tls_version	option	to	make	Mosquitto	work	only	with	TLS	1.2.
Any	client	that	uses	an	earlier	TLS	version	won't	be	able	to	establish	a	connection	with	the	Mosquitto
server.

Save	the	changes	to	the	mosquitto.conf	configuration	file	and	launch	Mosquitto	again.	We	specified	the
TLS	version	when	we	configured	the	connection	in	both	the	MQTT.fx	and	MQTT-spy	GUI	utilities,	and
we	specified	TLS	1.2	as	the	desired	TLS	version	for	the	client.	We	must	use	the	--tls-version
tlsv1.2	option	for	the	mosquitto_sub	and	mosquitto_pub	command-line	utilities.

Open	the	Terminal	in	macOS	or	Linux,	or	the	Command	Prompt	in	Windows,	go	to	the	directory	in	which
Mosquitto	is	installed,	and	run	the	following	command.	Remember	to	use	the	full	paths	for	the	ca.crt,
device.001	and	device.key	files:

mosquitto_pub	--tls-version	tlsv1.2-V	mqttv311	-p	8883	--cafile	ca.crt	-t	

sensors/drone01/altitude	-m	"2532	f"	-d

The	previous	command	specified	the	usage	of	TLS	1.2,	and	therefore,	the	MQTT	client	could	establish	a
connection	with	the	Mosquitto	server	and	publish	the	message.	If	we	specify	a	different	TLS	version,	the
mosquitto_pub	command	won't	be	able	to	connect	with	the	Mosquitto	server.

Test	your	knowledge
1.	 Which	of	the	following	can	we	use	to	secure	and	encrypt	communications	between	the	MQTT	clients

and	the	MQTT	server?
1.	 TLS.
2.	 TCP.
3.	 HTTPS.

2.	 Which	is	the	default	port	number	for	MQTT	over	TLS?
1.	 1883.
2.	 9883.
3.	 8883.

3.	 If	we	specify	true	as	the	value	for	the	require_certificate	option	of	the	Mosquitto	configuration
file:
1.	 Clients	that	want	to	connect	to	the	MQTT	server	will	require	a	client	certificate.
2.	 Clients	that	want	to	connect	to	the	MQTT	server	won't	require	a	client	certificate.
3.	 Clients	that	want	to	connect	to	the	MQTT	server	can	provide	an	optional	client	certificate.

4.	 Which	of	the	following	utilities	allows	us	to	generate	an	X.509	digital	certificate?
1.	 OpenX509.
2.	 OpenSSL.
3.	 TLS4You.

5.	 When	we	use	MQTT	over	TLS:
1.	 There	is	just	a	small	bandwidth	overhead	but	no	processing	overhead	at	all	compared	with

MQTT	over	TCP	without	TLS.
2.	 There	are	both	bandwidth	and	processing	overheads	compared	with	MQTT	over	TCP	without

TLS.
3.	 There	is	no	overhead	compared	with	MQTT	over	TCP	without	TLS.

Summary
In	this	chapter,	we	generated	a	private	certificate	authority,	a	server	certificate,	and	client	certificates	to
enable	TLS	transport	security	and	TLS	client	authentication	with	Mosquitto.	Communications	between	the
MQTT	clients	and	the	MQTT	server	are	encrypted.

We	worked	with	OpenSSL	to	generate	the	digital	certificates.	We	tested	the	MQTT	TLS	configuration
with	MQTT.fx,	MQTT-spy,	and	the	Mosquitto	command-line	utilities.	We	forced	Mosquitto	to	use	only	a
specific	TLS	version.

There	are	many	other	security	topics	related	to	MQTT	servers	and	Mosquitto.	We	will	work	with	some	of
them	in	the	forthcoming	chapters,	in	which	we	will	develop	applications	that	will	use	MQTT	in	different
programming	languages.

Now	that	you	have	understood	how	to	encrypt	communications	between	the	MQTT	clients	and	the
Mosquitto	server,	we	will	control	a	drone	with	Python	and	MQTT,	which	is	what	we	are	going	to	discuss
in	the	next	chapter.

Chapter	3.	Controlling	a	Drone	with	Python
In	this	chapter,	we	will	write	Python	code	to	control	a	drone	with	MQTT	messages.	We	will	write	code
that	will	be	able	to	run	on	different	popular	IoT	platforms.	We	will:

Understand	the	requirements	to	control	a	drone	with	MQTT
Define	the	topics	and	commands	to	control	a	drone
Install	paho-mqtt	for	Python
Connect	the	client	to	the	MQTT	server	with	Python
Understand	callbacks
Subscribe	to	topics	with	Python
Create	a	class	to	represent	a	drone
Receive	messages	with	Python
Process	commands	with	Python
Work	with	the	network	loop	with	Python
Send	messages	with	Python

Understanding	the	requirements	to	control	a
drone	with	MQTT
In	the	previous	chapters,	we	learned	how	MQTT	works	in	detail.	We	understood	how	to	establish	a
connection	between	an	MQTT	client	and	an	MQTT	server.	You	learned	what	happens	when	we	subscribe
to	topic	filters	and	when	a	publisher	sends	messages	to	specific	topics.	We	installed	and	secured	a
Mosquitto	server.

Now,	we	will	use	Python	as	our	main	programming	language	to	generate	MQTT	clients	that	will	act	as
publishers	and	subscribers.	We	will	connect	a	Python	MQTT	client	to	the	MQTT	server	and	we	will
process	commands	to	control	a	drone	with	MQTT	messages.

We	will	use	TLS	encryption	and	TLS	authentication	because	we	don't	want	any	MQTT	client	to	be	able	to
send	commands	to	our	drone.	We	want	our	Python	code	to	run	on	many	platforms	because	we	will	use	the
same	code	base	to	control	drones	that	use	the	following	IoT	boards:

Raspberry	Pi	3
Raspberry	Pi	2	Model	B
Intel	Edison
Intel	Galileo	Gen	2
Intel	Joule	570x
Intel	Joule	550x

Depending	on	the	platform,	each	drone	is	going	to	provide	additional	features	because	some	boards	are
more	powerful	compared	with	other	boards.	However,	we	will	focus	on	the	basic	features	to	keep	our
example	simple	and	to	stay	concentrated	on	MQTT.	Then,	we	will	be	able	to	use	this	project	as	a
baseline	for	other	solutions	that	require	us	to	run	code	on	an	IoT	board	that	runs	Python	code,	has	to
connect	to	an	MQTT	server,	and	has	to	process	commands.

The	code	that	runs	on	the	boards	that	power	the	drones	must	be	able	to	process	commands	received	in
messages	in	a	specific	topic.	We	will	use	JSON	strings	in	the	payloads.

A	client	application	also	written	in	Python	must	be	able	to	control	one	or	more	drones.	We	will	also	write
the	client	application	in	Python	and	it	will	publish	MQTT	messages	with	JSON	strings	to	the	topic	for
each	drone.	The	client	application	must	display	the	results	of	executing	each	command.	Each	drone	must
publish	a	message	to	a	specific	topic	whenever	a	command	is	successfully	executed.

Defining	the	topics	and	commands
We	will	use	the	following	topic	name	to	publish	the	commands	for	a	drone:	commands/dronename,	where
dronename	must	be	replaced	with	a	unique	name	assigned	to	a	drone.	For	example,	if	we	assign	drone01
as	the	name	for	a	drone	that	is	powered	by	an	Intel	Joule	570x	board,	we	will	have	to	publish	commands
to	the	commands/drone01	topic	and	the	code	that	runs	on	this	board	will	subscribe	to	this	topic	to
receive	messages	with	commands	and	react	to	them.

We	will	use	the	following	topic	name	to	make	the	drones	publish	details	about	the	successfully	executed
commands:	processedcommands/dronename,	where	dronename	must	be	replaced	with	a	unique	name
assigned	to	a	drone.	For	example,	if	we	assign	dronepi03	as	the	name	for	a	drone	that	is	powered	by	a
Raspberry	Pi	3	board,	the	client	that	wants	to	receive	information	about	successfully	processed
commands	has	to	subscribe	to	the	processedcommands/dronepi03	topic.

The	commands	will	be	sent	in	a	JSON	string	with	a	key-value	pair.	The	key	must	be	equal	to	COMMAND	and
the	value	must	specify	any	of	the	following	valid	commands.	When	the	command	requires	additional
parameters,	the	parameter	name	must	be	included	in	the	next	key	and	the	value	for	this	parameter	in	the
value	for	this	key.

TAKE_OFF:	Take	off	the	drone.
LAND:	Land	the	drone.
LAND_IN_SAFE_PLACE:	Land	the	drone	in	a	safe	place	that	is	configured	for	the	drone.
MOVE_UP:	Make	the	drone	move	up.
MOVE_DOWN:	Make	the	drone	move	down.
MOVE_FORWARD:	Make	the	drone	move	forward.
MOVE_BACK:	Make	the	drone	move	back.
MOVE_LEFT:	Make	the	drone	move	left.
MOVE_RIGHT:	Make	the	drone	move	right.
ROTATE_RIGHT:	Make	the	drone	rotate	to	the	right.	We	must	specify	the	degrees	we	want	the	drone	to
rotate	right	in	the	value	for	the	DEGREES	key.
ROTATE_LEFT:	Make	the	drone	rotate	to	the	left.	We	must	specify	the	degrees	we	want	the	drone	to
rotate	left	in	the	value	for	the	DEGREES	key.
SET_MAX_ALTITUDE.	Set	the	maximum	altitude	that	we	allow	for	the	drone.	We	must	specify	the
desired	maximum	altitude	in	feet	in	the	value	for	the	FEET	key.
SET_MIN_ALTITUDE.	Set	the	minimum	altitude	that	we	allow	for	the	drone.	We	must	specify	the
desired	minimum	altitude	in	feet	in	the	value	for	the	FEET	key.

The	following	line	shows	an	example	of	the	payload	for	the	command	that	takes	off	the	drone:

{"COMMAND":	"TAKE_OFF"}

The	following	line	shows	an	example	of	the	payload	for	the	command	that	sets	the	maximum	altitude	for
the	drone	to	20	feet:

{"COMMAND":	"SET_MAX_ALTITUDE",	"FEET":	20}

We	have	all	the	necessary	details	to	start	coding	with	Python.

Installing	paho-mqtt	for	Python
The	Eclipse	Paho	project	provides	an	open	source	client	implementation	of	MQTT.	The	project	includes
a	Python	client,	also	known	as	the	Paho	Python	Client	or	Eclipse	Paho	MQTT	Python	client	library.	This
Python	client	has	been	contributed	from	the	Mosquitto	project	and	was	originally	known	as	the	Mosquitto
Python	Client.

The	following	is	the	web	page	for	the	Eclipse	Paho	project:http://www.eclipse.org/paho.

The	following	is	the	web	page	for	the	Eclipse	Paho	MQTT	Python	client	library	version	1.2,	that	is,	the
paho-mqtt	module	version	1.2:	https://pypi.python.org/pypi/paho-mqtt/1.2.

Tip

We	can	use	paho-mqtt	in	many	modern	IoT	boards	that	support	either	Python	2.7.x	or	Python	3.x.	For
example,	we	can	install	paho-mqtt	on	Raspberry	Pi	boards,	such	as	Raspberry	Pi	3,	and	on	Intel	IoT
boards,	such	as	the	Intel	Joule,	Intel	Edison,	and	Intel	Galileo.	We	just	need	to	make	sure	that	pip	is
installed	to	make	it	easier	to	install	paho-mqtt.	You	can	use	your	development	computer	to	run	the
examples	or	any	of	the	mentioned	boards.	You	will	need	Python	2.7.x	or	Python	3.x	installed	on	your
development	computer.

It	is	good	practice	to	create	a	Python	virtual	environment	and	activate	it	before	installing	packages.	This
way,	you	can	isolate	the	environment	in	which	you	are	developing	the	sample	application.	To	keep	the
example	simple,	we	won't	include	all	the	instructions	to	create	virtual	environments	in	Python.	However,
in	case	you	want	to	work	with	a	virtual	environment,	make	sure	that	you	activate	it	before	moving	forward
with	the	next	steps.

In	case	you	are	going	to	work	with	an	IoT	board	to	run	the	example,	make	sure	that	you	run	all	the
commands	in	the	SSH	terminal	or	the	Terminal	window	that	runs	on	the	board.	In	case	you	use	your
development	computer,	run	the	commands	on	a	Terminal	in	macOS	or	Linux,	or	a	Command	Prompt	in
Windows.	Make	sure	that	you	have	activated	your	virtual	environment	in	case	you	decided	to	work	with
one.

Now,	we	will	use	the	pip	installer	to	install	paho-mqtt	1.2.	We	just	need	to	run	the	following	command
in	the	SSH	terminal	or	the	local	terminal	window	we	are	using	with	the	board,	or	in	the	computer	we	are
using	to	install	the	package:

pip	install	paho-mqtt

Tip

In	case	you	are	working	with	Intel	boards,	take	into	account	that	you	must	install	pip	before	running	the
previous	commands.	On	Raspberry	Pi	3	boards,	pip	is	already	installed.	If	you	are	using	your	computer,
the	Python	installation	usually	includes	pip.

In	case	you	have	Python	installed	in	the	default	folder	in	Windows	and	you	aren't	working	with	a	Python

http://www.eclipse.org/paho
https://pypi.python.org/pypi/paho-mqtt/1.2

virtual	environment,	you	will	have	to	run	the	previous	command	in	an	Administrator	Command	Prompt.

In	case	you	aren't	working	with	a	Python	virtual	environment	in	Raspbian	(Raspberry	Pi	default	operating
system),	you	will	have	to	run	the	following	command:

sudo	pip	install	paho-mqtt

The	last	lines	for	the	output	will	indicate	that	the	paho-mqtt	package	has	been	successfully	installed.	The
output	will	be	similar	to	the	next	lines	but	not	exactly	the	same	because	it	will	vary	based	on	the	platform
in	which	you	are	running	the	command:

Collecting	paho-mqtt			Downloading	paho-mqtt-1.2.tar.gz	(41kB)					100%	

|################################|	45kB	147kB/s	Installing	collected	packages:	

paho-mqtt			Running	setup.py	install	for	paho-mqtt	Successfully	installed	paho-

mqtt-1.2

Connecting	the	client	to	the	MQTT	server	with
Python
First,	we	will	use	paho_mqtt	to	create	an	MQTT	client	that	connects	to	the	Mosquitto	MQTT	server.	We
will	write	a	few	lines	of	Python	code	to	establish	a	secured	connection	and	subscribe	to	a	topic.

In	the	previous	chapter,	we	secured	our	Mosquitto	server,	and	therefore,	we	will	use	the	digital
certificates	we	had	created	to	authenticate	the	client.	Most	of	the	time,	we	will	work	with	an	MQTT
server	that	uses	TLS,	and	therefore,	it	is	a	good	idea	to	learn	how	to	establish	a	connection	with	TLS	and
TLS	authentication.	It	is	easier	to	establish	an	unsecured	connection	with	an	MQTT	server,	but	it	won't	be
the	most	common	scenario	we	will	face	when	developing	applications	that	work	with	MQTT.

First,	we	need	to	copy	the	following	files	we	had	created	in	the	previous	chapter	to	a	directory	in	the
computer	or	device	we	will	use	to	run	a	Python	script.	We	saved	the	files	in	a	directory	called
certificates.	Create	a	python_certificates	directory	in	the	computer	or	board	you	are	going	to	use
as	the	MQTT	client	for	this	example.	Copy	the	following	three	files	to	this	new	directory:

ca.crt:	Certificate	authority	certificate	file
device001.crt:	Client	certificate	file
device001.key:	Client	key

The	following	lines	show	a	sample	code	that	establishes	a	connection	with	an	MQTT	server,	subscribes
to	the	test/drone01	topic	filter,	and	prints	all	the	messages	received	in	the	subscribed	topic	filter.	You
have	to	replace	the	value,	/Users/gaston/certificates,	in	the	certificates_path	string	with	the
path	to	the	python_certificates	directory	you	created.	In	addition,	replace	the	value	for
mqtt_server_host	with	the	IP	address	for	the	Mosquitto	server	or	any	other	MQTT	server	you	might
decide	to	use.	The	code	file	for	the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_03
folder,	in	the	mqtt_essentials_example03_01.py	file:

	

import	paho.mqtt.client	as	mqtt

import	os.path

#	Replace	/Users/gaston/certificates	with	the	path

#	in	which	you	saved	the	certificate	authoritity	file,

#	the	client	certificate	file	and	the	client	key

certificates_path	=	"/Users/gaston/certificates"

ca_certificate	=	os.path.join(certificates_path,	"ca.crt")

client_certificate	=	os.path.join(certificates_path,	"device001.crt")

#	Replace	localhost	with	the	IP	for	the	Mosquitto

#	or	other	MQTT	server

mqtt_server_host	=	"localhost"

mqtt_server_port	=	8883

mqtt_keepalive	=	60

def	on_connect(client,	userdata,	rc):

				print("Connect	result:	{}".format(mqtt.connack_string(rc)))

				client.subscribe("test/drone01")

def	on_subscribe(client,	userdata,	mid,	granted_qos):

				print("Subscribed	with	QoS:	{}".format(granted_qos[0]))

def	on_message(client,	userdata,	msg):

				payload_string	=	msg.payload.decode('utf-8')

				print("Topic:	{}.	Payload:	{}".format(

								msg.topic,	

								str(msg.payload)payload_string))

if	__name__	==	"__main__":

				client	=	mqtt.Client(protocol=mqtt.MQTTv311)

				client.on_connect	=	on_connect

				client.on_subscribe	=	on_subscribe

				client.on_message	=	on_message

				client.tls_set(ca_certs	=	ca_certificate,

								certfile=client_certificate,

								keyfile=client_key)

				client.connect_async(host=mqtt_server_host,

								port=mqtt_server_port,

								keepalive=mqtt_keepalive)	

					client.loop_forever()

	

The	previous	code	uses	the	recently	installed	paho-mqtt	module	to	establish	an	encrypted	connection
with	the	MQTT	server,	subscribe	to	the	test/drone01	topic	filter,	and	run	the	code	when	we	receive
messages	in	the	topic.	We	will	use	this	code	to	understand	the	basics	of	paho-mqtt.

The	first	line	imports	paho.mqtt.client	as	mqtt.	This	way,	whenever	we	use	the	mqtt	alias,	we	will
be	referencing	paho.mqtt.client.	Then,	the	code	declares	the	certificates_path	variable	initialized
with	a	string,	that	is,	with	the	path	in	which	you	saved	the	certificate	authority	file,	the	client	certificate
file,	and	the	client	key.	The	code	declares	the	following	string	variables	with	the	full	path	to	the
certificate	and	key	files	we	need	to	configure	TLS	and	TLS	client	authentication:	ca_certificate,
client_certificate,	and	client_key.	The	call	to	os.path.join	makes	it	easy	to	join	the	path
specified	in	the	certificates_path	variable	with	the	file	name	and	generate	the	full	path.	The
os.path.join	function	works	for	any	platform,	and	therefore,	we	don't	have	to	worry	about	whether	to
use	a	slash	(/)	or	a	backslash	()	to	join	the	path	with	the	file	name.	Sometimes,	we	can	develop	and	test	in
Windows	and	then	run	the	code	on	an	IoT	board	that	can	use	different	Unix	flavors.	The	usage	of
os.path.join	makes	our	job	easier	in	these	scenarios	in	which	we	switch	between	different	platforms.

The	mqtt_server_host,	mqtt_server_port	and	mqtt_keepalive	variables	specify	the	IP	address	for
the	MQTT	server	(the	Mosquitto	server),	the	port	that	we	want	to	use	(8883)	and	the	number	of	seconds
for	the	keep	alive	option.	It	is	very	important	to	replace	localhost	with	the	IP	address	for	the	MQTT
server.	We	specify	8883	for	mqtt_server_port	because	we	use	TLS	and	this	is	the	default	port	for
MQTT	over	TLS,	as	we	learned	in	the	previous	chapter.

Understanding	callbacks
When	we	declare	a	function,	we	pass	this	function	as	an	argument	to	another	function	or	method,	or	we
assign	this	function	to	an	attribute,	and	then	some	code	calls	this	function	at	some	time;	this	mechanism	is
known	as	callback.	The	name	callback	is	used	because	the	code	calls	back	a	function	at	some	time.

The	code	declares	three	functions	that	we	will	specify	as	callbacks:

on_connect:	This	function	will	be	called	when	the	MQTT	client	receives	a	CONNACK	response	from
the	MQTT	server,	that	is,	when	a	connection	has	been	successfully	established	with	the	MQTT
server.
on_subscribe:	This	function	will	be	called	when	the	MQTT	client	receives	a	SUBACK	response
from	the	MQTT	server,	that	is,	when	a	subscription	has	been	successfully	completed.
on_message:	This	function	will	be	called	when	the	MQTT	client	receives	a	PUBLISH	message	from
the	MQTT	server.	Whenever	the	MQTT	server	publishes	a	message,	based	on	the	subscriptions	for
the	client,	this	function	will	be	called.

The	code	for	the	main	block	creates	an	instance	of	the	mqtt.Client	class	(paho.mqtt.client.Client)
that	represents	an	MQTT	client	and	that	we	will	use	to	communicate	with	an	MQTT	broker.	If	we	use	the
default	parameters,	we	would	work	with	MQTT	version	3.1.	We	want	to	work	with	MQTT	version	3.1.1,
and	therefore,	we	specified	mqtt.MQTTv311	as	the	value	for	the	protocol	argument.

Then,	the	code	assigns	the	on_connect	function	to	the	client.on_connect	attribute,	the	on_message
function	to	the	client.on_message	attribute,	and	the	on_subscribe	function	to	the
client.on_subscribe	attribute.

The	call	to	the	client.tls_set	method	configures	encryption	and	authentication	options.	It	is	very
important	to	call	this	method	before	running	the	client.connect	method.	We	specify	the	full	string	paths
to	the	certificate	authority	certificate	file,	the	client	certificate,	and	the	client	key	in	the	ca_certs,
certfile	and	keyfile	arguments.	The	ca_certs	argument	name	is	a	bit	confusing,	but	we	just	need	to
specify	the	string	path	to	the	certificate	authority	certificate	file,	not	multiple	certificates.

Finally,	the	main	block	calls	the	client.connect_async	method	and	specifies	the	values	for	the	host,
port,	and	keepalive	arguments.	This	way,	the	code	asks	the	MQTT	client	to	establish	a	connection	to
the	specified	MQTT	server.

The	connect_async	method	runs	with	an	asynchronous	execution,	and	therefore,	it	is	a	non-blocking	call.
The	equivalent	method	with	a	synchronous	execution	is	the	connect	method.	After	a	connection	has	been
successfully	established	with	the	MQTT	server,	the	specified	callback	in	the	client.on_connect
attribute	will	be	executed,	that	is,	the	on_connect	function.	This	function	receives	the	mqtt.Client
instance	that	established	the	connection	with	the	MQTT	server	in	the	client	argument.

Tip

If	you	want	to	establish	a	connection	with	an	MQTT	server	that	isn't	using	TLS,	you	don't	need	to	call	the

client.tls_set	method	and	use	the	appropriate	port;	by	default,	it	will	be	1883.

Subscribing	to	topics	with	Python
The	code	calls	the	client.subscribe	method	with	"test/drone01"	as	an	argument	to	subscribe	to	this
specific	single	topic	and	the	qos	argument	set	to	2	to	request	a	QoS	level	of	2.

Tip

In	this	case,	we	will	only	subscribe	to	one	topic.	However,	it	is	very	important	to	know	that	we	are	not
limited	to	subscribe	to	a	single	topic	filter;	we	may	subscribe	to	many	topic	filters	with	a	single	call	to	the
subscribe	method.

After	the	MQTT	server	confirms	the	successful	subscription	to	the	specified	topic	filter,	the	specified
callback	in	the	client.on_subscribe	attribute	will	be	executed,	that	is,	the	on_subscribe	function.
This	function	receives	a	list	of	integers	in	the	granted_qos	argument	that	provides	the	QoS	level	that	the
MQTT	server	has	granted	for	each	of	the	topic	filter	subscription	requests.	The	code	in	the
on_subscribe	function	displays	the	QoS	level	granted	by	the	MQTT	server	for	the	topic	filter	we
specified.

Whenever	there	is	a	new	message	received	that	matches	the	topic	filter	to	which	we	have	subscribed,	the
specified	callback	in	the	client.on_messsage	attribute	will	be	executed,	that	is,	the	on_message
function.	This	function	receives	the	mqtt.Client	instance	that	established	the	connection	with	the	MQTT
server	in	the	client	argument	and	an	mqtt.MQTTMessage	instance	in	the	msg	argument.	The
mqtt.MQTTMessage	class	describes	an	incoming	message.

In	this	case,	whenever	the	on_message	function	is	executed,	the	value	in	msg.topic	will	always	match
"test/drone01"	because	we	just	subscribed	to	a	single	topic	and	no	other	topic	name	will	match	the
topic	filter.	However,	if	we	had	subscribed	to	a	topic	filter	or	many	topic	filters	with	which	more	than
one	topic	may	match,	it	would	be	always	necessary	to	check	the	topic	in	which	the	message	was	sent	and
in	which	we	are	receiving	the	message.

The	code	in	the	on_message	function	prints	the	topic	for	the	message	that	has	been	received,	msg.topic,
and	the	string	representation	of	the	payload	for	the	message,	that	is,	the	msg.payload	attribute	decoded	to
an	UTF-8	string	and	saved	in	the	payload_string	variable.

Finally,	the	main	block	calls	the	client.loop_forever	method	that	calls	the	loop	method	for	us	in	an
infinite	blocking	loop.	At	this	point,	we	only	want	to	run	the	MQTT	client	loop	in	our	program.	We	will
receive	the	messages	whose	topic	matches	the	topic	to	which	we	have	subscribed.

Make	sure	that	the	Mosquitto	server	or	any	other	MQTT	server	you	might	want	to	use	for	this	example	is
running.	Then,	execute	the	following	line	to	start	the	example	in	any	computer	or	device	that	you	want	to
use	as	the	MQTT	client.	Note	that	you	might	need	to	use	python3	instead	of	python,	based	on	your
configuration:

python	mqtt_essentials_example03_01.py

In	case	you	see	a	traceback	with	SSLError	similar	to	the	following	lines,	it	means	that	the	MQTT	server

hostname	or	IP	doesn't	match	the	value	specified	for	the	Common	Name	attribute	when	you	generated	the
server	certificate	file	named	server.crt.	Make	sure	that	you	check	the	IP	address	for	the	MQTT	server
(Mosquitto	server)	and	generate	the	server	certificate	file	and	key	again	with	the	appropriate	IP	address
specified	for	Common	Name,	as	explained	in	the	previous	chapter,	in	case	you	are	working	with	the	self-
signed	certificates	we	generated	in	the	previous	chapter:

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"/Library/Python/2.7/site-packages/paho/mqtt/client.py",	line	612,	in	

connect

				return	self.reconnect()

		File	"/Library/Python/2.7/site-packages/paho/mqtt/client.py",	line	751,	in	

reconnect

				self._tls_match_hostname()

		File	"/Library/Python/2.7/site-packages/paho/mqtt/client.py",	line	2331,	in	

_tls_match_hostname

				raise	ssl.SSLError('Certificate	subject	does	not	match	remote	hostname.')

Now,	follow	these	steps	to	use	the	MQTT.fx	GUI	utility	to	publish	two	messages	to	the	test/drone01
topic:

1.	 Launch	MQTT.fx	and	establish	a	connection	with	the	MQTT	server	by	following	the	steps	you
learned	in	the	previous	chapter.

2.	 Click	Publish	and	enter	test/drone01	in	the	dropdown	on	the	left-hand	side	of	the	Publish	button.
3.	 Click	QoS	2	on	the	right-hand	side	of	the	Publish	button.
4.	 Enter	the	following	text	in	the	textbox	below	the	Publish	button:	{"COMMAND":	"TAKE_OFF"}.	Then,

click	the	Publish	button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.
5.	 Enter	the	following	text	in	the	textbox	below	the	Publish	button:	{"COMMAND":	"LAND"}.	Then,	click

the	Publish	button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.

In	case	you	don't	want	to	work	with	the	MQTT.fx	utility,	you	can	run	two	mosquitto_pub	commands	to
generate	MQTT	clients	that	publish	messages	to	the	topic.	You	just	need	to	open	another	Terminal	in
macOS	or	Linux,	or	another	Command	Prompt	in	Windows,	go	to	the	directory	in	which	Mosquitto	is
installed,	and	run	the	following	commands.	In	this	case,	it	isn't	necessary	to	specify	the	-d	option.
Replace	localhost	with	the	IP	for	the	MQTT	server.	Remember	to	replace	ca.crt,	device001.crt,
and	device001.key	with	the	full	path	to	these	files	created	in	the	certificates	directory:

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key-t	test/drone01	-m	'{"COMMAND":	"TAKE_OFF"}'	-q	2	--tls-version	

tlsv1.2-d

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key-t	test/drone01	-m	'{"COMMAND":	"LAND"}'	-q	2	--tls-version	

tlsv1.2-d

Go	to	the	device	and	window	in	which	you	executed	the	Python	script.	You	will	see	the	following	output:

Connect	result:	Connection	Accepted.

Subscribed	with	QoS:	2

Topic:	test/drone01.	Payload:	{"COMMAND":	"TAKE_OFF"}

Topic:	test/drone01.	Payload:	{"COMMAND":	"LAND"}

The	Python	program	successfully	established	a	secured	and	encrypted	connection	with	the	MQTT	server
and	became	a	subscriber	to	the	test/drone01	topic	with	a	granted	QoS	level	of	2.	The	program
displayed	the	two	messages	it	has	received	in	the	test/drone01	topic.

Press	Ctrl+C	to	stop	the	execution	of	the	program.	The	generated	MQTT	client	will	close	the	connection
with	the	MQTT	server.

Creating	a	class	to	represent	a	drone
Now,	we	will	write	Python	code	that	will	run	on	the	different	IoT	boards.	Remember	to	copy	the	files	we
have	created	in	the	previous	chapter	to	a	directory	in	the	computer	or	device	that	will	represent	the	board
that	controls	a	drone	and	that	we	will	use	to	run	a	Python	script.	We	saved	the	files	in	a	directory	called
certificates.	Create	a	python_certificates	directory	in	the	computer	or	board	you	are	going	to	use
as	the	MQTT	client	for	this	example.	Copy	the	following	three	files	to	this	new	directory:

ca.crt:	Certificate	authority	certificate	file
device001.crt:	Client	certificate	file
device001.key:	Client	key

We	will	create	the	following	two	classes:

Drone:	This	class	will	represent	a	drone	and	provides	methods	that	will	be	called	whenever	a
command	has	to	be	processed.	In	order	to	keep	the	example	simple,	our	methods	will	just	print	the
actions	that	the	drone	executes	after	each	method	is	called	to	the	console	output.	A	real-life	class	that
represents	a	drone	would	interact	with	the	actuators,	sensors,	and	the	other	different	components	of
the	drone,	whenever	each	method	is	called.
DroneCommandProcessor:	This	class	will	represent	a	command	processor	that	will	establish	a
connection	with	an	MQTT	server,	subscribe	to	a	topic	in	which	the	MQTT	client	will	receive
messages	with	commands,	analyze	the	incoming	messages,	and	delegate	the	execution	of	the
commands	to	an	associated	instance	of	the	Drone	class.	The	DroneCommandProcessor	class	will
declare	many	static	methods	that	we	will	specify	as	the	callbacks	for	the	MQTT	client.

The	following	lines	declare	many	variables	with	the	values	that	identify	each	of	the	supported	commands
for	the	drone.	In	addition,	the	code	declares	many	variables	with	the	key	string	we	will	use	to	specify	a
command	and	the	key	we	will	use	to	specify	a	successfully	processed	command.	All	these	variables	are
defined	with	all	letters	uppercase	because	we	will	use	them	as	constants.	Save	the	code	in	a	file	named
commands.py.	The	code	file	for	the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_03
folder,	in	the	command.py	file:

#	Key	strings

COMMAND_KEY	=	"COMMAND"

SUCCESFULLY_PROCESSED_COMMAND_KEY	=	"SUCCESSFULLY_PROCESSED_COMMAND"

#	Command	strings

CMD_TAKE_OFF	=	"TAKE_OFF"

CMD_LAND	=	"LAND"

CMD_LAND_IN_SAFE_PLACE	=	"LAND_IN_SAFE_PLACE"

CMD_MOVE_UP	=	"MOVE_UP"

CMD_MOVE_DOWN	=	"MOVE_DOWN"

CMD_MOVE_FORWARD	=	"MOVE_FORWARD"

CMD_MOVE_BACK	=	"MOVE_BACK"

CMD_MOVE_LEFT	=	"MOVE_LEFT"

CMD_MOVE_RIGHT	=	"MOVE_RIGHT"

CMD_ROTATE_RIGHT	=	"ROTATE_RIGHT"

CMD_ROTATE_LEFT	=	"ROTATE_LEFT"

CMD_SET_MAX_ALTITUDE	=	"SET_MAX_ALTITUDE"

CMD_SET_MIN_ALTITUDE	=	"SET_MIN_ALTITUDE"

KEY_DEGREES	=	"DEGREES"

KEY_FEET	=	"FEET"

The	following	lines	declare	the	necessary	imports	and	the	same	variables	we	used	in	the	previous
example	to	establish	the	connection	with	the	MQTT	server.	You	have	to	replace	the	value
/Users/gaston/certificates	in	the	certificates_path	string	with	the	path	to	the
python_certificates	directory	you	created.	In	addition,	replace	the	value	for	the	mqtt_server_host
with	the	IP	address	for	the	Mosquitto	server	or	other	MQTT	server	you	might	decide	to	use.	The	code	file
for	the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_03	folder,	in	the
mqtt_essentials_example03_02.py	file:

from	command	import	*

import	paho.mqtt.client	as	mqtt

import	os.path

import	time

import	json

#	Replace	/Users/gaston/certificates	with	the	path

#	in	which	you	saved	the	certificate	authoritity	file,

#	the	client	certificate	file	and	the	client	key

certificates_path	=	"/Users/gaston/certificates"

ca_certificate	=	os.path.join(certificates_path,	"ca.crt")

client_certificate	=	os.path.join(certificates_path,	"device001.crt")

#	Replace	localhost	with	the	IP	for	the	Mosquitto

#	or	other	MQTT	server

mqtt_server_host	=	"localhost"

mqtt_server_port	=	8883

mqtt_keepalive	=	60

The	COMMAND_KEY	variable	defines	the	key	string	that	defines	what	the	code	will	understand	as	the
command.	Whenever	we	receive	a	message	that	includes	the	specified	key	string,	we	know	that	the	value
associated	with	this	key	in	the	dictionary	will	indicate	the	command	that	the	message	wants	the	code
running	in	the	board	to	be	processed.	The	MQTT	client	won't	receive	messages	as	dictionaries,	and
therefore,	it	is	necessary	to	convert	them	from	strings	to	dictionaries	when	they	are	not	just	a	string.

The	SUCCESSFULLY_PROCESSED_COMMAND_KEY	variable	defines	the	key	string	that	defines	what	the	code
will	use	as	a	successfully	processed	command	key	in	a	response	message	published	to	the	appropriate
topic.	Whenever	we	publish	a	message	that	includes	the	specified	key	string,	we	know	that	the	value
associated	to	this	key	in	the	dictionary	will	indicate	the	command	that	the	board	has	successfully
processed.

The	following	lines	declare	the	Drone	class.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_03	folder,	in	the	mqtt_essentials_example03_02.py	file:

class	Drone:

				def	__init__(self,	name):

								self.name	=	name

								self.min_altitude	=	0

								self.max_altitude	=	30

				def	print_with_name_prefix(self,	message):

								print("{}:	{}".format(self.name,	message))

				def	take_off(self):

								self.print_with_name_prefix("Taking	off")

				def	land(self):

								self.print_with_name_prefix("Landing")

				def	land_in_safe_place(self):

								self.print_with_name_prefix("Landing	in	a	safe	place")

				def	move_up(self):

								self.print_with_name_prefix("Moving	up")

				def	move_down(self):

								self.print_with_name_prefix("Moving	down")

				def	move_forward(self):

								self.print_with_name_prefix("Moving	forward")

				def	move_back(self):

								self.print_with_name_prefix("Moving	back")

				def	move_left(self):

								self.print_with_name_prefix("Moving	left")

				def	move_right(self):

								self.print_with_name_prefix("Moving	right")

				def	rotate_right(self,	degrees):

								self.print_with_name_prefix("Rotating	right	{}	degrees".format(degrees))

				def	rotate_left(self,	degrees):

								self.print_with_name_prefix("Rotating	left	{}	degrees".format(degrees))

				def	set_max_altitude(self,	feet):

								self.max_altitude	=	feet

								self.print_with_name_prefix("Setting	maximum	altitude	to	{}	

feet".format(feet))

				def	set_min_altitude(self,	feet):

								self.min_altitude	=	feet

								self.print_with_name_prefix("Setting	minimum	altitude	to	{}	

feet".format(feet))

We	have	to	specify	the	drone's	name	in	the	name	required	argument.	The	constructor,	that	is,	the	__init__
method,	saves	the	received	name	in	an	attribute	with	the	same	name.	Then,	the	constructor	sets	the	initial
values	for	two	attributes:	min_altitude	and	max_altitude.

The	Drone	class	declares	the	print_with_name_prefix	method,	which	receives	a	message	in	the
message	argument	and	prints	it	with	the	value	saved	in	the	name	attribute	as	a	prefix.	The	other	methods
defined	in	this	class	call	the	print_with_name_prefix	method	to	print	messages	indicating	the	actions

that	the	drone	is	doing	with	the	drone's	name	as	a	prefix.

