


Geocomputation with 
Python

Geocomputation with Python is a comprehensive resource for working with geo-
graphic data with the most popular programming language in the world. The 
book gives an overview of Python’s capabilities for spatial data analysis, as well 
as dozens of worked-through examples covering the entire range of standard GIS 
operations. A unique selling point of the book is its cohesive and joined-up cov-
erage of both vector and raster geographic data models and consistent learning 
curve. This book is an excellent starting point for those new to working with 
geographic data with Python, making it ideal for students and practitioners be-
ginning their journey with Python. 

Key features:
•  Showcases the integration of vector and raster datasets operations.
•  Provides explanation of each line of code in the book to minimize surprises.
•  Includes example datasets and meaningful operations to illustrate the applied 

nature of geographic research.

Another unique feature is that this book is part of a wider community. Geocom-
putation with Python is a sister project of Geocomputation with R (Lovelace, No-
wosad, and Muenchow 2019), a book on geographic data analysis, visualization, 
and modeling using the R programming language that has numerous contribu-
tors and an active community.

The book teaches how to import, process, examine, transform, compute, and 
export spatial vector and raster datasets with Python, the most widely used lan-
guage for data science and many other domains. Reading the book and running 
the reproducible code chunks within will make you a proficient user of key pack-
ages in the ecosystem, including shapely, geopandas, and rasterio. The book also 
demonstrates how to make use of dozens of additional packages for a wide range 
of tasks, from interactive map making to terrain modeling. Geocomputation with 
Python provides a firm foundation for more advanced topics, including spatial 
statistics, machine learning involving spatial data, and spatial network analysis, 
and a gateway into the vibrant and supportive community developing geographic 
tools in Python and beyond.
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Preface

Geocomputation with Python (geocompy) is motivated by the need for an
introductory resource for working with geographic data with the most popular
programming language in the world. A unique selling point of the book is
its cohesive and joined-up coverage of both vector and raster geographic data
models and consistent learning curve. We aim to minimize surprises, with each
section and chapter building on the previous. If you’re just starting out with
Python for working with geographic data, this book is an excellent place to
start.

There are many resources on Python on ‘GeoPython’ but none that fill this
need for an introductory resource that provides strong foundations for future
work. We want to avoid reinventing the wheel and provide something that fills
an ‘ecological niche’ in the wider free and open-source software for geospatial
(FOSS4G) ecosystem. Key features include:

1. Doing basic operations well
2. Integration of vector and raster datasets operations
3. Clear explanation of each line of code in the book to minimize

surprises
4. Provision of lucid example datasets and meaningful operations to

illustrate the applied nature of geographic research

This book complements and adds value to other projects in the ecosystem, as
highlighted in the following comparison between Geocomputation with Python
and related GeoPython books:

• Learning Geospatial Analysis with Python1 and Geoprocessing with Python2

are books in this space that focus on processing spatial data using low-level
Python interfaces for GDAL, such as the gdal, gdalnumeric, and ogr
packages from osgeo. This approach requires writing more lines of code.
We believe our approach is more ‘Pythonic’ and future-proof, in light of
development of packages such as geopandas and rasterio.

1https://www.packtpub.com/product/learning-geospatial-analysis-with-python/97817
83281138

2https://www.manning.com/books/geoprocessing-with-python
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xii Preface

• Introduction to Python for Geographic Data Analysis3 (in progress) seeks
to provide a general introduction to ‘GIS in Python’, with parts focusing
on Python essentials, using Python with GIS, and case studies. Compared
with this book, which is also open source, and is hosted at pythongis.org,
Geocomputation with Python has a narrower scope (not covering spatial
network analysis, for example) and more coverage of raster data processing
and raster-vector interoperability.

• Geographic Data Science with Python4 is an ambitious project with chapters
dedicated to advanced topics, with Chapter 4 on Spatial Weights getting
into complex topics relatively early, for example.

• Python for Geospatial Data Analysis5 introduces a wide range of approaches
to working with geospatial data using Python, including automation of
proprietary and open-source GIS software, as well as standalone open-source
Python packages (which is what we focus on and explain comprehensively in
our book). Geocompy is shorter, simpler and more introductory, and covers
raster and vector data with equal importance.

Another unique feature of the book is that it is part of a wider commu-
nity. Geocomputation with Python is a sister project of Geocomputation with
R6(Lovelace, Nowosad, and Muenchow 2019), a book on geographic data anal-
ysis, visualization, and modeling using the R programming language that has
60+ contributors and an active community, not least in the associated Discord
group7. Links with the vibrant ‘R-spatial’ community, and other communities
such as GeoRust and JuliaGeo, lead to many opportunities for mutual benefit
across open-source ecosystems.

Prerequisites
We assume that the reader is:

• familiar with the Python language,
• is capable of running Python code and install Python packages, and
• is familiar with the numpy and pandas packages for working with data in

Python.

From that starting point on, the book introduces the topic of working with spa-
tial data in Python, through dedicated third-party packages—most importantly
geopandas and rasterio.

3https://pythongis.org
4https://geographicdata.science/book/intro.html
5https://www.oreilly.com/library/view/python-for-geospatial/9781098104788/
6https://r.geocompx.org/
7https://discord.gg/PMztXYgNxp

https://pythongis.org
https://geographicdata.science/book/intro.html
https://www.oreilly.com/library/view/python-for-geospatial/9781098104788
https://r.geocompx.org
https://discord.gg/PMztXYgNxp
https://pythongis.org
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We also assume familiarity with theoretical concepts of geographic data and
GIS, such as coordinate systems, projections, spatial layer file formats, etc.,
which is necessary for understanding the reasoning of the examples.

Code and sample data
To run the code examples, you can download8 the ZIP file of the GitHub
repository. In the ZIP file, the ipynb directory contains the source files of the
chapters in Jupyter Notebook format, the data directory contains the sample
data files, and the output directory contains the files created in code examples
(some of which are also used as inputs in other code sections). Place them
together as follows to run the code:

data
aut.tif
ch.tif
coffee_data.csv
cycle_hire.gpkg
cycle_hire_osm.gpkg
cycle_hire_xy.csv
dem.tif
landsat.tif
nlcd.tif
nz_elev.tif
nz.gpkg
nz_height.gpkg
seine.gpkg
srtm.tif
us_states.gpkg
world.gpkg
world_wkt.csv
zion.gpkg
zion_points.gpkg

output
cycle_hire_xy.csv
dem_agg5.tif
dem_contour.gpkg
dem_resample_maximum.tif
dem_resample_nearest.tif
elev.tif
grain.tif

8https://github.com/geocompx/geocompy/zipball/master

https://github.com/geocompx/geocompy/zipball/master
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1
Geographic data in Python

1.1 Introduction
This chapter outlines two fundamental geographic data models (vector and
raster) and introduces Python packages for working with them. Before demon-
strating their implementation in Python, we will introduce the theory behind
each data model and the disciplines in which they predominate.

The vector data model (Section 1.2) represents geographic entities with points,
lines, and polygons. These have discrete, well-defined borders, meaning that
vector datasets usually have a high level of precision (but not necessarily
accuracy). The raster data model (Section 1.3), on the other hand, divides
the surface up into cells of constant size. Raster datasets are the basis of
background images used in online maps and have been a vital source of
geographic data since the origins of aerial photography and satellite-based
remote sensing devices. Rasters aggregate spatially specific features to a given
resolution, meaning that they are consistent over space and scalable, with
many worldwide raster datasets available.

Which to use? The answer likely depends on your domain of application, and
the datasets you have access to:

• Vector datasets and methods dominate the social sciences because human
settlements and processes (e.g., transport infrastructure) tend to have discrete
borders

• Raster datasets and methods dominate many environmental sciences because
of the reliance on remote sensing data

Python has strong support for both data models. We will focus on shapely
and geopandas for working with geographic vector data, and rasterio for
working with rasters.

shapely is a ‘low-level’ package for working with individual vector geometry
objects. geopandas is a ‘high-level’ package for working with geometry columns
(GeoSeries objects), which internally contain shapely geometries, and with
vector layers (GeoDataFrame objects). The geopandas ecosystem provides a
comprehensive approach for working with vector layers in Python, with many
packages building on it.
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2 1 Geographic data in Python

There are several partially overlapping packages for working with raster data,
each with its own advantages and disadvantages. In this book, we focus on the
most prominent one: rasterio, which represents ‘simple’ raster datasets with
a combination of a numpy array, and a metadata object (dict) providing
geographic metadata such as the coordinate system. xarray is a notable alter-
native to rasterio not covered in this book which uses native xarray.Dataset
and xarray.DataArray classes to effectively represent complex raster datasets
such as NetCDF files with multiple bands and metadata.

There is much overlap in some fields, and raster and vector datasets can be
used together: ecologists and demographers, for example, commonly use both
vector and raster data. Furthermore, it is possible to convert between the two
forms (see Chapter 5). Whether your work involves use of vector or raster
datasets, it is worth understanding the underlying data models before using
them, as discussed in subsequent chapters.

1.2 Vector data
The geographic vector data model is based on points located within a coordinate
reference system (CRS). Points can represent self-standing features (e.g., the
location of a bus stop), or they can be linked together to form more complex
geometries such as lines and polygons. Most point geometries contain only
two dimensions (three-dimensional CRSs may contain an additional z value,
typically representing height above sea level).

There is more to CRSs, as described in Section 1.4 and Chapter 6 but, for
the purposes of this section, it is sufficient to know that coordinates consist
of two numbers representing the distance from an origin, usually in x and y
dimensions.

geopandas (Bossche et al. 2023) provides classes for geographic vector data
and a consistent command-line interface for reproducible geographic data

In this system, London, for example, can be represented by the coordinates
(-0.1,51.5). This means that its location is −0.1 degree east and 51.5 degree
north of the origin. The origin, in this case, is at 0 degree longitude (a prime
meridian located at Greenwich) and 0 degree latitude (the Equator) in a
geographic (‘lon/lat’) CRS (Figure 1.1, left panel). The same point could
also be approximated in a projected CRS with ‘Easting/Northing’ values
of (530000,180000) in the British National Grid, meaning that London is
located 530 km East and 180 km North of the origin of the CRS (Figure 1.1,
right panel). The location of National Grid’s origin, in the sea beyond South
West Peninsular, ensures that most locations in the UK have positive Easting
and Northing values.



2 1 Geographic data in Python

There are several partially overlapping packages for working with raster data,
each with its own advantages and disadvantages. In this book, we focus on the
most prominent one: rasterio, which represents ‘simple’ raster datasets with
a combination of a numpy array, and a metadata object (dict) providing
geographic metadata such as the coordinate system. xarray is a notable alter-
native to rasterio not covered in this book which uses native xarray.Dataset
and xarray.DataArray classes to effectively represent complex raster datasets
such as NetCDF files with multiple bands and metadata.

There is much overlap in some fields, and raster and vector datasets can be
used together: ecologists and demographers, for example, commonly use both
vector and raster data. Furthermore, it is possible to convert between the two
forms (see Chapter 5). Whether your work involves use of vector or raster
datasets, it is worth understanding the underlying data models before using
them, as discussed in subsequent chapters.

1.2 Vector data
The geographic vector data model is based on points located within a coordinate
reference system (CRS). Points can represent self-standing features (e.g., the
location of a bus stop), or they can be linked together to form more complex
geometries such as lines and polygons. Most point geometries contain only
two dimensions (three-dimensional CRSs may contain an additional z value,
typically representing height above sea level).

In this system, London, for example, can be represented by the coordinates
(-0.1,51.5). This means that its location is -0.1 degrees east and 51.5 degrees
north of the origin. The origin, in this case, is at 0 degrees longitude (a prime
meridian located at Greenwich) and 0 degrees latitude (the Equator) in a
geographic (‘lon/lat’) CRS (Figure 1.1, left panel). The same point could
also be approximated in a projected CRS with ‘Easting/Northing’ values
of (530000,180000) in the British National Grid, meaning that London is
located 530 km East and 180 km North of the origin of the CRS (Figure 1.1,
right panel). The location of National Grid’s origin, in the sea beyond South
West Peninsular, ensures that most locations in the UK have positive Easting
and Northing values.

There is more to CRSs, as described in Section 1.4 and Chapter 6 but, for
the purposes of this section, it is sufficient to know that coordinates consist
of two numbers representing the distance from an origin, usually in x and y
dimensions.

geopandas (Bossche et al. 2023) provides classes for geographic vector data
and a consistent command-line interface for reproducible geographic data

1.2 Vector data 3

Figure 1.1: Illustration of vector (point) data in which location of London (the
red X) is represented with reference to an origin (the blue circle). The left plot
represents a geographic CRS with an origin at 0° longitude and latitude. The
right plot represents a projected CRS with an origin located in the sea west of
the South West Peninsula.

analysis in Python. It also provides an interface to three mature libraries for
geocomputation, a strong foundation on which many geographic applications
are built:

• GDAL, for reading, writing, and manipulating a wide range of geographic
data formats, covered in Chapter 7

• PROJ, a powerful library for coordinate system transformations, which
underlies the content covered in Chapter 6

• GEOS, a planar geometry engine for operations such as calculating buffers
and centroids on data with a projected CRS, covered in Chapter 4

Tight integration with these geographic libraries makes reproducible geocompu-
tation possible: an advantage of using a higher-level language such as Python
to access these libraries is that you do not need to know the intricacies of
the low-level components, enabling focus on the methods rather than the
implementation.