Receiving	messages	with	Python
We	will	use	the	recently	installed	paho-mqtt	module	to	subscribe	to	a	specific	topic	and	run	code	when
we	receive	messages	in	the	topic.	We	will	create	a	DroneCommandProcessor	class	to	represent	a
command	processor	associated	to	an	instance	of	the	previously	coded	Drone	class,	configure	the	MQTT
client,	the	subscription	to	the	client,	and	declare	the	code	for	the	callbacks	that	are	going	to	be	executed
when	certain	events	are	fired.

We	will	split	the	code	for	the	DroneCommandProcessor	class	in	many	code	snippets	to	make	it	easier	to
understand	each	code	section.	The	following	lines	declare	the	DroneCommandProcessor	class	and	its
constructor,	that	is,	the	__init__	method.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_03	folder,	in	the	mqtt_essentials_example03_02.py	file:

class	DroneCommandProcessor:

				commands_topic	=	""

				processed_commands_topic	=	""

				active_instance	=	None

				def	__init__(self,	name,	drone):

								self.name	=	name

								self.drone	=	drone

								DroneCommandProcessor.commands_topic	=	"commands/{}".format(self.name)

								DroneCommandProcessor.processed_commands_topic	=	

"processedcommands/{}".format(self.name)

								self.client	=	mqtt.Client(protocol=mqtt.MQTTv311)

								DroneCommandProcessor.active_instance	=	self

								self.client.on_connect	=	DroneCommandProcessor.on_connect

								self.client.on_message	=	DroneCommandProcessor.on_message

								self.client.tls_set(ca_certs	=	ca_certificate,

												certfile=client_certificate,

												keyfile=client_key)

								self.client.connect(host=mqtt_server_host,

																												port=mqtt_server_port,

																												keepalive=mqtt_keepalive)

We	have	to	specify	a	name	for	the	command	processor	and	the	Drone	instance	that	the	command
processor	will	control	in	the	name	and	drone	required	arguments.	The	constructor,	that	is,	the	__init__
method,	saves	the	received	name	and	drone	in	attributes	with	the	same	names.	Then,	the	constructor	sets
the	values	for	the	commands_topic	and	processed_commands_topic	class	attributes.	The	constructor
uses	the	received	name	to	determine	the	topic	name	for	the	commands	and	for	the	successfully	processed
commands,	based	on	the	specifications	we	discussed	earlier.	The	MQTT	client	will	receive	messages	in
the	topic	name	saved	in	the	command_topic	class	attribute	and	will	publish	messages	to	the	topic	name
saved	in	the	processed_commands_topic	class	attribute.

Then,	the	constructor	creates	an	instance	of	the	mqtt.Client	class	(paho.mqtt.client.Client)	that
represents	an	MQTT	client	and	that	we	will	use	to	communicate	with	an	MQTT	broker	and	save	it	to	the
client	attribute	(self.client).	As	it	happened	in	our	previous	example,	we	want	to	work	with	MQTT
version	3.11,	and	therefore,	we	specified	mqtt.MQTTv311	as	the	value	for	the	protocol	argument.

The	code	also	saves	a	reference	to	this	instance	in	the	active_instance	class	attribute	because	we	have
to	access	the	instance	in	the	static	methods	that	the	constructor	will	specify	as	callbacks	for	the	different
events	that	the	MQTT	client	fires.	We	want	to	have	all	the	methods	related	to	the	drone	command
processor	in	the	DroneCommandProcessor	class.

Then,	the	code	assigns	the	on_connect	static	method	(DroneCommandProcessor.on_connect)	to	the
self.client.on_connect	attribute	and	the	on_message	static	method
(DroneCommandProcessor.on_message)	to	the	self.client.on_message	attribute.	Static	methods	do
not	receive	either	self	of	cls	as	the	first	argument,	and	therefore,	we	can	use	them	as	callbacks	with	the
required	number	of	arguments.

The	call	to	the	self.client.tls_set	method	configures	encryption	and	authentication	options.	Finally,
the	constructor	calls	the	client.connect	method	and	specifies	the	values	for	the	host,	port,	and
keepalive	arguments.	This	way,	the	code	asks	the	MQTT	client	to	establish	a	connection	to	the	specified
MQTT	server.	Remember	that	the	connect	method	runs	with	a	synchronous	execution,	and	therefore,	it	is
a	blocking	call.

The	following	lines	declare	the	on_connect	static	method	that	is	part	of	the	DroneCommandProcessor
class.	The	code	file	for	the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_03	folder,	in
the	mqtt_essentials_example03_02.py	file:

@staticmethod

				def	on_connect(client,	userdata,	flags,	rc):

								print("Connected	to	the	MQTT	server")

								client.subscribe(

												DroneCommandProcessor.commands_topic,	

												qos=2)

								client.publish(

												topic=DroneCommandProcessor.processed_commands_topic,

												payload="{}	is	listening	to	

messages".format(DroneCommandProcessor.active_instance.name))

After	a	connection	has	been	successfully	established	with	the	MQTT	server,	the	specified	callback	in	the
self.client.on_connect	attribute	will	be	executed,	that	is,	the	on_connect	static	method	(marked
with	the	@staticmethod	decorator).	This	static	method	receives	the	mqtt.Client	instance,	which
established	the	connection	with	the	MQTT	server	in	the	client	argument.	The	code	calls	the
client.subscribe	method	with	DroneCommandProcessor.commands_topic	as	an	argument	to
subscribe	to	the	topic	specified	in	the	commands_topic	class	attribute	and	specifies	a	QoS	level	of	2	for
the	subscription.

Finally,	the	code	in	the	on_connect	static	method	calls	the	client.publish	method	with
DroneCommandProcessor.processed_commands_topic	as	the	topic	argument	and	a	message	string	in
the	payload	argument.	This	way,	we	publish	a	string	message	that	specifies	that	the	drone	is	listening	to
messages	in	the	topic	related	to	successfully	processed	commands.	The	message	starts	with	the	drone
name.

The	following	lines	declare	the	on_message	static	method	that	is	part	of	the	DroneCommandProcessor

class.	In	this	case,	the	code	uses	a	chain	of	if	and	elif	statements	to	make	it	easier	to	understand	the
flow.	However,	a	lookup	table	and	a	dictionary	would	provide	an	improved	version.	The	code	file	for	the
sample	is	included	in	the	mqtt_essentials_gaston_hillar_03	folder,	in	the
mqtt_essentials_example03_02.py	file:

@staticmethod

				def	on_message(client,	userdata,	msg):

								payload_string	=	msg.payload.decode('utf-8')

								if	msg.topic	==	DroneCommandProcessor.commands_topic:

												print("I've	received	the	following	message:	

{0}".format(str(msg.payload_string)))

												try:

																message_dictionary	=	json.loads(msg.payload_string)

																if	COMMAND_KEY	in	message_dictionary:

																				command	=	message_dictionary[COMMAND_KEY]

																				drone	=	DroneCommandProcessor.active_instance.drone

																				is_command_processed	=	False

																				if	command	==	CMD_TAKE_OFF:

																								drone.take_off()

																								is_command_processed	=	True

																				elif	command	==	CMD_LAND:		

																								drone.land()

																								is_command_processed	=	True

																				elif	command	==	CMD_LAND_IN_SAFE_PLACE:

																								drone.land_in_safe_place()

																								is_command_processed	=	True

																				elif	command	==	CMD_MOVE_UP:

																								drone.move_up()

																								is_command_processed	=	True

																				elif	command	==	CMD_MOVE_DOWN:

																								drone.move_down()

																								is_command_processed	=	True

																				elif	command	==	CMD_MOVE_FORWARD:

																								drone.move_forward()

																								is_command_processed	=	True

																				elif	command	==	CMD_MOVE_BACK:

																								drone.move_back()

																								is_command_processed	=	True

																				elif	command	==	CMD_MOVE_LEFT:

																								drone.move_left()

																								is_command_processed	=	True

																				elif	command	==	CMD_MOVE_RIGHT:

																								drone.move_right()

																								is_command_processed	=	True

																				elif	command	==	CMD_ROTATE_RIGHT:

																								degrees	=	message_dictionary[KEY_DEGREES]

																								drone.rotate_right(degrees)

																								is_command_processed	=	True

																				elif	command	==	CMD_ROTATE_LEFT:

																								degrees	=	message_dictionary[KEY_DEGREES]

																								drone.rotate_left(degrees)

																								is_command_processed	=	True

																				elif	command	==	CMD_SET_MAX_ALTITUDE:

																								feet	=	message_dictionary[KEY_FEET]

																								drone.set_max_altitude(feet)

																								is_command_processed	=	True

																				elif	command	==	CMD_SET_MIN_ALTITUDE:

																								feet	=	message_dictionary[KEY_FEET]

																								drone.set_min_altitude(feet)

																								is_command_processed	=	True

																				if	is_command_processed:

																								

DroneCommandProcessor.active_instance.publish_response_message(

																												message_dictionary)

																				else:

																								print("The	message	includes	an	unknown	command.")

												except	ValueError:

																#	msg	is	not	a	dictionary

																#	No	JSON	object	could	be	decoded

																print("The	message	doesn't	include	a	valid	command.")

Whenever	there	is	a	new	message	received	in	the	topic	saved	in	the	commands_topic	class	attribute	to
which	we	have	subscribed,	the	specified	callback	in	the	self.client.on_messsage	attribute	will	be
executed,	that	is,	the	on_message	static	method	(marked	with	the	@staticmethod	decorator).	This	static
method	receives	the	mqtt.Client	instance	that	established	the	connection	with	the	MQTT	broker	in	the
client	argument	and	an	mqtt.MQTTMessage	instance	in	the	msg	argument.	The	mqtt.MQTTMessage	class
describes	an	incoming	message.	First,	the	static	method	checks	whether	the	msg.topic	attribute,	which
indicates	the	topic	in	which	the	message	has	been	received,	matches	the	value	in	the	commands_topic
class	attribute.	In	this	case,	whenever	the	on_message	method	is	executed,	the	value	in	msg.topic	will
always	match	the	value	in	the	topic	class	attribute	because	we	just	subscribed	to	one	topic.	However,	if
we	subscribe	to	more	than	one	topic,	it	is	always	necessary	to	check	in	which	topic	the	message	was	sent
and	in	which	one	we	are	receiving	the	message.	Hence,	we	included	the	code	to	give	a	clear	idea	of	how
to	check	the	topic	for	the	received	message.

The	code	prints	the	string	representation	of	the	payload	for	the	message	that	has	been	received,	that	is,	the
msg.payload	attribute	decoded	to	an	UTF-8	string	and	saved	in	the	payload_string	variable.	Then,	the
code	assigns	the	result	of	the	json.loads	function	to	deserialize	payload_string	to	a	Python	object	and
assigns	the	results	to	the	message_dictionary	local	variable.	In	case	the	contents	of	payload_string
are	not	JSON,	a	ValueError	exception	will	be	captured;	the	code	will	print	a	message	indicating	that	the
message	doesn't	include	a	valid	command	and	no	more	code	will	be	executed	in	the	static	method.	In	case
the	contents	of	payload_string	are	JSON,	we	will	have	a	dictionary	in	the	message_dictionary	local
variable.

Then,	the	code	checks	whether	the	value	saved	in	the	COMMAND_KEY	string	is	included	in	the
message_dictionary	dictionary.	If	the	expression	evaluates	to	True,	it	means	that	the	JSON	message
converted	to	a	dictionary	includes	a	command	that	we	have	to	process.	However,	before	we	can	process
the	command,	we	have	to	check	which	is	the	command,	and	therefore,	it	is	necessary	to	retrieve	the	value
associated	with	the	key	equivalent	to	the	value	saved	in	the	COMMAND_KEY	string.	The	code	is	capable	of
running	specific	code	when	the	value	is	any	of	the	commands	that	we	received	as	requirements.

The	code	uses	the	active_instance	class	attribute	that	has	a	reference	to	the	active
DroneCommandProcessor	instance	to	call	the	necessary	methods	for	either	drone,	based	on	the	command
that	has	to	be	processed.	We	had	to	declare	the	callbacks	as	static	methods,	and	therefore,	we	use	this

class	attribute	to	access	the	active	instance.	Once	the	command	has	been	successfully	processed,	the	code
sets	the	is_command_processed	flag	to	True.	Finally,	the	code	checks	the	value	of	this	flag,	and	if	it	is
equal	to	True,	the	code	calls	the	publish_response_message	for	the	DroneCommandProcessor
instance	saved	in	the	active_instance	class	attribute.

Tip

Of	course,	in	a	real-life	example,	we	should	add	more	validations.	The	previous	code	is	simplified	to
allow	us	to	keep	our	focus	on	MQTT.

The	following	lines	declare	the	publish_response_message	method	that	is	a	part	of	the
DroneCommandProcessor	class.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_03	folder,	in	the	mqtt_essentials_example03_02.py	file:

def	publish_response_message(self,	message):

								response_message	=	json.dumps({

												SUCCESFULLY_PROCESSED_COMMAND_KEY:

																message[COMMAND_KEY]})

								result	=	self.client.publish(

												topic=self.__class__.processed_commands_topic,

												payload=response_message)

								return	result

The	publish_response_message	method	receives	the	message	dictionary	that	has	been	received	with
the	command	in	the	message	argument.	The	method	calls	the	json.dumps	function	to	serialize	a
dictionary	to	a	JSON	formatted	string	with	the	response	message	that	indicates	that	the	command	has	been
successfully	processed.	Finally,	the	code	calls	the	client.publish	method	with	the
processed_commands_topic	variable	as	the	topic	argument	and	the	JSON	formatted	string
(response_message)	in	the	payload	argument.

Tip

In	this	case,	we	are	not	evaluating	the	response	received	from	the	publish	method.	In	addition,	we	are
using	the	default	value	for	the	qos	argument	that	specifies	the	desired	quality	of	service.	Hence,	we	will
publish	this	message	with	a	QoS	level	equal	to	0.	In	more	advanced	scenarios,	we	should	add	code	to
check	the	results	of	the	method	and	add	code	to	the	on_publish	callback	that	is	fired	when	a	message	is
successfully	published,	as	we	did	in	our	previous	example.	In	this	case,	we	use	QoS	level	2	for	the
messages	that	we	receive	with	the	commands.

The	following	lines	declare	the	process_commands	method,	which	is	a	part	of	the
DroneCommandProcessor	class.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_03	folder,	in	the	mqtt_essentials_example03_02.py	file:

def	process_commands(self):

								self.client.loop()

The	process_commands	method	calls	the	loop	method	for	the	MQTT	client	and	ensures	that

communication	with	the	MQTT	server	is	carried	out.	Think	about	the	call	to	the	loop	method	as
synchronizing	your	mailbox.	Any	pending	messages	to	be	published	in	the	outgoing	box	will	be	sent	and
any	incoming	messages	will	arrive	to	the	inbox	and	the	events	that	we	have	previously	analyzed	will	be
fired.	This	way,	the	drone	command	processor	will	receive	messages	and	process	commands.

Finally,	the	following	lines	declare	the	main	block	of	code.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_03	folder,	in	the	mqtt_essentials_example03_02.py	file:

if	__name__	==	"__main__":

				drone	=	Drone("drone01")

				drone_command_processor	=	DroneCommandProcessor("drone01",	drone)

				while	True:

								#	Process	messages	and	the	commands	every	1	second

								drone_command_processor.process_commands()

								time.sleep(1)

The	__main__	method	creates	an	instance	of	the	Drone	class	named	drone	with	"drone01"	as	the	value
for	the	name	argument.	The	next	line	creates	an	instance	of	the	DroneCommandProcessor	class	named
drone_command_processor	with	"drone01"and	the	previously	created	Drone	instance,	drone,	as	the
values	for	the	name	and	drone	arguments.	This	way,	drone_command_processor	will	delegate	the
execution	of	the	commands	to	the	instance	methods	in	drone.

The	constructor	for	the	DroneCommandProcessor	class	will	subscribe	to	the	commands/drone01	topic	in
the	MQTT	server,	and	therefore,	we	must	publish	messages	to	this	topic	in	order	to	send	the	commands
that	the	code	will	process.	In	addition,	the	constructor	will	publish	a	message	to	the
processedcommands/drone01	topic.	Whenever	a	command	is	successfully	processed,	new	messages
will	be	published	to	the	processedcommands/drone01	topic.	Hence,	we	must	subscribe	to	this	topic	to
check	the	commands	that	the	drone	has	executed.

The	while	loop	calls	the	drone_command_processor.process_commands	method	and	sleeps	for	one
second.	The	process_commands	method	calls	the	loop	method	for	the	MQTT	client	to	ensure	that
communication	with	the	MQTT	server	is	carried	out.

Tip

There	is	also	a	threaded	interface	that	we	can	run	by	calling	the	loop_start	method	for	the	MQTT	client.
This	way,	we	can	avoid	multiple	calls	to	the	loop	method.	However,	we	call	the	loop	method	to	make	it
easier	to	debug	the	code	and	understand	how	everything	works	under	the	hood.

Processing	commands	with	Python
Now,	we	want	to	make	a	drone	process	the	following	commands:

{"COMMAND":	"SET_MAX_ALTITUDE",	"FEET":	20}

{"COMMAND":	"SET_MIN_ALTITUDE",	"FEET":	10}

{"COMMAND":	"TAKE_OFF"}

{"COMMAND":	"MOVE_UP"}

{"COMMAND":	"ROTATE_RIGHT",	"DEGREES":	90}

{"COMMAND":	"MOVE_RIGHT"}

{"COMMAND":	"LAND"}

Make	sure	the	Mosquitto	server	or	any	other	MQTT	server	you	might	want	to	use	for	this	example	is
running.

Launch	MQTT.fx	and	follow	all	the	steps	explained	in	the	previous	chapter	to	configure	a	connection	with
TLS	and	TLS	authentication.	Then,	click	on	the	Connect	button.

Click	Subscribe	and	enter	processed_commands/drone01	in	the	dropdown	on	the	left-hand	side	of	the
Subscribe	button.	Then,	click	the	Subscribe	button.	MQTT.fx	will	display	a	new	panel	on	the	left-hand
side	with	the	topic	filter	to	which	we	have	subscribed	with	a	QoS	level	of	0.

Then,	execute	the	following	line	to	start	the	example	in	any	computer	or	device	that	you	want	to	use	as	the
MQTT	client:	python	mqtt_essentials_example03_02.py

Keep	the	code	running	in	your	local	computer	or	in	the	IoT	board	you	have	chosen	to	use	for	this	example.

Go	back	to	MQTT.fx	and	you	will	see	that	a	message	has	arrived	to	the	processedcommands/drone01
topic	with	the	following	payload:	drone01	is	listening	to	messages.	The	following	screenshot
shows	the	received	message	in	MQTT.fx:

	

	

In	MQTT.fx,	click	Publish	and	enter	commands/drone01	in	the	dropdown	on	the	left-hand	side	of	the
Publish	button.	Click	QoS	2	because	we	want	to	use	a	QoS	level	of	2.

Enter	the	following	text	in	the	textbox	below	the	Publish	button:	{"COMMAND":	"SET_MAX_ALTITUDE",
"FEET":	20}.

Then,	click	the	Publish	button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic	with	a	QoS
level	of	2.

Go	to	the	window	in	which	you	can	see	the	output	generated	by	the	Python	code.	In	case	you	are	running
the	code	in	an	IoT	board,	you	might	be	using	an	SSH	Terminal.	In	case	you	are	running	the	code	on	your
local	computer,	go	to	the	Terminal	or	Command	Prompt,	based	on	the	operating	system	you	are	using.	You
will	see	the	following	output:	Connected	to	the	MQTT	server	I've	received	the	following	message:
{"COMMAND":	"SET_MAX_ALTITUDE",	"FEET":	20}	drone01:	Setting	maximum	altitude	to
20	feet

The	code	has	received	the	message	with	the	command,	the	Drone	instance	executed	the
set_max_altitude	method	with	20	as	an	argument,	and	the	output	displays	the	results	of	executing	this
code.

Go	back	to	MQTT.fx,	click	Subscribe,	and	you	will	see	a	new	message	has	arrived	to	the
processedcommands/drone01	topic	with	the	following	payload:
{"SUCCESSFULLY_PROCESSED_COMMAND":	"SET_MAX_ALTITUDE"}.	The	following	screenshot	shows	the
received	message	in	MQTT.fx:

	

	

Now,	repeat	the	following	procedure	for	each	of	the	commands	listed	below.	Remove	the	existing	text	and

enter	the	text	for	the	JSON	string	in	the	textbox	below	the	Publish	button	and	then	click	the	Publish	button.
MQTT.fx	will	publish	the	entered	text	to	the	specified	topic	with	a	QoS	level	of	2:

{"COMMAND":	"SET_MIN_ALTITUDE",	"FEET":	10}

{"COMMAND":	"TAKE_OFF"}

{"COMMAND":	"MOVE_UP"}

{"COMMAND":	"ROTATE_RIGHT",	"DEGREES":	90}

{"COMMAND":	"MOVE_RIGHT"}

{"COMMAND":	"LAND"}

Go	to	the	window	in	which	you	can	see	the	output	generated	by	the	Python	code.	You	will	see	the
following	output,	which	indicates	that	all	the	commands	have	been	received	and	processed:	Connected
to	the	MQTT	server	I've	received	the	following	message:	{"COMMAND":
"SET_MAX_ALTITUDE",	"FEET":	20}	drone01:	Setting	maximum	altitude	to	20	feet	I've
received	the	following	message:	{"COMMAND":	"SET_MIN_ALTITUDE",	"FEET":	10}
drone01:	Setting	minimum	altitude	to	10	feet	I've	received	the	following	message:	{"COMMAND":
"TAKE_OFF"}	drone01:	Taking	off	I've	received	the	following	message:	{"COMMAND":
"MOVE_UP"}	drone01:	Moving	up	I've	received	the	following	message:	{"COMMAND":
"ROTATE_RIGHT",	"DEGREES":	90}	drone01:	Rotating	right	90	degrees	I've	received	the
following	message:	{"COMMAND":	"MOVE_RIGHT"}	drone01:	Moving	right	I've	received	the
following	message:	{"COMMAND":	"LAND"}	drone01:	Landing

Go	back	to	MQTT.fx,	click	Subscribe,	and	you	will	see	a	total	of	eight	messages	that	have	arrived	to	the
processedcommands/drone01	topic.	You	can	easily	check	the	contents	of	the	payload	for	each	of	the
received	messages	by	clicking	on	the	panel	that	represents	each	of	them	on	the	right-hand	side	of	the
window.	The	following	screenshot	shows	the	last	received	message	in	MQTT.fx:

	

	

Tip

MQTT.fx	allows	us	to	write	scripts	in	JavaScript	that	make	it	easy	to	automate	publishing	multiple
messages	to	topics.

Now,	we	will	use	the	Mosquitto	command-line	utilities	to	subscribe	to	the
processedcommands/drone01	topic	and	publish	many	JSON	strings	with	the	commands	to	the
commands/drone01	topic.	This	time,	we	will	publish	the	following	commands:	{"COMMAND":
"SET_MAX_ALTITUDE",	"FEET":	100}	{"COMMAND":	"SET_MIN_ALTITUDE",	"FEET":	20}
{"COMMAND":	"TAKE_OFF"}	{"COMMAND":	"MOVE_UP"}	{"COMMAND":	"MOVE_RIGHT"}
{"COMMAND":	"MOVE_RIGHT"}	{"COMMAND":	"MOVE_LEFT"}	{"COMMAND":
"MOVE_LEFT"}	{"COMMAND":	"LAND"}

Open	another	Terminal	in	macOS	or	Linux,	or	another	Command	Prompt	in	Windows,	go	to	the	directory
in	which	Mosquitto	is	installed,	and	run	the	following	command.	Replace	localhost	with	the	IP	for	the
MQTT	server.	Remember	to	replace	ca.crt,	device001.crt,	and	device001.key	with	the	full	path	to
these	files	created	in	the	certificates	directory.	Leave	the	command	running	and	it	will	display	all	the
messages	received	in	the	processedcommands/drone01	topic:	mosquitto_sub	-V	mqttv311	-p	8883	--
cafile	ca.crt	--cert	device001.crt	--key	device001.key-t	processedcommands/drone01	--tls-version
tlsv1.2

Open	another	Terminal	in	macOS	or	Linux,	or	another	Command	Prompt	in	Windows,	go	to	the	directory
in	which	Mosquitto	is	installed,	and	run	the	following	commands	to	publish	messages	with	commands	to
the	commands/drone01	topic	with	a	QoS	level	of	2.	Make	the	replacements	previously	explained	for	the
mosquitto_sub	command:	mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert
device001.crt	--key	device001.key	-t	commands/drone01	-q	2	--tls-version	tlsv1.2	-m
'{"COMMAND":	"SET_MAX_ALTITUDE",	"FEET":	100}'

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key	-t	commands/drone01	-q	2	--tls-version	tlsv1.2	-m	'{"COMMAND":	

"SET_MIN_ALTITUDE",	"FEET":	20}'

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key	-t	commands/drone01	-q	2	--tls-version	tlsv1.2	-m	'{"COMMAND":	

"TAKE_OFF"}'

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key	-t	commands/drone01	-q	2	--tls-version	tlsv1.2	-m	'{"COMMAND":	

"MOVE_UP"}'

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key	-t	commands/drone01	-q	2	--tls-version	tlsv1.2	-m	'{"COMMAND":	

"MOVE_RIGHT"}'

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key	-t	commands/drone01	-q	2	--tls-version	tlsv1.2	-m	'{"COMMAND":	

"MOVE_RIGHT"}'

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key	-t	commands/drone01	-q	2	--tls-version	tlsv1.2	-m	'{"COMMAND":	

"MOVE_LEFT"}'

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key	-t	commands/drone01	-q	2	--tls-version	tlsv1.2	-m	'{"COMMAND":	

"MOVE_LEFT"}'

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key	-t	commands/drone01	-q	2	--tls-version	tlsv1.2	-m	'{"COMMAND":	

"LAND"}'

After	you	run	the	previous	commands,	the	DroneCommandProcessor	class	will	receive	these	commands
and	process	them.	After	a	few	seconds,	you	will	see	the	following	output	in	the	window	that	is	executing
the	mosquitto_sub	utility:	drone01	is	listening	to	messages
{"SUCCESSFULLY_PROCESSED_COMMAND":	"SET_MAX_ALTITUDE"}
{"SUCCESSFULLY_PROCESSED_COMMAND":	"SET_MIN_ALTITUDE"}
{"SUCCESSFULLY_PROCESSED_COMMAND":	"TAKE_OFF"}
{"SUCCESSFULLY_PROCESSED_COMMAND":	"MOVE_UP"}
{"SUCCESSFULLY_PROCESSED_COMMAND":	"MOVE_RIGHT"}
{"SUCCESSFULLY_PROCESSED_COMMAND":	"MOVE_RIGHT"}
{"SUCCESSFULLY_PROCESSED_COMMAND":	"MOVE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND":	"MOVE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND":	"LAND"}

Go	to	the	window	in	which	you	can	see	the	output	generated	by	the	Python	code.	You	will	see	the

following	output,	which	indicates	that	all	the	commands	have	been	received	and	processed:	I've	received
the	following	message:	{"COMMAND":	"SET_MAX_ALTITUDE",	"FEET":	100}	drone01:
Setting	maximum	altitude	to	100	feet	I've	received	the	following	message:	{"COMMAND":
"SET_MIN_ALTITUDE",	"FEET":	20}	drone01:	Setting	minimum	altitude	to	20	feet	I've	received
the	following	message:	{"COMMAND":	"TAKE_OFF"}	drone01:	Taking	off	I've	received	the
following	message:	{"COMMAND":	"MOVE_UP"}	drone01:	Moving	up	I've	received	the
following	message:	{"COMMAND":	"MOVE_RIGHT"}	drone01:	Moving	right	I've	received	the
following	message:	{"COMMAND":	"MOVE_RIGHT"}	drone01:	Moving	right	I've	received	the
following	message:	{"COMMAND":	"MOVE_LEFT"}	drone01:	Moving	left	I've	received	the
following	message:	{"COMMAND":	"MOVE_LEFT"}	drone01:	Moving	left	I've	received	the
following	message:	{"COMMAND":	"LAND"}	drone01:	Landing

Sending	messages	with	Python
We	are	coding	in	Python,	and	therefore,	it	makes	sense	to	write	code	in	Python	to	publish	the	commands	to
control	each	drone	and	check	the	results	of	the	execution	of	these	commands.	Of	course,	GUI	utilities	such
as	MQTT.fx	and	the	Mosquitto	command-line	utilities	are	extremely	useful.	However,	after	we	know	that
things	are	working	as	we	expect,	we	can	write	the	necessary	code	to	perform	tests	in	the	same
programming	language	we	are	using	to	run	the	code	on	the	IoT	board.

We	already	wrote	Python	code	that	established	a	connection	with	the	MQTT	server,	subscribed	to	a	topic,
and	printed	the	received	messages.	Now,	we	are	going	to	code	a	Python	client	that	will	publish	messages
to	the	commands/drone01	topic	and	will	subscribe	to	the	processedcommands/drone01	topic.	We	will
code	both	a	publisher	and	a	subscriber.	This	way,	we	will	be	able	to	design	applications	that	can	talk	to
IoT	devices	with	MQTT	messages,	with	Python	as	the	programming	language	for	the	client	applications.
Specifically,	the	applications	will	be	able	to	communicate	through	an	MQTT	server	with	Python	code	in
all	the	publisher	and	subscriber	devices.

We	can	run	the	Python	client	on	any	other	computer	or	IoT	board	that	is	capable	of	executing	Python	2.7.x
or	Python	3.x.

We	will	create	many	functions	that	we	will	assign	as	the	callbacks	to	the	events	in	the	MQTT	client.	In
addition,	we	will	declare	variables,	a	helper	class,	and	a	helper	function	to	make	it	easy	to	publish	a
message	with	a	command	and	the	required	values	for	the	command.	The	following	lines	show	the	code
that	defines	the	variables,	the	helper	class,	and	the	functions.	The	code	file	for	the	sample	is	included	in
the	mqtt_essentials_gaston_hillar_03	folder,	in	the	mqtt_essentials_example03_03.py	file:

from	command	import	*

from	command	import	*

import	paho.mqtt.client	as	mqtt

import	os.path

import	time

import	json

#	Replace	/Users/gaston/certificates	with	the	path

#	in	which	you	saved	the	certificate	authoritity	file,

#	the	client	certificate	file	and	the	client	key

certificates_path	=	"/Users/gaston/certificates"

ca_certificate	=	os.path.join(certificates_path,	"ca.crt")

client_certificate	=	os.path.join(certificates_path,	"device001.crt")

client_key	=	os.path.join(certificates_path,	"device001.key")

mqtt_server_host	=	"localhost"

mqtt_server_port	=	8883

mqtt_keepalive	=	60

drone_name	=	"drone01"

commands_topic	=	"commands/{}".format(drone_name)

processed_commands_topic	=	"processedcommands/{}".format(drone_name)

class	LoopControl:

				is_last_command_processed	=	False

def	on_connect(client,	userdata,	rc):

				print("Connect	result:	{}".format(mqtt.connack_string(rc)))

				client.subscribe(processed_commands_topic)

def	on_message(client,	userdata,	msg):

				if	msg.topic	==	processed_commands_topic:

								payload_string	=	msg.payload.decode('utf-8')

								print(str(msg.payload_string))

								if	str(msg.payload_string).count(CMD_LAND_IN_SAFE_PLACE)	>	0:

												LoopControl.is_last_command_processed	=	True

def	on_subscribe(client,	userdata,	mid,	granted_qos):

				print("Subscribed	with	QoS:	{}".format(granted_qos[0]))

def	publish_command(client,	command_name,	key="",	value=""):

				if	key:

								command_message	=	json.dumps({

												COMMAND_KEY:	command_name,

												key:	value})

				else:

								command_message	=	json.dumps({

												COMMAND_KEY:	command_name})

				result	=	client.publish(topic=commands_topic,

																												payload=command_message,	qos=2)

				return	result

The	code	declares	the	same	variables	we	used	in	the	previous	examples	for	the	certificates	path	and	files,
and	the	configuration	for	the	MQTT	server.	Then,	the	code	declares	the	drone_name	variable	that	saves	a
string	with	"drone01"	and	that	we	can	easily	replace	with	the	name	of	the	drone	that	we	want	to	control.
Our	main	goal	is	to	build	and	publish	command	messages	to	the	topic	specified	in	the	commands_topic
variable.	We	will	subscribe	to	the	topic	specified	in	the	processed_commands_topic	variable.

The	LoopControl	class	declares	a	class	attribute	named	is_last_command_processed,	initialized	to
False.	We	will	use	this	class	attribute	as	a	flag	to	control	the	network	loop.

The	on_connect	function	is	the	callback	that	will	be	executed	once	a	successful	connection	has	been
established	with	the	MQTT	server.	The	code	calls	the	subscribe	method	for	the	MQTT	client	received
in	the	client	argument	to	subscribe	to	the	topic	name	saved	in	the	processed_commands_topic	with	a
QoS	level	of	0.

The	on_message	function	will	be	executed	every	time	a	new	message	arrives	to	the	topic	to	which	we
have	subscribed.	The	function	just	prints	the	raw	string	with	the	payload	of	the	received	message.	If	the
string	representation	of	the	payload	includes	the	string	saved	in	the	CMD_LAND_IN_SAFE_PLACE	constant,
we	assume	that	the	last	command	was	successfully	executed	and	the	code	sets	the
LoopControl.is_last_command_processed	to	True.

The	on_subscribe	function	will	be	called	when	the	subscription	has	been	successfully	completed.

The	publish_command	function	receives	the	MQTT	client,	the	command	name,	the	key,	and	the	value	that
provides	the	necessary	information	to	execute	the	command	in	the	client,	command_name,	key,	and
value	required	arguments.	The	function	creates	a	dictionary	and	saves	the	results	of	serializing	the
dictionary	to	a	JSON	formatted	string	in	the	command_message	local	variable.	The	COMMAND_KEY
constant	is	the	first	key	for	the	dictionary,	and	command_name	receives	as	an	argument	the	value	that
composes	the	first	key-value	pair.	Then,	the	code	calls	the	client.publish	method	to	publish	the
command_message	JSON	formatted	string	to	the	topic	name	saved	in	the	commands_topic	variable	with
a	QoS	level	of	2.

Working	with	the	network	loop	with	Python
Now,	we	will	use	the	previously	coded	functions	to	write	a	__main__	method	that	publishes	many
commands	included	in	MQTT	messages	that	the	code	controlling	the	drone	will	process.	The	following
lines	show	the	code	for	the	__main__	method,	that	is,	the	main	block	of	code.	The	code	file	for	the
sample	is	included	in	the	mqtt_essentials_gaston_hillar_03	folder,	in	the
mqtt_essentials_example03_03.py	file:

if	__name__	==	"__main__":

				client	=	mqtt.Client(protocol=mqtt.MQTTv311)

				client.on_connect	=	on_connect

				client.on_subscribe	=	on_subscribe

				client.on_message	=	on_message

				client.tls_set(ca_certs	=	ca_certificate,

								certfile=client_certificate,

								keyfile=client_key)

				client.connect(host=mqtt_server_host,

								port=mqtt_server_port,

								keepalive=mqtt_keepalive)

				publish_command(client,	CMD_TAKE_OFF)

				publish_command(client,	CMD_MOVE_UP)

				publish_command(client,	CMD_ROTATE_LEFT,	KEY_DEGREES,	90)

				publish_command(client,	CMD_ROTATE_LEFT,	KEY_DEGREES,	45)

				publish_command(client,	CMD_ROTATE_LEFT,	KEY_DEGREES,	45)

				publish_command(client,	CMD_LAND_IN_SAFE_PLACE)

				while	LoopControl.is_last_command_processed	==	False:

								client.loop()

								time.sleep(1)

				client.disconnect()

				client.loop()

The	first	lines	of	the	code	are	similar	to	the	first	example.	After	calling	the	client.connect	method,	the
code	calls	the	publish_command	command	many	times	to	build	and	publish	the	messages	with	the
commands.

The	while	loop	calls	the	client.loop	method	to	ensure	that	communication	with	the	MQTT	server	is
carried	out,	and	then	it	sleeps	for	one	second.	After	the	last	command	is	processed,	the
LoopControl.is_last_command_processed	class	variable	is	set	to	False	and	the	while	loop	ends	it
execution.	When	this	happens,	the	code	calls	the	client.disconnect	method	and	client.loop	to	make
sure	that	the	disconnect	request	is	processed.

In	this	case,	we	don't	want	the	loop	to	run	forever	because	we	have	a	specific	goal	of	processing	a	set	of
commands,	and	then,	we	close	the	connection	with	the	MQTT	server.

Make	sure	that	the	code	that	controls	drone01	is	running.	Then,	execute	the	following	line	to	start	the
Python	client	example	in	any	computer	or	device	that	you	want	to	use	as	the	MQTT	client:

python	mqtt_essentials_example03_03.py

Go	to	the	device	and	window	in	which	you	executed	the	previous	Python	script.	You	will	see	the

following	output.	The	Python	code	will	show	all	the	messages	received	in	the
processed_commands_topic.	In	this	case,	the	program	will	end	its	execution	after	the	drone	indicates
that	it	has	successfully	processed	the	LAND_IN_SAFE_PLACE	command:

Connect	result:	Connection	Accepted.