1.2.1 Vector data classes
The main classes for working with geographic vector data in Python are hierar-
chical, meaning that the ‘vector layer’ class is composed of simpler ‘geometry
column’ and individual ‘geometry’ components. This section introduces them
in order, starting with the highest level class. For many applications, the vector
layer class, a data frame with geometry columns, is all that’s needed. However,
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it’s important to understand the structure of vector geographic objects and
their components for some applications and for a deep understanding. The
three main vector geographic data classes in Python are:

• GeoDataFrame, a class representing vector layers, with a geometry column
(class GeoSeries) as one of the columns

• GeoSeries, a class that is used to represent the geometry column in
GeoDataFrame objects

• shapely geometry objects, which represent individual geometries, such as a
point or a polygon in GeoSeries objects

The first two classes (GeoDataFrame and GeoSeries) are defined in geopandas.
The third class is defined in the shapely package, which deals with individual
geometries, and is a main dependency of the geopandas package.

1.2.2 Vector layers
The most commonly used geographic vector data structure is the vector
layer. There are several approaches for working with vector layers in Python,
ranging from low-level packages (e.g., osgeo, fiona) to the relatively high-
level geopandas package that is the focus of this section. Before writing and
running code for creating and working with geographic vector objects, we
need to import geopandas (by convention as gpd for more concise code) and
shapely.
import pandas as pd
import shapely
import geopandas as gpd

We also limit the maximum number of printed rows to six, to save space, using
the 'display.max_rows' option of pandas.
pd.set_option('display.max_rows', 6)

Projects often start by importing an existing vector layer saved as a GeoPackage
(.gpkg) file, an ESRI Shapefile (.shp), or other geographic file format. The
function gpd.read_file imports a GeoPackage file named world.gpkg located
in the data directory of Python’s working directory into a GeoDataFrame
named gdf.
gdf = gpd.read_file('data/world.gpkg')
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The result is an object of type (class) GeoDataFrame with 177 rows (features)
and 11 columns, as shown in the output of the following code:
type(gdf)

geopandas.geodataframe.GeoDataFrame
gdf.shape

(177, 11)

The GeoDataFrame class is an extension of the DataFrame class from the
popular pandas package (McKinney 2010). This means we can treat non-
spatial attributes from a vector layer as a table, and process them using the
ordinary, i.e., non-spatial, established function methods. For example, standard
data frame subsetting methods can be used. The code below creates a subset
of the gdf dataset containing only the country name and the geometry.
gdf = gdf[['name_long', 'geometry']]
gdf

name_long geometry

0 Fiji MULTIPOLYGON (((-180 -16.55522,...
1 Tanzania MULTIPOLYGON (((33.90371 -0.95,...
2 Western Sahara MULTIPOLYGON (((-8.66559 27.656...
... ... ...
174 Kosovo MULTIPOLYGON (((20.59025 41.855...
175 Trinidad and Tobago MULTIPOLYGON (((-61.68 10.76, -...
176 South Sudan MULTIPOLYGON (((30.83385 3.5091...

The following expression creates a subdataset based on a condition, such as
equality of the value in the 'name_long' column to the string 'Egypt'.
gdf[gdf['name_long'] == 'Egypt']

name_long geometry

163 Egypt MULTIPOLYGON (((36.86623 22, 36...

Finally, to get a sense of the spatial component of the vector layer, it can be
plotted using the .plot method (Figure 1.2).
gdf.plot();
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Figure 1.2: Basic plot of a GeoDataFrame

Interactive maps of GeoDataFrame objects can be created with the .explore
method, as illustrated in Figure 1.3 which was created with the following
command:
gdf.explore()

Figure 1.3: Basic interactive map with .explore

A subset of the data can be also plotted in a similar fashion.
gdf[gdf['name_long'] == 'Egypt'].explore()
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Figure 1.4: Interactive map of a GeoDataFrame subset

1.2.3 Geometry columns
The geometry column of class GeoSeries is an essential column in a
GeoDataFrame. It contains the geometric part of the vector layer, and is the
basis for all spatial operations. This column can be accessed by name, which typ-
ically (e.g., when reading from a file) is 'geometry', as in gdf['geometry'].
However, the recommendation is to use the fixed .geometry property, which
refers to the geometry column regardless whether its name is 'geometry' or not.
In the case of the gdf object, the geometry column contains 'MultiPolygon's
associated with each country.
gdf.geometry

0 MULTIPOLYGON (((-180 -16.55522,...
1 MULTIPOLYGON (((33.90371 -0.95,...
2 MULTIPOLYGON (((-8.66559 27.656...

...
174 MULTIPOLYGON (((20.59025 41.855...
175 MULTIPOLYGON (((-61.68 10.76, -...
176 MULTIPOLYGON (((30.83385 3.5091...
Name: geometry, Length: 177, dtype: geometry

The geometry column also contains the spatial reference information, if any
(also accessible with the shortcut gdf.crs).
gdf.geometry.crs

<Geographic 2D CRS: EPSG:4326>
Name: WGS 84



8 1 Geographic data in Python

Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

Many geometry operations, such as calculating the centroid, buffer, or bounding
box of each feature, involve just the geometry. Applying this type of operation
on a GeoDataFrame is therefore basically a shortcut to applying it on the
GeoSeries object in the geometry column. For example, the two following
commands return exactly the same result, a GeoSeries containing bounding
box polygons (using the .envelope method).
gdf.envelope

0 POLYGON ((-180 -18.28799, 179.9...
1 POLYGON ((29.34 -11.72094, 40.3...
2 POLYGON ((-17.06342 20.99975, -...

...
174 POLYGON ((20.0707 41.84711, 21....
175 POLYGON ((-61.95 10, -60.895 10...
176 POLYGON ((23.88698 3.50917, 35....
Length: 177, dtype: geometry
gdf.geometry.envelope

0 POLYGON ((-180 -18.28799, 179.9...
1 POLYGON ((29.34 -11.72094, 40.3...
2 POLYGON ((-17.06342 20.99975, -...

...
174 POLYGON ((20.0707 41.84711, 21....
175 POLYGON ((-61.95 10, -60.895 10...
176 POLYGON ((23.88698 3.50917, 35....
Length: 177, dtype: geometry

Note that .envelope, and other similar operators in geopandas such as
.centroid (Section 4.2.2), .buffer (Section 4.2.3), or .convex_hull, re-
turn only the geometry (i.e., a GeoSeries), not a GeoDataFrame with the
original attribute data. In case we want the latter, we can create a copy
of the GeoDataFrame and then ‘overwrite’ its geometry (or, we can over-
write the geometries directly in case we do not need the original ones, as in
gdf.geometry=gdf.envelope).
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gdf2 = gdf.copy()
gdf2.geometry = gdf.envelope
gdf2

name_long geometry

0 Fiji POLYGON ((-180 -18.28799, 179.9...
1 Tanzania POLYGON ((29.34 -11.72094, 40.3...
2 Western Sahara POLYGON ((-17.06342 20.99975, -...
... ... ...
174 Kosovo POLYGON ((20.0707 41.84711, 21....
175 Trinidad and Tobago POLYGON ((-61.95 10, -60.895 10...
176 South Sudan POLYGON ((23.88698 3.50917, 35....

Another useful property of the geometry column is the geometry type, as
shown in the following code. Note that the types of geometries contained in a
geometry column (and, thus, a vector layer) are not necessarily the same for
every row. It is possible to have multiple geometry types in a single GeoSeries.
Accordingly, the .type property returns a Series (with values of type str,
i.e., strings), rather than a single value (the same can be done with the shortcut
gdf.geom_type).
gdf.geometry.type

0 MultiPolygon
1 MultiPolygon
2 MultiPolygon

...
174 MultiPolygon
175 MultiPolygon
176 MultiPolygon
Length: 177, dtype: object

To summarize the occurrence of different geometry types in a geometry column,
we can use the pandas .value_counts method. In this case, we see that the
gdf layer contains only 'MultiPolygon' geometries.
gdf.geometry.type.value_counts()

MultiPolygon 177
Name: count, dtype: int64

A GeoDataFrame can also have multiple GeoSeries columns, as demonstrated
in the following code section.
gdf['bbox'] = gdf.envelope
gdf['polygon'] = gdf.geometry
gdf



10 1 Geographic data in Python

Figure 1.5: Switching to the 'bbox' geometry column in the world layer, and
plotting it

Only one geometry column at a time is ‘active’, in the sense that it is being
accessed in operations involving the geometries (such as .centroid, .crs,
etc.). To switch the active geometry column from one GeoSeries column to
another, we use .set_geometry. Figure 1.5 and Figure 1.6 shows interactive
maps of the gdf layer with the 'bbox' and 'polygon' geometry columns
activated, respectively.

Figure 1.6: Switching to the 'polygons' geometry column in the world layer,
and plotting it
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gdf = gdf.set_geometry('bbox')
gdf.explore()

gdf = gdf.set_geometry('polygon')
gdf.explore()

1.2.4 The Simple Features standard
Geometries are the basic building blocks of vector layers. Although the Simple
Features standard defines about 20 types of geometries, we will focus on the
seven most commonly used types: POINT, LINESTRING, POLYGON, MULTIPOINT,
MULTILINESTRING, MULTIPOLYGON and GEOMETRYCOLLECTION. A useful list of
possible geometry types can be found in R’s sf package documentation1.

Simple feature geometries can be represented by well-known binary (WKB)
and well-known text (WKT) encodings. WKB representations are usually
hexadecimal strings easily readable for computers, and this is why GIS software
and spatial databases use WKB to transfer and store geometry objects. WKT,
on the other hand, is a human-readable text markup description of Simple
Features. Both formats are exchangeable, and if we present one, we will
naturally choose the WKT representation.

The foundation of each geometry type is the point. A point is simply a
coordinate in two-dimensional, three-dimensional, or four-dimensional space
such as shown in Figure 1.7.
POINT (5 2)

A linestring is a sequence of points with a straight line connecting the points
(Figure 1.8).
LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2)

A polygon is a sequence of points that form a closed, non-intersecting ring.
Closed means that the first and the last point of a polygon have the same
coordinates (Figure 1.9).
POLYGON ((1 5, 2 2, 4 1, 4 4, 1 5))

So far we have created geometries with only one geometric entity per fea-
ture. However, the Simple Features standard allows multiple geometries to
exist within a single feature, using ‘multi’ versions of each geometry type, as
illustrated in Figure 1.10, Figure 1.11, and Figure 1.12.
MULTIPOINT (5 2, 1 3, 3 4, 3 2)
MULTILINESTRING ((1 5, 4 4, 4 1, 2 2, 3 2), (1 2, 2 4))
MULTIPOLYGON (((1 5, 2 2, 4 1, 4 4, 1 5), (0 2, 1 2, 1 3, 0 3, 0 2)))

1https://r-spatial.github.io/sf/articles/sf1.html#simple-feature-geometry-types

https://r-spatial.github.io/sf/articles/sf1.html#simple-feature-geometry-types
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Finally, a geometry collection can contain any combination of geometries of
the other six types, such as the combination of a multipoint and linestring
shown below (Figure 1.13).
GEOMETRYCOLLECTION (MULTIPOINT (5 2, 1 3, 3 4, 3 2),

LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2))

1.2.5 Geometries
Each element in the geometry column (GeoSeries) is a geometry object of
class shapely (Gillies et al. 2007--). For example, here is one specific geometry
selected by implicit index (Canada, the 4th element in gdf’s geometry column).
gdf.geometry.iloc[3]

We can also select a specific geometry based on the 'name_long' attribute
(i.e., the 1st and only element in the subset of gdf where the country name is
equal to Egypt):
gdf[gdf['name_long'] == 'Egypt'].geometry.iloc[0]

The shapely package is compatible with the Simple Features standard (Sec-
tion 1.2.4). Accordingly, seven types of geometry types are supported. The
following section demonstrates creating a shapely geometry of each type from
scratch. In the first example (a 'Point') we show two types of inputs to create
a geometry: a list of coordinates or a string in the WKT format. In the
examples for the remaining geometries we use the former approach.

Creating a 'Point' geometry from a list of coordinates uses the
shapely.Point function in the following expression (Figure 1.7).
point = shapely.Point([5, 2])
point
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Figure 1.7: A Point geometry (created either from a list or WKT)

Alternatively, we can use shapely.from_wkt to transform a WKT string to a
shapely geometry object. Here is an example of creating the same 'Point'
geometry from WKT (Figure 1.7).
point = shapely.from_wkt('POINT (5 2)')
point

A 'LineString' geometry can be created based on a list of coordinate tuples
or lists (Figure 1.8).
linestring = shapely.LineString([(1,5), (4,4), (4,1), (2,2), (3,2)])
linestring

Figure 1.8: A LineString geometry

Creation of a 'Polygon' geometry is similar, but our first and last coordinate
must be the same, to ensure that the polygon is closed. Note that in the
following example, there is one list of coordinates that defines the exterior
outer hull of the polygon, followed by a list of lists of coordinates that
define the holes (if any) in the polygon (Figure 1.9).
polygon = shapely.Polygon(

[(1,5), (2,2), (4,1), (4,4), (1,5)], ## Exterior
[[(2,4), (3,4), (3,3), (2,3), (2,4)]] ## Hole(s)

)
polygon
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Figure 1.9: A Polygon geometry

A 'MultiPoint' geometry is also created from a list of coordinate tuples
(Figure 1.10), where each element represents a single point.
multipoint = shapely.MultiPoint([(5,2), (1,3), (3,4), (3,2)])
multipoint

Figure 1.10: A MultiPoint geometry

A 'MultiLineString' geometry, on the other hand, has one list of coordinates
for each line in the MultiLineString (Figure 1.11).
multilinestring = shapely.MultiLineString([

[(1,5), (4,4), (4,1), (2,2), (3,2)], ## 1st sequence
[(1,2), (2,4)] ## 2nd sequence, etc.