Subscribed	with	QoS:	0

{"SUCCESSFULLY_PROCESSED_COMMAND":	"TAKE_OFF"}

{"SUCCESSFULLY_PROCESSED_COMMAND":	"MOVE_UP"}

{"SUCCESSFULLY_PROCESSED_COMMAND":	"ROTATE_LEFT"}

{"SUCCESSFULLY_PROCESSED_COMMAND":	"ROTATE_LEFT"}

{"SUCCESSFULLY_PROCESSED_COMMAND":	"ROTATE_LEFT"}

{"SUCCESSFULLY_PROCESSED_COMMAND":	"LAND_IN_SAFE_PLACE"}

Go	to	the	device	and	window	in	which	you	executed	the	Python	script	that	controlled	the	drone,	that	is,
mqtt_essentials_example_03_02.py.	You	will	see	the	following	output:

I've	received	the	following	message:	{"COMMAND":	"TAKE_OFF"}

drone01:	Taking	off

I've	received	the	following	message:	{"COMMAND":	"MOVE_UP"}

drone01:	Moving	up

I've	received	the	following	message:	{"DEGREES":	90,	"COMMAND":	"ROTATE_LEFT"}

drone01:	Rotating	left	90	degrees

I've	received	the	following	message:	{"DEGREES":	45,	"COMMAND":	"ROTATE_LEFT"}

drone01:	Rotating	left	45	degrees

I've	received	the	following	message:	{"DEGREES":	45,	"COMMAND":	"ROTATE_LEFT"}

drone01:	Rotating	left	45	degrees

I've	received	the	following	message:	{"COMMAND":	"LAND_IN_SAFE_PLACE"}

drone01:	Landing	in	a	safe	place

The	following	screenshot	shows	two	Terminal	windows	running	on	a	computer	with	macOS.	The
Terminal	on	the	right-hand	side	is	displaying	the	debug	messages	for	a	Mosquitto	server	that	runs	on	the
computer.	The	Terminal	on	the	left-hand	side	displays	the	results	of	running	the	code	for	the	Python	client
that	published	the	commands	to	the	drone,	that	is,	mqtt_essentials_example_03_03.py:

	

The	next	screenshot	shows	a	Terminal	window	running	on	the	Raspbian	operating	system	on	a	Raspberry
Pi	3	board.	The	Raspberry	Pi	3	is	running	the	Python	code	that	controls	the	drone,	that	is,
mqtt_essentials_example_03_02.py:

	

The	next	picture	shows	the	Raspberry	Pi	3	board	that	is	running	the	code	whose	output	was	shown	in	the
previous	screenshot.	A	computer	is	running	the	Mosquitto	server:

	

The	following	screenshot	shows	three	Terminal	windows	running	on	a	computer	with	macOS.	The
Terminal	in	the	upper-left	corner	displays	an	SSH	terminal	that	is	running	the	Python	code	controlling	the
drone	on	an	Intel	Joule	570x	board.	That	is,	the	board	is	running	mqtt_essentials_example_03_02.py.
The	Terminal	in	the	lower-left	corner	displays	the	results	of	running	the	code	for	the	Python	client	that
published	the	commands	to	the	drone,	that	is,	mqtt_essentials_example_03_03.py.	The	Terminal	on
the	right-hand	side	displays	the	debug	messages	for	a	Mosquitto	server	that	is	running	on	the	computer:

	

The	next	picture	shows	the	Intel	Joule	570x	board	that	runs	the	code	whose	output	was	shown	in	the
previous	screenshot.	Remember	that	the	Mosquitto	server	is	running	on	a	computer:

	

Test	your	knowledge
1.	 Which	of	the	following	Python	modules	is	the	Paho	Python	Client?

1.	 paho-mqtt.
2.	 paho-client-pip.
3.	 paho-python-client.

2.	 To	establish	a	connection	with	an	MQTT	server	that	uses	TLS,	which	method	do	you	have	to	call	for
the	paho.mqtt.client.Client	instance	before	calling	connect?
1.	 connect_with_tls.
2.	 tls_set.
3.	 configure_tls.

3.	 After	the	paho.mqtt.client.Client	instance	establishes	a	connection	with	the	MQTT	server,	the
callback	assigned	to	which	of	the	following	attributes	will	be	called?
1.	 on_connection.
2.	 on_connect.
3.	 connect_callback.

4.	 After	the	paho.mqtt.client.Client	instance	receives	a	message	from	one	of	the	topic	filters	to
which	it	has	subscribed,	the	callback	assigned	to	which	of	the	following	attributes	will	be	called?
1.	 on_message_arrived.
2.	 on_message.
3.	 message_arrived_callback.

5.	 Which	of	the	following	methods	of	a	paho.mqtt.client.Client	instance	calls	the	loop	method	for
us	in	an	infinite	blocking	loop?
1.	 infinite_loop.
2.	 loop_while_true.
3.	 loop_forever.

Summary
In	this	chapter,	we	analyzed	the	requirements	for	controlling	a	drone	with	MQTT	messages.	We	defined
the	topics	that	we	will	use	and	the	commands	that	will	be	part	of	the	messages'	payloads	to	control	a
drone.	Then,	we	worked	with	the	Paho	Python	Client	to	write	Python	code	that	connected	an	MQTT	client
to	the	MQTT	server.

We	understood	the	methods	we	needed	to	call	for	the	Paho	Python	Client	and	their	parameters.	We
analyzed	how	callback	worked	and	we	were	able	to	publish	messages	to	topics,	subscribe	to	topic	filters,
and	receive	and	process	messages.

We	wrote	code	that	processed	commands	for	a	drone	with	Python.	The	code	is	able	to	run	on	different	IoT
platforms,	including	Intel	Joule	boards	and	Raspberry	Pi	3,	and	also	on	any	computer	that	is	capable	of
executing	Python	2.7.x	or	Python	3.x.	We	worked	with	the	network	loop	for	the	MQTT	client	in	Python.
We	worked	with	a	GUI	utility,	command-line	based	utilities,	and,	finally,	with	Python	code	to	control	the
drone	and	display	the	feedback	provided	by	the	drone.

Now	that	we	understand	how	to	use	Python	to	work	with	MQTT,	we	will	use	this	protocol	to	interact	with
sensors	by	using	the	Java	programming	language,	which	is	what	we	are	going	to	discuss	in	the	next
chapter.

Chapter	4.	Interacting	with	Sensors	in	Java
In	this	chapter,	we	will	write	Java	code	to	control	sensors	with	MQTT	messages.	We	will	write	code	that
will	be	able	to	run	on	different	popular	IoT	platforms.	We	will:

Understand	the	requirements	to	control	sensors	with	MQTT
Define	the	topics	and	commands	to	control	sensors
Install	the	Eclipse	Paho	Java	Client
Create	a	security	helper	class	to	establish	a	TLS	secured	connection
Configure	a	TLS	secured	connection	in	Java
Work	with	asynchronous	notifications	and	callbacks	in	Java
Subscribe	to	topics	and	understand	notification	events	in	Java
Process	commands	that	interact	with	sensors	in	Java
Work	with	last	will	and	testament	in	Java
Publish	messages	with	commands	to	target	sensors

Understanding	the	requirements
In	the	previous	chapters,	we	learned	how	MQTT	works	in	detail.	We	understood	how	to	establish	a
connection	between	an	MQTT	client	and	an	MQTT	server.	We	learned	what	happened	when	we
subscribed	to	topic	filters	and	when	a	publisher	sent	messages	to	specific	topics.	We	installed	and
secured	a	Mosquitto	server.	Then,	we	controlled	a	drone	with	Python.

Now,	we	will	use	Java	as	our	main	programming	language	to	generate	MQTT	clients	that	will	act	as
publishers	and	subscribers.	We	will	connect	a	Java	MQTT	client	to	the	MQTT	server	and	we	will
process	simple	commands	to	control	sensors	with	MQTT	messages.We	will	use	TLS	encryption	and	TLS
authentication	because	we	don't	want	any	MQTT	client	to	be	able	to	send	commands	to	sensors	wired	to
IoT	boards.	We	want	our	Java	code	to	run	on	many	platforms	because	we	will	use	the	same	code	base	to
control	sensors	that	use	the	following	IoT	boards:

Raspberry	Pi	3
Raspberry	Pi	2	Model	B
Intel	Edison
Intel	Galileo	Gen	2
Intel	Joule	570x
Intel	Joule	550x

Each	platform	will	work	with	different	kinds	of	sensors.	However,	we	will	focus	on	the	basic	features	to
keep	our	example	simple	and	to	stay	concentrated	on	MQTT.	Then,	we	will	be	able	to	use	this	project	as
a	baseline	for	other	solutions	that	require	us	to	run	code	on	an	IoT	board	that	runs	Java	code,	has	to
connect	to	an	MQTT	server,	and	has	to	process	commands.

The	code	that	runs	on	the	boards	that	have	sensors	wired	to	them	must	be	able	to	process	commands
received	in	messages	in	a	specific	topic.	We	will	use	strings	with	short	commands	in	plain	English	in	the
payloads.

A	client	application	also	written	in	Java	must	be	able	to	control	one	or	more	sensors.	We	will	also	write
the	client	application	in	Java	and	it	will	publish	MQTT	messages	with	strings	to	the	topic	for	each	drone.
The	client	application	must	display	the	results	of	executing	each	command.	Each	IoT	board	must	publish	a
message	to	a	specific	topic	whenever	a	command	was	successfully	executed.

Defining	the	topics	and	commands
We	will	use	the	following	topic	name	to	publish	the	commands	for	the	sensors	wired	to	an	IoT	board:
commands/boards/boardname/sensors/sensorname	,	where	boardname	must	be	replaced	with	a
unique	name	assigned	to	a	board	and	sensorname	must	be	replaced	with	a	unique	name	assigned	to	a
sensor.	For	example,	if	we	assign	location001	as	the	name	for	an	Intel	Joule	550x	board	and	we	assign
earthhumidity	as	the	name	for	a	humidity	sensor	wired	to	this	board,	we	will	have	to	publish
commands	to	the	commands/boards/location001/sensors/earthhumidity	topic	and	the	code	that
runs	on	this	board	will	subscribe	to	this	topic	to	receive	messages	with	commands	and	react	to	them.	In
fact,	the	board	can	subscribe	to	commands/boards/location001/sensors/+	to	receive	messages	with
commands	for	all	the	sensors	wired	to	the	board	named	location001.

We	will	use	the	following	topic	name	to	make	the	boards	publish	data	retrieved	from	the	sensors:
data/boards/boardname/sensors/sensorname	,	where	boardname	must	be	replaced	with	a	unique
name	assigned	to	a	board	and	sensorname	must	be	replaced	with	a	unique	name	assigned	to	a	sensor.
For	example,	if	we	assign	location300	as	the	name	for	a	Raspberry	Pi	3	board,	and	we	assign
sunlight	as	the	name	for	a	sunlight	sensor	wired	to	this	board,	the	client	that	wants	to	receive	data
retrieved	from	this	sensor	has	to	subscribe	to	the	data/boards/location300/sensors/sunlight/+
topic	because	the	sensors	will	provide	data	in	different	subtopics.	Another	option	for	the	client	is	to
subscribe	to	data/boards/location300/sensors/#	to	subscribe	to	all	the	sensors	and	their	different
subtopics.	For	example,	the	sunlight	sensor	will	provide	the	following	data:

Visible	light:	The	visible	light	will	be	published	to	the
data/boards/location300/sensors/sunlight/visiblelight	topic
Infrared	light:	The	infrared	light	will	be	published	to	the
data/boards/location300/sensors/sunlight/ir	topic
Ultraviolet	index:	The	ultraviolet	light	will	be	published	to	the
data/boards/location300/sensors/sunlight/uv	topic

The	commands	will	be	sent	as	strings	in	plain	English.	We	will	have	just	two	valid	commands:

TURN	ON:	Turn	on	the	sensor	and	make	the	board	start	transmitting	the	data	retrieved	from	this	sensor
every	1	second	to	the	appropriate	topic
TURN	OFF:	Turn	off	the	sensor	and	make	the	board	stop	transmitting	the	data	retrieved	from	this
sensor

The	following	line	shows	an	example	of	the	payload	for	the	command	that	turns	on	a	sensor:	TURN	ON

The	following	line	shows	an	example	of	the	payload	for	the	visible	light	value	retrieved	from	a	sunlight
sensor:	250	lm

We	will	use	the	following	topic	name	to	make	the	boards	publish	their	status:
status/boards/boardname,	where	boardname	must	be	replaced	with	a	unique	name	assigned	to	a
board.	For	example,	if	we	assign	location005	as	the	name	for	an	Intel	Edison	board,	we	will	have	to
subscribe	to	the	status/boards/location005	topic	and	the	code	that	runs	on	this	board	will	publish	its

status	to	this	topic.	When	the	board	subscribes	to	the	appropriate	topics	to	listen	to	messages	with
commands,	it	will	publish	a	message	with	the	payload,	ONLINE,	to	this	topic.	This	message	will	be
published	as	a	retained	message	with	a	QoS	level	of	2.	We	will	take	advantage	of	the	last	will	and
testament	feature	to	publish	a	message	with	the	payload,	OFFLINE,	to	this	topic	whenever	the	connection
between	the	MQTT	client	running	on	the	board	and	the	MQTT	server	is	lost	or	the	application	stops	its
execution.	We	analyzed	the	last	will	and	testament	feature	in	Chapter	1	,	Lightweight	Messaging	with
MQTT	3.1.1	and	Mosquitto.

We	have	all	the	necessary	details	to	start	coding	with	Java.	First,	we	will	develop	a	simple	Java
application	that	subscribes	to	a	topic	and	displays	the	received	messages.	Then,	we	will	create	the	Java
application	that	can	control	sensors	based	on	the	previously	explained	requirements.

Installing	the	Eclipse	Paho	Java	Client
The	Eclipse	Paho	project	provides	an	open	source	client	implementation	of	MQTT.	The	project	includes
a	Java	client,	also	known	as	the	Paho	Java	Client	or	Eclipse	Paho	Java	client.

The	following	is	the	web	page	for	the	Eclipse	Paho	project:	http://www.eclipse.org/paho

The	following	is	the	web	page	for	the	Eclipse	Paho	Java	client:	https://eclipse.org/paho/clients/java

Tip

We	can	use	the	Eclipse	Paho	Java	client	in	many	modern	IoT	boards	that	support	Java.	For	example,	we
can	install	and	use	this	client	on	Raspberry	Pi	boards,	such	as	Raspberry	Pi	3,	and	on	Intel	IoT	boards,
such	as	the	Intel	Joule,	Intel	Edison,	and	Intel	Galileo.	We	just	need	to	make	sure	that	Java	is	installed.
You	can	use	your	development	computer	to	run	the	examples	or	any	of	the	mentioned	boards.	You	will
need	Java	8	or	a	later	version	installed	on	your	development	computer.

This	Java	client	provides	both	a	blocking	(synchronous)	and	a	non-blocking	(asynchronous)	API.	The
blocking	API	is	a	wrapper	of	the	non-blocking	API	that	makes	all	the	necessary	things	to	make	the	code
wait	until	each	method	has	a	result.	We	will	work	with	the	non-blocking	(asynchronous)	API	because	it	is
the	one	that	we	will	use	most	of	the	times.	This	API	is	more	complex	than	the	blocking	API	due	to	the
asynchronous	execution	of	its	methods	and	the	need	to	work	with	callbacks.	However,	once	you	learn	the
non-blocking	API,	you	can	easily	switch	to	the	blocking	API	in	case	you	need	to	use	it.

The	most	complex	task	with	this	API	is	to	establish	a	secure	connection	with	an	MQTT	server.	The	Paho
Java	Client	uses	standard	Java	TLS/SSL	mechanisms,	and	therefore,	we	will	use	the	Bouncy	Castle
libraries.	You	can	read	more	information	about	these	libraries	at	http://www.bouncycastle.org	.

To	use	the	Paho	Java	Client	in	combination	with	the	Bouncy	Castle	libraries,	we	can	start	a	Maven
project	in	our	favorite	IDE	and	add	the	following	lines	to	the	pom.xml	file.	We	must	add	the	lines	before
</project>.	In	case	you	don't	want	to	work	with	Maven,	you	can	check	the	documentation	for	the	Paho
Java	Client	and	the	Bouncy	Castle	libraries	to	download	the	appropriate	versions	and	use	them	in	your
projects.	The	following	XML	shows	the	new	lines	that	you	must	add	to	the	pom.xml	file.	The	code	file	for
the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the	Java01	folder:

<repositories>

	 <repository>

	 	 <id>Eclipse	Paho	Repo</id>

	 	 	 <url>https://repo.eclipse.org/content/repositories/paho-

releases/</url>

	 </repository>

</repositories>

<dependencies>

	 <dependency>

	 	 <groupId>org.eclipse.paho</groupId>

	 	 <artifactId>org.eclipse.paho.client.mqttv3</artifactId>

	 	 <version>1.1.0</version>

	 </dependency>

	 <dependency>

http://www.eclipse.org/paho
https://eclipse.org/paho/clients/java
http://www.bouncycastle.org

	 	 <groupId>org.bouncycastle</groupId>

	 	 <artifactId>bcmail-jdk15on</artifactId>

	 	 <version>1.56</version>

	 </dependency>

	 <dependency>

	 	 <groupId>org.bouncycastle</groupId>

	 	 <artifactId>bcpkix-jdk15on</artifactId>

	 	 <version>1.56</version>

	 </dependency>

	 <dependency>

	 	 <groupId>org.bouncycastle</groupId>

	 	 <artifactId>bcprov-jdk15on</artifactId>

	 	 <version>1.56</version>

	 </dependency>

	 <dependency>

	 	 <groupId>commons-codec</groupId>

	 	 <artifactId>commons-codec</artifactId>

	 	 <version>1.9</version>

	 </dependency>

</dependencies>

Note

The	sample	has	been	tested	with	the	version	numbers	specified	in	the	previous	lines	that	are	included	in
the	pom.xml	file.	The	code	works	with	Java	8	and	Java	9.

After	you	make	the	previous	changes	in	the	pom.xml	file,	the	following	.jar	files	will	be	added	to	the
Maven	dependencies	for	the	Maven	project:

org.eclipse.paho.client.mqttv301.1.0.jar

bcmail-jdk15on-1.56.jar

bcpkix-jdk15on-1.56.jar

bcprov-jdk15on-1.56.jar

commons-codec-1.9.jar

Creating	a	security	helper	class	to	establish	a
TLS	secured	connection
Now,	we	will	create	a	new	security	helper	class	named	SecurityHelper,	which	will	provide	many
static	methods	that	we	will	use	to	make	it	easy	to	establish	a	TLS	secured	connection	with	an	MQTT
server.	We	will	use	the	recently	added	dependencies	for	the	Bouncy	Castle	libraries	to	load	the
certificates	and	key	files.

The	public	static	CreateSocketFactory	method	will	receive	the	file	names	for	the	certificate	authority
certificate,	the	client	certificate,	and	the	client	key.	The	method	will	load	all	these	files,	generate	the
appropriate	instances	from	them,	and	return	an	instance	of	java.net.ssl.SSLSocketFactory.

Tip

It	is	very	important	to	avoid	being	confused	by	the	old	SSL	name.	We	will	be	working	with	TLS	version
1.2,	but	Java	has	the	old	java.net.ssl.SSLSocketFactory	that	has	been	upgraded	to	work	with	the
latest	TLS	versions	(but	it	didn't	change	its	name	from	SSL	to	TLS	to	keep	compatibility	with	the	previous
versions).

The	SecurityHelper	class	will	provide	the	following	private	static	methods	that	will	make	it	easier	to
understand	the	code	in	the	public	static	createSocketFactory	method:

getKeyFactoryInstance:	This	returns	a	java.key.KeyFactory	instance	that	converts
public/private	keys	of	the	RSA	algorithm.
createX509CertificateFromFile:	This	method	receives	a	certificate	file	name,	loads	its
contents,	generates	an	instance	of	java.security.cert.X509Certificate	from	this	file,	and
returns	the	created	instance.	Other	methods	will	call	the	createX509CertificateFromFile	method
to	generate	an	X509Certificate	instance	from	a	certificate	authority	certificate	file	or	from	a	client
certificate	file.
createPrivateKeyFromPemFile:	This	method	receives	a	key	file	name	in	the	PEM	format,	loads
its	contents,	generates	an	instance	of	java.Security.PrivateKey	from	this	file,	and	returns	the
created	instance.	This	method	will	allow	us	to	create	a	PrivateKey	instance	from	the	client	key	file.
createKeyManagerFactory:	This	method	receives	a	client	certificate	file	name,	a	client	key	file
name,	and	a	client	key	password,	and	calls	the	previously	explained
createX509CertificateFromFile	and	createPrivateKeyFromPemFile	methods	to	generate	the
X509Certificate	and	PrivateKey	instances.	Then,	the	method	uses	these	instances	to	specify	the
certificate	and	key	for	an	instance	of	the	java.security.KeyStore	instance	and	uses	it	to	create
and	return	an	instance	of	the	java.net.ssl.KeyManagerFactory	class.
createTrustManagerFactory:	This	method	receives	a	certificate	authority	certificate	file	name
and	calls	the	previously	explained	createX509CertificateFromFile	method	to	generate	an
X509Certificate	instance.	Then,	the	method	uses	this	instance	to	specify	the	certificate	authority
certificate	for	an	instance	of	the	java.security.KeyStore	instance	and	uses	it	to	create	and	return
an	instance	of	the	java.net.ssl.TrustManagerFactory	class.

We	will	split	the	code	for	the	SecurityHelper	class	into	many	code	snippets	to	make	it	easier	to
understand	each	code	section.	The	following	lines	declare	all	the	necessary	imports.	The	code	file	for	the
sample	is	included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the
Java01/src/SecurityHelper.java	file:

import	java.io.File;

import	java.io.FileInputStream;

import	java.io.FileReader;

import	java.io.IOException;

import	java.io.InputStream;

import	java.security.KeyFactory;

import	java.security.KeyStore;

import	java.security.KeyStoreException;

import	java.security.NoSuchAlgorithmException;

import	java.security.PrivateKey;

import	java.security.SecureRandom;

import	java.security.Security;

import	java.security.UnrecoverableKeyException;

import	java.security.cert.Certificate;

import	java.security.cert.CertificateException;

import	java.security.cert.CertificateFactory;

import	java.security.cert.X509Certificate;

import	java.security.spec.InvalidKeySpecException;

import	java.security.spec.PKCS8EncodedKeySpec;

import	javax.net.ssl.KeyManager;

import	javax.net.ssl.KeyManagerFactory;

import	javax.net.ssl.SSLContext;

import	javax.net.ssl.SSLSocketFactory;

import	javax.net.ssl.TrustManager;

import	javax.net.ssl.TrustManagerFactory;

import	org.bouncycastle.jce.provider.BouncyCastleProvider;

import	org.bouncycastle.util.io.pem.PemObject;

import	org.bouncycastle.util.io.pem.PemReader;

The	following	lines	start	the	declaration	of	the	SecurityHelper	class.	The	code	declares	the
TLS_VERSION	string	constant	with	"TLSv1.2"	as	its	value.	We	will	work	with	TLS	version	1.2	and	we
will	use	this	constant	when	it	is	necessary	to	specify	the	desired	version	of	TLS/SSL	in	the	code.	The
code	also	declares	the	following	three	methods:	getKeyFactoryInstance,
createX509CertificateFromFile,	and	createPrivateKeyFromPemFile	methods.	The	code	file	for
the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the
Java01/src/SecurityHelper.java	file:

public	class	SecurityHelper	{

	 private	final	static	String	TLS_VERSION	=	"TLSv1.2";

	

private	static	KeyFactory	getKeyFactoryInstance()	throws	NoSuchAlgorithmException	{

	 	 return	KeyFactory.getInstance("RSA");

	 }

	

private	static	X509Certificate	createX509CertificateFromFile(

	 final	String	certificateFileName)	throws	IOException,	CertificateException	

				{

	 	 final	File	file	=	new	java.io.File(certificateFileName);

	 	 if	(!file.isFile())	{

	 	 	 throw	new	IOException(

	 	 	 	 String.format("The	certificate	file	%s	doesn't	

exist.",	certificateFileName));

	 	 }

	 final	CertificateFactory	certificateFactoryX509	=	

CertificateFactory.getInstance("X.509");

	 final	InputStream	inputStream	=	new	FileInputStream(file);

								final	X509Certificate	certificate	=	(X509Certificate)	

certificateFactoryX509.generateCertificate(inputStream);

								inputStream.close();

								return	certificate;

				}

				private	static	PrivateKey	createPrivateKeyFromPemFile(final	String	keyFileName)	

throws	IOException,	InvalidKeySpecException,	NoSuchAlgorithmException	

				{

								final	PemReader	pemReader	=	new	PemReader(new	FileReader(keyFileName));

								final	PemObject	pemObject	=	pemReader.readPemObject();

								final	byte[]	pemContent	=	pemObject.getContent();

								pemReader.close();

								final	PKCS8EncodedKeySpec	encodedKeySpec	=	new	

PKCS8EncodedKeySpec(pemContent);

								final	KeyFactory	keyFactory	=	getKeyFactoryInstance();

								final	PrivateKey	privateKey	=	keyFactory.generatePrivate(encodedKeySpec);

								return	privateKey;

				}

The	createX509CertificateFromFile	method	receives	the	certificate	file	name	in	the
certificateFileName	argument.	First,	the	code	creates	a	new	java.io.File	instance	with	the
received	certificate	file	name	as	an	argument.	If	the	file	exists,	the	next	line	calls	the
CertificateFactory.getInstance	method	with	"X.509"	as	an	argument	to	generate	a	certificate
factory	object	that	implements	the	X.509	certificate	type	and	saves	its	reference	in	the
certificateFactoryX509	variable.	Then,	the	code	calls	the	generateCertificate	method	with	the
file	input	stream	to	generate	and	return	an	X509Certificate	instance	from	the	received	certificate	file
name.

The	createPrivateKeyFromPemFile	method	receives	the	key	file	name	in	the	keyFileName	argument.
First,	the	code	creates	a	new	Bouncy	Castle	PemReader	instance	to	load	the	key	file	specified	in	the
keyFileName	argument	with	this	reader	capable	of	loading	the	PEM	format.	The	code	generates	a	byte
array	with	the	PEM	content	and	saves	it	in	the	pemContent	variable.	The	next	line	passes	pemContent	as
an	argument	to	create	a	new	instance	of	the	PKCS8EncodedKeySpec	class	and	saves	it	in	the
encodedKeySpec	variable.	Then,	the	code	calls	the	getKeyFactoryInstance	static	method	defined	in
the	same	class	that	provides	a	java.key.KeyFactoryinstance	that	allows	the	code	to	convert
public/private	keys	of	the	RSA	algorithm,	and	saves	the	instance	in	the	keyFactory	variable.	The	call	to
the	keyFactory.generatePrivate	method	with	encodedKeySpec	as	an	argument	generates	a	private

key	object	from	the	provided	key	specification.	Finally,	the	code	returns	this	generated	private	key	object.

The	following	lines	declare	the	createKeyManagerFactory	and	createTrustManagerFactory
methods	within	the	SecurityHelper	class.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_04	folder,	in	the	Java01/src/SecurityHelper.java	file:

private	static	KeyManagerFactory	createKeyManagerFactory(

	 	 final	String	clientCertificateFileName,	final	String	

clientKeyFileName,	final	String	clientKeyPassword)	

	 	 throws	InvalidKeySpecException,	NoSuchAlgorithmException,	

KeyStoreException,	IOException,	CertificateException,	UnrecoverableKeyException

	 {

	 	 final	X509Certificate	clientCertificate	=	

createX509CertificateFromFile(clientCertificateFileName);	

	 	 final	PrivateKey	privateKey	=	

createPrivateKeyFromPemFile(clientKeyFileName);

	 	 final	KeyStore	keyStore	=	

KeyStore.getInstance(KeyStore.getDefaultType());

	 	 keyStore.load(null,	null);

	 	 keyStore.setCertificateEntry("certificate",	clientCertificate);

	 	 keyStore.setKeyEntry("private-key",	privateKey,	

	 	 	 clientKeyPassword.toCharArray(),

	 	 	 new	Certificate[]	{	clientCertificate	});

	 	 final	KeyManagerFactory	keyManagerFactory	=	

KeyManagerFactory.getInstance(KeyManagerFactory.getDefaultAlgorithm());

	 	 keyManagerFactory.init(keyStore,	clientKeyPassword.toCharArray());

	 	

	 	 return	keyManagerFactory;

	 }

	 private	static	TrustManagerFactory	createTrustManagerFactory(

	 	 final	String	caCertificateFileName)	

	 	 throws	CertificateException,	NoSuchAlgorithmException,	IOException,	

KeyStoreException	

	 {

	 	 final	X509Certificate	caCertificate	=	(X509Certificate)	

createX509CertificateFromFile(caCertificateFileName);

	 	 final	KeyStore	keyStore	=	

KeyStore.getInstance(KeyStore.getDefaultType());	

	 	 keyStore.load(null,	null);

	 	 keyStore.setCertificateEntry("ca-certificate",	caCertificate);

	 	 final	TrustManagerFactory	trustManagerFactory	=	

TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());

	 	 trustManagerFactory.init(keyStore);

	 	 return	trustManagerFactory;

	 }

The	createKeyManagerFactory	method	receives	the	client	certificate	file	name	in	the
clientCertificateFileName	argument,	the	client	key	file	name	in	the	clientKeyFileName	argument,
and	the	password	for	the	client	key	in	the	clientKeyPassword	argument.	First,	the	code	calls	the
previously	explained	createX509CertificateFromFile	method	with	clientCertificateFileName
as	an	argument	to	load	the	client	certificate,	generate	the	X509Certificate	instance,	and	save	its
reference	in	the	clientCertificate	variable.

The	next	line	calls	the	previously	explained	createPrivateKeyFromPemFile	method	with
clientKeyFileName	as	an	argument	to	load	the	private	client	key	with	PEM	format,	generate	the
PrivateKey	instance,	and	save	its	reference	in	the	privateKey	variable.

Then,	the	code	creates	an	instance	of	the	KeyStore	class	named	keyStore,	whose	goal	is	to	provide
storage	facility	for	cryptographic	keys	and	certificates.	The	call	to	the	keyStore.setCertificateEntry
method	assigns	the	trusted	certificate	saved	in	the	clientCertificate	variable	to	the	"certificate"
alias.	The	call	to	the	keyStore.setKeyEntry	method	assigns	the	key	saved	in	the	privateKey	variable
to	the	"private-key"	alias,	sets	its	association	with	the	certificate	saved	in	clientCertificate,	and
protects	it	with	the	password	received	in	the	clientKeyPassword	argument.

Finally,	the	code	creates	an	instance	of	the	KeyManagerFactory	class	and	then	calls	its	init	method
with	keyStore	and	clientKeyPassword	converted	to	a	char	array	as	the	arguments	to	provide	the
KeyStore	instance	and	the	password	to	the	key	manager	factory.	The	code	returns	the	created	and
initialized	key	manager	factory.

The	createTrustManagerFactory	method	receives	the	certificate	authority	certificate	file	name	in	the
caCertificateFileName	argument.	First,	the	code	calls	the	previously	explained
createX509CertificateFromFile	method	with	caCertificateFileName	as	an	argument	to	load	the
certificate	authority	certificate,	generate	the	X509Certificate	instance,	and	save	its	reference	in	the
caCertificate	variable.

The	next	line	creates	an	instance	of	the	KeyStore	class	named	keyStore,	whose	goal	is	to	provide
storage	facility	for	cryptographic	keys	and	certificates.	The	call	to	the	keyStore.setCertificateEntry
method	assigns	the	trusted	certificate	authority	certificate	saved	in	the	caCertificate	variable	to	the
"ca-certificate"	alias.

Finally,	the	code	creates	an	instance	of	the	TrustManagerFactory	class	and	then	calls	its	init	method
with	keyStore	as	an	argument	to	provide	the	KeyStore	instance	and	to	the	trust	manager	factory.	The
code	returns	the	created	and	initialized	trust	manager	factory.

The	following	lines	complete	the	declaration	of	the	SecurityHelper	class	and	declare	the	public	static
createSocketFactory	method.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_04	folder,	in	the	Java01/src/SecurityHelper.java	file:

public	static	SSLSocketFactory	createSocketFactory(

public	static	SSLSocketFactory	createSocketFactory(

	 	 final	String	caCertificateFileName,	

	 	 final	String	clientCertificateFileName,	

	 	 final	String	clientKeyFileName)	throws	Exception

	 {

	 	 final	String	clientKeyPassword	=	"";

	 	 try

	 	 {

	 	 	 Security.addProvider(new	BouncyCastleProvider());

	 	 	 final	KeyManager[]	keyManagers	=	

createKeyManagerFactory(clientCertificateFileName,	clientKeyFileName,	

clientKeyPassword).getKeyManagers();

	 	 	 final	TrustManager[]	trustManagers	=	

createTrustManagerFactory(caCertificateFileName).getTrustManagers();

	 	 	

	 	 	 final	SSLContext	context	=	

SSLContext.getInstance(TLS_VERSION);

	 	 	

	 	 	 context.init(keyManagers,	trustManagers,	new	

SecureRandom());

	

	 	 	 return	context.getSocketFactory();	 	 	

	 	 }

	 	 catch	(Exception	e)

	 	 {

	 	 	 throw	new	Exception("I	cannot	create	the	TLS	socket	

factory.",	e);

	 	 }	 	

	 }

}

The	createSocketFactory	method	receives	the	certificate	authority	certificate	file	name	in	the
caCertificateFileName	argument,	the	client	certificate	file	name	in	the	clientCertificateFileName
argument,	and	the	client	key	file	name	in	the	clientKeyFileName	argument.	The	method	declares	the
clientKeyPassword	string	with	an	empty	string	as	its	value	because	we	haven't	used	a	password	for	the
client	key.	In	case	you	want	to	use	a	password,	you	can	add	the	password	as	an	argument	to	this	helper
method.	Then,	the	code	calls	the	Security.addProvider	method	with	a	new	BouncyCastleProvider
instance	as	an	argument	to	add	this	instance	to	the	security	providers.

The	next	line	calls	the	previously	explained	createKeyManagerFactory	method	with	the	appropriate
arguments	to	generate	the	KeyManager	instance.	The	result	is	chained	with	a	call	to	the	getKeyManagers
method	to	include	this	instance	in	the	new	keyManagers	array	of	KeyManager.

The	next	line	calls	the	previously	explained	createTrustManagerFactory	method	with	the	appropriate
argument	to	generate	the	TrustManager	instance.	The	result	is	chained	with	a	call	to	the
getTrustManagers	method	to	include	this	instance	in	the	new	trustManagers	array	of	TrustManager.

Then,	the	code	creates	the	TLS	socket	factory	for	the	desired	TLS	version,	that	is,	TLS	version	1.2.
Remember	that	we	create	an	SSLContext	instance	named	context	but	we	are	working	with	TLS.	The
call	to	context.init	with	keyManagers,	trustManagers,	and	a	new
java.security.SecureRandom.SecureRandom	instance	initializes	the	TLS	socket	factory	with	the
previously	generated	key	manager	and	trust	manager.	Finally,	the	code	returns	the	result	of	calling	the
context.getSocketFactory	method	to	return	an	SSLSocketFactory	instance.

Configuring	a	TLS	secured	connection	in	Java
First,	we	will	use	the	asynchronous	API	provided	by	the	Paho	Java	client	to	create	an	MQTT
asynchronous	client	that	connects	to	the	Mosquitto	MQTT	server.	We	will	write	a	few	lines	of	Java	code
to	establish	a	secured	connection,	subscribe	to	a	topic,	and	display	the	payload	for	the	messages	received
in	this	topic.	The	synchronous	API	provided	by	the	Paho	Java	client	is	simpler	to	use,	but	in	most	cases,
we	will	want	to	use	the	non-blocking	asynchronous	API.	Hence,	we	will	focus	on	the	asynchronous	API.

In	Chapter	2,	Securing	an	MQTT	Mosquitto	Server	,	we	have	secured	our	Mosquitto	server,	and
therefore,	we	will	use	the	digital	certificates	we	have	created	to	authenticate	the	client.	Most	of	the	times,
we	will	work	with	an	MQTT	server	that	uses	TLS,	and	therefore,	it	is	a	good	idea	to	learn	how	to
establish	a	connection	with	TLS	and	TLS	authentication.	It	is	easier	to	establish	an	unsecured	connection
with	an	MQTT	server,	but	it	won't	be	the	most	common	scenario	we	will	face	when	developing
applications	that	work	with	MQTT.

First,	we	need	to	copy	the	following	files	we	have	created	in	Chapter	2,	Securing	an	MQTT	Mosquitto
Server	,	to	a	directory	in	the	computer	or	device	we	will	use	to	run	the	Java	application.	We	saved	the
files	in	a	directory	called	certificates.	Create	a	java_certificates	directory	in	the	computer	or
board	you	are	going	to	use	as	the	MQTT	client	for	this	example.	Copy	the	following	three	files	to	this	new
directory:

ca.crt:	Certificate	authority	certificate	file
device001.crt:	Client	certificate	file
device001.key:	Client	key

Now,	we	will	create	the	main	class	named	Main	that	uses	the	asynchronous	API	of	the	Paho	Java	Client
and	the	previously	coded	SecurityHelper	class	to	establish	an	encrypted	connection	with	an	MQTT
server.	Then,	the	class	subscribes	to	the	commands/lights/led01	topic	filter	and	prints	all	the	messages
received	in	the	subscribed	topic	filter.