])
multilinestring

Figure 1.11: A MultiLineString geometry
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Figure 1.9: A Polygon geometry

A 'MultiPoint' geometry is also created from a list of coordinate tuples
(Figure 1.10), where each element represents a single point.
multipoint = shapely.MultiPoint([(5,2), (1,3), (3,4), (3,2)])
multipoint

Figure 1.10: A MultiPoint geometry

A 'MultiLineString' geometry, on the other hand, has one list of coordinates
for each line in the MultiLineString (Figure 1.11).
multilinestring = shapely.MultiLineString([

[(1,5), (4,4), (4,1), (2,2), (3,2)], ## 1st sequence
[(1,2), (2,4)] ## 2nd sequence, etc.

])
multilinestring

Figure 1.11: A MultiLineString geometry
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A 'MultiPolygon' geometry (Figure 1.12) is created from a list of Polygon
geometries. For example, here we are creating a 'MultiPolygon' with two
parts, both without holes.
multipolygon = shapely.MultiPolygon([

[[(1,5), (2,2), (4,1), (4,4), (1,5)], []], ## Polygon 1
[[(0,2), (1,2), (1,3), (0,3), (0,2)], []] ## Polygon 2, etc.

])
multipolygon

Figure 1.12: A MultiPolygon geometry

Since the required input has four hierarchical levels, it may be more clear to
create the single-part 'Polygon' geometries in advance, using the respective
function (shapely.Polygon), and then pass them to shapely.MultiPolygon
(Figure 1.12). (The same technique can be used with the other shapely.Multi*
functions.)
multipolygon = shapely.MultiPolygon([

shapely.Polygon([(1,5), (2,2), (4,1), (4,4), (1,5)]), ## Polygon 1
shapely.Polygon([(0,2), (1,2), (1,3), (0,3), (0,2)]) ## Polygon 2, etc.

])
multipolygon

And, finally, a 'GeometryCollection' geometry is a list with one or more
of the other six geometry types (Figure 1.13):
geometrycollection = shapely.GeometryCollection([multipoint, multilinestring])
geometrycollection

Figure 1.13: A 'GeometryCollection' geometry
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shapely geometries act as atomic units of vector data, meaning that there is no
concept of geometry sets: each operation accepts individual geometry object(s)
as input, and returns an individual geometry as output. (The GeoSeries and
GeoDataFrame objects, defined in geopandas, are used to deal with sets of
shapely geometries, collectively.) For example, the following expression calcu-
lates the difference (see Section 4.2.5) between the buffered (see Section 4.2.3)
multipolygon (using distance of 0.2) and itself (Figure 1.14):
multipolygon.buffer(0.2).difference(multipolygon)

Figure 1.14: The difference between a buffered MultiPolygon and itself

As demonstrated in the last few figures, a shapely geometry object is auto-
matically evaluated to a small image of the geometry (when using an interface
capable of displaying it, such as Jupyter Notebook). To print the WKT string
instead, we can use the print function:
print(linestring)

LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2)

Finally, it is important to note that raw coordinates of shapely geometries
are accessible through a combination of the .coords, .geoms, .exterior,
and .interiors properties (depending on the geometry type). These access
methods are helpful when we need to develop our own spatial operators for
specific tasks. For example, the following expression returns the list of all
coordinates of the polygon geometry exterior:
list(polygon.exterior.coords)

[(1.0, 5.0), (2.0, 2.0), (4.0, 1.0), (4.0, 4.0), (1.0, 5.0)]

Also see Section 4.2.8, where .coords, .geoms, and .exterior are used to
transform a given shapely geometry to a different type (e.g., 'Polygon' to
'MultiPoint').

1.2.6 Vector layer from scratch
In the previous sections, we started with a vector layer (GeoDataFrame), from an
existing GeoPackage file, and ‘decomposed’ it to extract the geometry column



16 1 Geographic data in Python

shapely geometries act as atomic units of vector data, meaning that there is no
concept of geometry sets: each operation accepts individual geometry object(s)
as input, and returns an individual geometry as output. (The GeoSeries and
GeoDataFrame objects, defined in geopandas, are used to deal with sets of
shapely geometries, collectively.) For example, the following expression calcu-
lates the difference (see Section 4.2.5) between the buffered (see Section 4.2.3)
multipolygon (using distance of 0.2) and itself (Figure 1.14):
multipolygon.buffer(0.2).difference(multipolygon)

Figure 1.14: The difference between a buffered MultiPolygon and itself

As demonstrated in the last few figures, a shapely geometry object is auto-
matically evaluated to a small image of the geometry (when using an interface
capable of displaying it, such as Jupyter Notebook). To print the WKT string
instead, we can use the print function:
print(linestring)

LINESTRING (1 5, 4 4, 4 1, 2 2, 3 2)

Finally, it is important to note that raw coordinates of shapely geometries
are accessible through a combination of the .coords, .geoms, .exterior,
and .interiors properties (depending on the geometry type). These access
methods are helpful when we need to develop our own spatial operators for
specific tasks. For example, the following expression returns the list of all
coordinates of the polygon geometry exterior:
list(polygon.exterior.coords)

[(1.0, 5.0), (2.0, 2.0), (4.0, 1.0), (4.0, 4.0), (1.0, 5.0)]

Also see Section 4.2.8, where .coords, .geoms, and .exterior are used to
transform a given shapely geometry to a different type (e.g., 'Polygon' to
'MultiPoint').

1.2.6 Vector layer from scratch
In the previous sections, we started with a vector layer (GeoDataFrame), from an
existing GeoPackage file, and ‘decomposed’ it to extract the geometry column

1.2 Vector data 17

(GeoSeries, Section 1.2.3) and separate geometries (shapely, see Section 1.2.5).
In this section, we will demonstrate the opposite process, constructing a
GeoDataFrame from shapely geometries, combined into a GeoSeries. This
will help you better understand the structure of a GeoDataFrame, and may
come in handy when you need to programmatically construct simple vector
layers, such as a line between two given points.

Vector layers consist of two main parts: geometries and non-geographic at-
tributes. Figure 1.15 shows how a GeoDataFrame object is created—geometries
come from a GeoSeries object (which consists of shapely geometries), while
attributes are taken from Series objects.

Figure 1.15: Creating a GeoDataFrame from scratch

The final result, a vector layer (GeoDataFrame) is therefore a hierarchical
structure (Figure 1.16), containing the geometry column (GeoSeries), which
in turn contains geometries (shapely). Each of the ‘internal’ components can
be accessed, or ‘extracted’, which is sometimes necessary, as we will see later
on.

Figure 1.16: Structure of a GeoDataFrame

Non-geographic attributes may represent the name of the feature, and other
attributes such as measured values, groups, etc. To illustrate attributes, we
will represent a temperature of 25°C in London on June 21st, 2023. This
example contains a geometry (the coordinates), and three attributes with
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three different classes (place name, temperature, and date). Objects of class
GeoDataFrame represent such data by combining the attributes (Series) with
the simple feature geometry column (GeoSeries). First, we create a point
geometry, which we know how to do from Section 1.2.5 (Figure 1.17).
lnd_point = shapely.Point(0.1, 51.5)
lnd_point

Figure 1.17: A shapely point representing London

Next, we create a GeoSeries (of length 1), containing the point and a CRS
definition, in this case WGS84 (defined using its EPSG code 4326). Also note
that the shapely geometries go into a list, to illustrate that there can be
more than one geometry unlike in this example.
lnd_geom = gpd.GeoSeries([lnd_point], crs=4326)
lnd_geom

0 POINT (0.1 51.5)
dtype: geometry

Next, we combine the GeoSeries with other attributes into a dict. The
geometry column is a GeoSeries, named geometry. The other attributes (if
any) may be defined using list or Series objects. Here, for simplicity, we
use the list option for defining the three attributes name, temperature, and
date. Again, note that the list can be of length >1, in case we are creating
a layer with more than one feature (i.e., multiple rows).
lnd_data = {

'name': ['London'],
'temperature': [25],
'date': ['2023-06-21'],
'geometry': lnd_geom

}

Finally, the dict can be converted to a GeoDataFrame object, as shown in the
following code.
lnd_layer = gpd.GeoDataFrame(lnd_data)
lnd_layer
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name temperature date geometry

0 London 25 2023-06-21 POINT (0.1 51.5)

What just happened? First, the coordinates were used to create the simple
feature geometry (shapely). Second, the geometry was converted into a simple
feature geometry column (GeoSeries), with a CRS. Third, attributes were
combined with GeoSeries. This results in an GeoDataFrame object, named
lnd_layer.

To illustrate how does creating a layer with more than one feature looks like,
here is an example where we create a layer with two points, London and Paris.
lnd_point = shapely.Point(0.1, 51.5)
paris_point = shapely.Point(2.3, 48.9)
towns_geom = gpd.GeoSeries([lnd_point, paris_point], crs=4326)
towns_data = {

'name': ['London', 'Paris'],
'temperature': [25, 27],
'date': ['2013-06-21', '2013-06-21'],
'geometry': towns_geom

}
towns_layer = gpd.GeoDataFrame(towns_data)
towns_layer

name temperature date geometry

0 London 25 2013-06-21 POINT (0.1 51.5)
1 Paris 27 2013-06-21 POINT (2.3 48.9)

Now, we are able to create an interactive map of the towns_layer object
(Figure 1.18). To make the points easier to see, we are customizing a fill color
and size (we elaborate on .explore options in Section 8.3).
towns_layer.explore(color='red', marker_kwds={'radius': 10})

A spatial (point) layer can be also created from a DataFrame object (package
pandas) that contains columns with coordinates. To demonstrate, we hereby
first create a GeoSeries object from the coordinates, and then combine it with
the DataFrame to form a GeoDataFrame.
towns_table = pd.DataFrame({

'name': ['London', 'Paris'],
'temperature': [25, 27],
'date': ['2017-06-21', '2017-06-21'],
'x': [0.1, 2.3],
'y': [51.5, 48.9]

})
towns_geom = gpd.points_from_xy(towns_table['x'], towns_table['y'])
towns_layer = gpd.GeoDataFrame(towns_table, geometry=towns_geom, crs=4326)
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Figure 1.18: towns_layer, created from scratch, visualized using .explore

The output gives the same result as previous towns_layer. This approach
is particularly useful when we need to read data from a CSV file, e.g., using
pd.read_csv, and want to turn the resulting DataFrame into a GeoDataFrame
(see another example in Section 3.2.3).

1.2.7 Derived numeric properties
Vector layers are characterized by two essential derived numeric properties:
length (.length)—applicable to lines, and area (.area)—applicable to poly-
gons. Area and length can be calculated for any data structures discussed
above, either a shapely geometry, in which case the returned value is a number,
or for GeoSeries or DataFrame, in which case the returned value is a numeric
Series.
linestring.length

9.39834563766817
multipolygon.area

8.0

gpd.GeoSeries([point, linestring, polygon, multipolygon]).area

0 0.0
1 0.0
2 6.0
3 8.0
dtype: float64
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Series.
linestring.length

9.39834563766817
multipolygon.area

8.0

gpd.GeoSeries([point, linestring, polygon, multipolygon]).area

0 0.0
1 0.0
2 6.0
3 8.0
dtype: float64
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Like all numeric calculations in geopandas, the results assume a planar
CRS and are returned in its native units. This means that length and area
measurements for geometries in WGS84 (crs=4326) are returned in decimal
degrees and essentially meaningless (to see the warning, try running gdf.area).

To obtain meaningful length and area measurements for data in a geographic
CRS, the geometries first need to be transformed to a projected CRS (see
Section 6.7) applicable to the area of interest. For example, the area of Slovenia
can be calculated in the UTM zone 33N CRS (crs=32633). The result is in
m2, the units of the UTM zone 33N CRS.
gdf[gdf['name_long'] == 'Slovenia'].to_crs(32633).area

150 1.910410e+10
dtype: float64

1.3 Raster data
The spatial raster data model represents the world with the continuous grid of
cells (often also called pixels; Figure 1.19 (A)). This data model often refers
to so-called regular grids, in which each cell has the same, constant size—and
we will focus only on regular grids in this book. However, several other types
of grids exist, including rotated, sheared, rectilinear, and curvilinear grids
(see Chapter 1 of Pebesma and Bivand (2022) or Chapter 2 of Tennekes and
Nowosad (2022)).