We	will	split	the	code	for	the	Main	class	into	many	code	snippets	to	make	it	easier	to	understand	each
code	section.	The	following	lines	declare	all	the	necessary	imports.	The	code	file	for	the	sample	is
included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the	Java01/src/Main.java	file:

import	javax.net.ssl.SSLSocketFactory;

import	javax.net.ssl.SSLSocketFactory;

import	org.eclipse.paho.client.mqttv3.IMqttActionListener;

import	org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;

import	org.eclipse.paho.client.mqttv3.IMqttToken;

import	org.eclipse.paho.client.mqttv3.MqttAsyncClient;

import	org.eclipse.paho.client.mqttv3.MqttConnectOptions;

import	org.eclipse.paho.client.mqttv3.MqttException;

import	org.eclipse.paho.client.mqttv3.MqttMessage;

import	org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

The	following	lines	start	the	declaration	of	the	Main	class	and	show	the	first	lines	of	the	static	main

method.	You	have	to	replace	the	value	for	the	mqttServerHost	with	the	IP	address	for	the	Mosquitto
server	or	any	other	MQTT	server	you	might	decide	to	use.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_04	folder,	in	the	Java01/src/Main.java	file:

public	class	Main	{

	 public	static	void	main(String[]	args)	{

	 	 try	{

	 	 	 final	MqttConnectOptions	mqttConnectOptions	=	new	

MqttConnectOptions();

	 	 	 mqttConnectOptions.setMqttVersion(

	 	 	 	 MqttConnectOptions.MQTT_VERSION_3_1_1);

	 	 	 mqttConnectOptions.setKeepAliveInterval(

	 	 	 	 MqttConnectOptions.KEEP_ALIVE_INTERVAL_DEFAULT);

	 	 	 MemoryPersistence	memoryPersistence	=	new	

MemoryPersistence();

	 	 	 //	Replace	localhost	with	the	IP	for	the	Mosquitto

	 	 	 //	or	other	MQTT	server

	 	 	 final	String	mqttServerHost	=	"localhost";

	 	 	 final	int	mqttServerPort	=	8883;

	 	 	 final	String	mqttServerURI	=	String.format(

	 	 	 	 "ssl://%s:%d",

	 	 	 	 mqttServerHost,

	 	 	 	 mqttServerPort);

	 	 	 //	In	case	you	don't	need	security:

	 	 	 //	final	int	mqttServerPort	=	8883;

	 	 	 //	final	String	mqttServerURI	=	String.format(

	 	 	 //					"ftp://%s:%d",

	 	 	 //					mqttServerHost,

	 	 	 //					mqttServerPort);

	 	 	 //	We	can	specify	our	own	client	id	

	 	 	 //	instead	of	calling	the	generateClientId	method

	 	 	 final	String	mqttClientId	=	

MqttAsyncClient.generateClientId();

	 	 	 MqttAsyncClient	mqttAsyncClient	=	new	MqttAsyncClient(

	 	 	 	 	 mqttServerURI,	

	 	 	 	 	 mqttClientId,	

	 	 	 	 	 memoryPersistence);

	 	 	 final	String	topic_for_led01	=	"commands/lights/led01";

First,	the	code	creates	an	instance	of	the	org.eclipse.paho.client.mqttv3.MqttConnectOptions
class	named	mqttConnectOptions	that	stores	the	values	for	the	different	options	we	can	configure	when
we	want	to	connect	with	an	MQTT	server.	If	we	used	the	default	parameters,	we	would	work	with	MQTT
version	3.1.	We	want	to	work	with	MQTT	version	3.1.1,	and	therefore,	we	specify
MqttConnectOptions.MQTT_VERSION_3_1_1	as	an	argument	for
mqttConnectOption.setMqttVersion.

We	want	to	work	with	MQTT	version	3.1.1	interval	configuration	option.	However,	we	wrote	code	to
call	the	mqttConnectOptions.setKeepAliveInterval	method	to	make	it	easy	to	work	with	other
values	in	case	we	need	to.	We	just	need	to	change	the	value	sent	as	an	argument	to	this	method.

Tip

You	can	call	other	methods	that	start	with	the	set	prefix	for	mqttConnectOptions	to	set	the	values	for
other	configuration	options,	such	as	specifying	a	user	name	and	a	password	for	authentication.	In	this
case,	we	are	just	working	with	TLS	client	authentication.

The	next	line	creates	an	instance	of	the
org.eclipse.paho.client.mqttv3.persist.MemoryPersistence	class	named
memoryPersistence.	The	Paho	Java	Client	provides	a	pluggable	persistence	mechanism	that	makes	it
possible	for	the	client	to	store	the	messages.	In	this	case,	we	will	work	with	a	QoS	level	of	0,	and	we
will	use	memory	persistence	for	the	messages	to	keep	the	code	simpler.	However,	we	will	move	to	a	QoS
level	of	2	later,	and	we	will	explore	and	configure	other	pluggable	persistence	options	that	will	be
suitable	for	this	QoS	level.	All	the	pluggable	persistence	mechanisms	are	classes	that	implement	the
MqttClientPersistence	interface.

Then,	the	code	declares	the	values	for	the	variables	that	specify	the	MQTT	server	host	name	or	IP,
mqttServerHost,	the	MQTT	server	port,	mqttServerPort,	and	the	MQTT	server	URI,
mqttServerURI,	built	with	the	values	of	the	other	two	variables.	The	next	line	calls	the
MqttAsyncClient.generateClientId	method	to	generate	a	unique	client	ID	and	save	it	in	the
mqttClientId	variable.	We	might	also	decide	to	specify	our	own	client	ID	instead	of	calling	this
method.

The	next	line	creates	an	instance	of	the	org.eclipse.paho.client.mqttv3.MqttAsyncClient	class
named	mqttAsyncClient	with	the	MQTT	server	URI,	the	previously	generated	client	ID,	and	the
memory	persistence	option	as	the	arguments.	This	instance	will	be	the	entry	point	for	our	MQTT
asynchronous	client.

Finally,	the	last	line	declares	the	topic_for_led01	variable	with	"commands/lights/led01"	as	its
value.	We	will	subscribe	to	this	topic.

The	following	lines	continue	the	declaration	of	the	public	static	main	method.	You	have	to	replace	the
value,	/Users/gaston/certificates,	in	the	certificatesPath	string	with	the	path	to	the
java_certificates	directory	you	created.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_04	folder,	in	the	Java01/src/Main.java	file:

//	Replace	/Users/gaston/certificates	with	the	path

	 	 	 //	in	which	you	saved	the	certificate	authority	file,

	 	 	 //	the	client	certificate	file	and	the	client	key

	 	 	 final	String	certificatesPath	=	

"/Users/gaston/certificates";

	 	 	 final	String	caCertificateFileName	=	

String.join(java.io.File.separator,	certificatesPath,	"ca.crt");

	 	 	 final	String	clientCertificateFileName	=	

String.join(java.io.File.separator,	certificatesPath,	"device001.crt");

	 	 	 final	String	clientKeyFileName	=	

String.join(java.io.File.separator,	certificatesPath,	"device001.key");

	 	 	 //	In	case	you	don't	need	security,

	 	 	 //	you	don't	need	to	create	an	SSLSocketFactory	instance

	 	 	 SSLSocketFactory	socketFactory;

	 	 	 try	{

	 	 	 	 socketFactory	=	SecurityHelper.createSocketFactory(

	 	 	 	 	 	 caCertificateFileName,	

	 	 	 	 	 	 clientCertificateFileName,	

	 	 	 	 	 	 clientKeyFileName);

	 	 	 }	catch	(Exception	e1)	{

	 	 	 	 e1.printStackTrace();

	 	 	 	 return;

	 	 	 }

	 	 	 //	In	case	you	don't	need	security,	you	don't	have	to	call

	 	 	 //	the	setSocketFactory	method

	 	 	 mqttConnectOptions.setSocketFactory(socketFactory);

The	code	declares	the	certificatesPath	variable	initialized	with	a	string	with	the	path	in	which	you
saved	the	certificate	authority	file,	the	client	certificate	file,	and	the	client	key.	The	code	declares	the
following	string	variables	with	the	full	path	to	the	certificate	and	key	files	we	need	to	configure	TLS	and
TLS	client	authentication:	caCertificateFileName,	clientCertificateFileName,	and	clientKey.
The	call	to	String.join	with	java.io.File.separator	as	the	first	argument	makes	it	easy	to	join	the
path	specified	in	the	certificatesPath	variable	with	each	filename	and	to	generate	the	full	path.	The
java.io.File.separator	string	provides	the	appropriate	name	separator	in	the	platform,	and	therefore,
we	don't	have	to	worry	about	whether	to	use	a	slash	(/)	or	a	backslash	()	to	join	the	path	with	the	file
name.	Whenever	we	work	with	IoT	related	projects,	sometimes,	we	can	develop	and	test	in	Windows	and
then	run	the	code	on	an	IoT	board	that	can	use	different	Unix	flavors.	In	other	cases,	we	can	develop	on
macOS	or	Linux	and	then	run	the	code	in	a	board	that	uses	Windows	IoT	Core.	The	usage	of
java.io.File.separator	makes	our	job	easier	in	these	scenarios,	in	which	we	switch	between
different	platforms.

Then,	the	code	calls	the	previously	analyzed	SecurityHelper.createSocketFactory	method	with	the
variables	that	hold	the	full	path	to	the	certificate	and	key	files	as	arguments.	This	way,	the	code	generates
the	SSLSocketFactory	instance	and	saves	its	reference	in	the	socketFactory	variable.	Finally,	the	next
line	calls	the	mqttConnectOptions.setSocketFactory	method	with	socketFactory	as	an	argument	to
specify	the	socket	factory	we	want	to	use	for	the	connection	with	the	MQTT	server.

Working	with	asynchronous	notifications	and
callbacks	in	Java
The	following	lines	continue	the	declaration	of	the	public	static	main	method.	The	code	file	for	the
sample	is	included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the	Java01/src/Main.java
file:

mqttAsyncClient.setCallback(new	MqttCallback()	{

	 	 	 	 @Override

	 	 	 	 public	void	connectionLost(Throwable	cause)	{

	 	 	 	 	 cause.printStackTrace();

	 	 	 	 }

	 	 	 	 @Override

	 	 	 	 public	void	deliveryComplete(IMqttDeliveryToken	

token)	{

	 	 	 	 }

	 	 	 	 @Override

	 	 	 	 public	void	messageArrived(String	topic,	

MqttMessage	message)	throws	Exception	{

	 	 	 	 	 if	(!topic.equals(topic_for_led01))	{

	 	 	 	 	 	 return;

	 	 	 	 	 }

	 	 	 	 	 String	messageText	=	

	 	 	 	 	 	 new	String(message.getPayload(),	

"UTF-8");

	 	 	 	 	 System.out.println(

	 	 	 	 	 	 String.format("Topic:	%s.	Payload:	

%s",

	 	 	 	 	 	 	 topic,

	 	 	 	 	 	 	 messageText));

	 	 	 	 }

	 	 	 });

The	code	calls	the	mqttAsyncClient.setCallback	method	with	an	anonymous	subclass	of	the
MqttCallback	class	as	an	argument.	The	setCallback	method	requires	an	argument	of	the
org.eclipse.paho.client.mqttv3.MqttCallback	type.	The	anonymous	class	that	implements	the
MqttCallback	interface	provides	implementations	for	the	following	three	methods	required	by	the
interface:

connectionLost:	When	the	MQTT	client	loses	the	connection,	this	method	will	be	executed.
messageArrived:	When	a	message	has	arrived	from	the	MQTT	server,	this	method	will	be
executed.	It	is	very	important	to	understand	that	in	the	QoS	levels	that	require	an	acknowledgement
to	the	MQTT	server,	the	MQTT	server	won't	send	this	acknowledgement	until	the	messageArrived
method	completes	its	execution.	The	method	receives	the	topic	for	the	message	that	has	arrived	in	the
topic	argument	of	type	String.	In	addition,	the	method	receives	an	instance	of	the
org.eclipse.paho.client.mqttv3.MqttMessage	class	in	the	message	argument	that
encapsulates	all	the	data	related	to	the	arrived	message.

deliveryComplete:	When	the	delivery	for	a	message	has	been	completed	and	all	the
acknowledgements	required	by	the	QoS	level	have	been	received,	this	method	will	be	executed.	The
method	receives	an	instance	of	a	class	that	implements	the
org.eclipse.paho.client.mqttv3.ImqttDeliveryToken	interface	in	the	token	argument.	We
will	discuss	tokens	later.

Note

We	must	call	the	setCallback	method	before	we	establish	the	connection	with	the	MQTT	server.	In	this
case,	we	pass	an	anonymous	class	as	an	argument	to	the	setCallback	method	because	we	want	all	the
code	to	be	included	within	the	main	method.	In	other	cases,	we	can	create	a	class	that	implements	the
required	interface	and	pass	an	instance	of	this	class	as	an	argument	to	the	setCallback	method.

In	this	case,	the	code	just	prints	the	stack	trace	for	the	cause	that	made	the	MQTT	client	lose	the
connection.	We	don't	execute	any	code	when	the	delivery	for	a	message	has	been	completed.

The	messageArrived	method	checks	whether	the	topic	for	the	received	message	matches	the	value
saved	in	the	topic_for_led01	variable.	In	case	they	match,	the	next	line	creates	a	new	String	with	the
byte	array	returned	by	the	message.getPayload	method	and	UTF-8	as	the	encoding,	and	saves	it	in	the
messageText	variable.	Finally,	the	code	prints	the	topic	and	the	payload	for	the	message.

The	following	lines	end	the	public	static	main	method	and	the	Main	class.	The	code	file	for	the	sample	is
included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the	Java01/src/Main.java	file:

//	In	this	case,	we	don't	use	the	token

	 	 	 IMqttToken	mqttConnectToken	=	mqttAsyncClient.connect(

	 	 	 	 mqttConnectOptions,	

	 	 	 	 null,	

	 	 	 	 new	IMqttActionListener()	{

	 	 	 	 	 @Override

	 	 	 	 	 public	void	onSuccess(IMqttToken	

asyncActionToken)	{

	 	 	 	 	 	 System.out.println(

	 	 	 	 	 	 	 String.format(

	 	 	 	 	 	 	 	 "Successfully	

connected"));

	 	 	 	 	 	 	 try	{

	 	 	 	 	 	 	 	 //	In	this	case,	we	

don't	use	the	token

	 	 	 	 	 	 	 	 IMqttToken	

subscribeToken	=	mqttAsyncClient.subscribe(

	 	 	 	 	 	 	 	 	

topic_for_led01,

	 	 	 	 	 	 	 	 	 0,	

	 	 	 	 	 	 	 	 	 null,	

	 	 	 	 	 	 	 	 	 new	

IMqttActionListener()	{

	 	 	 	 	 	 	 	 	 	

@Override

	 	 	 	 	 	 	 	 	 	

public	void	onSuccess(IMqttToken	asyncActionToken)	{

	 	 	 	 	 	 	 	 	 	 	

System.out.println(

	 	 	 	 	 	 	 	 	 	 	 	 	

String.format(

	 	 	 	 	 	 	 	 	 	 	 	 	 	

"Subscribed	to	the	%s	topic	with	QoS:	%d",

	 	 	 	 	 	 	 	 	 	 	 	 	 	

topic_for_led01,

	 	 	 	 	 	 	 	 	 	 	 	 	 	

asyncActionToken.getGrantedQos()[0]));

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 }

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

@Override

	 	 	 	 	 	 	 	 	 	

public	void	onFailure(IMqttToken	asyncActionToken,	

	 	 	 	 	 	 	 	 	 	 	 	

Throwable	exception)	{

	 	 	 	 	 	 	 	 	 	 	

exception.printStackTrace();

	 	 	 	 	 	 	 	 	 	 }

	 	 	 	 	 	 	 	 	 });

	 	 	 	 	 	 	 }	catch	(MqttException	e)	{

	 	 	 	 	 	 	 	

e.printStackTrace();

	 	 	 	 	 	 	 }

	 	 	 	 	 }

	 	 	 	 	 @Override

	 	 	 	 	 public	void	onFailure(IMqttToken	

asyncActionToken,	

	 	 	 	 	 	 Throwable	exception)	{

	 	 	 	 	 	 exception.printStackTrace();

	 	 	 	 	 }

	 	 	 	 });

	 	 }	catch	(MqttException	e)	{

	 	 	 e.printStackTrace();

	 	 }

	 }

}

The	code	calls	the	mqttAsyncClient.connect	method	with	mqttConnectOptions	and	an	anonymous
class	that	implements	the	IMqttActionListener	interface	as	the	value	for	the	callback	argument.	The
connect	method	requires	the	callback	argument	of	the
org.eclipse.paho.client.mqttv3.IMqttActionListener	type.	The	anonymous	class	provides
implementations	for	the	following	two	methods	required	by	the	IMqttActionListener	interface:

onSuccess:	When	the	MQTT	client	has	successfully	completed	the	action,	this	method	will	be
executed.	The	method	receives	an	instance	of	a	class	that	implements	the
org.eclipse.paho.client.mqttv3.ImqttToken	interface	in	the	asyncActionToken	argument.
We	can	compare	this	instance	with	the	IMqttToken	returned	by	the	method	that	starts	the
asynchronous	action	to	use	the	same	code	to	check	for	the	successful	execution	of	many	asynchronous
actions.	In	this	case,	the	onSuccess	method	will	be	executed	when	the	connection	has	been
successfully	established	with	the	MQTT	server.

onFailure:	When	an	asynchronous	operation	requested	to	the	MQTT	client	fails,	this	method	will
be	executed.	As	happens	in	the	onSuccess	method,	the	onFailure	method	also	receives	an
asyncActionToken	argument	with	the	IMqttToken	instance,	which	identifies	the	asynchronous
operation	that	has	failed.

Subscribing	to	topics	and	understanding
notification	events	in	Java
The	onSuccess	method	prints	a	message	indicating	that	the	client	has	successfully	connected	with	the
MQTT	server	and	then	calls	the	mqttAsyncClient.subscribe	method	with	topic_for_led01	as	the
argument	that	specifies	the	topic	filter	to	subscribe	to	0	for	the	argument	that	specifies	the	desired	QoS
level,	null	for	the	userContext	argument,	and	another	anonymous	class	that	implements	the
IMqttActionListener	interface	as	the	value	for	the	callback	argument.	As	happened	with	the	connect
method,	the	subscribe	method	requires	the	callback	argument	of	the
org.eclipse.paho.client.mqttv3.IMqttActionListener	type.	The	anonymous	class	provides
implementations	for	the	previously	explained	two	methods	required	by	the	IMqttActionListener
interface:	onSuccess	and	onFailure.

The	code	in	the	onSuccess	method	prints	a	message	indicating	that	the	client	has	subscribed	to	the	topic
filter	and	the	granted	QoS	level.	The	asyncActionToken.getGrantedQoS()	method	returns	an	array	of
int	that	provides	the	QoS	level	that	the	MQTT	server	has	granted	for	each	of	the	topic	filter	subscription
requests.

Tip

In	this	case,	we	pass	an	anonymous	class	as	an	argument	to	both	the	connect	and	subscribe	methods
because	we	want	all	the	code	to	be	included	within	the	main	method.	In	other	cases,	we	can	create	a	class
that	implements	the	required	interface.	It	is	also	possible	to	take	advantage	of	the	tokens	to	use	the	same
code	base	to	process	successful	and	failed	executions	for	different	asynchronous	operations	with	the	same
code	base.	The	token	indicates	the	specific	asynchronous	operation	that	has	fired	the	method.	In	the
sample	code	we	have	written,	we	didn't	check	the	tokens	because	we	used	a	specific	anonymous	class	for
each	asynchronous	operation.

Make	sure	the	Mosquitto	server	or	any	other	MQTT	server	you	might	want	to	use	for	this	example	is
running.	Use	your	favorite	Java	IDE	to	run	the	example	on	any	computer,	or	build	a	.jar	file	with	all	the
dependencies	included	and	launch	it	on	any	computer	or	device	that	you	want	to	use	as	the	MQTT	client,
with	a	command	similar	to	the	following	line.	In	case	you	don't	run	the	example	on	the	same	computer	on
which	you	are	running	the	MQTT	server,	remember	to	change	the	value	for	the	mqttServerHost	string	in
the	main	method	of	the	Main	class.	You	must	also	copy	the	certificate	files	and	the	.jar	file	to	the	device.
The	next	line	uses	Sensors01-0.0.1-SNAPSHOT.jar	as	the	jar	file	for	the	previous	example:	java	-
jarSensors01-0.0.1-SNAPSHOT.jar

In	case	you	see	a	stack	trace	with	a	javax.net.ssl.SSLHandshakeException	exception	as	a	result,
make	sure	you	check	that	the	MQTT	server	hostname	or	IP	matches	the	value	specified	for	the	Common
Name	attribute	when	you	generated	the	server	certificate	file	named	server.crt.	Make	sure	that	you
check	the	IP	address	for	the	MQTT	server	(Mosquitto	server)	and	generate	the	server	certificate	file	and
key	again	with	the	appropriate	IP	address	specified	for	Common	Name,	as	explained	in	Chapter	2,
Securing	an	MQTT	Mosquitto	Server	,	in	case	you	are	working	with	the	self-signed	certificates	we

generated	in	the	aforementioned	chapter.

Now,	follow	these	steps	to	use	the	MQTT.fx	GUI	utility	to	publish	two	messages	to	the
commands/lights/led01	topic:

1.	 Launch	MQTT.fx	and	establish	a	connection	with	the	MQTT	server	by	following	the	steps	we
learned	in	Chapter	2,	Securing	an	MQTT	Mosquitto	Server.

2.	 Click	Publish	and	enter	commands/lights/led01	in	the	dropdown	on	the	left-hand	side	of	the
Publish	button.

3.	 Click	QoS	0	on	the	right-hand	side	of	the	Publish	button.
4.	 Enter	the	following	text	in	the	textbox	below	the	Publish	button:	TURN	ON.	Then,	click	the	Publish

button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.
5.	 Enter	the	following	text	in	the	textbox	below	the	Publish	button:	TURN	OFF.	Then,	click	the	Publish

button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.

In	case	you	don't	want	to	work	with	the	MQTT.fx	utility,	you	can	run	two	mosquitto_pub	commands	to
generate	MQTT	clients	that	publish	messages	to	the	topic.	You	just	need	to	open	another	Terminal	in
macOS	or	Linux,	or	another	Command	Prompt	in	Windows,	go	to	the	directory	in	which	Mosquitto	is
installed,	and	run	the	following	commands.	Replace	localhost	with	the	IP	for	the	MQTT	server.
Remember	to	replace	ca.crt,	device001.crt,	and	device001.key	with	the	full	path	to	these	files
created	in	the	java_certificates	directory:	mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile
ca.crt	--cert	device001.crt	--key	device001.key-t	test/drone01	-m	'TURN	ON'	-q	0--tls-version
tlsv1.2	-d

mosquitto_pub	-h	localhost	-V	mqttv311	-p	8883	--cafile	ca.crt	--cert	device001.crt	

--key	device001.key-t	test/drone01	-m	'TURN	OFF'	-q	0--tls-version	tlsv1.2	-d

Go	to	the	device	and	window	in	which	you	executed	the	Java	application.	You	will	see	the	following
output:	Successfully	connected	Subscribed	to	the	commands/lights/led01	topic	with	QoS:	0	Topic:
commands/lights/led01.	Payload:	TURN	ON	Topic:	commands/lights/led01.	Payload:	TURN	OFF

The	Java	application	successfully	established	a	secure	and	encrypted	connection	with	the	MQTT	server
and	became	a	subscriber	to	the	commands/lights/led01	topic	with	a	granted	QoS	level	of	0.	The
program	displayed	the	two	messages	it	has	received	in	the	commands/lights/led01	topic.

Press	Ctrl+C	to	stop	the	execution	of	the	program	or	use	the	appropriate	command	in	case	you	are	running
the	Java	application	in	your	favorite	IDE.	The	generated	MQTT	client	will	close	the	connection	with	the
MQTT	server.

Processing	commands	that	interact	with	sensors
in	Java
Now	that	you	have	understood	how	to	work	with	the	Paho	Java	Client,	its	non-blocking	API,	and	its
callbacks,	we	can	develop	the	Java	application	that	will	process	the	commands	that	interact	with	sensors,
based	on	the	previously	explained	requirements.

We	can	start	another	Maven	project	in	our	favorite	IDE	and	make	the	same	edits	to	the	pom.xml	file	that
we	did	in	our	previous	example	to	use	the	Paho	Java	Client	with	the	Bouncy	Castle	libraries.	In	addition,
we	must	include	the	previously	coded	SecurityHelper	class.	The	code	file	for	the	sample	is	included	in
the	mqtt_essentials_gaston_hillar_04	folder,	in	the	Java02	folder.

Now,	we	will	create	a	new	class	named	SensorsManager	that	implements	the	previously	analyzed
MqttCallback	interface,	specifically	the	org.eclipse.paho.client.mqttv3.MqttCallback
interface.	The	class	will	process	the	messages	that	the	MQTT	client	receives,	provide	many	methods	that
will	process	the	commands	included	in	these	messages,	and	simulate	the	retrieval	of	values	from	two
sensors.

The	SensorsManager	class	will	provide	the	following	methods:

publishMessage:	This	method	publishes	the	payload	specified	as	a	string	to	the	indicated	topic
with	a	QoS	level	and	a	retained	flag	value.	The	method	uses	an	UTF-8	encoding	to	transform	the
string	into	a	bytes	array,	uses	the	asynchronous	client	to	publish	the	message,	and	passes	the	received
IMqttActionListener	instance	as	the	callback	for	events	related	to	the	publication	of	the	message.
We	will	use	this	method	to	make	it	easier	to	publish	messages	to	different	topics	with	diverse	QoS
levels.
publishProcessedCommandMessage:	This	method	publishes	a	message	to	the	appropriate	topic,
indicating	that	a	command	has	been	successfully	processed.	The	method	ends	up	calling	the
previously	explained	publishMessage	method	to	publish	the	message.
messageArrived:	When	a	message	has	arrived	from	the	MQTT	server,	this	method	will	be
executed.	This	method	processes	the	TURN	ON	and	TURN	OFF	commands,	and	based	on	these
commands	and	the	topics	in	which	the	commands	were	received,	the	code	changes	the	value	of	the
flags	that	determine	whether	the	sensors	must	publish	data	every	1	second	or	not.
loop:	This	method	checks	the	Boolean	values	for	the	flags	that	determine	whether	the	sensors	must
publish	data	every	1	second	or	not.	In	order	to	keep	the	example	simple,	the	code	generates	pseudo-
random	values	to	simulate	that	it	is	retrieving	data	from	the	sensors	and,	based	on	the	values	of	the
flags,	publishes	messages	with	the	data	for	the	sensors	in	the	different	topics	that	we	described	when
we	analyzed	the	requirements	for	the	application.

We	will	split	the	code	for	the	SensorsManager	class	into	many	code	snippets	to	make	it	easier	to
understand	each	code	section.	The	following	lines	declare	all	the	necessary	imports.	The	code	file	for	the
sample	is	included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the
Java02/src/SensorsManager.java	file:	package	com.packt.mqttessentials.Sensors02;

import	org.eclipse.paho.client.mqttv3.IMqttActionListener;	import
org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;	import
org.eclipse.paho.client.mqttv3.MqttAsyncClient;	import	org.eclipse.paho.client.mqttv3.MqttCallback;
import	org.eclipse.paho.client.mqttv3.MqttException;	import
org.eclipse.paho.client.mqttv3.MqttMessage;

import	java.io.UnsupportedEncodingException;	import	java.util.concurrent.ThreadLocalRandom;

The	following	lines	start	the	declaration	of	the	SensorsManager	class.	The	code	declares	the	many	string
constants,	private	fields,	and	the	two	volatile	Boolean	flags	that	indicate	whether	the	sunlight	sensor	is
turned	on	and	whether	the	earth	humidity	sensor	is	turned	on:	isSunlightSensorTurnedOn	and
isEarthHumiditySensorTurnedOn.	The	code	also	declares	the	constructor	for	this	class.	The	code	file
for	the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the
Java01/src/SensorsManager.java	file:	public	class	SensorsManager	implements	MqttCallback	{
private	static	final	String	SENSOR_EARTH_HUMIDITY	=	"earthhumidity";	private	static	final	String
SENSOR_SUNLIGHT	=	"sunlight";	private	static	final	String	TOPIC_SEPARATOR	=	"/";	private	final
String	boardCommandsTopic;	private	final	String	boardDataBaseTopic;	private	final	String	encoding;

private	final	MqttAsyncClient	asyncClient;	private	final	String	earthHumidityTopic;	private	final	String
visibleLightTopic;	private	final	String	infraredLightTopic;	private	final	String	ultraVioletIndexTopic;
private	volatile	boolean	isSunlightSensorTurnedOn	=	false;	private	volatile	boolean
isEarthHumiditySensorTurnedOn	=	false;	public	SensorsManager(final	MqttAsyncClient	asyncClient,
final	String	boardCommandsTopic,	final	String	boardDataBaseTopic,	final	String	encoding)	{
this.boardCommandsTopic	=	boardCommandsTopic;	this.boardDataBaseTopic	=	boardDataBaseTopic;
this.encoding	=	encoding;

this.asyncClient	=	asyncClient;

//	Build	and	save	the	topic	names	that	we	will	use	to	publish	the	data	from	the	sensors
this.earthHumidityTopic	=	this.boardDataBaseTopic.concat(SENSOR_EARTH_HUMIDITY);	final	String
sunlightDataBaseTopic	=	boardDataBaseTopic.concat(SENSOR_SUNLIGHT);	this.visibleLightTopic	=
String.join(TOPIC_SEPARATOR,	sunlightDataBaseTopic,	"visiblelight");	this.infraredLightTopic	=
String.join(TOPIC_SEPARATOR,	sunlightDataBaseTopic,	"ir");	this.ultraVioletIndexTopic	=
String.join(TOPIC_SEPARATOR,	sunlightDataBaseTopic,	"uv");	}

The	constructor	receives	the	asynchronous	client	(asyncClient),	the	topic	that	we	will	use	for	the
commands	(boardCommandsTopic),	the	prefix	for	the	topic	that	we	will	use	to	publish	the	data	for	the
sensors	(boardDataBaseTopic),	and	the	encoding	we	are	using	for	strings	in	the	payload	(encoding).
The	constructor	saves	all	these	received	arguments	in	fields	with	the	same	names.	Then,	the	constructor
builds	and	saves	the	topic	names	that	we	will	use	to	publish	the	data	from	the	sensors.

The	following	lines	declare	the	publishMessage	and	publishProcessedCommandMessage	methods
within	the	SensorsManager	class.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_04	folder,	in	the	Java02/src/SensorsManager.java	file:	public
IMqttDeliveryToken	publishMessage(final	String	topic,	final	String	textForMessage,
IMqttActionListener	actionListener,	final	int	qos,	final	boolean	retained)	{

	

byte[]	bytesForPayload;

try	{

bytesForPayload	=	textForMessage.getBytes(this.encoding);	return	asyncClient.publish(topic,
bytesForPayload,	qos,	retained,	null,	actionListener);	}	catch	(UnsupportedEncodingException	e)	{

e.printStackTrace();

return	null;

}	catch	(MqttException	e)	{

e.printStackTrace();

return	null;

}

}

public	void	publishProcessedCommandMessage(final	String	sensorName,	final	String	command)	{
final	String	topic	=	String.format("%s/%s",	boardCommandsTopic,	sensorName);	final	String
textForMessage	=	String.format(

"%s	successfully	processed	command:	%s",	sensorName,	command);	publishMessage(topic,
textForMessage,	null,	0,	false);	}

The	following	lines	declare	the	three	methods	required	by	the	MqttCallback	interface	within	the
SensorsManager	class:	connectionLost,	deliveryComplete	and	messageArrived.	The	code	file	for
the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the
Java02/src/SensorsManager.java	file:	@Override

public	void	connectionLost(Throwable	cause)	{

cause.printStackTrace();

}

	

@Override

public	void	deliveryComplete(IMqttDeliveryToken	token)	{

}

	

@Override

public	void	messageArrived(String	topic,	MqttMessage	message)	throws	Exception	{

String	messageText	=	new	String(message.getPayload(),	encoding);	System.out.println(

String.format("Topic:	%s.	Payload:	%s",	topic,

messageText));

//	A	message	has	arrived	from	the	MQTT	broker	//	The	MQTT	broker	doesn't	send	back	//	an
acknowledgment	to	the	server	until	//	this	method	returns	cleanly

if	(!topic.startsWith(boardCommandsTopic))	{

//	The	topic	for	the	arrived	message	doesn't	start	with	boardTopic	return;

}

final	boolean	isTurnOnMessage	=	messageText.equals("TURN	ON");	final	boolean	isTurnOffMessage	=
messageText.equals("TURN	OFF");	boolean	isInvalidCommand	=	false;

boolean	isInvalidTopic	=	false;

//	Extract	the	sensor	name	from	the	topic	String	sensorName	=	topic.replaceFirst(boardCommandsTopic,
"").replaceFirst(TOPIC_SEPARATOR,	"");	switch	(sensorName)	{

case	SENSOR_SUNLIGHT:

if	(isTurnOnMessage)	{

isSunlightSensorTurnedOn	=	true;	}	else	if	(isTurnOffMessage)	{

isSunlightSensorTurnedOn	=	false;	}	else	{

isInvalidCommand	=	true;

}

break;

case	SENSOR_EARTH_HUMIDITY:

if	(isTurnOnMessage)	{

isEarthHumiditySensorTurnedOn	=	true;	}	else	if	(isTurnOffMessage)	{

isEarthHumiditySensorTurnedOn	=	false;	}	else	{

isInvalidCommand	=	true;

}

break;

default:

isInvalidTopic	=	true;

}

if	(!isInvalidCommand	&&	!isInvalidTopic)	{

publishProcessedCommandMessage(sensorName,	messageText);	}

}

The	following	lines	declare	the	loop	method	and	finish	the	declaration	of	the	SensorsManager	class.
The	code	file	for	the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the
Java02/src/SensorsManager.java	file:	public	void	loop()	{

if	(isEarthHumiditySensorTurnedOn)	{

//	Retrieve	the	humidity	level	from	the	sensor	//	In	this	case,	we	just	generate	a	random	number	final	int
humidityLevel	=	ThreadLocalRandom.current().nextInt(1,	101);	//	Publish	the	message	to	the	appropriate
topic	publishMessage(earthHumidityTopic,	String.format("%d	%%",	humidityLevel),	null,	0,	false);	}

if	(isSunlightSensorTurnedOn)	{

//	Retrieve	the	visible	light	level	from	the	sensor	//	In	this	case,	we	just	generate	a	random	number	final
int	visibleLight	=	ThreadLocalRandom.current().nextInt(201,	301);	//	Publish	the	message	to	the
appropriate	topic	publishMessage(visibleLightTopic,	String.format("%d	lm",	visibleLight),	null,	0,
false);

//	Retrieve	the	infrared	light	level	from	the	sensor	//	In	this	case,	we	just	generate	a	random	number	final
int	infraredLight	=	ThreadLocalRandom.current().nextInt(251,	281);	//	Publish	the	message	to	the
appropriate	topic	publishMessage(infraredLightTopic,	String.format("%d	lm",	infraredLight),	null,	0,
false);

//	Retrieve	the	ultraviolet	(UV)	index	from	the	sensor	//	In	this	case,	we	just	generate	a	random	number
final	int	ultraVioletIndex	=	ThreadLocalRandom.current().nextInt(0,	16);	//	Publish	the	message	to	the
appropriate	topic	publishMessage(ultraVioletIndexTopic,	String.format("%d	UV	Index",
ultraVioletIndex),	null,	0,	false);	}

}

}

Working	with	last	will	and	testament	in	Java
Now,	we	will	take	advantage	of	the	last	will	and	testament	feature.	We	will	create	the	main	class	named
Main	that	uses	the	asynchronous	API	of	the	Paho	Java	Client,	the	previously	coded	SecurityHelper
class	to	establish	an	encrypted	connection	with	an	MQTT	server,	and	the	SensorsManager	class	to
process	the	received	messages	with	commands.	The	code	will	configure	a	message	to	be	sent	as	the	last
will	when	the	connection	is	lost.	In	addition,	the	Main	class	will	call	the	loop	method	for	a
SensorsManager	instance	to	publish	messages	with	data	retrieved	from	the	sensors	when	they	are	turned
on	with	the	appropriate	commands.

We	will	split	the	code	for	the	Main	class	into	many	code	snippets	to	make	it	easier	to	understand	each
code	section.	The	following	lines	declare	all	the	necessary	imports.	The	code	file	for	the	sample	is
included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the	Java02/src/Main.java	file:

package	com.packt.mqttessentials.Sensors02;

import	java.io.UnsupportedEncodingException;

import	javax.net.ssl.SSLSocketFactory;

import	org.eclipse.paho.client.mqttv3.IMqttActionListener;

import	org.eclipse.paho.client.mqttv3.IMqttToken;

import	org.eclipse.paho.client.mqttv3.MqttAsyncClient;

import	org.eclipse.paho.client.mqttv3.MqttConnectOptions;

import	org.eclipse.paho.client.mqttv3.MqttException;

import	org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence;

The	following	lines	start	the	declaration	of	the	Main	class	and	show	the	first	lines	of	the	static	main
method.	You	have	to	replace	the	value	for	the	mqttServerHost	with	the	IP	address	for	the	Mosquitto
server	or	any	other	MQTT	server	you	might	decide	to	use.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_04	folder,	in	the	Java02/src/Main.java	file:

public	class	Main	{

public	class	Main	{

	 private	final	static	String	BOARD_NAME	=	"location001";

	 private	final	static	String	ENCODING_FOR_PAYLOAD	=	"UTF-8";

	

	 public	static	void	main(String[]	args)	{

	 	 final	String	boardCommandsTopic	=	

String.format("commands/boards/%s",	BOARD_NAME);

	 	 final	String	boardDataBaseTopic	=	String.format("data/boards/%s/",	

BOARD_NAME);

	 	 final	String	boardStatusTopic	=	String.format("status/boards/%s",	

BOARD_NAME);

	 	 final	String	commandsTopicFilter	=	String.format("%s/+",	

boardCommandsTopic);

	 	

	 	 try	{

	 	 	 final	MqttConnectOptions	mqttConnectOptions	=	new	

MqttConnectOptions();

	 	 	 mqttConnectOptions.setMqttVersion(

	 	 	 	 MqttConnectOptions.MQTT_VERSION_3_1_1);

	 	 	 mqttConnectOptions.setKeepAliveInterval(

	 	 	 	 MqttConnectOptions.KEEP_ALIVE_INTERVAL_DEFAULT);

	 	 	 //	Last	will	message	configuration

	 	 	 final	String	lastWillMessageText	=	"OFFLINE";

	 	 	 byte[]	bytesForPayload;

	 	 	 try	{

	 	 	 	 bytesForPayload	=	

lastWillMessageText.getBytes(ENCODING_FOR_PAYLOAD);

	 	 	 }	catch	(UnsupportedEncodingException	e)	{

	 	 	 	 e.printStackTrace();

	 	 	 	 return;

	 	 	 }

	 	 	 mqttConnectOptions.setWill(boardStatusTopic,	

bytesForPayload,	2,	true);

	 	 	

	 	 	 MqttDefaultFilePersistence	filePersistence	=	new	

MqttDefaultFilePersistence();

	 	 	 //	Replace	localhost	with	the	IP	for	the	Mosquitto	server

	 	 	 //	or	other	MQTT	server

	 	 	 final	String	mqttServerHost	=	"localhost";

	 	 	 final	int	mqttServerPort	=	8883;

	 	 	 final	String	mqttServerURI	=	String.format(

	 	 	 	 "ssl://%s:%d",

	 	 	 	 mqttServerHost,

	 	 	 	 mqttServerPort);

	 	 	 //	In	case	you	don't	need	security:

	 	 	 //	final	int	mqttServerPort	=	8883;

	 	 	 //	final	String	mqttServerURI	=	String.format(

	 	 	 //					"ftp://%s:%d",

	 	 	 //					mqttServerHost,

	 	 	 //					mqttServerPort);

	 	 	 //	We	can	specify	our	own	client	id	

	 	 	 //	instead	of	calling	the	generateClientId	method

	 	 	 //final	String	mqttClientId	=	

MqttAsyncClient.generateClientId();

	 	 	 final	String	mqttClientId	=	BOARD_NAME;

	 	 	 MqttAsyncClient	mqttAsyncClient	=	new	MqttAsyncClient(

	 	 	 	 	 mqttServerURI,	

	 	 	 	 	 mqttClientId,

	 	 	 	 	 filePersistence);

First,	the	code	builds	many	strings	with	the	topics	that	we	will	use	to	subscribe	and	publish	messages.
Then,	the	code	creates	an	instance	of	the	org.eclipse.paho.client.mqttv3.MqttConnectOptions
class	named	mqttConnectOptions,	which	stores	the	values	for	the	different	options	we	can	configure
when	we	want	to	connect	with	an	MQTT	broker.	If	we	used	the	default	parameters,	we	would	work	with
MQTT	version	3.1.	We	want	to	work	with	MQTT	version	3.1.1,	and	therefore,	we	specify
MqttConnectOptions.MQTT_VERSION_3_1_1	as	an	argument	for
mqttConnectOption.setMqttVersion.

Then,	the	code	configures	the	last	will	message	by	calling	the	mqttConnectOptions.setWill	method
with	the	topic,	the	bytes	for	the	payload,	the	QoS	level	set	to	2,	and	true	as	the	value	for	the	retained
flag.	This	way,	if	the	client	connection	is	interrupted	or	the	Java	application	stops	running,	the	configured
last	will	message	will	be	sent	to	the	specified	topic	indicating	that	the	board	is	offline.

The	next	line	creates	an	instance	of	the
org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence	class	named
filePersistence.	In	this	case,	we	want	to	use	file	persistence	to	store	the	messages	because	we	will
publish	some	messages	with	a	QoS	level	of	2.	We	use	the	default	directory	for	the	file	that	persists	the
messages.	You	can	explore	the	different	configurations	based	on	your	needs.

Then,	the	code	declares	the	values	for	the	variables	that	specify	the	MQTT	server	host	name	or	IP,
mqttServerHost,	the	MQTT	server	port,	mqttServerPort,	and	the	MQTT	server	URI,
mqttServerURI,	built	with	the	values	of	the	other	two	variables.	The	next	line	sets	the	board	name	as	the
value	for	the	mqttClientId	variable.	This	way,	we	specify	a	fixed	value	for	our	client	ID.

The	next	line	creates	an	instance	of	the	org.eclipse.paho.client.mqttv3.MqttAsyncClient	class
named	mqttAsyncClient	with	the	MQTT	server	URI,	the	previously	specified	client	ID,	and	the	file
persistence	option	as	the	arguments.	This	instance	will	be	the	entry	point	for	our	MQTT	asynchronous
client.

The	following	lines	continue	the	declaration	of	the	public	static	main	method.	You	have	to	replace	the
value,	/Users/gaston/certificates,	in	the	certificatesPath	string	with	the	path	to	the
java_certificates	directory	you	created.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_04	folder,	in	the	Java02/src/Main.java	file:

//	Replace	/Users/gaston/certificates	with	the	path

	 	 	 //	in	which	you	saved	the	certificate	authority	file,

	 	 	 //	the	client	certificate	file	and	the	client	key

	 	 	 final	String	certificatesPath	=	

"/Users/gaston/certificates";

	 	 	 final	String	caCertificateFileName	=	

String.join(java.io.File.separator,	certificatesPath,	"ca.crt");

	 	 	 final	String	clientCertificateFileName	=	

String.join(java.io.File.separator,	certificatesPath,	"device001.crt");

	 	 	 final	String	clientKeyFileName	=	

String.join(java.io.File.separator,	certificatesPath,	"device001.key");

	 	 	 //	In	case	you	don't	need	security,

	 	 	 //	you	don't	need	to	create	an	SSLSocketFactory	instance

	 	 	 SSLSocketFactory	socketFactory;

	 	 	 try	{

	 	 	 	 socketFactory	=	SecurityHelper.createSocketFactory(

	 	 	 	 	 	 caCertificateFileName,	

	 	 	 	 	 	 clientCertificateFileName,	

	 	 	 	 	 	 clientKeyFileName);

	 	 	 }	catch	(Exception	e1)	{

	 	 	 	 e1.printStackTrace();

	 	 	 	 return;

	 	 	 }

	 	 	 //	In	case	you	don't	need	security,	you	don't	have	to	call

	 	 	 //	the	setSocketFactory	method

	 	 	 mqttConnectOptions.setSocketFactory(socketFactory);

	 	 	

	 	 	 SensorsManager	sensorsManager	=	new	

SensorsManager(mqttAsyncClient,	

	 	 	 	 boardCommandsTopic,	boardDataBaseTopic,	

ENCODING_FOR_PAYLOAD);

	 	 	

	 	 	 mqttAsyncClient.setCallback(sensorsManager);

The	first	lines	of	code	are	similar	to	the	code	we	analyzed	in	the	previous	example.	The	last	lines	create
an	instance	of	the	SensorsManager	class	named	sensorsManager	and	then	call	the
mqttAsyncClient.setCallback	method	with	this	instance	as	an	argument.

The	following	lines	end	the	public	static	main	method	and	the	Main	class.	The	code	file	for	the	sample	is
included	in	the	mqtt_essentials_gaston_hillar_04	folder,	in	the	Java02/src/Main.java	file:

//	In	this	case,	we	don't	use	the	token

	 	 	 IMqttToken	mqttConnectToken	=	mqttAsyncClient.connect(

	 	 	 	 mqttConnectOptions,	

	 	 	 	 null,	

	 	 	 	 new	IMqttActionListener()	{

	 	 	 	 	 @Override

	 	 	 	 	 public	void	onSuccess(IMqttToken	

asyncActionToken)	{

	 	 	 	 	 	 System.out.println(

	 	 	 	 	 	 	 String.format(

	 	 	 	 	 	 	 	 "Successfully	

connected"));

	 	 	 	 	 	 	 try	{

	 	 	 	 	 	 	 	 //	In	this	case,	we	

don't	use	the	token

	 	 	 	 	 	 	 	 IMqttToken	

subscribeToken	=	mqttAsyncClient.subscribe(

	 	 	 	 	 	 	 	 	

commandsTopicFilter,

	 	 	 	 	 	 	 	 	 2,	

	 	 	 	 	 	 	 	 	 null,	

	 	 	 	 	 	 	 	 	 new	

IMqttActionListener()	{

	 	 	 	 	 	 	 	 	 	

@Override

	 	 	 	 	 	 	 	 	 	

public	void	onSuccess(IMqttToken	asyncActionToken)	{

	 	 	 	 	 	 	 	 	 	 	

System.out.println(

	 	 	 	 	 	 	 	 	 	 	 	 	

String.format(

	 	 	 	 	 	 	 	 	 	 	 	 	 	

"Subscribed	to	the	%s	topic	with	QoS:	%d",

	 	 	 	 	 	 	 	 	 	 	 	 	 	

asyncActionToken.getTopics()[0],

	 	 	 	 	 	 	 	 	 	 	 	 	 	

asyncActionToken.getGrantedQos()[0]));

	 	 	 	 	 	 	 	 	 	 	

//	Publish	a	retained	message	indicating	the	board	is	online

	 	 	 	 	 	 	 	 	 	 	

sensorsManager.publishMessage(boardStatusTopic,	"ONLINE",	null,	2,	true);

	 	 	 	 	 	 	 	 	 	 }

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

@Override

	 	 	 	 	 	 	 	 	 	

public	void	onFailure(IMqttToken	asyncActionToken,	

	 	 	 	 	 	 	 	 	 	 	 	

Throwable	exception)	{

	 	 	 	 	 	 	 	 	 	 	

exception.printStackTrace();

	 	 	 	 	 	 	 	 	 	 }

	 	 	 	 	 	 	 	 	 });

	 	 	 	 	 	 	 }	catch	(MqttException	e)	{

	 	 	 	 	 	 	 	

e.printStackTrace();

	 	 	 	 	 	 	 }

	 	 	 	 	 }

	 	 	 	 	 @Override

	 	 	 	 	 public	void	onFailure(IMqttToken	

asyncActionToken,	

	 	 	 	 	 	 Throwable	exception)	{

	 	 	 	 	 	 //	This	method	is	fired	when	an	

operation	failed

	 	 	 	 	 	 exception.printStackTrace();

	 	 	 	 	 }

	 	 	 	 });

	 	 	

	 								while	(true)	{

	 	 sensorsManager.loop();

	 												try	{

	 																Thread.sleep(1000);

	 												}	catch	(InterruptedException	e)	{

	 																System.err.format(

	 																				"Sleep	interruption:	%s",

	 																				e.toString());

	 												}

	 								}

	 	 }	catch	(MqttException	e)	{

	 	 	 e.printStackTrace();

	 	 }

	 }

}

The	code	calls	the	mqttAsyncClient.connect	method	with	mqttConnectOptions	and	an	anonymous
class	that	implements	the	IMqttActionListener	interface	as	the	value	for	the	callback	argument.	The
connect	method	requires	the	callback	argument	of	the
org.eclipse.paho.client.mqttv3.IMqttActionListener	type.	The	anonymous	class	provides
implementations	for	the	following	two	methods	required	by	the	IMqttActionListener	interface:
onSuccess	and	onFailure.

The	onSuccess	method	prints	a	message	indicating	that	the	client	has	successfully	connected	with	the

MQTT	server	and	then	calls	the	mqttAsyncClient.subscribe	method	with	commandsTopicFilter	as
the	argument,	which	specifies	the	topic	filter	to	subscribe	to,	2	for	the	argument	that	specifies	the	desired
QoS	level,	null	for	the	userContext	argument,	and	another	anonymous	class	that	implements	the
IMqttActionListener	interface	as	the	value	for	the	callback	argument.	The	anonymous	class	provides
implementations	for	the	previously	explained	two	methods	required	by	the	IMqttActionListener
interface:	onSuccess	and	onFailure.

The	code	in	the	onSuccess	method	prints	a	message	indicating	that	the	client	has	subscribed	to	the	topic
filter	and	the	granted	QoS	level.	Then,	the	code	calls	the	sensorsManager.publish	method	to	publish	a
retained	message,	indicating	that	the	board	is	online	with	a	QoS	level	of	2.

After	the	code	calls	the	mqttAsyncClient.connect	method,	the	method	runs	a	while	loop	forever.	The
loop	calls	the	sensorsManager.loop	method	to	check	the	values	for	the	flags	that	determine	whether	the
method	must	publish	the	values	for	the	different	sensors	to	the	appropriate	topics	or	not.	Then,	the	loop
calls	the	Thread.sleep	method	to	make	the	thread	sleep	for	1	second.

Publishing	messages	with	commands	to	target
sensors
Make	sure	the	Mosquitto	server	or	any	other	MQTT	server	you	might	want	to	use	for	this	example	is
running.	Use	your	favorite	Java	IDE	to	run	the	example	in	any	computer	or	build	a	.jar	file	with	all	the
dependencies	included	and	launch	it	in	any	computer	or	device	that	you	want	to	use	as	the	MQTT	client
with	a	command	similar	to	the	following	line.	In	case	you	don't	run	the	example	in	the	same	computer	in
which	you	are	running	the	MQTT	server,	remember	to	change	the	value	for	the	mqttServerHost	string	in
the	main	method	of	the	Main	class.	You	must	also	copy	the	certificate	files	and	the	.jar	file	to	the	device.
The	next	line	uses	Sensors02-0.0.1-SNAPSHOT.jar	as	the	JAR	file	for	the	previous	example:	java	-jar
Sensors02-0.0.1-SNAPSHOT.jar

Now,	follow	these	steps	to	use	the	MQTT.fx	GUI	utility	to	subscribe	to	many	topics	and	publish	messages
with	commands	to	two	topics	to	control	the	sensors.

1.	 Launch	MQTT.fx	and	establish	a	connection	with	the	MQTT	server	by	following	the	steps	you
learned	in	Chapter	2,	Securing	an	MQTT	Mosquitto	Server.

2.	 Click	Subscribe,	click	QoS	2,and	enter	status/boards/location001	in	the	dropdown	on	the	left-
hand	side	of	the	Subscribe	button.	Then,	click	the	Subscribe	button.	MQTT.fx	will	display	a	new
panel	on	the	left-hand	side	with	the	topic	filter	to	which	we	have	subscribed	with	QoS	level	2	and	a
message	with	ONLINE	as	a	payload.	We	subscribed	after	the	code	that	published	this	message	was
executed.	However,	the	message	appears	in	our	subscription	because	it	was	published	with	the
retained	flag	set	to	true.	The	following	screenshot	shows	the	message	displayed	in	MQTT.fx	after
we	subscribe	to	the	topic:	

	

Enter	data/boards/location001/#	in	the	dropdown	on	the	left-hand	side	of	the	Subscribe	button.
Then,	click	QoS	0	and	the	Subscribe	button.	MQTT.fx	will	display	a	new	panel	on	the	left-hand	side	with
the	topic	filter	to	which	we	have	subscribed	with	QoS	level	0.	No	messages	will	appear	that	match	this
topic	filter	because	the	Java	application	has	the	two	sensors	turned	off	and	they	aren't	publishing	data.
Click	Publish	and	enter	commands/boards/location001/sunlight	in	the	dropdown	on	the	left-hand

side	of	the	Publish	button.
Click	QoS	2	on	the	right-hand	side	of	the	Publish	button.
Enter	the	following	text	in	the	textbox	below	the	Publish	button:	TURN	ON.	Then,	click	the	Publish

button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.	This	way,	the	Java	application	will
turn	on	the	sunlight	sensor	and	it	will	start	publishing	data	to	the
data/boards/location001/sunlight/uv,	data/boards/location001/sunlight/visiblelight,
and	data/boards/location001/sunlight/ir	topics.
Enter	commands/boards/location001/earthhumidity	in	the	dropdown	on	the	left-hand	side	of	the

Publish	button.
Enter	the	following	text	in	the	textbox	below	the	Publish	button:	TURN	ON.	Then,	click	the	Publish

button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.	This	way,	the	Java	application	will
turn	on	the	sunlight	sensor	and	it	will	start	publishing	data	to	the
data/boards/location001/earthhumidity	topic.
Click	Subscribe	and	you	will	see	many	messages	that	match	the	data/boards/location001/#	topic

filter.	The	following	screenshot	shows	many	of	the	messages	received	that	match	the	topic	filter	after	we
turned	on	the	sensors	through	commands	in	messages:	

	

Click	Publish	and	enter	commands/boards/location001/sunlight	in	the	dropdown	on	the	left-hand
side	of	the	Publish	button.
Enter	the	following	text	in	the	textbox	below	the	Publish	button:	TURN	OFF.	Then,	click	the	Publish

button.	MQTT.fx	will	publish	the	entered	text	to	the	specified	topic.	This	way,	the	Java	application	will
turn	off	the	sunlight	sensor	and	it	will	stop	publishing	data	to	the
data/boards/location001/sunlight/uv,	data/boards/location001/sunlight/visiblelight,
and	data/boards/location001/sunlight/ir	topics.
Click	Subscribe	and	you	will	see	that	only	the	messages	for	the

data/boards/location001/earthhumidity	topic	are	arriving	and	matching	the
data/boards/location001/#	topic	filter.	The	following	screenshot	shows	many	of	the	messages
received	that	match	the	topic	filter	after	we	turned	off	the	sunlight	sensor	through	a	command	in	a
message:

	

Go	to	the	device	and	the	window	in	which	you	executed	the	Java	application.	You	will	see	the	following
output:	Successfully	connected	Subscribed	to	the	commands/boards/location001/+	topic	with	QoS:	2
Topic:	commands/boards/location001/sunlight.	Payload:	TURN	ON	Topic:
commands/boards/location001/sunlight.	Payload:	sunlight	successfully	processed	command:	TURN
ON	Topic:	commands/boards/location001/earthhumidity.	Payload:	TURN	ON	Topic:
commands/boards/location001/earthhumidity.	Payload:	earthhumidity	successfully	processed
command:	TURN	ON	Topic:	commands/boards/location001/sunlight.	Payload:	TURN	OFF	Topic:
commands/boards/location001/sunlight.	Payload:	sunlight	successfully	processed	command:	TURN
OFF

Press	Ctrl+C	to	stop	the	execution	of	the	program	or	use	the	appropriate	command	in	case	you	are
running	the	Java	application	in	your	favorite	IDE.	The	generated	MQTT	client	will	close	the	connection
with	the	MQTT	server	and	the	configured	last	will	message	will	be	sent	to	the
status/boards/location001	topic.

Go	back	to	MQTT.fx	and	click	Subscribe.	You	will	see	that	a	message	with	OFFLINE	as	the	payload	has
arrived	to	the	status/boards/location001	topic.	The	following	screenshot	shows	the	configured	last
will	message	that	has	arrived	in	MQTT.fx:	

	

Test	your	knowledge
1.	 The	Eclipse	Paho	Java	Client	provides:

1.	 Only	a	blocking	(synchronous)	API.
2.	 Only	a	non-blocking	(asynchronous)	API.
3.	 Both	a	blocking	(synchronous)	and	a	non-blocking	(asynchronous)	API.

2.	 In	the	Paho	Java	API,	an	instance	of	MqttAsyncClient	represents:
1.	 The	synchronous	MQTT	client.
2.	 The	asynchronous	MQTT	client.
3.	 The	asynchronous	MQTT	message.

3.	 After	the	MqttAsyncClient	instance	establishes	a	connection	with	the	MQTT	server,	which	of	the
following	methods	declared	in	the	IMqttActionListener	interface	will	be	called?
1.	 onSuccess.
2.	 connectCallback.
3.	 onConnect.

4.	 After	the	MqttAsyncClient	instance	receives	a	message	from	one	of	the	topic	filters	to	which	it	has
subscribed,	which	of	the	following	methods	declared	in	the	MqttCallback	interface	will	be	called?
1.	 onSuccess.
2.	 onMessage.
3.	 messageArrived.

5.	 Which	of	the	following	methods	of	an	MqttConnectOptions	instance	allows	you	to	set	a	last	will
message?
1.	 setLastWillMessage.
2.	 setLastWill.
3.	 setWill.

Summary
In	this	chapter,	we	analyzed	the	requirements	to	control	sensors	wired	to	different	IoT	boards	with	MQTT
messages.	We	defined	the	topics	that	we	would	use	and	the	commands	that	would	be	part	of	the	messages'
payloads	to	control	sensors.	We	decided	to	take	advantage	of	the	last	will	and	testament	feature	of	MQTT.
Then,	we	worked	with	the	Eclipse	Paho	Java	Client	to	write	Java	code	that	connected	a	non-blocking
(asynchronous)	MQTT	client	to	the	MQTT	server.

We	created	a	security	helper	class	to	establish	a	TLS	secured	connection	and	we	worked	with
asynchronous	notifications	and	callbacks	in	Java.	We	subscribed	to	topics,	understood	how	notification
events	worked,	and	we	wrote	code	that	processed	commands	that	interacted	with	sensors.

Finally,	we	worked	with	a	GUI	utility	to	interact	with	our	Java	application	through	MQTT	messages.	We
were	able	to	turn	the	sensors	on	and	off	and	retrieve	data	from	them.

Now	that	we	have	understood	how	to	use	Java	to	work	with	MQTT,	we	will	use	MQTT	over	WebSockets
to	control	home	automation	with	an	HTML	5	web	page,	JavaScript,	and	Node.js,	which	is	what	we	are
going	to	discuss	in	the	next	chapter.

Chapter	5.	Controlling	Home	Automation	in
JavaScript
In	this	chapter,	we	will	write	JavaScript	code	to	control	home	automation	with	MQTT	messages.	We	will
write	code	that	will	be	able	to	run	on	web	browsers.	In	addition,	we	will	use	Node.js	to	write	code	that
runs	on	IoT	boards,	receives	MQTT	messages	and	controls	devices	wired	to	the	boards.	We	will:

Understand	the	requirements	to	control	home	automation	with	MQTT	and	WebSockets
Define	the	topics	and	commands	to	control	home	automation
Enable	WebSockets	for	a	Mosquitto	server
Understand	the	Eclipse	Paho	JavaScript	asynchronous	client
Create	an	HTML	5	web	page	to	control	LEDs
Publish	messages	to	target	remote	devices	in	JavaScript
Process	the	received	messages	in	JavaScript
Work	with	WebSockets	to	connect	to	the	MQTT	server
Subscribe	to	topics	in	JavaScript
Process	commands	that	interact	with	LEDs	in	Node.js
Run	the	home	automation	web	application
Debug	the	home	automation	web	application
Secure	MQTT	over	WebSockets	with	TLS

Understanding	the	requirements
Now,	we	want	to	be	able	to	control	home	automation	in	any	web	browser.	Hence,	we	have	to	be	able	to
send	and	receive	MQTT	messages	in	these	web	browsers.	There	are	no	W3C	standards	for	implementing
MQTT	support	in	web	browsers.	No	major	web	browser	has	implemented	direct	MQTT	support.
Luckily,	MQTT	over	WebSockets	makes	it	possible	for	us	to	encapsulate	MQTT	messages	on
WebSockets	and	use	any	modern	web	browser	that	supports	WebSockets	as	a	client	for	an	MQTT	server
that	also	provides	support	for	WebSockets.

Tip

Mosquitto	provides	support	for	MQTT	over	WebSockets.	However,	we	must	enable	this	support	by
making	changes	in	the	configuration	file.	In	case	you	don't	want	to	work	with	Mosquitto,	you	must	make
sure	that	the	MQTT	server	you	use	provides	support	for	MQTT	over	WebSockets	to	work	with	this
example.

First,	we	will	create	a	web	page	with	HTML	5	and	JavaScript	code	to	generate	an	MQTT	client	that	will
act	as	a	publisher	and	subscriber.	We	will	connect	a	JavaScript	MQTT	client	to	the	MQTT	server	via
WebSockets,	and	we	will	generate	commands	to	control	lights	with	MQTT	messages.

These	commands	will	allow	us	to	change	the	colors	of	many	lights	wired	to	different	IoT	boards	that	will
run	JavaScript	Node.js	code	to	subscribe	to	topics	and	process	the	messages	with	the	commands.	In	this
case,	we	will	connect	a	Node.js	MQTT	client	to	the	MQTT	server	via	WebSockets,	and	we	will	process
the	received	commands.	We	want	our	JavaScript	code	to	run	on	many	platforms	because	we	will	use	the
same	code	base	to	change	the	colors	of	lights	that	use	the	following	IoT	boards.	It	is	possible	to	install
and	run	Node.js	in	all	of	these	boards:

Raspberry	Pi	3
Intel	Edison
Intel	Joule	570x
Intel	Joule	550x

Each	platform	will	work	with	different	kinds	of	lights	and	other	elements	that	we	will	control	as	part	of
our	home	automation	solution.	However,	we	will	focus	on	the	basic	features	that	will	allow	us	to	change
the	colors	of	LEDs	(Light	Emitting	Diodes)	to	keep	our	example	simple	and	to	stay	concentrated	on
MQTT	over	WebSockets.	Then,	we	will	be	able	to	use	this	project	as	a	baseline	for	other	solutions	that
require	us	to	run	code	on	an	IoT	board	that	runs	JavaScript	Node.js	code,	has	to	connect	to	an	MQTT
server	via	WebSockets,	and	process	commands.

The	code	that	runs	on	the	boards	that	have	LEDs	wired	to	them	must	be	able	to	process	commands
received	in	messages	in	a	specific	topic.	We	will	use	JSON	strings	in	the	payloads.

The	client	application,	that	is,	the	web	page,	must	allow	us	to	select	the	desired	color	for	different	LEDs
that	might	be	connected	to	different	boards.	The	client	application	doesn't	need	to	know	the	board	to
which	each	LED	is	wired.	The	JavaScript	code	in	the	web	page	will	publish	MQTT	messages	with	JSON
strings	to	the	topic	for	each	LED.	The	client	application	must	display	the	results	of	executing	each

command.	Each	IoT	board	must	publish	a	message	to	a	specific	topic	whenever	a	command	is
successfully	executed.

Defining	the	topics	and	commands	to	control
home	automation
We	will	use	the	following	topic	name	to	publish	the	commands	for	an	LED:
home/control/leds/lednumber,	where	lednumber	must	be	replaced	with	a	unique	numeric	ID
assigned	to	an	LED	wired	to	a	board.	For	example,	if	we	assign	1	as	the	ID	for	an	LED	that	is	wired	to	an
Intel	Joule	570x	board,	we	will	have	to	publish	commands	to	the	home/control/leds/1	topic	and	the
code	that	runs	on	this	board	will	subscribe	to	this	topic	to	receive	messages	with	commands	and	react	to
them.

Note	that	the	topic	name	doesn't	include	details	about	the	board	and	just	focuses	on	the	ID	assigned	to	the
LED.	This	is	a	specific	requirement	because	it	is	necessary	to	make	it	possible	to	change	the	board	to
which	the	LEDs	are	wired	without	requiring	edits	in	the	client	code.	The	client	code	doesn't	have	to	know
anything	about	the	boards.	Hence,	the	code	that	runs	on	the	IoT	boards	must	subscribe	to	all	the	topics	for
the	different	LEDs	that	they	have	wired.	Of	course,	everything	we	have	learned	so	far	about	MQTT,	that
is,	topics	and	filters,	will	provide	you	with	many	ideas	on	how	to	organize	the	topics.	In	this	case,	we	are
just	using	one	possible	solution	that	is	definitely	not	the	best	one	but	will	allow	us	to	learn	how	MQTT
works	over	WebSockets.	The	solution	has	been	chosen	for	simplicity	rather	than	scalability.

We	will	use	the	following	topic	name	to	make	the	IoT	boards	publish	details	about	the	successfully
executed	commands:	home/results/leds/lednumber,	where	lednumber	must	be	replaced	with	a
unique	numeric	ID	assigned	to	an	LED	wired	to	the	board.	For	example,	if	we	assign	5	as	the	ID	for	an
LED	that	is	wired	to	a	Raspberry	Pi	3	board,	the	client	that	wants	to	receive	information	about
successfully	processed	commands	has	to	subscribe	to	the	home/results/leds/5	topic.

The	commands	will	be	sent	in	a	JSON	string	with	a	key-value	pair.	Our	example	will	support	just	one
command	that	allows	us	to	set	the	color	for	an	LED.	The	key	will	always	be	"Color"	and	the	value	will
be	the	desired	RGB	(short	for	Red	Green	Blue)	color	as	a	hexadecimal	string.

The	following	line	shows	an	example	of	the	payload	for	a	command	that	makes	an	LED	display	the	red
color:

				{"Color":	"FF0000"}

The	following	line	shows	an	example	of	the	payload	for	a	command	that	makes	an	LED	display	the	blue
color:

				{"Color":	"0000FF"}

We	have	all	the	necessary	details	to	start	coding	with	HTML	5,	JavaScript,	and	Node.js.

Enabling	WebSockets	for	a	Mosquitto	server
Now,	we	will	configure	Mosquitto	to	work	with	WebSockets.	First,	we	will	work	with	WebSockets
without	TLS,	and	therefore,	the	communications	between	the	client	and	Mosquitto	through	WebSockets
will	be	unsecure.	This	way,	any	client	that	knows	the	host	name	and	port	will	be	able	to	establish	a
communication	with	the	Mosquitto	server.

In	case	you	are	running	the	Mosquitto	server	in	a	Terminal	window	in	macOS	or	Linux,	press	Ctrl+C	to
stop	it.	In	Windows,	stop	the	appropriate	service.

Go	to	the	Mosquitto	installation	directory	and	open	the	mosquitto.conf	configuration	file.	In	Chapter	2,
Securing	an	MQTT	Mosquitto	Server,	we	learned	that	it	is	a	good	practice	to	make	a	backup	copy	of	the
existing	mosquitto.conf	configuration	file	before	making	changes	to	it.	This	way,	we	can	easily	roll
back	to	the	previous	configuration	if	something	goes	wrong.

In	macOS,	Linux,	or	Windows,	add	the	following	lines	at	the	end	of	the	configuration	file:

listener	9001	0.0.0.0					protocol	websockets

We	specified	the	9001	value	for	the	listener	option	to	make	Mosquitto	listen	for	incoming	network
connections	on	port	9001.	This	port	is	a	very	common	port	number	for	MQTT	over	WebSockets.

The	protocol	option	is	the	next	line	after	we	defined	the	new	listener	and	specified	websockets	as	the
desired	protocol	to	use	on	port	9001.	This	way,	we	enable	Mosquitto's	support	for	MQTT	over
WebSockets	on	port	9001.

Save	the	changes	to	the	mosquitto.conf	configuration	file	and	launch	Mosquitto	again	with	the	same
mechanism	we	learned	for	Linux,	macOS,	and	Windows	in	Chapter	1,	Lightweight	Messaging	with
MQTT	3.1.1	and	Mosquitto	.	The	Mosquitto	server	will	add	WebSockets	support	on	port	9001	to	the
previously	configured	listener	that	will	still	work	with	MQTT	with	TLS	on	port	8883.	It	is	very	important
to	understand	that	the	certificates	we	configured	for	the	listener	that	work	on	port	8883	do	not	apply	to	the
WebSockets	listener	on	port	9001.	Each	listener	has	its	own	TLS	configuration.	In	this	case,	we	aren't
using	TLS	for	WebSockets	on	port	9001.

Testing	WebSockets	with	the	Eclipse	Paho	client
JavaScript	utility
We	will	use	the	Eclipse	Paho	client	JavaScript	utility	to	generate	a	simple	MQTT	over	WebSockets	client
on	a	web	browser.	We	will	make	this	client	subscribe	to	a	topic	and	print	all	the	messages	it	receives.
Follow	the	next	steps:

1.	 Open	a	web	browser	in	the	same	computer	in	which	you	are	running	the	Mosquitto	server	and
navigate	to	http://www.ecli	pse.org/paho/clients/js/utility	.

2.	 Enter	localhost	in	Host.
3.	 Enter	9001	in	Port.
4.	 Make	sure	/ws	is	specified	in	Path.
5.	 Make	sure	the	TLS	checkbox	is	unchecked.	The	following	screenshot	shows	the	web	page	with	the

appropriate	values	for	the	connection	options:	

	

Click	Connect.	The	web	page	will	display	Connected	to:	localhost:9001/ws	as,	followed	by	the
Client	ID	that	was	automatically	generated.
Go	to	the	Subscribe	panel.	Enter	home/control/leds/1	in	Topic,	below	Subscribe.
Select	2	in	the	QoS	dropdown	below	Subscribe.	The	following	screenshot	shows	the	Subscribe	panel

with	the	appropriate	values	for	the	subscription	options:	

http://www.eclipse.org/paho/clients/js/utility

	
Click	the	Subscribe	button.
Go	to	the	Publish	Message	panel.	Enter	home/control/leds/1	in	Topic,	below	Publish	Message.
Select	2	in	the	QoS	dropdown	below	Publish	Message.
Enter	the	following	text	in	the	Message	textbox	below	Publish	Message:	{"Color":	"FFA0A0"}.
The	following	screenshot	shows	the	Publish	Message	panel	with	the	appropriate	values	for	the

message	publication	options:	

	
Click	the	Publish	button.	The	web	page	will	use	MQTT	over	WebSockets	to	publish	the	message.	The

web	page	is	a	subscriber	to	the	topic	to	which	we	published	the	message,	and	therefore,	we	will	see	the
message	displayed	in	the	Last	Messages	panel	at	the	bottom	of	the	page.	The	following	screenshot	shows
the	Last	Messages	panel	with	the	message	that	has	arrived	and	matched	the	subscription's	topic	filter	we
specified:

	

With	the	configuration	changes	we	have	made	to	the	Mosquitto	server,	any	client	that	uses	MQTT	over
WebSockets	will	be	able	to	establish	a	connection	with	Mosquitto,	and	subscribe	and	publish	to	topics.
Remember	that	with	the	configuration	we	are	using,	the	data	sent	between	the	MQTT	over	WebSocket
clients	and	the	MQTT	server	isn't	encrypted.

Understanding	the	Eclipse	Paho	JavaScript
asynchronous	client
In	Chapter	4,	Interacting	with	Sensors	in	Java,	you	learned	that	the	Eclipse	Paho	project	provides	an
open	source	client	implementation	of	MQTT,	and	you	worked	with	its	Java	client.	The	project	also
includes	a	JavaScript	client,	also	known	as	the	Paho	JavaScript	client	or	Eclipse	Paho	JavaScript	client.
The	web	page	for	the	Eclipse	Paho	project	is	http://www.eclipse.org/paho.	The	web	page	for	the	Eclipse
Paho	JavaScript	client	is	http://eclipse.org/paho/clients/js.	This	JavaScript	client	provides	only	a	non-
blocking	(asynchronous)	API.

The	previous	web	page	uses	the	Eclipse	Paho	JavaScript	client	to	allow	us	to	subscribe	to	topic	filters
and	publish	messages	to	topics.	Now,	we	will	use	the	same	JavaScript	client	in	a	new	web	page.

Tip

In	this	case,	you	will	download	the	plain	library.	Take	into	account	that	you	can	also	consume	the	plain
library	and	the	minified	library	from	cdnjs.com,	as	explained	in	the	previously	mentioned	web	page	for
this	library.

The	JavaScript	client	exposes	a	single	object	name	in	the	global	namespace.	The	global	Paho.MQTT
module	has	a	single	public	function	named	client.	This	function	returns	a	Paho.MQTT.client	object
based	on	the	specified	connection	details.

The	Paho	JavaScript	API	is	composed	of	the	following	two	main	objects:

Paho.MQTT.Client:	This	object	represents	the	asynchronous	MQTT	over	WebSockets	client	and
allows	us	to	specify	the	callbacks	that	notify	the	application	when	specific	events	occur,	such	as	a
new	message	arriving	and	a	connection	being	established	with	the	MQTT	server.
Paho.MQTT.Message:	This	object	encapsulates	an	MQTT	message	with	its	topic	and	its	payload.	It
is	very	important	to	understand	that	the	Paho	JavaScript	API	uses	the	destination	name	to	refer	to	the
topic	for	a	message.

http://www.eclipse.org/paho
http://eclipse.org/paho/clients/js

Creating	an	HTML	5	web	page	to	control	LEDs
First,	we	will	create	a	new	HTML	5	file	called	home_automation.html.	The	web	page	will	also	use	a
pure	JavaScript	color	picker:	JSColor.	The	main	web	page	for	JSColor	is	http://jscolor.com	.	The
following	lines	show	the	code	for	the	single	web	page	for	our	web	application.	The	code	file	for	the
sample	is	included	in	the	mqtt_essentials_gaston_hillar_05	folder,	in	the	home_automation.html
file:

<html>		

		<head">

				<script	src="paho.javascript-1.0.2/mqttws31.js"></script">

				<script	src="jscolor-2.0.4/jscolor.js""></script>

				<script	src="home_automation.js""></script>

				<title">MQTT	over	WebSockets	Sample</title>

		</head>

		

		<body>		

				<div	id="status"">Not	connected	with	MQTT	Server</div>

				<div	id="led-1">

								

								Select	color	for	LED	#1

								

								<input	class="jscolor"	onchange="APP.HomeAutomation.Manager.updateLed(1,	

this.jscolor)"	value="FFFFFF">

								<svg	height="100"	width="100">

										<circle	id="status-circle-led-1"	cx="50"	cy="50"	r="40"	stroke="black"	

stroke-width="3"	fill="#FFFFFF"	/>

								</svg>

								<div	id="status-message-led-1">

								</div>

				</div>

				<div	id="led-2">

								

								Select	color	for	LED	#2

								

								<input	class="jscolor"	onchange="APP.HomeAutomation.Manager.updateLed(2,	

this.jscolor)"	value="FFFFFF">

								<svg	height="100"	width="100">

										<circle	id="status-circle-led-2"	cx="50"	cy="50"	r="40"	stroke="black"	

stroke-width="3"	fill="#FFFFFF"	/>

								</svg>

								<div	id="status-message-led-2">

								</div>

				</div>

				<div	id="led-3">

								

								Select	color	for	LED	#3

								

								<input	class="jscolor"	onchange="APP.HomeAutomation.Manager.updateLed(3,	

this.jscolor)"	value="FFFFFF">

								<svg	height="100"	width="100">

										<circle	id="status-circle-led-3"	cx="50"	cy="50"	r="40"	stroke="black"	

http://jscolor.com/

stroke-width="3"	fill="#FFFFFF"	/>

								</svg>

								<div	id="status-message-led-3">

								</div>

				</div>

		</body>

</html>

<script>

document.addEventListener("DOMContentLoaded",	function(event)	{

				APP.HomeAutomation.Manager.connect();

});

</script>

The	first	lines	load	the	following	three	scripts:

mqttws31.js:	This	is	the	Paho	JavaScript	client	script	file
jscolor.js:	This	is	the	JSColor	script	file
home_automation.js:	This	is	a	script	file	that	we	will	create	later	and	that	will	declare	the
APP.HomeAutomation.Manager	object

The	body	section	declares	a	div	element	whose	id	is	status	and	will	change	its	text	when	a	connection
is	successfully	established	with	the	MQTT	server.