The raster data model usually consists of a raster header (or metadata) and
a matrix (with rows and columns) representing equally spaced cells (often
also called pixels; Figure 1.19 (A)). The raster header defines the coordinate
reference system, the origin and the resolution. The origin (or starting point)
is typically the coordinate of the lower-left corner of the matrix. The metadata
defines the origin, and the cell size, i.e., resolution. Combined with the column
and row count, the extent can also be derived. The matrix representation
avoids storing explicitly the coordinates for the four corner points (in fact it
only stores one coordinate, namely the origin) of each cell, as would be the case
for rectangular vector polygons. This and map algebra (Section 3.3.2) makes
raster processing much more efficient and faster than vector data processing.
However, in contrast to vector data, the cell of one raster layer can only hold
a single value. The cell values are numeric, representing either a continuous or
a categorical variable (Figure 1.19 (C)).

Raster maps usually represent continuous phenomena such as elevation, tem-
perature, population density, or spectral data. Discrete features such as soil or
land-cover classes can also be represented in the raster data model. Both uses
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Figure 1.19: Raster data types: (A) cell IDs, (B) cell values, (C) a colored
raster map

of raster datasets are illustrated in Figure 1.20, which shows how the borders
of discrete features may become blurred in raster datasets. Depending on the
nature of the application, vector representations of discrete features may be
more suitable.

Figure 1.20: Examples of continuous and categorical rasters
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As mentioned above, working with rasters in Python is less organized around
one comprehensive package as compared to the case for vector layers and
geopandas. Instead, several packages provide alternative subsets of methods
for working with raster data.

The two most notable approaches for working with rasters in Python are
provided by rasterio and rioxarray packages. As we will see shortly, they
differ in scope and underlying data models. Specifically, rasterio represents
rasters as numpy arrays associated with a separate object holding the spatial
metadata. The rioxarray package, a wrapper of rasterio, however, represents
rasters with xarray ‘extended’ arrays, which are an extension of numpy array
designed to hold axis labels and attributes in the same object, together with
the array of raster values. Similar approaches are provided by less well-known
xarray-spatial and geowombat packages. Comparatively, rasterio is more
well-established, but it is more low-level (which has both advantages and

All of the above-mentioned packages, however, are not exhaustive in the same
way geopandas is. For example, when working with rasterio, more packages
may be needed to accomplish common tasks such as zonal statistics (package
rasterstats) or calculating topographic indices (package richdem).

In the following two sections, we introduce rasterio, which is the raster-related
package we are going to work with through the rest of the book.

1.3.1 Using rasterio
To work with the rasterio package, we first need to import it. Additionally,
as the raster data is stored within numpy arrays, we import the numpy
package and make all its functions accessible for effective data manipulation.
Finally, we import the rasterio.plot sub-module for its rasterio.plot.show
function that allows for quick visualization of rasters.
import numpy as np
import rasterio
import rasterio.plot

Rasters are typically imported from existing files. When working with rasterio,
importing a raster is actually a two-step process:

• First, we open a raster file ‘connection’ using rasterio.open
• Second, we read raster values from the connection using the .read method

This type of separation is analogous to basic Python functions for reading from
files, such as open and .readline to read from a text file. The rationale is
that we do not always want to read all information from the file into memory,
which is particularly important as rasters size can be larger than RAM size.
Accordingly, the second step (.read) is selective, meaning that the user can

disadvantages).
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fine-tune the subset of values (bands, rows/columns, resolution, etc.) that are
actually being read. For example, we may want to read just one raster band
rather than reading all bands.

In the first step, we pass a file path to the rasterio.open function to create
a DatasetReader file connection, hereby named src. For this example, we use
a single-band raster representing elevation in Zion National Park, stored in
srtm.tif.
src = rasterio.open('data/srtm.tif')
src

<open DatasetReader name='data/srtm.tif' mode='r'>

To get a first impression of the raster values, we can plot the raster using the
rasterio.plot.show function (Figure 1.21):
rasterio.plot.show(src);

Figure 1.21: Basic plot of a raster, the data are coming from a rasterio file
connection
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The DatasetReader contains the raster metadata, that is, all of the information
other than the raster values. Let’s examine it with the .meta property.
src.meta

{'driver': 'GTiff',
'dtype': 'uint16',
'nodata': 65535.0,
'width': 465,
'height': 457,
'count': 1,
'crs': CRS.from_epsg(4326),
'transform': Affine(0.0008333333332777796, 0.0, -113.23958321278403,

0.0, -0.0008333333332777843, 37.512916763165805)}

Namely, it allows us to see the following properties, which we will elaborate
on below, and in later chapters:

• driver—The raster file format (see Section 7.6.2)
• dtype—Data type (see Table 7.2)
• nodata—The value being used as ‘No Data’ flag (see Section 7.6.2)
• Dimensions:

– width—Number of columns
– height—Number of rows
– count—Number of bands

• crs—Coordinate reference system (see Section 6.3)
• transform—The raster affine transformation matrix

The last item (i.e., transform) deserves more attention. To position a raster in
geographical space, in addition to the CRS, we must specify the raster origin
(xmin, ymax) and resolution (deltax, deltay). In the transformation matrix
notation, assuming a regular grid, these data items are stored as follows:
Affine(delta_x, 0.0, x_min,

0.0, delta_y, y_max)

Note that, by convention, raster y-axis origin is set to the maximum value
(ymax) rather than the minimum, and, accordingly, the y-axis resolution (deltay)
is negative. In other words, since the origin is in the top-left corner, advancing
along the y-axis is done through negative steps (downwards).

In the second step, the .read method of the DatasetReader is used to read
the actual raster values. Importantly, we can read:

• All layers (as in .read())
• A particular layer, passing a numeric index (as in .read(1))
• A subset of layers, passing a list of indices (as in .read([1,2]))

Note that the layer indices start from 1, contrary to the Python convention of
the first index being 0.
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The object returned by .read is a numpy array (Harris et al. 2020), with
either two or three dimensions:

• Three dimensions, when reading more than one layer (e.g., .read() or
.read([1,2])). In such case, the dimensions pattern is (layers, rows,
columns)

• Two dimensions, when reading one specific layer (e.g., .read(1)). In such
case, the dimensions pattern is (rows, columns)

Let’s read the first (and only) layer from the srtm.tif raster, using the file
connection object src and the .read method.
src.read(1)

array([[1728, 1718, 1715, ..., 2654, 2674, 2685],
[1737, 1727, 1717, ..., 2649, 2677, 2693],
[1739, 1734, 1727, ..., 2644, 2672, 2695],
...,
[1326, 1328, 1329, ..., 1777, 1778, 1775],
[1320, 1323, 1326, ..., 1771, 1770, 1772],
[1319, 1319, 1322, ..., 1768, 1770, 1772]], dtype=uint16)

The result is a two-dimensional numpy array where each value represents the
elevation of the corresponding pixel.