Then,	the	code	declares	three	div	elements	with	almost	the	same	code:	led-1,	led-2,	and	led-3.	Each
div	element	represents	an	LED.	In	this	case,	we	repeated	the	code	and	we	just	replaced	the	LED	number
in	the	different	parts	of	the	code.	However,	in	a	real-life	application,	you	will	work	with	a	framework
that	will	allow	you	to	use	templates	to	generate	these	pieces	of	code	where	just	one	identifier	changes.
We	want	to	keep	things	simple	and	use	HTML	5	and	JavaScript	without	any	additional	templates	or
frameworks.

Each	div	that	represents	an	LED	declares	an	input	element	with	the	jscolor	class	that	will	display	the
JSColor	pure	JavaScript	color	picker.	When	the	user	clicks	or	taps	on	this	input	element,	a	color	picker
will	be	displayed,	and	a	click	on	a	tap	or	a	color	will	fire	the	code	specified	for	onchange.	The
following	line	shows	the	code	that	runs	for	the	first	LED:

				APP.HomeAutomation.Manager.updateLed(1,	this.jscolor)

The	line	calls	the	APP.HomeAutomation.Manager.updateLed	function	with	the	LED	identifier	as	an
argument	(1)	and	a	string	with	the	selected	color	from	the	color	picker	(this.jscolor).

In	addition,	the	div	that	represents	an	LED	declares	an	SVG	circle	whose	id	is	status-circle-led-,
followed	by	the	LED	identifier.	Whenever	the	IoT	board	successfully	updates	the	color	for	the	LED	and
publishes	a	status	message,	the	web	page	will	receive	this	message	and	update	the	fill	color	for	the	circle
with	the	color	the	user	has	chosen.

Finally,	the	div	that	represents	an	LED	declares	a	div	element	whose	id	is	status-message-led-,

followed	by	the	LED	identifier.	The	web	page	will	change	its	text	indicating	the	color	that	has	been	set
for	the	LED	in	the	IoT	board.

The	script	element	at	the	end	of	the	code	uses	pure	JavaScript	to	call	the
APP.HomeAutomation.Manager.connect	function	once	the	page	DOM	(short	for	Document	Object
Model)	is	ready	for	the	JavaScript	code	to	execute.	In	case	you	are	working	with	jQuery,	you	can	call	this
function	within	a	$(document).ready	block.	However,	we	want	to	keep	the	example	with	pure
JavaScript.

Note

In	order	to	keep	the	example	simple	and	focused	on	the	code,	we	don't	create	a	CSS	file	with	styles	for
the	different	elements	and/or	classes	declared	in	the	HTML	5	file.

Publishing	messages	to	target	remote	devices	in
JavaScript
Now,	we	will	create	a	new	JavaScript	file	named	home_automation.js	that	will	provide	an
APP.HomeAutomation.Manager	object	with	many	strings,	objects,	and	functions	that	we	will	use	to	make
it	easy	to	establish	a	connection	with	MQTT	over	WebSockets.	The	functions	will	work	with	the	Paho
JavaScript	client.

We	will	split	the	code	for	the	home_automation.js	file	in	many	code	snippets	to	make	it	easier	for	us	to
understand	each	code	section.	The	following	lines	start	the	declaration	of	the
APP.HomeAutomation.Manager	object.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_05	folder,	in	the	home_automation.js	file:

var	APP	=	APP	||	{};

var	APP	=	APP	||	{};

APP.HomeAutomation	=	APP.HomeAutomation	||	{};

APP.HomeAutomation.Manager	=	{

				ledCommandBaseTopic:	"home/leds/",

				ledResultBaseTopic:	"home/results/leds/",

				//	Replace	with	the	host	name	for	the	MQTT	Server

				host:	"localhost",

				//	Replace	with	the	port	number	for	MQTT	over	WebSockets	the	MQTT	Server

				port:	9001,

				clientId:	"home-web-"	+	clientId:	"home-web-"	+	

Math.random().toString(16).substr(2,	8),

				mqttConnectOptions:	{

								timeout:	3,

								//	I	want	to	use	MQTT	Version	3.1.1

								mqttVersion:	4,

								mqttVersionExplicit:	true,

								//	For	TLS	security,	you	just	need	to	set	useSSL	to	True

								//	and	install	the	necessary	certificates

								//	useSSL:	true,

								useSSL:	false,

								cleanSession:	true

				},

The	previous	code	declares	many	variables	that	we	will	use	within	the	functions	declared	in	the
APP.HomeAutomation.Manager	object.	The	mqttConnectOptions	object	specifies	values	for	the
different	options	that	we	will	use	to	establish	a	connection	with	the	MQTT	Server.	We	will	pass	this
object	as	an	argument	when	we	ask	the	Paho	JavaScript	client	to	connect	with	the	MQTT	server.	We
specify	the	necessary	values	to	work	with	MQTT	version	3.1.1,	use	a	clean	session,	and	work	with	an
unsecured	connection.

The	following	lines	declare	the	updateLed,	onConnectionLost,	onMessageArrived,	and
onMessageDelivered	functions	within	the	APP.HomeAutomation.Manager	object	and
createTrustManagerFactory.	The	code	file	for	the	sample	is	included	in	the

mqtt_essentials_gaston_hillar_05	folder,	in	the	home_automation.js	file:

updateLed:	function(ledId,	jscolor)	{

updateLed:	function(ledId,	jscolor)	{

								console.log('I	will	send	'	+	jscolor	+	'	to	LED	#'	+	ledId);

								var	payload	=	{

												"Color":	jscolor.toString()

								};

								payloadString	=	JSON.stringify(payload);

								message	=	new	Paho.MQTT.Message(payloadString);

								message.destinationName	=	this.ledCommandBaseTopic	+	ledId;

								message.qos	=	0;

								this.client.send(message);

				},

				onConnectionLost:	function(responseObject)	{

								if	(responseObject.errorCode	!==	0)

												console.log("onConnectionLost:	"	+	responseObject.errorMessage);

				},

				onMessageArrived:	function(message)	{

								console.log("Message	arrived	for	topic:	"	+	message.destinationName	+	",	

with	the	following	payload:	"	+	message.payloadString);

								if	

(!message.destinationName.startsWith(APP.HomeAutomation.Manager.ledResultBaseTopic)

)	{

												return;

								}

								var	ledNumber	=	

message.destinationName.replace(APP.HomeAutomation.Manager.ledResultBaseTopic,	"");

								var	payload	=	JSON.parse(message.payloadString);

								if	(ledNumber	&&	payload.Color)	{

												//	Update	the	status	for	the	LED	that	has	successfully	changed	its	

color

												var	statusLedDiv	=	document.getElementById("status-message-led-"	+	

ledNumber);

												//statusLedDiv.style.backgroundColor	=	"#"	+	payload.Color;

												statusLedDiv.textContent	=	"LED's	color	set	to	#"	+	payload.Color;

												var	statusLedCircle	=	document.getElementById("status-circle-led-"	+	

ledNumber);

												statusLedCircle.style.fill	=	"#"	+	payload.Color;

				},

				onMessageDelivered:	function(message)	{

				},

The	updateLed	function	receives	the	LED	ID	and	the	RGB	color	as	a	hexadecimal	string	in	the	ledId
and	jscolor	arguments.	The	code	prints	a	message	to	the	console	log	indicating	that	it	will	send	the	color
received	in	jscolor	to	the	LED	identifier	received	in	the	ledId	argument.	Then,	the	code	creates	a	new
object	named	payload	with	"Color"	as	the	key	and	the	result	of	jscolor.toString()	as	the	value.	The
next	line	calls	the	JSON.stringify	function	with	payload	as	an	argument	to	generate	the	JSON	string
representation	of	the	object	and	to	save	it	in	the	payloadString	variable.

Then,	the	code	creates	a	new	Paho.MQTT.Message	instance	named	message	with	payloadString	as	an
argument.	Then,	the	code	sets	the	value	of	the	message.destinationName	attribute	to
this.ledCommandBaseTopic,	concatenated	with	the	value	received	in	the	ledId	argument.	The
destinationName	attribute	for	a	Paho.MQTT.Message	instance	specifies	the	topic	to	which	a	message
has	to	be	published.

The	default	value	for	the	QoS	level	for	a	message	is	0.	However,	the	next	line	sets	the	value	for	the
message.qos	attribute	to	0	to	make	it	easy	to	change	it	if	we	want	to	work	with	other	QoS	levels.

The	connect	function	that	we	will	analyze	later	creates	a	Paho.MQTT.Client	instance	and	saves	it	in
this.client.	Finally,	the	updateLed	function	calls	the	this.client.send	function	with	the	message	as
an	argument	to	publish	the	MQTT	message.	The	function	runs	with	an	asynchronous	execution,	and	after
the	message	is	successfully	delivered,	the	Paho.MQTT.Client	instance	will	execute	the	callback	function
assigned	to	the	client.onMessageDelivered	attribute	in	the	connect	function.	Remember	that	a
delivered	message	has	a	different	meaning	according	to	the	QoS	level	that	we	use	to	publish	a	message.

The	onConnectionLost	function	receives	a	responseObject	object	as	an	argument.	This	function	prints
a	message	to	the	console	log	with	the	value	of	the	responseObject.errorMessage	attribute	when	the
responseObject.errorCode	attribute	is	not	equal	to	0.

Processing	the	received	messages	in	JavaScript
The	onMessageArrived	function	receives	a	Paho.MQTT.Message	instance	in	the	message	argument.	The
code	prints	a	message	to	the	console	log	indicating	that	a	message	has	arrived	with	the	destination	topic
and	the	payload	string	included	in	the	message.destinationName	and	message.payloadString
attributes.

Then,	the	code	checks	whether	message.destionationName	starts	with
APP.HomeAutomation.Manager.ledResultBaseTopic	to	make	sure	that	the	message's	destination	topic
is	the	one	defined	for	the	results	of	the	commands	related	to	LEDs.

Note

In	this	case,	the	code	only	subscribes	to	the	topic	filters	that	we	defined	for	publishing	messages	with	the
results	of	the	commands	related	to	LEDs.	However,	we	include	this	code	to	understand	how	we	should
check	the	message.destinationName	value	when	we	subscribe	to	multiple	topics	that	have	different
goals.

Then,	the	code	retrieves	the	LED	ID	from	the	message's	topic	and	saves	it	in	the	ledNumber	variable.	The
code	removes	APP.HomeAutomation.Manager.ledResultBaseTopic	from
message.destinationName	to	retrieve	the	LED	ID.	For	example,	if	the	value	for
message.destinationName	is	"home/results/leds/1",	the	code	replaces	"home/results/leds/"
with	an	empty	string	and	the	resulting	string,	"1",	is	the	LED	ID.

The	next	line	calls	JSON.parse	with	message.payloadString	as	an	argument	to	parse	the	message's
payload	string	and	create	an	object	from	the	received	JSON	string.	The	line	saves	the	resulting	object	in
the	payload	variable.	In	this	case,	we	don't	validate	the	content	of	message.payloadString	to	make
sure	that	it	is	a	valid	JSON	in	order	to	keep	the	example	simple.

Then,	the	code	checks	whether	ledNumber	and	payload.Color	have	values.	If	they	have	values,	the
function	uses	pure	JavaScript	to	update	the	status	message	and	the	circle's	fill	color	for	the	LED	that	has
successfully	changed	its	color.	The	code	retrieves	the	element	whose	ID	is	equal	to	"status-message-
led"	concatenated	with	ledNumber	and	saves	it	in	the	statusLedDiv	variable.	The	next	line	changes	the
value	of	the	statusLedDiv.textContent	attribute	to	indicate	that	the	LED's	color	has	been	set	to	the
color	indicated	in	payload.Color.	This	way,	the	user	will	know	that	the	color	that	he	selected	in	the
corresponding	color	picker	in	the	web	application	has	been	set	to	the	LED.

Finally,	the	code	retrieves	the	element	whose	ID	is	equal	to	"status-circle-led"	concatenated	with
ledNumber	and	saves	it	in	the	statusLedCircle	variable.	The	next	line	assigns	"#"	concatenated	with
payload.Color	to	the	statusLedCircle.style.fill	attribute	to	use	the	same	color	that	has	been	set
to	the	LED	as	the	fill	color	for	the	circle	that	represents	the	LED	in	the	web	application.

The	onMessageDelivered	function	receives	a	Paho.MQTT.Message	instance	in	the	message	argument.
In	this	case,	the	function	has	an	empty	body	because	we	don't	want	to	run	code	when	a	message	has	been
successfully	delivered.

Working	with	WebSockets	to	connect	to	the
MQTT	server
The	following	lines	declare	the	onConnectSuccess	and	connect	functions	within	the
APP.HomeAutomation.Manager	object.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_05	folder,	in	the	home_automation.js	file:

onConnectSuccess:	function(invocationContext)	{

onConnectSuccess:	function(invocationContext)	{

								//	Update	the	status	text

								document.getElementById("status").textContent	=	"Connected	with	the	MQTT	

Server";

								//	Now,	subscribe	to	home/results/leds/1,	home/results/leds/2	and

								//	home/results/leds/3

								var	client	=	invocationContext.invocationContext.client;

								for	(var	i	=	1;	i	<	4;	i++)	{

												client.subscribe("home/results/leds/"	+	i);

								}

				},

				connect:	function()	{

								this.client	=	new	Paho.MQTT.Client(this.host,	this.port,	this.clientId);

								this.client.onConnectionLost	=	this.onConnectionLost;

								this.client.onMessageArrived	=	this.onMessageArrived;

								this.client.onMessageDelivered	=	this.onMessageDelivered;

								//	I	want	to	receive	the	client	in	the	onSuccess	and	onFailure	callbacks

								//	Hence,	I	save	a	reference	to	this.client	in	invocationContext

								this.mqttConnectOptions.invocationContext	=	{

										client:	this.client	

								};

								this.mqttConnectOptions.onSuccess	=	this.onConnectSuccess;

								this.mqttConnectOptions.onFailure	=	function	(message)	{

										console.log("Connection	has	failed:	"	+	message);

								}

								this.client.connect(this.mqttConnectOptions);

				}

};

The	connect	function	creates	a	new	instance	of	Paho.MQTT.Client	with	this.host,	this.port,	and
this.clientId	as	the	arguments	that	specify	the	host,	the	port	number,	and	the	MQTT	client	ID.	The
code	saves	this	new	instance	in	the	this.client	attribute.	It	is	very	important	to	understand	that	creating
an	instance	of	Paho.MQTT.Client	doesn't	establish	a	connection	with	the	MQTT	server.	The
Paho.MQTT.Client	instance	saved	in	this.client	represents	an	MQTT	over	the	WebSockets	client,
and	we	will	use	it	to	communicate	with	an	MQTT	server.

When	we	declare	a	function,	we	pass	this	function	as	an	argument	to	another	function	or	method,	or	we
assign	this	function	to	an	attribute	and	then	some	code	calls	this	function	at	some	time.	This	mechanism	is
known	as	callback.	The	name	callback	is	used	because	the	code	calls	back	a	function	at	some	time.

The	previous	code	snippets	declared	three	functions	that	we	will	specify	as	callbacks:

onConnectSuccess:	This	function	will	be	called	when	the	MQTT	client	receives	a	CONNACK
response	from	the	MQTT	server,	that	is,	when	a	connection	has	been	successfully	established	with
the	MQTT	server.
onConectionLost:	This	function	will	be	called	when	the	MQTT	client	has	lost	connection	with	the
MQTT	server.
onMessageArrived:	This	function	will	be	called	when	the	MQTT	client	receives	a	PUBLISH
message	from	the	MQTT	server.	Whenever	the	MQTT	server	publishes	a	message	based	on	the
subscriptions	for	the	client,	this	function	will	be	called.
onMessageDelivered:	This	function	will	be	called	when	the	MQTT	client	successfully	delivers	a
message.

Then,	the	code	sets	the	values	for	the	following	attributes	that	specify	the	callbacks	that	we	want	to	be
executed	when	certain	events	occur:	onConnectionLost,	onMessageArrived,	and
onMessageDelivered.	We	want	to	receive	this.client	in	the	onSuccess	and	onFailure	callbacks,
and	therefore,	the	code	creates	an	object	with	this.client	as	the	value	for	the	client	attribute	and
assigns	this	object	to	the	this.mqttConnectOptions.invocationContext	attribute.	We	will	use
this.mqttConnectOptions	as	an	argument	for	the	this.client.connect	method	and	the	value
specified	for	the	invocationContext	attribute	will	be	sent	as	an	argument	whenever	the	client	calls	the
callbacks	specified	for	onSuccess	and	onFailure.

The	next	two	lines	set	the	values	for	the	onSuccess	and	onFailure	attributes	for
this.mqttConnectOptions.	Finally,	the	code	calls	the	this.client.connect	function	with
this.mqttConnectOptions	as	an	argument.	This	way,	the	code	asks	the	MQTT	over	the	WebSockets
client	to	establish	a	connection	with	the	MQTT	server	specified	in	this.mqttConnectOptions.

Note

The	connect	function	runs	with	an	asynchronous	execution,	and	therefore,	it	is	a	non-blocking	call.

Subscribing	to	topics	in	JavaScript
After	a	connection	has	been	successfully	established	with	the	MQTT	server,	the	specified	callback	in	the
this.mqttConnectOptions.onSuccess	attribute	will	be	executed,	that	is,	the	onConnectSuccess
function.	This	function	receives	an	invocationContext	object	as	an	argument.	The	code	can	access	the
object	we	assigned	to	this.mqttConnectOptions.invocationContext	in
invocationContext.invocationContext.	Thus,	the	code	can	retrieve	the	instance	of
Paho.MQTT.Client,	which	established	the	connection	with	the	MQTT	server	in	the
invocationContext.invocationContext.client	attribute.

First,	the	onSuccess	function	updates	the	status	text	to	indicate	that	the	client	is	connected	with	the
MQTT	server.	Then,	the	code	saves	Paho.MQTT.Client,	which	established	the	connection	in	the	client
variable.	Finally,	a	for	loop	calls	the	client.subscribe	method	three	times	to	subscribe	to	the
following	topics:	home/results/leds/1,	home/results/leds/2,	and	home/results/leds/3.

Tip

The	Paho	JavaScript	client	allows	us	to	subscribe	to	a	single	topic	filter	at	a	time,	and	therefore,	we	have
to	make	three	calls	to	client.subscribe	with	the	desired	topic	filter	as	an	argument.

In	this	case,	we	don't	specify	any	subscribe	options	because	we	will	work	with	the	default	QoS	level	of
0,	and	we	don't	want	to	specify	any	callbacks	for	the	success	or	failure	of	the	subscription.	However,	we
must	take	into	account	that	it	is	possible	to	specify	an	object	with	additional	subscription	options	as	a
second	argument	to	the	subscribe	function.

Processing	commands	that	interact	with	LEDs	in
Node.js
Now	that	we	have	coded	the	web	application	that	will	allow	the	user	to	change	the	colors	of	the	three
LEDs,	we	will	write	the	Node.js	code	that	will	control	the	LEDs	wired	to	the	IoT	board.	We	can	run	the
Node.js	code	in	any	computer	or	IoT	board	capable	of	running	Node.js	version	6.9.x	or	higher.

For	this	example,	we	have	specified	in	the	requirements	that	the	LEDs	would	be	wired	to	the	following
IoT	boards:	Intel	Edison,	Intel	Joule	550x,	Intel	Joule	570x,	and	Raspberry	Pi	3	boards.	All	of	these
boards	can	have	Node.js	installed	and	run	the	sample	code.	However,	we	can	also	run	the	code	on	many
other	IoT	boards.

MQTT.js	is	an	open	source	library	that	allows	us	to	work	with	MQTT	over	WebSockets	and	direct
MQTT	with	Node.js.	The	library	is	very	easy	to	use	and	will	allow	us	to	process	the	received	messages
and	publish	the	results	by	writing	just	a	few	lines	of	code.	The	web	page	for	the	MQTT.js	library	is
http://www.npmjs.com.

Make	sure	you	have	Node.js	installed	in	the	computer	or	IoT	board	you	will	use	to	run	this	example.
Then,	run	the	following	command	to	install	MQTT.js.	Note	that	the	code	is	tested	with	MQTT.js	2.3.1.
Based	on	your	Node.js	installation	directory	in	macOS	or	Ubuntu	Linux,	you	might	need	to	run	the	next
command	with	sudo	as	a	prefix,	that	is,	you	might	need	to	run	sudo	npm	install	mqtt.	In	Windows,
you	might	need	to	run	the	next	command	in	a	Command	Prompt	executed	as	an	Administrator:

npm	install	mqtt

You	will	see	an	output	similar	to	the	following	lines.	However,	the	results	might	be	different	based	on	the
modules	that	you	may	have	already	installed:

mqtt@2.3.1	node_modules/mqtt

├──	inherits@2.0.3

├──	reinterval@1.1.0

├──	xtend@4.0.1

├──	minimist@1.2.0

├──	split2@2.1.1	(through2@2.0.3)

├──	concat-stream@1.6.0	(typedarray@0.0.6)

├──	commist@1.0.0	(leven@1.0.2)

├──	readable-stream@2.2.2	(buffer-shims@1.0.0,	util-deprecate@1.0.2,	

string_decoder@0.10.31,	process-nextick-args@1.0.7,	isarray@1.0.0,	core-util-

is@1.0.2)

├──	mqtt-packet@5.2.1	(bl@1.2.0,	process-nextick-args@1.0.7)

├──	end-of-stream@1.1.0	(once@1.3.3)

├──	pump@1.0.2	(once@1.4.0)

├──	websocket-stream@3.3.3	(through2@2.0.3,	ws@1.1.2,	duplexify@3.5.0)

└──	help-me@1.0.1	(callback-stream@1.1.0,	through2@2.0.3,	glob-stream@5.3.5)

Now,	we	will	create	a	new	Node.js	JavaScript	file	named	leds_control.js.	The	code	file	for	the
sample	is	included	in	the	mqtt_essentials_gaston_hillar_05	folder,	in	the	leds_control.js	file:

http://www.npmjs.com

var	mqtt	=	require("mqtt")

//	Replace	with	the	host	name	for	the	MQTT	Server

var	host	=	"localhost"

//	Replace	with	the	port	number	for	MQTT	over	WebSockets	the	MQTT	Server

var	port	=	9001

//	If	we	want	to	work	with	TLS,	we	must	use	the	next	line

//	because	we	must	use	wss://	instead	of	ws://

//var	client	=	mqtt.connect("wss://"	+	host	+	":"	+	port)

var	client	=	mqtt.connect("ws://"	+	host	+	":"	+	port)

var	ledCommandBaseTopic	=	"home/leds/"

var	ledResultBaseTopic	=	"home/results/leds/"

client.on("connect",	function	()	{

				console.log("I'm	connected	to	the	MQTT	server")

				var	topicFilters	=	Array()

				for	(i	=	1;	i	<	4;	i++)	{

								topicFilters.push(ledCommandBaseTopic	+	i)

				}

				client.subscribe(topicFilters)

})

	

client.on('message',	function	(topic,	message)	{

				//	message	is	Buffer	

				var	payloadString	=	message.toString()

				console.log("Message	arrived	for	topic:	"	+	topic	+	",	with	the	following	

payload:	"	+	payloadString)

				if	(!topic.startsWith(ledCommandBaseTopic))	{

								return;

				}

				var	ledNumber	=	topic.replace(ledCommandBaseTopic,	"")

				var	payload	=	JSON.parse(payloadString)

				if	(ledNumber	&&	payload.Color)	{

								console.log("I've	changed	LED	#"	+	ledNumber	+	"	to	"	+	payload.Color)

				}

				var	resultMessagePayload	=	{

								"Color":	payload.Color

				}

				resultMessagePayloadString	=	JSON.stringify(resultMessagePayload)

				client.publish(ledResultBaseTopic	+	ledNumber,	resultMessagePayloadString)

})

First,	the	code	requires	mqtt	and	saves	the	object	in	the	mqtt	variable.	Then,	the	code	declares	the	host
and	port	variables	with	the	host	name	for	the	MQTT	server	and	the	port	number	for	MQTT	over
WebSockets.	Then,	the	code	calls	the	mqtt.connect	function	with	ws://,	followed	by	the	host	value,	a
colon	(:),	and	the	port	number.	If	we	want	to	connect	to	localhost	on	port	9001,	the	value	for	this
argument	will	be	ws://localhost:9001.	We	specify	ws	as	the	protocol	name	because	we	want	MQTT.js
to	create	a	WebSockets	over	MQTT	connection.	The	results	of	this	function	are	assigned	to	the	client
variable.

Then,	the	code	specifies	the	callback	function	assigned	to	the	connect	event.	This	function	will	be	called
after	the	client	successfully	establishes	a	connection	with	the	MQTT	server.

Note

After	the	MQTT	over	WebSockets	client	establishes	a	connection	with	the	MQTT	server,
client.connected	will	evaluate	to	true.

The	function	creates	a	topicFilters	array	with	all	the	topics	to	which	the	client	wants	to	subscribe	to	in
order	to	control	the	three	LEDs.	Then,	the	code	calls	the	client.subscribe	function	with
topicFilters	as	an	argument	to	subscribe	to	the	following	three	topics	with	a	single	subscription
request:	home/leds/1,	home/leds/2,	and	home/leds/3.	In	this	case,	we	use	the	default	options	for	the
subscription	because	we	will	work	with	the	default	QoS	level	of	0.

Then,	the	code	specifies	the	callback	function	assigned	to	the	message	event.	This	function	will	be	called
whenever	the	client	receives	a	message	from	the	MQTT	server.	The	function	receives	the	following	two
arguments:

topic:	This	specifies	the	topic	for	the	received	message
message:	This	is	the	buffer	for	the	received	message's	payload

The	function	saves	the	results	of	calling	message.toString	to	the	payloadString	variable.	It	is
necessary	to	call	toString	for	message	because	the	received	message	argument	is	a	buffer,	and	we	want
to	work	with	the	received	message's	payload	as	a	string.

The	code	prints	a	message	to	the	console	log	indicating	that	a	message	has	arrived	with	the	destination
topic	and	the	payload	string	included	in	the	topic	argument	and	the	payloadString	variable.

Then,	the	code	checks	whether	topic	starts	with	ledCommandBaseTopic	to	make	sure	that	the	message's
destination	topic	is	the	one	defined	for	the	commands	related	to	LEDs.

Tip

In	this	case,	the	code	only	subscribes	to	the	topic	filters	that	we	defined	for	publishing	messages	with	the
commands	related	to	LEDs.	However,	we	include	this	code	to	understand	how	we	should	check	the
topic	value	when	we	subscribe	to	multiple	topics	that	have	different	goals	with	MQTT.js.

Then,	the	code	retrieves	the	LED	ID	from	the	message's	topic	and	saves	it	in	the	ledNumber	variable.	The
code	removes	ledCommandBaseTopic	from	topic	to	retrieve	the	LED	ID.	For	example,	if	the	value	for
topic	is	"home/results/leds/3"	the	code	replaces	"home/results/leds/"	with	an	empty	string	and
the	resulting	string,	"3",	is	the	LED	ID	assigned	to	ledNumber.

The	next	line	calls	JSON.parse	with	payloadString	as	an	argument	to	parse	the	message's	payload
string	and	create	an	object	from	the	received	JSON	string.	The	line	saves	the	resulting	object	in	the
payload	variable.	In	this	case,	we	don't	validate	the	content	of	payloadString	to	make	sure	that	it	is	a
valid	JSON	in	order	to	keep	the	example	simple.

Then,	the	code	checks	whether	ledNumber	and	payload.Color	have	values.	In	case	they	have	values,	the
function	prints	a	message	on	the	console	log	indicating	that	it	has	changed	the	LED	number	indicated	by
the	ledNumber	variable	to	the	color	specified	in	the	payload.Color	attribute.	In	this	case,	a	real-life

application	would	interact	with	another	Node.js	library	to	change	the	color	for	an	LED	wired	to	the
board.	However,	we	want	to	stay	focused	on	MQTT	over	WebSockets.

Then,	the	code	creates	a	new	object	named	resultMessagePayload	with	"Color"	as	the	key	and
payload.Color	as	the	value.	The	next	line	calls	the	JSON.stringify	function	with
resultMessagePayload	as	an	argument	to	generate	the	JSON	string	representation	of	the	object	and	save
it	in	the	resultMessagePayloadString	variable.

Finally,	the	code	calls	the	client.publish	function	with	ledResultBaseTopic	concatenated	with
ledNumber	and	resultMessagePayloadString	as	the	topic	and	payload	arguments.	This	way,	the	code
requests	the	MQTT	over	WebSockets	client	to	publish	a	message	to	the	appropriate	topic	with	the	results
of	the	execution	of	the	command.	In	this	case,	the	results	indicate	the	color	that	has	been	set	to	the	LED.

Running	the	home	automation	web	application
Make	sure	the	Mosquitto	server	or	any	other	MQTT	server	you	might	want	to	use	for	this	example	is
running.	If	you	aren't	working	with	Mosquitto,	make	sure	you	have	enabled	support	for	MQTT	over
WebSockets.	Then,	execute	the	following	line	to	start	the	Node.js	example	in	any	computer	or	device	that
you	want	to	use	as	the	MQTT	client	that	will	process	the	commands	received	to	control	the	three	LEDs:

node	leds_control.js

The	Node.js	script	will	establish	a	connection	with	the	MQTT	server,	subscribe	to	the	topics	to	which	the
web	application	will	publish	the	commands	for	the	three	LEDs,	and	display	the	following	message:

I'm	connected	to	the	MQTT	server

Leave	the	Node.js	script	running	on	the	computer	or	device	in	which	you	executed	it.	Use	another
computer	or	device	to	open	a	web	browser	and	open	the	home_automation.html	web	page.	The	web
page	will	display	the	following	message	at	the	top	Connected	with	the	MQTT	Server	after	the
JavaScript	code	has	established	a	successful	connection	with	the	MQTT	Server.	The	web	page	will
display	three	textboxes	with	FFFFFF	as	the	initial	value	for	the	color	and	a	white	background.	Whenever
we	click	or	tap	on	these	textboxes,	we	will	be	able	to	select	a	new	color	for	the	specific	LED.	The	three
circles	on	the	right-hand	side	of	each	color	picker	will	be	updated	to	display	the	color	that	has	been	set	to
the	specific	LED	after	the	Node.js	script	processes	the	received	commands	based	on	the	selection	made
in	the	color	picker.	The	following	screenshot	shows	the	initial	render	for	the	web	page:

	

Tip

It	is	convenient	to	open	the	Developer	Console	for	the	web	browser	to	see	the	messages	that	the
JavaScript	code	will	print	on	the	console.	This	way,	you	will	understand	what	happens	under	the	hood.

Click	or	tap	on	the	textbox	on	the	right-hand	side	of	Select	color	for	LED	#1.	The	web	page	will	display
a	color	picker,	as	shown	in	the	following	screenshot:

	

Click	or	tap	on	a	specific	color.	The	background	color	for	the	textbox	will	change	to	the	selected	color
and	the	hexadecimal	string	that	represents	the	RGB	color	will	be	displayed	as	the	text.

Go	to	the	window	in	which	you	are	checking	the	results	of	the	Node.js	script,	and	you	will	see	messages
similar	to	the	following.	The	value	for	the	Color	key	will	be	different	based	on	your	selection	in	the
color	picker.

Message	arrived	for	topic:	home/leds/2,	with	the	following	payload:

{"Color":"ffff00"}

I've	changed	LED	#2	to	ff0000

Message	arrived	for	topic:	home/leds/3,	with	the	following	payload:

{"Color":"00ff00"}

I've	changed	LED	#3	to	ff0000

The	Node.js	script	has	received	a	message	in	the	home/leds/1	topic	with	a	JSON	string	as	the	payload,
which	requests	the	color	for	LED	#1	to	be	set	to	ff0000	(255	for	red,	0	for	green,	and	0	for	blue).	The
script	processes	the	command	and	changes	LED	#1	to	the	specified	color.

Now,	go	to	the	web	browser	where	you	left	the	home_automation.html	web	page.	The	JavaScript	code
will	receive	the	message	published	by	the	Node.js	script	to	the	home/results/leds/1	topic,	and	it	will
update	the	status	message	for	LED	#1	and	the	related	circle's	background	color.	The	following	screenshot
shows	the	web	page	that	filled	the	circle	for	LED	#1	with	the	selected	red	color:

	

The	following	screenshot	shows	the	messages	displayed	in	the	JavaScript	Developer	Console	for	the
Chrome	browser	rendering	the	web	page:

	

Now,	use	the	color	pickers	for	LED	#2	and	LED	#3	to	select	two	different	colors	for	these	LEDs.	First,
the	textbox	for	the	color	pickers	will	change	their	background	colors	and	then	the	status	messages	and	the
circles	will	change,	as	was	the	case	when	we	selected	a	different	color	for	LED	#1.	The	following
screenshot	shows	the	three	LEDs	with	new	colors	and	their	circles	updated	as	a	result	of	the	exchange	of
MQTT	messages	over	WebSockets.	We	are	able	to	control	many	LEDs	through	a	web	page:

	

The	following	screenshot	shows	the	messages	displayed	in	the	JavaScript	Developer	Console	for	the
Chrome	browser	rendering	the	web	page:

	

Go	to	the	window	in	which	you	are	checking	the	results	of	the	Node.js	script	and	you	will	see	additional
messages	similar	to	the	following.	The	value	for	the	Color	key	will	be	different	based	on	your	selections
in	the	color	pickers.

Go	to	the	window	in	which	you	are	checking	the	results	of	the	Node.js	script	and	you	will	see	messages
similar	to	the	following.	The	value	for	the	Color	key	will	be	different	based	on	your	selection	in	the	color
picker:

Message	arrived	for	topic:	home/leds/1,	with	the	following	payload:	

{"Color":"ff0000"}

I've	changed	LED	#1	to	ff0000

The	following	screenshot	shows	two	Terminal	windows	and	Google	Chrome	running	on	a	computer	with
macOS.	The	Terminal	on	the	upper-left	corner	is	displaying	an	SSH	terminal	that	is	running	the	Node.js
script	controlling	the	LEDs	on	an	Intel	Joule	570x	board.	That	is,	the	board	is	running	leds_control.js.
The	window	on	the	lower-left	corner	is	rendering	the	web	page.	The	Terminal	on	the	right-hand	side	is
displaying	the	debug	messages	for	a	Mosquitto	server	that	is	running	on	the	computer:

	

The	next	screenshot	shows	a	Terminal	window	running	on	the	Raspbian	operating	system	on	a	Raspberry
Pi	3	board.	The	Raspberry	Pi	3	is	running	the	Node.js	script	that	controls	the	LEDs,	that	is,
leds_control.js:

	

Debugging	asynchronous	code	with	Chrome
Developer	Tools	(CDT)	in	JavaScript
Any	modern	web	browser	allows	us	to	easily	debug	JavaScript	code.	Now,	we	will	use	Chrome
Developer	Tools	(CDT)	to	debug	the	asynchronous	JavaScript	code	that	runs	in	our	web	application.	You
can	perform	the	same	tasks	with	other	browsers;	you	will	just	need	to	follow	different	steps.

Make	sure	that	you	are	using	Chrome	to	render	the	home_automation.html	web	page.	In	Chrome,	select
the	Chrome	menu	located	on	the	upper-right	corner	of	the	window	and	then	select	More	Tools	|
Developer	Tools.	Chrome	will	display	a	window	or	a	panel	with	the	developer	tools.	The	tools	can	be
undocked	into	a	separate	window,	docked	to	the	bottom	of	the	main	window,	or	docked	to	the	right	of	the
main	window.

Click	on	the	Sources	tab,	navigate	to	home_automation.js,	and	click	on	this	JavaScript	file.	The	source
code	for	the	JavaScript	file	will	be	displayed.

You	can	easily	establish	breakpoints	by	clicking	on	the	line	numbers.	Click	on	the	line	number	for	the	first
line	of	code	within	the	onMessageArrived	function.	Specifically,	click	on	the	following	line	of	code:

console.log("Message	arrived	for	topic:	"	+	message.destinationName					+	",	with	

the	following	payload:	"	+	message.payloadString);

Now,	go	to	the	web	browser	window	where	you	left	the	home_automation.html	web	page.	Use	the
color	picker	for	LED	#1	to	select	a	different	color	for	this	LED.	After	you	select	a	new	color,	the	Node.js
script	will	send	a	message	with	the	color	that	has	been	set	to	the	LED,	the	onMessageArrived	function
will	be	called,	and	the	debugger	will	hit	the	breakpoint	we	have	set.	The	following	screenshot	shows	the
debugger	hitting	the	breakpoint:

	

	

	

You	can	use	the	Scope	panel	on	the	right-hand	side	of	the	debugger	to	check	the	values	for	the	different
local	variables.	For	example,	you	can	inspect	the	message	argument.	You	can	press	F10	to	step	over	the
next	function	call	and	check	the	messages	printed	with	console.log	calls	on	the	Console	tab.	Press	F8
to	resume	script	execution	until	any	other	breakpoint	is	hit.

The	usage	of	the	debugger	makes	it	easier	to	understand	when	the	callbacks	are	executed	and	takes
advantage	of	the	interactive	Console	to	dive	deep	into	all	the	fields	and	properties	of	the	different	objects
that	the	Paho	JavaScript	API	provides.

Securing	MQTT	over	WebSockets	with	TLS
So	far,	we	have	been	working	with	MQTT	over	WebSockets	without	TLS.	We	can	change	the
configuration	and	make	simple	edits	to	the	code	to	work	with	MQTT	over	WebSockets	with	TLS	and
enable	encrypted	communications.

In	Chapter	2,	Securing	an	MQTT	Mosquitto	Server	,	we	secured	our	Mosquitto	server,	and	therefore,	we
can	use	the	digital	certificates	we	have	created.	However,	it	is	very	important	to	know	that	self-signed
certificates	require	more	steps	to	be	installed	as	trusted	certificates	in	the	different	operating	systems	that
run	the	diverse	web	browsers	that	can	use	MQTT	over	WebSockets.

In	this	chapter,	we	saved	the	following	files	in	a	directory	called	certificates.	We	will	use	these	file
names	as	a	baseline	for	a	sample	configuration.

ca.crt:	Certificate	authority	certificate	file
device001.crt:	Client	certificate	file
device001.key:	Client	key

In	order	to	work	with	WebSockets	over	TLS	and	enable	encrypted	communications,	it	is	necessary	to
follow	the	next	steps:

1.	 Configure	the	MQTT	server	to	use	WebSockets	over	TLS.	In	Mosquitto,	it	is	necessary	to	specify	the
values	for	cafile,	certfile,	and	keyfile	settings	in	the	Mosquitto	configuration	file	after	the
definition	of	the	listener	with	the	WebSockets	protocol.	Then,	it	will	be	necessary	to	restart	the
MQTT	server.

2.	 Add	the	certificate	authority	certificate	file	(ca.crt)	as	a	trusted	certificate	to	the	operating	system
or	web	browser.	In	macOS,	it	is	necessary	to	add	the	certificate	authority	certificate	file	to	Keychain
Access	to	be	able	to	use	it.	In	addition,	it	is	necessary	to	follow	all	the	steps	to	make	the	web
browser	trust	the	certificate	authority	certificate	file	when	we	work	with	self-signed	certificates.	It	is
necessary	to	follow	the	required	procedure	for	any	computer	or	device	that	will	establish	a
connection	with	the	MQTT	server,	including	the	IoT	boards.

3.	 Set	the	value	for	the	useSSL	attribute	to	true	in	the	connection	options	object	we	pass	as	an
argument	to	the	connect	function	in	the	Paho	JavaScript	client.	In	the	previous	code	example,	you
must	replace	useSSL:	false	with	useSSL:	true	in	the	code	that	declares	the
mqttConnectOptions	object.

4.	 When	you	use	the	Eclipse	Paho	client	JavaScript	utility,	you	must	specify	/wss	in	Path	instead	of
/ws.	In	addition,	you	must	make	sure	the	TLS	checkbox	is	activated.

5.	 Replace	ws	with	wss	in	the	string	that	you	pass	as	an	argument	for	MQTT.js	in	Node.js.	In	the
previous	example,	you	must	replace	var	client	=	mqtt.connect("ws://"	+	host	+	":"	+
port)	with	var	client	=	mqtt.connect("wss://"	+	host	+	":"	+	port).

In	macOS,	Linux,	or	Windows,	we	add	the	following	lines	at	the	end	of	the	mosquitto.conf
configuration	file.

listener	9001	0.0.0.0

protocol	websockets

In	order	to	make	MQTT	over	WebSockets	use	TLS,	we	must	add	many	lines	after	the	previous	lines.	It	is
very	important	that	the	lines	are	placed	after	the	previous	lines.	In	Chapter	2,	Securing	an	MQTT
Mosquitto	Server,	you	learned	that	it	is	a	good	practice	to	make	a	backup	copy	of	the	exiting
mosquitto.conf	configuration	file	before	making	changes	to	it.	This	way,	we	can	easily	roll	back	to	the
previous	configuration	if	something	goes	wrong.

In	macOS	or	Linux,	we	must	add	the	following	lines	at	the	end	of	the	configuration	file	and	make	sure	that
we	replace	/usr/local/etc/mosquitto/certificates	with	the	full	path	to	the	certificates	directory
we	created	within	the	Mosquitto	installation	folder:

cafile	/usr/local/etc/mosquitto/certificates/ca.crt

certfile	/usr/local/etc/mosquitto/certificates/server.crt

keyfile	/usr/local/etc/mosquitto/certificates/server.key

In	Windows,	add	the	following	lines	at	the	end	of	the	configuration	file	and	make	sure	that	you	replace
C:Program	Files	(x86)mosquittocertificates	with	the	full	path	to	the	certificates	directory
we	created	within	the	Mosquitto	installation	folder:

cafile	C:\Program	Files	(x86)\mosquitto\certificates\ca.crt

certfile	C:\Program	Files	(x86)\mosquitto\certificates\server.crt

keyfile	C:\Program	Files	(x86)\mosquitto\certificates\server.key

The	cafile	option	specifies	the	full	path	for	the	file	that	provides	a	PEM-encoded	certificate	authority
certificate	file:	ca.crt.

The	certfile	option	specifies	the	full	path	for	the	file	that	provides	a	PEM-encoded	server	certificate:
server.crt.

Finally,	the	keyfile	option	specifies	the	full	path	for	the	file	that	provides	a	PEM-encoded	server
keyfile:	server.key.

After	you	make	all	the	changes,	the	application	will	be	working	with	MQTT	over	WebSockets	with	TLS,
and	only	the	web	browsers	and	operating	systems	that	use	the	certificate	authority	certificate	file	will	be
able	to	establish	a	communication	with	the	Mosquitto	server.

Test	your	knowledge
1.	 The	Eclipse	Paho	JavaScript	client	provides:

1.	 Only	a	non-blocking	(asynchronous)	API.
2.	 Only	a	blocking	(synchronous)	API.
3.	 Both	a	blocking	(synchronous)	and	a	non-blocking	(asynchronous)	API.

2.	 In	the	Paho	JavaScript	API,	the	Paho.MQTT.Client	object	represents:
1.	 The	synchronous	MQTT	over	WebSockets	client.
2.	 The	asynchronous	MQTT	over	WebSockets	client.
3.	 The	asynchronous	MQTT	over	TCP	client	(no	WebSockets).

3.	 After	the	Paho.MQTT.Client	instance	establishes	a	connection	with	the	MQTT	server,	the	callback
assigned	to	which	of	the	following	attributes	of	the	connectOptions	object	passed	as	an	argument
to	the	connect	function	will	be	called?
1.	 connectCallback.
2.	 onSuccess.
3.	 onConnect.

4.	 After	the	Paho.MQTT.Client	instance	receives	a	message	from	one	of	the	topic	filters	to	which	it
has	subscribed,	the	callback	assigned	to	which	of	the	following	attributes	of	the	connectOptions
object	passed	as	an	argument	to	the	connect	function	will	be	called?
1.	 onMessageReceived.
2.	 messageReceivedCallback.
3.	 onMessageArrived.

5.	 MQTT.js	is	an	open	source	library	that	allows	us	to	work	with:
1.	 Both	MQTT	over	WebSockets	and	direct	MQTT	with	Node.js.
2.	 Only	MQTT	over	WebSockets	with	Node.js.
3.	 Only	direct	MQTT	with	Node.js.

Summary
In	this	chapter,	we	analyzed	the	requirements	for	controlling	LEDs	wired	to	different	IoT	boards	with
MQTT	messages	over	WebSockets.	We	defined	the	topics	that	we	would	use	and	the	commands	that
would	be	part	of	the	message's	payloads	to	set	the	colors	for	the	LEDs.

Then,	we	created	an	HTML	5	web	page	combined	with	JavaScript	and	the	Eclipse	Paho	JavaScript
asynchronous	client	to	control	LEDs.	We	wrote	code	to	publish	messages	to	target	remote	devices	in
JavaScript,	and	we	were	able	to	process	the	received	messages	to	provide	feedback	to	the	user.

We	worked	with	MQTT.js	to	write	a	Node.js	script	to	process	the	commands	that	simulated	the
interaction	with	LEDs	on	different	IoT	boards.	We	were	able	to	run	the	home	automation	web	application
and	understand	how	all	the	pieces	worked	together	by	exchanging	MQTT	over	WebSockets	messages.	We
debugged	JavaScript	asynchronous	code	with	Chrome	Developer	Tools	to	understand	the	code	that	the
Paho	JavaScript	client	executes	when	a	new	message	arrives.	Finally,	we	understood	the	necessary	steps
to	work	with	MQTT	over	WebSockets	with	TLS.

Now	that	we	have	understood	how	to	use	JavaScript	and	Node.js	to	work	with	MQTT	over	WebSockets,
we	will	use	this	protocol	to	interact	with	actuators	by	using	the	Swift	programming	language,	which	is
what	we	are	going	to	discuss	in	the	next	chapter.

Chapter	6.	Interacting	with	Actuators	in	Swift
In	this	chapter,	we	will	write	an	iOS	app	in	Swift	3	to	control	actuators	with	MQTT	messages.	In
addition,	we	will	use	Node.js	to	write	code	that	runs	on	IoT	boards,	receives	MQTT	messages,	and
controls	motors	wired	to	the	boards.	We	will:

Understand	the	requirements	to	interact	with	actuators	in	Swift
Define	the	topics	and	commands	to	control	actuators
Install	the	CocoaMQTT	client	library
Understand	the	CocoaMQTT	client	in	Swift	3
Connect	to	the	MQTT	server	and	subscribe	to	topics	in	Swift
Publish	messages	to	target	actuators	in	Swift
Process	commands	that	interact	with	actuators	in	Node.js
Run	the	iOS	app	that	controls	an	actuator	with	MQTT
Run	the	home	automation	web	application
Debug	events	in	Swift

Understanding	the	requirements
In	the	previous	chapters,	you	learned	how	MQTT	works	in	detail.	We	understood	how	to	establish	a
connection	between	an	MQTT	client	and	an	MQTT	server.	You	learned	what	happens	when	you	subscribe
to	topic	filters	and	when	a	publisher	sends	messages	to	specific	topics.	In	this	chapter,	we	will	use
MQTT	over	TCP	again,	and	we	won't	use	MQTT	over	WebSockets.

Now,	we	will	use	Swift,	specifically	Swift	3,	as	our	main	programming	language	to	generate	MQTT
clients	that	will	act	as	publishers	and	subscribers.	We	will	connect	an	iOS	app	as	an	MQTT	client	to	the
MQTT	server,	and	we	will	process	simple	commands	to	control	actuators	with	MQTT	messages	and
display	status	messages	received	from	the	boards	that	control	the	actuators.

In	this	case,	we	want	to	create	a	simple	iOS	app	that	we	will	use	at	home,	and	therefore,	we	won't	be
working	with	TLS	at	all.	Then,	we	will	code	a	Node.js	script	that	will	run	on	the	boards	that	have
actuators	wired	to	them.	In	the	previous	chapter,	we	worked	with	the	MQTT.js	open	source	library	to	use
MQTT	over	WebSockets.	However,	this	library	also	allows	us	to	work	with	direct	MQTT	with	Node.js.
Hence,	we	will	use	this	library	again	to	work	with	MQTT	over	TCP	instead	of	MQTT	over	WebSockets.
The	library	is	very	easy	to	use	and	will	allow	us	to	process	the	received	messages	and	publish	the	results
by	writing	just	a	few	lines	of	code.	The	following	is	the	web	page	for	the	MQTT.js	library:
https://www.npmjs.com/package/mqtt	.	In	the	previous	chapter	you	learned	how	to	install	this	library.

We	can	code	to	run	on	many	platforms	because	we	will	use	the	same	code	base	to	control	sensors	that	use
the	following	IoT	boards:

Raspberry	Pi	3
Raspberry	Pi	2	Model	B
Intel	Edison
Intel	Galileo	Gen	2
Intel	Joule	570x
Intel	Joule	550x

Each	platform	will	work	with	different	kinds	of	actuators.	However,	we	will	focus	on	the	basic	features
to	keep	our	example	simple	and	to	stay	focused	on	MQTT.	Then,	we	will	be	able	to	use	this	project	as	a
baseline	for	other	solutions	that	require	us	to	run	code	on	an	IoT	board	that	runs	a	Node.js	script	to	use
MQTT	over	TCP,	has	to	connect	to	an	MQTT	server,	and	has	to	process	commands.

The	code	that	runs	on	boards	with	actuators	wired	to	them	must	be	able	to	process	commands	received	in
messages	in	a	specific	topic.	We	will	use	strings	with	short	commands	in	plain	English	in	the	payloads.

We	will	write	a	client	iOS	app	in	Swift	to	control	one	actuator	and	display	the	results	of	turning	the
actuator	on	or	off.	Each	IoT	board	must	publish	a	message	to	a	specific	topic	whenever	a	command	is
successfully	executed.

https://www.npmjs.com/package/mqtt

Defining	topics	and	commands
We	will	use	commands/boards/boardname/actuators/actuatorname	as	the	topic	name	to	publish	the
commands	for	the	actuators	wired	to	an	IoT	board,	where	boardname	must	be	replaced	with	a	unique
name	assigned	to	a	board	and	actuatorname	must	be	replaced	with	a	unique	name	assigned	to	an
actuator.	For	example,	if	we	assign	inteledison01	as	the	name	for	an	Intel	Edison	board	and	motor01
as	the	name	for	a	motor	controlled	with	this	board,	we	will	have	to	publish	the	commands	to	the
commands/boards/inteledison01/actuators/motor01	topic,	and	the	code	that	runs	on	this	board
will	subscribe	to	this	topic	to	receive	messages	with	commands	and	react	to	them.	In	fact,	the	board	can
subscribe	to	commands/boards/inteledison01/actuators/+	to	receive	messages	with	commands	for
all	the	actuators	wired	to	the	board	named	inteledison01.

The	commands	will	be	sent	as	strings	in	plain	English.	We	will	have	just	two	valid	commands:

TURN	ON:	Turn	on	the	actuator
TURN	OFF:	Turn	off	the	actuator

The	following	line	shows	an	example	of	the	payload	for	the	command	that	turns	on	an	actuator:

TURN	ON	

We	will	use	status/boards/boardname	as	the	topic	name	to	make	the	boards	publish	the	results	of	the
execution	of	the	received	commands,	where	boardname	must	be	replaced	with	a	unique	name	assigned	to
a	board.	For	example,	if	we	assign	raspberrypi301	as	the	name	for	a	Raspberry	Pi	3	board,	the	iOS
client	app	will	have	to	subscribe	to	the	status/boards/raspberrypi301	topic	and	the	Node.js	script
that	runs	on	this	board	will	publish,	to	this	topic,	the	results	of	the	execution	of	each	command.

When	an	actuator	is	turned	on,	the	board	must	publish	a	message	string	indicating	the	actuator	name
followed	by	a	message	that	says	that	the	actuator	has	been	turned	on.	When	an	actuator	is	turned	off,	the
board	must	publish	a	message	string	indicating	the	actuator	name	followed	by	a	message	that	says	that	the
actuator	has	been	turned	off.

We	have	all	the	necessary	details	to	start	coding	with	Swift	and	then	with	Node.js.	First,	we	will	develop
a	simple	iOS	app	that	can	control	an	actuator,	based	on	the	previously	explained	requirements.	Then,	we
will	write	a	Node.js	script	that	will	run	on	a	board	and	will	process	the	commands	generated	in	the	iOS
app.

Enabling	connections	without	TLS	for	a
Mosquitto	server
Now,	we	will	configure	Mosquitto	to	allow	us	to	establish	unsecured	connections	on	port	1883,	as	it	is
possible	with	the	default	configuration.	Take	into	account	that	this	configuration	is	not	recommended	in	a
production	environment	and	we	just	make	it	to	work	with	a	simpler	configuration	in	an	example	that	is
only	going	to	be	executed	on	our	LAN.

In	case	you	are	running	the	Mosquitto	server	in	a	Terminal	window	in	macOS	or	Linux,	press	Ctrl+C	to
stop	it.	In	Windows,	stop	the	appropriate	service.	If	you	are	running	the	Mosquitto	server	as	a	service	in
Linux,	run	the	following	command	to	stop	the	service:

sudo	service	mosquitto	stop

Go	to	the	Mosquitto	installation	directory	and	open	the	mosquitto.conf	configuration	file.	In	Chapter	2,
Securing	an	MQTT	Mosquitto	Server,	you	learned	that	it	is	good	practice	to	make	a	backup	copy	of	the
existing	mosquitto.conf	configuration	file	before	making	changes	to	it.	This	way,	we	can	easily	roll
back	to	the	previous	configuration	if	something	goes	wrong.

In	macOS,	Linux,	or	Windows,	add	the	following	lines	at	the	end	of	the	configuration	file:

listener	1883	protocol	mqtt

We	specified	the	1883	value	for	the	listener	option	to	make	Mosquitto	listen	for	incoming	network
connections	on	port	1883.	This	port	is	the	default	one	for	MQTT	without	TLS.

The	protocol	option	is	the	next	line,	after	we	defined	the	new	listener,	and	specifies	MQTT	as	the	desired
protocol	to	use	on	port	1883.	This	way,	we	enable	Mosquitto's	support	for	MQTT	over	TCP	on	port	1883
while	we	still	have	MQTT	over	WebSockets	on	port	9001	and	MQTT	with	TLS	on	port	8883.	Again,	we
don't	want	this	configuration	in	a	production	environment	and	we	are	only	using	it	in	our	LAN.

Save	the	changes	to	the	mosquitto.conf	configuration	file	and	launch	Mosquitto	again	with	the	same
mechanism	that	you	learned	for	Linux,	macOS,	and	Windows	in	Chapter	1,	Lightweight	Messaging	with
MQTT	3.1.1	and	Mosquitto.	The	Mosquitto	server	will	add	MQTT	without	TLS	support	on	port	1883	to
the	previously	configured	listeners	that	will	still	work	with	MQTT	with	TLS	on	port	8883	and	with
MQTT	over	WebSockets	on	port	9001.	It	is	very	important	to	understand	that	the	certificates	we
configured	for	the	listener	that	work	on	port	8883	and	the	certificates	that	work	on	port	9001	do	not	apply
to	the	MQTT	listener	on	port	1883.	Each	listener	has	its	own	TLS	configuration.	In	this	case,	we	aren't
using	TLS	for	MQTT	on	port	1883.

Installing	the	CocoaMQTT	client	library	to
create	a	new	iOS	app
The	CocoaMQTT	client	library	is	an	open	source	MQTT	version	3.1.1	client	library	for	iOS	and	macOS,
which	is	written	in	Swift	3.	This	client	library	provides	a	non-blocking	(asynchronous)	API.	The	GitHub
page	for	this	client	library	is	https://github.com/emqtt/CocoaMQTT	.

Tip

You	can	use	the	CocoaMQTT	client	library	to	develop	iOS	and	macOS	apps	with	Swift	3.	You	will	need
a	Mac	computer	and	Xcode	8	or	greater	to	run	the	example.

The	easiest	way	to	create	a	new	Xcode	project	that	uses	this	API	is	to	use	the	CocoaPods	dependency
manager	for	Swift.	In	case	you	don't	work	with	CocoaPods,	you	can	easily	install	it	following	the	detailed
instructions	included	on	its	main	web	page,	that	is,	https://cocoapods.org	.

Once	you	have	CocoaPods	installed	in	macOS,	you	are	ready	to	create	a	simple	iOS	app,	based	on	the
Single	View	Application	template	with	Xcode.

Navigate	to	File	|	New	|	Project...	in	Xcode.	Click	iOS	at	the	top	of	the	Choose	a	template	for	your	new
project	dialog	box.	Select	Single	View	Application	and	click	on	Next,	as	shown	in	the	following
screenshot:

	

https://github.com/emqtt/CocoaMQTT
https://cocoapods.org

	

	

Enter	ControlActuators	in	Product	Name,	select	Swift	in	language,	and	select	Universal	in	Devices,
as	shown	in	the	next	screenshot.	This	way,	we	will	create	an	app	that	can	run	on	iPad,	iPod,	and	iPhone
devices.	Then,	click	on	Next:

	

	

	

Select	the	desired	folder	in	which	you	want	to	create	the	new	project	folder,	make	sure	that	Don't	add	to
any	project	or	workspace	is	selected	in	the	Add	to	drop-down	list	if	this	option	is	shown	in	the	dialog
box,	and	click	on	Create.	Xcode	will	create	the	new	project	and	all	the	related	files.	The	following
screenshot	shows	the	project	navigator	located	on	the	left-hand	side	of	the	Xcode	window:

	

	

	

Now,	let's	take	a	look	at	the	initial	code	for	the	two	Swift	source	files	included	in	the	ControlActuators
module:

AppDelegate.swift:	This	declares	the	AppDelegate	class,	and	it	is	the	entry	point	to	our
application
ViewController.swift:	This	declares	the	ViewController	class

The	following	lines	show	the	initial	code	for	the	AppDelegate.swift	source	file	that	declares	the
AppDelegate	class	without	the	comments	that	the	template	includes	in	each	method:

import	UIKit

@UIApplicationMain

class	AppDelegate:	UIResponder,	UIApplicationDelegate	{

				var	window:	UIWindow?

				func	application(_	application:	UIApplication,	didFinishLaunchingWithOptions	

launchOptions:	[UIApplicationLaunchOptionsKey:	Any]?)	->	Bool	{

								return	true

				}

				func	applicationWillResignActive(_	application:	UIApplication)	{

				}

				func	applicationDidEnterBackground(_	application:	UIApplication)	{

				}

				func	applicationWillEnterForeground(_	application:	UIApplication)	{

				}

				func	applicationDidBecomeActive(_	application:	UIApplication)	{

				}

				func	applicationWillTerminate(_	application:	UIApplication)	{

				}

}

The	@UIApplicationMain	attribute	included	at	the	top	of	the	declaration	of	the	AppDelegate	class
indicates	that	the	class	is	designated	as	the	delegate	of	the	shared	UIApplication	object	in	any	iOS	app.
The	AppDelegate	class	is	a	subclass	of	the	UIResponder	class	and	conforms	to	the
UIApplicationDelegate	protocol.	The	class	declares	a	window	stored	property	of	the	UIWindow	type
optional	(UIWindow?)	and	six	instance	methods.	All	the	methods	receive	an	application	argument	of	the
UIApplication	type,	which	is	another	subclass	of	UIResponder.	The	application	argument	will
always	be	the	same	instance	of	UIApplication	that	represents	the	current	iOS	app,	that	is,	our	app.	The
application	method	receives	a	second	argument	named	launchOptions,	which	provides	a	dictionary
with	keys	indicating	the	reason	that	your	app	was	launched	for.	This	method	is	the	only	one	that	has	code
and	just	returns	true.

Tip

By	default,	Swift	3	externalizes	the	first	parameter.	All	the	methods	that	receive	an	application
argument	of	the	UIApplication	type	in	the	previous	code	suppress	the	externalization	of	the	argument
label	for	the	first	parameter	by	adding	an	underscore	(_)	followed	by	a	space	before	the	parameter	label
(application)	in	each	method's	declaration.	This	way,	the	code	generates	methods	that	we	can	call
without	specifying	the	argument	label	for	the	first	parameter,	that	is,	with	the	default	behavior	that	the
previous	Swift	versions	used.	The	CocoaMQTT	library	follows	the	same	approach	and	adds	an
underscore	(_)	followed	by	a	space	before	the	first	parameter	labels	in	each	method's	declaration.	It	is
very	important	to	know	this	because	CocoaMQTT	is	written	in	Swift	3	and	you	might	think	it	uses	the
default	behavior	for	Swift	3.

The	following	lines	show	the	initial	code	for	the	ViewController.swift	source	file	that	declares	the
ViewController	class	without	the	comments	that	the	template	includes	in	each	method:

import	UIKit

class	ViewController:	UIViewController	{

				override	func	viewDidLoad()	{

								super.viewDidLoad()

				}

				override	func	didReceiveMemoryWarning()	{

								super.didReceiveMemoryWarning()

				}

}

The	ViewController	class	is	a	subclass	of	the	UIViewController	class	and	overrides	two
parameterless	instance	methods:	viewDidLoad	and	didReceiveMemoryWarning.	Both	methods	include	a
line	of	code	that	calls	the	method	with	the	same	name	in	its	superclass.

It	is	important	to	take	into	account	that	the	UIViewController	class,	that	is,	the	superclass	for
ViewController	is	a	subclass	of	the	UIResponder	class	and	conforms	to	the	following	protocols:
NSCoding,	UIAppearanceContainer,	UITraitEnvironment,	UIContentContainer,	and
UIFocusEnvironment.

Now,	close	the	project	we	just	created	in	Xcode,	and	quit	Xcode.

Open	a	Terminal	window	and	go	to	the	folder	in	which	the	ControlActuators.xcodeproj	file	was
created.	Run	the	following	command	to	ask	CocoaPods	to	generate	a	Podfile	file	for	the	current
directory.	We	will	modify	this	file	later	to	specify	the	dependencies	for	our	project	and	finally	install
them	with	CocoaPods:

pod	init

After	you	run	the	previous	command,	CocoaPods	will	create	a	file	named	Podfile.	Use	your	favorite
editor	to	add	the	following	highlighted	lines	to	this	file	and	save	the	changes:

#	Uncomment	the	next	line	to	define	a	global	platform	for	your	project

platform	:ios,	'9.0'

target	'ControlActuators'	do

		#	Comment	the	next	line	if	you're	not	using	Swift	and	don't	want	to	use	dynamic	

frameworks

		use_frameworks!

		#	Pods	for	ControlActuators

				pod	'CocoaMQTT',	'~>1.0.11'

		target	'ControlActuatorsTests'	do

				inherit!	:search_paths

				#	Pods	for	testing

		end

end

Run	the	following	command	to	install	the	project	dependencies	according	to	the	previously	modified
Podfile	file.	We	specified	that	our	project	requires	CocoaMQTT	version	1.0.11	or	greater.	The
following	command	will	install	all	the	required	dependencies	for	CocoaMQTT	and	then	it	will	install
this	library:

pod	install

After	CocoaPods	downloads	and	installs	all	the	necessary	dependencies,	you	will	see	output	similar	to
the	following	lines:

Analyzing	dependencies

Downloading	dependencies

Installing	CocoaAsyncSocket	(7.5.1)

Installing	CocoaMQTT	(1.0.11)

Installing	MSWeakTimer	(1.1.0)

Generating	Pods	project

Integrating	client	project

[!]	Please	close	any	current	Xcode	sessions	and	use	`ControlActuators.xcworkspace`	

for	this	project	from	now	on.

Sending	stats

Pod	installation	complete!	There	is	1	dependency	from	the	Podfile	and	3	total	pods	

installed.

After	the	dependencies	are	installed,	CocoaPods	will	generate	a	new	workspace	for	the
ControlActuators	project	named	ControlActuators.xcworkspace.	Always	open	this	workspace
instead	of	the	project.

Now,	launch	Xcode	and	open	the	ControlActuators.xcworkspace	workspace.	The	following
screenshot	shows	the	project	navigator	located	on	the	left-hand	side	of	the	Xcode	window.	Notice	that	the
workspace	has	two	projects:	ControlActuators	and	Pods.	The	Pods	project	includes	the	CocoaMQTT
library	and	its	dependencies.	You	can	easily	check	the	source	code	for	the	different	files	that	compose	the
CocoaMQTT	library.	The	following	screenshot	shows	the	project	navigator	located	on	the	left-hand	side
of	the	Xcode	window	with	the	two	projects:

	

	

	

Building	the	UI	for	the	iOS	app	that	will	control
an	actuator
Click	on	Main.storyboard	in	the	Project	Navigator	on	the	left-hand	side	of	the	Xcode	window.	The
editor	will	switch	to	a	design	view	that	displays	how	the	view	will	look.	Click	on	View	Controller	under
View	Controller	Scene.	Make	sure	that	you	see	the	Utilities	pane	on	the	right-hand	side	and	check	the
values	for	Identity	Inspector.	In	order	to	do	so,	select	View	|	Utilities	|	Show	Identity	Inspector	or
press	Command	+	Option	+	3.	The	value	for	Class	will	be	ViewController	under	Custom	Class,	as
shown	in	the	following	screenshot:	

	

The	previously	introduced	ViewController	class	is	the	custom	class	associated	with	the	View
Controller	tab	in	the	main	storyboard	for	the	iOS	app.	We	will	add	code	to	this	class	later.

Now,	we	want	to	add	and	connect	a	simple	UI	element	that	will	allow	us	to	easily	turn	on	and	turn	off	a
motor,	specifically,	a	UISwitch	instance.	A	switch	displays	an	element	that	shows	the	Boolean	state	of	a
value.	We	can	tap	the	control	to	toggle	the	value.

Make	sure	that	the	Object	Library	tab	is	visible	in	Library	View,	which	Xcode	displays	in	the	bottom
half	of	the	Utilities	pane	on	the	right-hand	side.	You	just	need	to	click	on	the	Show	the	Object	Library
button	at	the	top	of	the	bottom	half.	Click	on	the	Filter	textbox	located	at	the	bottom	and	type	Switch.
Object	Library	will	display	all	the	objects	that	contain	Switch,	and	the	only	one	is	Switch,	as	shown	in
the	following	screenshot:	

	

Drag	Switch	from	the	previously	shown	list	to	the	rectangle	that	defines	the	view	in	the	preview.	Align
the	new	element	to	the	right-hand	side.	This	way,	we	will	have	a	Switch	component	on	the	view	in	the

main	storyboard,	as	shown	in	the	following	screenshot.	Note	that	the	class	is	UISwitch:	

	

We	added	a	Switch	component	on	the	view.	Now,	we	have	to	expose	the	component	to	make	it	accessible
through	code	in	the	previously	analyzed	ViewController	class.

Navigate	to	View	|	Assistant	Editor	|	Show	Assistant	Editor	in	the	Xcode	menu	or	simply	click	on	the
button	with	two	intersecting	circles	in	the	upper-right	corner	(the	second	button).	Xcode	will	display	the
source	code	for	the	ViewController	class	on	the	right-hand	side	of	the	view	preview	for	the	main
storyboard.

Press	the	Ctrl	key	and	hold	it	while	you	drag	the	recently	added	Switch	component	from	the	view	to	the
blank	line	after	the	ViewController	class	declaration.	Xcode	will	display	a	line	and	a	tooltip	with	the
following	legend	at	the	position	to	which	you	are	dragging	the	mouse:	Insert	Outlet,	Action,	or	Outlet
Collection.	Release	the	Ctrl	key,	and	Xcode	will	display	a	pop-up	dialog	box	asking	us	for	a	name	for	the
new	property	and	IBOutlet	that	it	will	create.	Enter	motorSwitch	in	the	Name	textbox,	make	sure	that
UISwitch	is	selected	in	the	Type	dropdown,	and	then	click	on	Connect:	

	

After	we	click	on	the	Connect	button,	the	following	highlighted	line	will	appear	within	the
ViewController	class	body.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_06/ControlActuators	folder:	class	ViewController:
UIViewController	{	@IBOutlet	weak	var	motorSwitch:	UISwitch!

The	new	line	uses	the	@IBOutlet	decorator	to	indicate	the	outlet	connection.	The	line	declares	a
motorSwitch	stored	property	as	a	weak	reference	to	an	implicitly	unwrapped	optional	UISwitch.	The
weak	keyword	indicates	Swift	to	use	a	weak	reference,	which	allows	the	possibility	of	the	object	that	the
property	points	at	to	become	nil	and	avoids	retain	cycles.

The	exclamation	mark	(!)	after	the	UISwitch	class	name	indicates	that	Xcode	wants	Swift	to	treat
motorSwitch	as	an	implicitly	unwrapped	optional	UISwitch.	This	way,	the	option	will	be	automatically
unwrapped	whenever	the	property	is	used.	However,	if	it	points	to	nil,	it	will	trigger	a	runtime	error.

You	will	notice	there	are	two	small	circles	on	the	left-hand	side	of	the	new	line	of	code.	If	you	let	the
cursor	hover	over	this	small	icon,	Xcode	will	highlight	the	Switch	component	in	the	view	connected	to
this	property.	If	you	click	on	the	icon,	Xcode	will	display	a	tooltip	with	the	story	board	name,
Main.storyboard,	and	the	related	component,	Motor	Switch,	as	shown	in	the	following	screenshot:	

	

We	can	easily	interact	with	the	Switch	component	through	the	recently	added	motorSwitch	property	in
our	ViewController	class.

Now,	we	want	to	add	and	connect	another	simple	UI	element	that	will	allow	us	to	easily	display	the	status
message	we	will	receive	from	the	board	after	we	turn	on	or	turn	off	the	motor	with	the	previously	added
switch.	We	will	add	a	Label	instance.	A	label	displays	a	variably	sized	amount	of	static	text.	Of	course,
we	are	creating	a	very	simple	UI	to	stay	focused	on	MQTT.	You	will	be	able	to	use	this	example	as	a
baseline	and	generate	a	better	user	experience,	combining	a	great	UI	with	MQTT	messages.

Click	on	Main.storyboard	in	the	Project	Navigator	on	the	left-hand	side	of	the	Xcode	window.	The
editor	will	switch	to	a	design	view	that	displays	how	the	view	will	look.	Click	on	View	Controller	under

View	Controller	Scene.	Make	sure	that	you	see	the	Utilities	pane	on	the	right-hand	side	and	check	the
values	for	Identity	Inspector.

Make	sure	that	the	Object	Library	tab	is	visible	in	Library	View.	You	just	need	to	click	on	the	Show	the
Object	Library	button	at	the	top	of	the	bottom	half.	Click	on	the	Filter	textbox	located	at	the	bottom	and
type	Label.	Object	Library	will	display	all	the	objects	that	contain	Label,	and	the	only	one	is	Label.

Drag	Label	from	the	list	to	the	rectangle	that	defines	the	view	in	the	preview.	Align	the	new	element	to
the	left-hand	side	and	below	the	previously	added	switch.	This	way,	we	will	have	a	Label	component	on
the	view	in	the	main	storyboard.	Note	that	the	class	is	UILabel.	Extend	the	width	for	the	label	to	reach	the
right-hand	side	of	the	view,	as	shown	in	the	next	screenshot.	We	want	to	make	sure	that	the	label	is
capable	of	displaying	the	messages	we	receive	from	the	boards	that	process	the	commands,	without
truncating	the	text:	

	

We	added	a	Label	component	on	the	view.	Now,	we	have	to	expose	the	component	to	make	it	accessible
through	code	in	the	previously	analyzed	ViewController	class.

Navigate	to	View	|	Assistant	Editor	|	Show	Assistant	Editor	in	the	Xcode	menu	or	simply	click	on	the
button	with	two	intersecting	circles	in	the	upper-right	corner	(the	second	button).	Xcode	will	display	the
source	code	for	the	ViewController	class	on	the	right-hand	side	of	the	view	preview	for	the	main
storyboard.

Press	the	Ctrl	key	and	hold	it	while	you	drag	the	recently	added	Label	component	from	the	view	to	the
blank	line	after	the	ViewController	class	declaration.	Xcode	will	display	a	line	and	a	tooltip	with	the
following	legend	at	the	position	to	which	you	are	dragging	the	mouse:	Insert	Outlet,	Action,	or	Outlet
Collection.	Release	the	Ctrl	key,	and	Xcode	will	display	a	pop-up	dialog	box	asking	us	for	a	name	for	the
new	property	and	IBOutlet	that	it	will	create.	Enter	statusLabel	in	the	Name	textbox,	make	sure
UILabel	is	selected	in	the	Type	dropdown,	and	then	click	on	Connect:	

	

After	we	click	on	the	Connect	button,	the	following	highlighted	line	will	appear	within	the
ViewController	class	body.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_06/ControlActuators	folder:	class	ViewController:
UIViewController	{	@IBOutlet	weak	var	statusLabel:	UILabel!	@IBOutlet	weak	var	motorSwitch:
UISwitch!

The	new	line	uses	the	@IBOutlet	decorator	to	indicate	the	outlet	connection.	The	line	declares	a
statusLabel	stored	property	as	a	weak	reference	to	an	implicitly	unwrapped	optional	UILabel.

We	can	easily	interact	with	the	Label	component	through	the	recently	added	statusLabel	property	in	our
ViewController	class.

Understanding	the	CocoaMQTT	client	in	Swift	3
The	CocoaMQTT	client	is	very	easy	to	use.	First,	it	is	necessary	to	import	CocoaMQTT,	create	an	instance
of	the	CocoaMQTT	class,	specify	the	MQTT	connection	configuration	values,	and	indicate	an	instance	of	a
class	that	conforms	to	the	CocoaMQTTDelegate	protocol.	We	can	call	the	methods	for	the	created
CocoaMQTT	instance	to	subscribe	to	topics	and	publish	messages.

Let's	take	a	look	at	the	code	that	declares	the	CocoaMQTTDelegate	protocol:	@objc	public	protocol
CocoaMQTTDelegate	{	func	mqtt(_	mqtt:	CocoaMQTT,	didConnect	host:	String,	port:	Int)	func	mqtt(_
mqtt:	CocoaMQTT,	didConnectAck	ack:	CocoaMQTTConnAck)	func	mqtt(_	mqtt:	CocoaMQTT,
didPublishMessage	message:	CocoaMQTTMessage,	id:	UInt16)	func	mqtt(_	mqtt:	CocoaMQTT,
didPublishAck	id:	UInt16)	func	mqtt(_	mqtt:	CocoaMQTT,	didReceiveMessage	message:
CocoaMQTTMessage,	id:	UInt16)	func	mqtt(_	mqtt:	CocoaMQTT,	didSubscribeTopic	topic:	String)	func
mqtt(_	mqtt:	CocoaMQTT,	didUnsubscribeTopic	topic:	String)	func	mqttDidPing(_	mqtt:	CocoaMQTT)
func	mqttDidReceivePong(_	mqtt:	CocoaMQTT)	func	mqttDidDisconnect(_	mqtt:	CocoaMQTT,
withError	err:	Error?)	@objc	optional	func	mqtt(_	mqtt:	CocoaMQTT,	didReceive	trust:	SecTrust,
completionHandler:	@escaping	(Bool)	->	Void)	}

To	make	a	class	conform	to	the	CocoaMQTTDelegate	protocol,	we	must	code	many	methods	named	mqtt
that	receive	different	arguments.	The	code	we	define	in	these	methods	with	the	same	name	will	be
executed	when	certain	events	related	to	the	MQTT	client	occur.	The	usage	of	the	same	name	might	be
confusing	when	we	start	working,	but	we	can	easily	understand	when	each	method	will	be	executed	by
checking	the	external	name	of	the	second	argument.	The	following	list	explains	when	each	of	the	methods
is	executed	based	on	the	external	name	of	the	second	argument.	The	first	argument,	named	mqtt,	is	the
CocoaMQTT	instance	that	represents	the	MQTT	client,	and	we	can	use	it	to	call	the	available	methods	for
the	client:

didConnect:	The	mqtt	method	that	includes	this	argument	will	be	executed	after	the	client	has
established	a	connection	with	the	MQTT	server.	The	method	receives	the	host	and	the	port	for	the
MQTT	server	in	the	host	and	port	arguments.
didConnectAck:	The	mqtt	method	that	includes	this	argument	will	be	executed	after	the	connection
with	the	MQTT	server	has	been	acknowledged.	The	method	receives	the	results	of	the	connection
acknowledgment	in	the	ack	argument	of	the	CocoaMQTTConnAck	enum	type.	If	ack	is	equal	to
CocoaMQTTConnAck.accept,	it	means	that	the	connection	has	been	successfully	accepted	by	the
MQTT	server.	It	is	convenient	to	subscribe	to	the	necessary	topic	filters	by	writing	the	appropriate
code	in	this	method.	This	way,	whenever	a	connection	has	been	accepted,	the	client	will	always
subscribe	to	the	appropriate	topic	filters.
didPublishMessage:	The	mqtt	method	that	includes	this	argument	will	be	executed	after	a	message
has	been	published	to	a	topic.	The	message	argument	is	an	instance	of	the	CocoaMQTTMessage	class.
We	can	use	the	message.topic	and	message.string	properties	to	access	the	topic	and	the	string
representation	of	the	payload	for	the	published	message.	The	id	argument	provides	the	ID	for	the
message	that	we	can	use	to	track	the	publish	acknowledgement	event	for	the	message.
didPublishAck:	The	mqtt	method	that	includes	this	argument	will	be	executed	after	the	client
receives	the	publish	acknowledgement	from	the	MQTT	server	for	the	message	whose	ID	is	specified

in	the	id	argument.
didReceiveMessage:	The	mqtt	method	that	includes	this	argument	will	be	executed	after	a	message
that	matches	one	of	the	topic	filters	to	which	the	client	has	subscribed	to	has	been	received.	The
message	argument	is	an	instance	of	the	CocoaMQTTMessage	class.	We	can	use	the	message.topic
and	message.string	properties	to	access	the	topic	and	the	string	representation	of	the	payload	for
the	received	message.	The	id	argument	provides	the	ID	for	the	message.
didSubscribeTopic:	The	mqtt	method	that	includes	this	argument	will	be	executed	after	the	client
has	subscribed	to	the	topic	filter	specified	in	the	topic	argument.
didUnsubscribeTopic:	The	mqtt	method	that	includes	this	argument	will	be	executed	after	the
client	has	unsubscribed	from	the	topic	filter	specified	in	the	topic	argument.

In	addition,	to	make	a	class	conform	to	the	CocoaMQTTDelegate	protocol,	we	must	code	the	following
three	methods:

mqttDidPing:	This	method	is	executed	after	the	MQTT	client	has	sent	the	PINGREQ	control	packet	to
the	MQTT	server.
mqttDidReceivePong:	This	method	is	executed	after	the	MQTT	server	has	sent	the	PINGRESP
response	to	the	MQTT	client.
mqttDidDisconnect:	This	method	is	executed	after	the	MQTT	client	disconnects	from	the	MQTT
server.	The	err	argument	is	an	optional	instance	that	conforms	to	the	Error	protocol	and	specifies
the	details	of	the	error	that	generated	the	disconnection.

Connecting	to	the	MQTT	server	and	subscribing
to	topics	in	Swift
Now,	we	will	add	code	to	the	ViewController	class	to	make	it	conform	to	the	CocoaMQTTDelegate
protocol.	In	addition,	we	will	add	code	to	configure	the	MQTT	client	and	establish	a	connection	with	the
MQTT	server.	We	will	split	the	code	for	the	ViewController	class	into	many	code	snippets	to	make	it
easier	to	understand	each	code	section.	The	following	lines	specify	all	the	necessary	imports,	start	the
ViewController	class	declaration,	and	create	many	static	type	properties,	the	mqttClient	property,	and
the	configureMQTTAndConnect	method.	The	following	lines	show	the	code	for	the	ViewController
class	defined	in	the	ViewController.swift	file.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_06/ControlActuators	folder:

import	UIKit

import	CocoaMQTT

class	ViewController:	UIViewController,	CocoaMQTTDelegate	{

				@IBOutlet	weak	var	statusLabel:	UILabel!

				@IBOutlet	weak	var	motorSwitch:	UISwitch!

				static	let	motor01CommandTopic	=	

"commands/boards/inteledison01/actuators/motor01"

				static	let	motor01StatusTopic	=	"status/boards/inteledison01"

				static	let	turnOnCommand	=	"TURN	ON"

				static	let	turnOffCommand	=	"TURN	OFF"

				

				var	mqttClient:	CocoaMQTT!

				

				func	configureMQTTAndConnect()	{

								let	clientID	=	"iOSMotorControl-"	+	String(ProcessInfo().processIdentifier)

								//	Replace	with	the	host	name	for	the	MQTT	Server

								let	host	=	"localhost"

								//	Replace	with	the	port	number	for	MQTT	over	TCP	(without	TLS)

								let	port	=	UInt16(1883)

mqttClient	=	CocoaMQTT(clientID:	clientID,	host:	host,	port:	port)

								mqttClient.username	=	""

								mqttClient.password	=	""

								mqttClient.keepAlive	=	60

								mqttClient.delegate	=	self

								mqttClient.connect()

				}

The	configureMQTTAndConnect	method	generates	a	client	ID	for	the	MQTT	client	and	saves	it	in	the
clientID	constant.	The	next	lines	define	the	host	and	port	constants	and	create	an	instance	of	the
CocoaMQTT	class	named	mqttClient	with	clientID,	host,	and	port	as	the	values	for	the	arguments	that
have	the	same	names.	Then,	the	code	sets	the	values	for	the	username,	password,	keepAlive,	and
delegate	properties.	The	code	specifies	self	as	the	value	for	the	mqttClient.delegate	property	to
specify	that	we	want	to	use	the	current	instance	as	the	delegate	that	conforms	to	the	CocoaMQTTDelegate
protocol.	Finally,	the	code	calls	the	mqttClient.connect	method	to	make	the	MQTT	client	establish	a

connection	with	the	MQTT	server.

The	following	lines	show	the	changes	in	the	viewDidLoad	method	and	declare	two	methods	that	are
required	to	make	the	ViewController	class	conform	to	the	CocoaMQTTDelegate	protocol.	The
following	lines	show	the	code	for	the	ViewController	class	defined	in	the	ViewController.swift
file.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_06/ControlActuators	folder:

override	func	viewDidLoad()	{

								super.viewDidLoad()

								configureMQTTAndConnect()

				}

				func	mqtt(_	mqtt:	CocoaMQTT,	didConnect	host:	String,	port:	Int)	{

								//	Connection	established	with	the	MQTT	Server

								print("Connected	with	MQTT	Server	\(host):\(port)")

				}

				

				func	mqtt(_	mqtt:	CocoaMQTT,	didConnectAck	ack:	CocoaMQTTConnAck)	{

								//	Connection	acknowledged

								print("Connection	acknowledged	\(ack)rawValue:	\(ack.rawValue)")

								if	ack	==	.accept	{

												//	Subscribe	to	the	motor01StatusTopic	topic	with	QoS	0

												mqtt.subscribe(type(of:	self).motor01StatusTopic,	qos:	

CocoaMQTTQOS.qos0)

								}

				}

The	viewDidLoad	method	calls	the	previously	explained	configureMQTTAndConnect	method	after	it
calls	the	super.viewDidLoad	method.	This	way,	after	the	view	is	loaded,	the	app	will	configure	the
MQTT	client	and	establish	a	connection	with	the	MQTT	server.

The	code	in	the	mqtt	method	with	didConnect	as	the	external	name	of	the	second	argument	prints	a
message	to	the	debug	output,	indicating	that	the	MQTT	client	is	connected	with	the	MQTT	server	with	the
host	and	port	received	as	arguments.

The	code	in	the	mqtt	method	with	didConnectAck	as	the	external	name	of	the	second	argument	prints	a
message	to	the	debug	output,	indicating	that	the	connection	has	been	acknowledged	with	the	value
received	in	the	ack	argument.	If	the	value	for	the	ack	argument	is	equal	to	CocoaMQTTConnAck.accept,	it
means	that	the	connection	was	accepted	by	the	MQTT	server	and	we	can	subscribe	to	the	desired	topic
filters.	If	this	happens,	the	code	calls	the	mqtt.subscribe	method	with	the	motor01StatusTopic	type
property	as	the	value	for	the	topic	argument	and	CocoaMQTTQOS.qos0	as	the	value	for	the	qos	argument.
This	way,	the	code	requests	the	MQTT	client	to	subscribe	to	the	desired	topic	with	a	QoS	level	of	0.

The	following	lines	declare	the	remaining	methods	that	are	required	to	make	the	ViewController	class
conform	to	the	CocoaMQTTDelegate	protocol	and	end	the	declaration	of	the	class.	The	following	lines
show	the	code	for	the	ViewController	class	defined	in	the	ViewController.swift	file.	The	code	file
for	the	sample	is	included	in	the	mqtt_essentials_gaston_hillar_06/ControlActuators	folder:

func	mqtt(_	mqtt:	CocoaMQTT,	didPublishMessage	message:	CocoaMQTTMessage,	id:	

UInt16)	{

								print("Message	published	to	topic	\(message.topic)	with	payload	\

(message.string!)")

				}

				

				func	mqtt(_	mqtt:	CocoaMQTT,	didPublishAck	id:	UInt16)	{

								print("Publish	acknowledged	with	id:	\(id)")

				}

				

				func	mqtt(_	mqtt:	CocoaMQTT,	didReceiveMessage	message:	CocoaMQTTMessage,	id:	

UInt16)	{

								print("Message	received	in	topic	\(message.topic)	with	payload	\

(message.string!)")

								if	(message.topic	==	type(of:	self).motor01StatusTopic)	{

												statusLabel.text	=	"\(message.string!)"

								}

				}

				

				func	mqtt(_	mqtt:	CocoaMQTT,	didSubscribeTopic	topic:	String)	{

								print("Subscribed	to	\(topic)")

				}

				

				func	mqtt(_	mqtt:	CocoaMQTT,	didUnsubscribeTopic	topic:	String)	{

								print("Unsubscribed	from	\(topic)")

				}

				

				func	mqttDidPing(_	mqtt:	CocoaMQTT)	{

				}

				

				func	mqttDidReceivePong(_	mqtt:	CocoaMQTT)	{

				}

				

				func	mqttDidDisconnect(_	mqtt:	CocoaMQTT,	withError	err:	Error?)	{

								print("Disconnected	from	the	MQTT	Server")

				}

				override	func	didReceiveMemoryWarning()	{

								super.didReceiveMemoryWarning()

				}

}

Most	of	the	methods	just	print	a	message	to	the	debug	output	and	some	of	them	are	declared	with	empty
code	because	we	don't	want	to	pay	attention	to	those	specific	events.	The	code	in	the	mqtt	method	with
didReceiveMessage	as	the	external	name	of	the	second	argument	prints	a	message	to	the	debug	output
indicating	that	the	MQTT	client	has	received	a	message	in	a	topic	with	the	string	representation	of	the
payload.	Then,	the	code	checks	whether	the	value	of	the	message.topic	property	matches	the	value	of
the	motor01StatusTopic	type	property.	If	these	values	match,	the	code	sets	the	statusLabel.text
property	to	the	string	representation	of	the	payload	of	the	received	message.	This	way,	whenever	the	app
receives	a	status	update	from	the	board,	the	app	updates	the	text	displayed	in	the	statusLabel	label.

Publishing	messages	to	target	actuators	in	Swift
Whenever	the	user	changes	the	value	for	the	motorSwitch	switch,	we	want	to	send	a	message	to	request
the	board	to	turn	on	or	turn	off	the	motor.

Click	on	Main.storyboard	in	the	Project	Navigator	on	the	left-hand	side	of	the	Xcode	window.	The
editor	will	switch	to	a	design	view	that	displays	how	the	view	will	look.	Click	on	View	Controller	under
View	Controller	Scene,	then	click	on	View,	and	finally	on	Motor	Switch.

Navigate	to	View	|	Assistant	Editor	|	Show	Assistant	Editor	in	the	Xcode	menu	or	simply	click	on	the
button	with	two	intersecting	circles	in	the	upper-right	corner	(the	second	button).	Xcode	will	display	the
source	code	for	the	ViewController	class	on	the	right-hand	side	of	the	view	preview	for	the	main
storyboard.

Right-click	on	Motor	Switch	and	Xcode	will	display	a	popup	that	includes	the	sent	events	and	the
associated	actions	for	this	component,	as	shown	in	the	next	screenshot:

	

	

Click	and	drag	the	circle	on	the	right-hand	side	of	Value	Changed	from	the	previously	shown	popup	to
the	blank	line	after	the	ViewController	class	declaration.	Xcode	will	display	a	line	and	a	tooltip	with
the	following	legend	at	the	position	to	which	you	are	dragging	the	mouse:	Insert	Action.	Release	the
mouse	button,	and	Xcode	will	display	a	pop-up	dialog	box	asking	us	for	a	name	for	the	new	method	and
IBAction	that	it	will	create.	Enter	motorSwitchChanged	in	the	Name	textbox,	make	sure	that	UISwitch
is	selected	in	the	Type	dropdown,	and	then	click	on	Connect.	The	following	screenshot	shows	the	values
specified	in	the	pop-up	dialog:

	

	

After	we	click	on	the	Connect	button,	the	following	highlighted	line	will	appear	within	the
ViewController	class	body.	The	code	file	for	the	sample	is	included	in	the
mqtt_essentials_gaston_hillar_06/ControlActuators	folder:	class	ViewController:
UIViewController	{	@IBAction	func	motorSwitchChanged(_	sender:	UISwitch)	{	}

The	new	line	uses	the	@IBAction	decorator	to	indicate	the	action	connection.	The	line	declares	a
motorSwitchChanged	method	that	receives	the	UISwitch	instance	whose	value	has	changed	in	the
sender	argument.

Now,	we	will	add	code	to	the	recently	added	motorSwitchChanged	method	to	send	a	message	to	request
the	board	to	turn	on	or	turn	off	the	motor,	based	on	the	new	value	that	the	component	has	in	the	isOn
property.	The	following	lines	show	the	new	code	for	the	method.	The	code	file	for	the	sample	is	included
in	the	mqtt_essentials_gaston_hillar_06/ControlActuators	folder:	@IBAction	func
motorSwitchChanged(_	sender:	UISwitch)	{	let	messagePayload	=	sender.isOn	?	type(of:
self).turnOnCommand	:	type(of:	self).turnOffCommand	mqttClient.publish(type(of:
self).motor01CommandTopic,	withString:	messagePayload,	qos:	CocoaMQTTQOS.qos0,	retained:
false,	dup:	false)	}

First,	the	code	declares	a	messagePayload	constant	that	is	assigned	the	value	of	the	turnOnCommand	type
property	if	the	value	of	sender.isOn	is	true.	Otherwise,	the	constant	is	assigned	the	value	of	the
turnOffCommand	type	property.	Then,	the	code	calls	the	mqttClient.publish	method	with	the
motor01CommandTopic	type	property	as	the	value	for	the	topic	argument,	the	messagePayload	constant
as	the	value	for	the	withString	argument	that	specified	the	desired	payload	for	the	messages,	and

CocoaMTTQOS.qos0	as	the	value	for	the	qos	argument.	The	other	arguments	are	Boolean	values	set	to
false.	This	way,	we	publish	a	message	with	the	appropriate	command,	based	on	the	selected	value	for
the	switch.	Whenever	the	user	changes	the	value	for	the	switch,	the	code	in	this	method	will	be	executed
and	a	message	will	be	sent	to	the	board	that	controls	the	motor.

Processing	commands	that	interact	with
actuators	in	Node.js
Now	that	we	have	coded	the	iOS	app	that	will	allow	the	user	to	turn	on	and	turn	off	a	motor,	we	will
write	the	Node.js	code	that	will	control	the	motor	wired	to	the	IoT	board.	We	can	run	Node.js	and	the
code	in	any	computer	or	IoT	board	capable	of	running	Node.js	version	6.9.x	or	higher.

For	this	example,	we	specified	in	the	requirements	that	the	motors	would	be	wired	to	the	following	IoT
boards:	Raspberry	Pi	3,	Raspberry	Pi	2	Model	B,	Intel	Edison,	Intel	Galileo	Gen	2,	Intel	Joule	570x,	and
Intel	Joule	550x.	All	of	these	boards	can	have	Node.js	installed	and	run	the	sample	code.	However,	we
can	also	run	the	code	on	many	other	IoT	boards	or	even	on	our	development	computer.

In	this	example,	we	will	use	the	MQTT.js	open	source	library	to	work	with	direct	MQTT	with	Node.js.
Make	sure	you	have	Node.js	installed	in	the	computer	or	IoT	board	you	will	use	to	run	this	example.	If
you	haven't	worked	with	the	example	in	the	previous	chapter,	run	the	following	command	to	install
MQTT.js.	Notice	that	the	code	is	tested	with	MQTT.js	2.3.1:

npm	install	mqtt

Now,	we	will	create	a	new	Node.js	JavaScript	file	named	actuators_control.js.	The	code	file	for	the
sample	is	included	in	the	mqtt_essentials_gaston_hillar_06	folder,	in	the	actuators_control.js
file:

var	mqtt	=	require("mqtt")

//	Replace	with	the	host	name	for	the	MQTT	Server

var	host	=	"localhost"

//	Replace	with	the	port	number	for	MQTT	over	TCP	(without	TLS)

var	port	=	1883	

var	client	=	mqtt.connect("mqtt://"	+	host	+	":"	+	port)

var	boardName	=	"inteledison01"

var	actuatorCommandBaseTopic	=	"commands/boards/"	+	boardName	+	"/actuators/"

var	actuatorResultTopic	=	"status/boards/"	+	boardName

var	turnOnCommand	=	"TURN	ON"

var	turnOffCommand	=	"TURN	OFF"

client.on("connect",	function	()	{

				console.log("I'm	connected	to	the	MQTT	server")

				client.subscribe(actuatorCommandBaseTopic	+	"+")

})

	

client.on('message',	function	(topic,	message)	{

				//	message	is	Buffer	

				var	payloadString	=	message.toString()

				console.log("Message	arrived	for	topic:	"	+	topic	+	",	with	the	following	

payload:	"	+	payloadString)

				if	(!topic.startsWith(actuatorCommandBaseTopic))	{

								return;

				}

				var	actuatorName	=	topic.replace(actuatorCommandBaseTopic,	"")

				if	(actuatorName)	{

								var	resultMessagePayloadString	=	""

								if	(payloadString	===	turnOnCommand)	{

												console.log("I've	turned	ON	"	+	actuatorName)

												var	resultMessagePayloadString	=	actuatorName	+	"	has	been	turned	on"

								}	else	if	(payloadString	===	turnOffCommand)	{

												console.log("I've	turned	OFF	"	+	actuatorName)

												var	resultMessagePayloadString	=	actuatorName	+	"	has	been	turned	off"

								}

								if	(resultMessagePayloadString)	{

												client.publish(actuatorResultTopic,	resultMessagePayloadString)

								}

				}

})

First,	the	code	requires	mqtt	and	saves	the	object	in	the	mqtt	variable.	Then,	the	code	declares	the	host
and	port	variables	with	the	host	name	for	the	MQTT	server	and	the	port	number	for	direct	MQTT.	Then,
the	code	calls	the	mqtt.connect	function	with	mqtt://	followed	by	the	host	value,	a	colon	(:),	and	the
port	number.	In	case	we	want	to	connect	to	localhost	on	port	1883,	the	value	for	this	argument	will	be
mqtt://localhost:1883.	We	specify	mqtt	as	the	protocol	name	because	we	want	MQTT.js	to	create	a
direct	MQTT	connection.	The	results	of	this	function	are	assigned	to	the	client	variable.

Then,	the	code	specifies	the	callback	function	assigned	to	the	connect	event.	This	function	will	be	called
after	the	client	successfully	establishes	a	connection	with	the	MQTT	server.

Tip

After	the	MQTT	client	establishes	a	connection	with	the	MQTT	server,	client.connected	will	evaluate
to	true.

The	function	calls	the	client.subscribe	function	with	the	result	of	concatenating	"+"	to
actuatorCommandBaseTopic	as	an	argument	to	subscribe	to	the	commands/boards/actuators/+	topic
filer.	In	this	case,	we	use	the	default	options	for	the	subscription	because	we	will	work	with	the	default
QoS	level	of	0.

Then,	the	code	specifies	the	callback	function	assigned	to	the	message	event.	This	function	will	be	called
whenever	the	client	receives	a	message	from	the	MQTT	server.	The	function	receives	the	following	two
arguments:

topic:	This	specifies	the	topic	for	the	received	message
message:	This	is	the	buffer	for	the	received	message's	payload

The	function	saves	the	results	of	calling	message.toString	to	the	payloadString	variable.	It	is
necessary	to	call	toString	for	message	because	the	received	message	argument	is	a	buffer	and	we	want
to	work	with	the	received	message's	payload	as	a	string.

The	code	prints	a	message	to	the	console	log,	indicating	that	a	message	has	arrived	with	the	destination
topic	and	the	payload	string	included	in	the	topic	argument	and	the	payloadString	variable.

Then,	the	code	checks	whether	topic	starts	with	actuatorCommandBaseTopic	to	make	sure	that	the
message's	destination	topic	is	the	one	defined	for	the	commands	related	to	actuators.

Tip

In	this	case,	the	code	only	subscribes	to	the	topic	filter	we	defined	for	publishing	messages	with	the
commands	related	to	actuators.	However,	we	include	this	code	to	understand	how	we	should	check	the
topic	value	when	we	subscribe	to	multiple	topics	that	have	different	goals	with	MQTT.js.

Then,	the	code	retrieves	the	actuator	name	from	the	message's	topic	and	saves	it	in	the	actuatorName
variable.	The	code	removes	actuatorCommandBaseTopic	from	topic	to	retrieve	the	actuator's	name.
For	example,	if	the	value	for	topic	is	"commands/boards/inteledison01/motor01",	the	code
replaces	"commands/boards/inteledison01/"	with	an	empty	string	and	the	resulting	string,
"motor01",	is	the	actuator's	name	assigned	to	the	actuatorName	variable.

Then,	the	code	checks	whether	actuatorName	has	a	value.	In	case	it	has	a	value,	the	function	checks
whether	the	command	included	in	the	message's	payload	string	saved	in	the	payloadString	variable
matches	either	"TURN	ON"	or	"TURN	OFF".	If	payloadString	matches	any	of	these	values,	the	code	will
print	a	message	to	the	console	indicating	it	has	performed	the	requested	operation	on	the	retrieved
actuator's	name.	In	addition,	the	code	will	save	a	message	to	be	published	in	the
resultMessagePayloadString	variable.

Finally,	the	code	calls	the	client.publish	function	with	actuatorResultTopic	and
resultMessagePayloadString	as	the	topic	and	payload	arguments.	This	way,	the	code	requests	the
MQTT	client	to	publish	a	message	to	the	appropriate	topic	with	the	results	of	the	execution	of	the
command.	In	this	case,	the	results	indicate	what	happened	with	a	specific	actuator.

Running	the	iOS	app	that	controls	an	actuator
with	MQTT
Make	sure	the	Mosquitto	server	or	any	other	MQTT	server	you	might	want	to	use	for	this	example	is
running.	In	case	you	aren't	working	with	Mosquitto,	make	sure	you	have	enabled	support	for	direct	MQTT
without	TLS.	Then,	execute	the	following	line	to	start	the	Node.js	example	in	any	computer	or	device	that
you	want	to	use	as	the	MQTT	client	that	will	process	the	commands	received	to	control	the	motor:

node	actuators_control.js

The	Node.js	script	will	establish	a	connection	with	the	MQTT	server,	subscribe	to	the	topics	to	which	the
web	application	will	publish	the	commands	for	the	three	LEDs,	and	display	the	following	message:

I'm	connected	to	the	MQTT	server

Leave	the	Node.js	script	running	on	the	computer	or	device	in	which	you	executed	it.	Now,	go	to	Xcode
and	run	the	ControlActuators	app	that	we	previously	coded	in	the	simulator	or	in	a	compatible	iOS
device.

Click	or	tap	the	switch	to	turn	the	motor	on.

Go	to	the	window	in	which	you	are	checking	the	results	of	the	Node.js	script	and	you	will	see	messages
similar	to	the	following:

Message	arrived	for	topic:	commands/boards/inteledison01/actuators/motor01,	with	

the	following	payload:	TURN	ON

I've	turned	ON	motor01

The	Node.js	script	has	received	a	message	in	the
commands/boards/inteledison01/actuators/motor01	topic	with	a	string	as	a	payload	that	requests
the	motor	named	motor01	to	be	turned	on.	The	script	processes	the	command	and	publishes	a	status
message.

Now,	go	to	the	simulator	or	the	iOS	device	in	which	you	are	running	the	iOS	app.	The	MQTT	client
created	by	this	app	will	receive	the	message	published	by	the	Node.js	script	to	the
status/boards/inteledison01	topic	and	will	update	the	status	message	with	motor01	has	been
turned	on.	The	following	screenshot	shows	the	app	that	changed	the	status	message	after	the	motor	was
turned	on:

	

	

	

You	will	see	the	following	messages	in	the	Xcode	output	panel:

Message	published	to	topic	commands/boards/inteledison01/actuators/motor01	with	

payload	TURN	ON

Message	received	in	topic	status/boards/inteledison01	with	payload	motor01	has	been	

turned	on

Go	to	the	app	and	click	or	tap	the	switch	again	to	turn	the	motor	off.

Go	to	the	window	in	which	you	are	checking	the	results	of	the	Node.js	script,	and	you	will	see	messages
similar	to	the	following:

Message	arrived	for	topic:	commands/boards/inteledison01/actuators/motor01,	with	

the	following	payload:	TURN	OFF

I've	turned	OFF	motor01

The	Node.js	script	has	received	a	message	in	the
commands/boards/inteledison01/actuators/motor01	topic	with	a	string	as	a	payload	that	requests
the	motor	named	motor01	to	be	turned	off.	The	script	processes	the	command	and	publishes	a	status
message.

Now,	go	to	the	simulator	or	the	iOS	device	in	which	you	are	running	the	iOS	app.	The	MQTT	client
created	by	this	app	will	receive	the	message	published	by	the	Node.js	script	to	the
status/boards/inteledison01	topic	and	will	update	the	status	message	with	motor01	has	been
turned	off.	The	following	screenshot	shows	the	app	that	changed	the	status	message	after	the	motor	was
turned	off:

	

	

	

You	will	see	the	following	messages	in	the	Xcode	output	panel:

Message	published	to	topic	commands/boards/inteledison01/actuators/motor01	with	

payload	TURN	OFF

Message	received	in	topic	status/boards/inteledison01	with	payload	motor01	has	been	

turned	off

Debugging	events	in	Swift
Now,	we	will	take	advantage	of	Xcode's	debugging	features	to	understand	how	methods	are	called	when
events	occur.

Leave	the	application	running	on	the	simulator	or	the	iOS	device.

Open	the	source	code	for	ViewController.swift.

Click	on	the	left	margin	of	the	following	line	of	code	to	establish	a	breakpoint	at	the	first	line	of	code	in
the	mqtt	method	with	didReceiveMessage	as	the	external	name	of	the	second	argument:

				print("Message	received	in	topic	(message.topic)	with	payload						

(message.string!)")

Now,	go	to	the	iOS	app	and	click	or	tap	on	the	switch	to	turn	on	the	motor	again.	After	you	change	the
value	for	the	switch,	the	Node.js	script	will	send	a	message	with	the	new	status	for	the	motor	and	the
mqtt	method	with	didReceiveMessage	as	the	external	name	of	the	second	argument	will	be	called.	The
Xcode	debugger	will	hit	the	breakpoint	we	have	set.	The	following	screenshot	shows	the	debugger	hitting
the	breakpoint:

	

	

	

You	can	use	all	the	features	included	in	the	debugger	to	check	the	values	for	the	different	arguments
received	in	the	method	and	the	local	variables.	For	example,	you	can	inspect	the	message	argument	to
understand	all	the	data	that	the	CocoaMQTTMessage	instance	encapsulates.

The	usage	of	the	debugger	will	make	it	easier	to	understand	when	the	different	methods	are	executed,	and
you	have	a	better	understanding	of	the	CocoaMQTT	client.	However,	it	is	very	important	to	take	into
account	that	the	MQTT	server	will	disconnect	the	client	if	you	pause	the	code	longer	than	the	value
specified	for	the	timeout.

Test	your	knowledge
1.	 The	CocoaMQTT	client	library	is	written	in:

1.	 Objective-C.
2.	 Swift	2.
3.	 Swift	3.

2.	 In	the	CocoaMQTT	client	library,	a	CocoaMQTT	instance	represents:
1.	 The	synchronous	MQTT	over	WebSockets	client.
2.	 The	asynchronous	MQTT	over	WebSockets	client.
3.	 The	asynchronous	MQTT	over	TCP	client	(no	WebSockets).

3.	 Which	of	the	following	methods	does	the	CocoaMQTT	client	call	after	a	message	is	received	from
the	MQTT	server?
1.	 func	mqtt(_	mqtt:	CocoaMQTT,	didReceiveMessage	message:	CocoaMQTTMessage,

id:	UInt16)	{.
2.	 func	didReceiveMessage(_	mqtt:	CocoaMQTT,	message:	CocoaMQTTMessage,	id:

UInt16)	{.
3.	 func	mqtt(didReceiveMessage	message:	CocoaMQTTMessage,	id:	UInt16)	{.

4.	 Which	of	the	following	properties	of	a	CocoaMQTTMessage	instance	provides	the	string
representation	of	the	message's	payload?
1.	 Payload.
2.	 payloadString.
3.	 String.

5.	 Which	of	the	following	properties	of	a	CocoaMQTTMessage	instance	provides	the	message's
destination	topic?
1.	 topic.
2.	 topicString.
3.	 String.

Summary
In	this	chapter,	we	analyzed	the	requirements	to	control	actuators	wired	to	different	IoT	boards	with
MQTT	messages.	We	defined	the	topics	we	would	use	and	the	commands	that	would	be	a	part	of	the
message's	payloads	to	turn	the	motors	on	and	off.

Then,	we	created	an	iOS	app	with	Xcode	and	Swift	3,	combined	with	the	CocoaMQTT	client,	to	control
a	motor.	We	wrote	code	to	publish	messages	to	target	remote	devices	in	Swift	3,	and	we	were	able	to
process	the	received	messages	to	provide	feedback	to	the	user.

We	worked	with	MQTT.js	to	write	a	Node.js	script	to	process	commands	that	simulated	the	interaction
with	motors	on	different	IoT	boards.	We	were	able	to	run	the	iOS	app	and	the	Node.js	script	and
understand	how	all	the	pieces	worked	together	by	exchanging	MQTT	messages.

We	understood	how	MQTT	works	in	detail	and	we	worked	with	direct	MQTT	and	MQTT	over
WebSockets.	We	worked	with	unsecured	and	secured	communications.	We	worked	with	this	protocol	in
Python,	Java,	JavaScript,	Node.js,	and	Swift.	We	were	able	to	create	code	capable	of	running	in	the	most
popular	and	powerful	IoT	boards.	We	could	combine	scripts,	applications,	web	applications,	and	iOS
apps	with	code	that	controls	sensors	and	actuators	on	IoT	boards.	You	are	now	ready	to	use	MQTT	in	all
kinds	of	projects	in	the	most	popular	programming	languages.

Appendix	A.	Exersise	Answers

Chapter	1,	Lightweight	Messaging	with	MQTT
3.1.1	and	Mosquitto
Questions Answers

Q1 2

Q2 1

Q3 3

Q4 2

Q5 3

Q6 1

Chapter	2,	Securing	an	MQTT	Mosquitto	Server
Questions Answers

Q1 1

Q2 3

Q3 1

Q4 2

Q5 2

Chapter	3,	Controlling	a	Drone	with	Python
Questions Answers

Q1 1

Q2 2

Q3 2

Q4 2

Q5 3

Chapter	4,	Interacting	with	Sensors	in	Java
Questions Answers

Q1 3

Q2 2

Q3 1

Q4 3

Q5 3

Chapter	5,	Controlling	Home	Automation	in
JavaScript
Questions Answers

Q1 1

Q2 2

Q3 2

Q4 3

Q5 1

Chapter	6,	Interacting	with	Actuators	in	Swift
Questions Answers

Q1 3

Q2 3

Q3 1

Q4 3

Q5 1

	MQTT Essentials - A Lightweight IoT Protocol
	Credits
	About the Author
	Acknowledgment
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Dedication
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Lightweight Messaging with MQTT 3.1.1 and Mosquitto
	Understanding convenient scenarios for the MQTT protocol
	Working with the publish-subscribe pattern
	Working with message filtering
	Understanding the MQTT puzzle -- clients, servers, and connections
	Installing a Mosquitto broker on Ubuntu Linux
	Installing a Mosquitto broker on macOS
	Installing a Mosquitto broker on Windows
	Subscribing to topics
	Publishing messages
	Unsubscribing from topics
	Working with best practices when creating topics
	Understanding wildcards
	Learning about the different Quality of Service levels
	Working with at least once delivery
	Working with exactly once delivery
	Test your knowledge
	Summary
	2. Securing an MQTT Mosquitto Server
	Securing a Mosquitto server
	Generating a private certificate authority to use TLS with Mosquitto
	Creating a certificate for the Mosquitto server
	Configuring TLS transport security in Mosquitto
	Testing the MQTT TLS configuration with MQTT.fx
	Testing the MQTT TLS configuration with MQTT-spy
	Creating a certificate for each MQTT client
	Configuring TLS client certificate authentication in Mosquitto
	Testing the MQTT TLS client authentication with MQTT.fx
	Testing the MQTT TLS configuration with MQTT-spy
	Forcing the TLS protocol version
	Test your knowledge
	Summary
	3. Controlling a Drone with Python
	Understanding the requirements to control a drone with MQTT
	Defining the topics and commands
	Installing paho-mqtt for Python
	Connecting the client to the MQTT server with Python
	Understanding callbacks
	Subscribing to topics with Python
	Creating a class to represent a drone
	Receiving messages with Python
	Processing commands with Python
	Sending messages with Python
	Working with the network loop with Python
	Test your knowledge
	Summary
	4. Interacting with Sensors in Java
	Understanding the requirements
	Defining the topics and commands
	Installing the Eclipse Paho Java Client
	Creating a security helper class to establish a TLS secured connection
	Configuring a TLS secured connection in Java
	Working with asynchronous notifications and callbacks in Java
	Subscribing to topics and understanding notification events in Java
	Processing commands that interact with sensors in Java
	Working with last will and testament in Java
	Publishing messages with commands to target sensors
	Test your knowledge
	Summary
	5. Controlling Home Automation in JavaScript
	Understanding the requirements
	Defining the topics and commands to control home automation
	Enabling WebSockets for a Mosquitto server
	Testing WebSockets with the Eclipse Paho client JavaScript utility
	Understanding the Eclipse Paho JavaScript asynchronous client
	Creating an HTML 5 web page to control LEDs
	Publishing messages to target remote devices in JavaScript
	Processing the received messages in JavaScript
	Working with WebSockets to connect to the MQTT server
	Subscribing to topics in JavaScript
	Processing commands that interact with LEDs in Node.js
	Running the home automation web application
	Debugging asynchronous code with Chrome Developer Tools (CDT) in JavaScript
	Securing MQTT over WebSockets with TLS
	Test your knowledge
	Summary
	6. Interacting with Actuators in Swift
	Understanding the requirements
	Defining topics and commands
	Enabling connections without TLS for a Mosquitto server
	Installing the CocoaMQTT client library to create a new iOS app
	Building the UI for the iOS app that will control an actuator
	Understanding the CocoaMQTT client in Swift 3
	Connecting to the MQTT server and subscribing to topics in Swift
	Publishing messages to target actuators in Swift
	Processing commands that interact with actuators in Node.js
	Running the iOS app that controls an actuator with MQTT
	Debugging events in Swift
	Test your knowledge
	Summary
	A. Exersise Answers
	Chapter 1, Lightweight Messaging with MQTT 3.1.1 and Mosquitto
	Chapter 2, Securing an MQTT Mosquitto Server
	Chapter 3, Controlling a Drone with Python
	Chapter 4, Interacting with Sensors in Java
	Chapter 5, Controlling Home Automation in JavaScript
	Chapter 6, Interacting with Actuators in Swift