The relation between a rasterio file connection and the derived properties is
summarized in Figure 1.22. The file connection (created with rasterio.open)
gives access to the two components of raster data: the metadata (via the .meta
property) and the values (via the .read method).

Figure 1.22: A rasterio file connection and its derived components, the meta-
data and the raster values
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1.3.2 Raster from scratch
In this section, we are going to demonstrate the creation of rasters from scratch.
We will construct two small rasters, elev and grain, which we will use in
examples later in the book. Unlike creating a vector layer (see Section 1.2.6),
creating a raster from scratch is rarely needed in practice because aligning a
raster with the proper spatial extent is challenging to do programmatically
(‘georeferencing’ tools in GIS software are a better fit for the job). Nevertheless,
the examples will be helpful to become more familiar with the rasterio data
structures.

Conceptually, a raster is an array combined with georeferencing information,
whereas the latter comprises:

• A transformation matrix, containing the origin and resolution, thus linking
pixel indices with coordinates in a particular coordinate system

• A CRS definition, specifying the association of that coordinate system with
the surface of the earth (optional)

Therefore, to create a raster, we first need to have an array with the values,
and then supplement it with the georeferencing information. Let’s create the
arrays elev and grain. The elev array is a 6 × 6 array with sequential values
from 1 to 36. It can be created as follows using the np.arange function and
.reshape method from numpy.
elev = np.arange(1, 37, dtype=np.uint8).reshape(6, 6)
elev

array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]], dtype=uint8)

The grain array represents a categorical raster with values 0, 1, 2, correspond-
ing to categories ‘clay’, ‘silt’, ‘sand’, respectively. We will create it from a
specific arrangement of pixel values, using numpy’s np.array and .reshape.
v = [

1, 0, 1, 2, 2, 2,
0, 2, 0, 0, 2, 1,
0, 2, 2, 0, 0, 2,
0, 0, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1,
2, 1, 2, 2, 0, 2

]
grain = np.array(v, dtype=np.uint8).reshape(6, 6)
grain
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array([[1, 0, 1, 2, 2, 2],
[0, 2, 0, 0, 2, 1],
[0, 2, 2, 0, 0, 2],
[0, 0, 1, 1, 1, 1],
[1, 1, 1, 2, 1, 1],
[2, 1, 2, 2, 0, 2]], dtype=uint8)

Note that, in both cases, we are using the uint8 (unsigned integer in 8 bits,
i.e., 0-255) data type, which is sufficient to represent all possible values of the
given rasters (see Table 7.2). This is the recommended approach for a minimal
memory footprint.

What is missing now is the georeferencing information (see Section 1.3.1). In this
case, since the rasters are arbitrary, we also set up an arbitrary transformation
matrix, where:

• The origin (xmin, ymax) is at -1.5,1.5
• The raster resolution (deltax, deltay) is 0.5,-0.5

We can add this information using rasterio.transform.from_origin, and
specifying west, north, xsize, and ysize parameters. The resulting transfor-
mation matrix object is hereby named new_transform.
new_transform = rasterio.transform.from_origin(

west=-1.5,
north=1.5,
xsize=0.5,
ysize=0.5

)
new_transform

Affine(0.5, 0.0, -1.5,
0.0, -0.5, 1.5)

Note that, confusingly, deltay (i.e., ysize) is defined in
rasterio.transform.from_origin using a positive value (0.5), even
though it is, in fact, negative (-0.5).

The raster can now be plotted in its coordinate system, passing the array elev
along with the transformation matrix new_transform to rasterio.plot.show
(Figure 1.23).
rasterio.plot.show(elev, transform=new_transform);

The grain raster can be plotted the same way, as we are going to use the same
transformation matrix for it as well (Figure 1.24).
rasterio.plot.show(grain, transform=new_transform);
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Figure 1.23: Plot of the elev raster, a minimal example of a continuous raster,
created from scratch

At this point, we have two rasters, each composed of an array and related
transformation matrix. We can work with the raster using rasterio by:

• Passing the transformation matrix wherever actual raster pixel coordinates
are important (such as in function rasterio.plot.show above)

• Keeping in mind that any other layer we use in the analysis is in the same
CRS

Finally, to export the raster for permanent storage, along with the spatial
metadata, we need to go through the following steps:

1. Create a raster file connection (where we set the transform and the
CRS, among other settings)

2. Write the array with raster values into the connection
3. Close the connection
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Figure 1.24: Plot of the grain raster, a minimal example of a categorical raster,
created from scratch

Don’t worry if the code below is unclear; the concepts related to writing raster
data to file will be explained in Section 7.6.2. For now, for completeness, and
also to use these rasters in subsequent chapters without having to re-create
them from scratch, we just provide the code for exporting the elev and grain
rasters into the output directory. In the case of elev, we do it as follows
with the rasterio.open, .write, and .close functions and methods of the
rasterio package.
new_dataset = rasterio.open(

'output/elev.tif', 'w',
driver='GTiff',
height=elev.shape[0],
width=elev.shape[1],
count=1,
dtype=elev.dtype,
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crs=4326,
transform=new_transform

)
new_dataset.write(elev, 1)
new_dataset.close()

Note that the CRS we (arbitrarily) set for the elev raster is WGS84, defined
using crs=4326 according to the EPSG code.

Exporting the grain raster is done in the same way, with the only differences
being the file name and the array we write into the connection.
new_dataset = rasterio.open(

'output/grain.tif', 'w',
driver='GTiff',
height=grain.shape[0],
width=grain.shape[1],
count=1,
dtype=grain.dtype,
crs=4326,
transform=new_transform

)
new_dataset.write(grain, 1)
new_dataset.close()

As a result, the files elev.tif and grain.tif are written into the output
directory. We are going to use these small raster files later on in the examples
(for example, Section 2.3.1).

Note that the transform matrices and dimensions of elev and grain are
identical. This means that the rasters are overlapping, and can be combined
into one two-band raster, processed in raster algebra operations (Section 3.3.2),
etc.

1.4 Coordinate Reference Systems
Vector and raster spatial data types share concepts intrinsic to spatial data.
Perhaps the most fundamental of these is the Coordinate Reference System
(CRS), which defines how the spatial elements of the data relate to the surface
of the Earth (or other bodies). CRSs are either geographic or projected, as
introduced at the beginning of this chapter (Section 1.2). This section explains
each type, laying the foundations for Chapter 6, which provides a deep dive
into setting, transforming, and querying CRSs.
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1.4.1 Geographic coordinate systems
Geographic coordinate systems identify any location on the Earth’s surface
using two values—longitude and latitude (see left panel of Figure 1.26). Lon-
gitude is a location in the East-West direction in angular distance from the
Prime Meridian plane, while latitude is an angular distance North or South of
the equatorial plane. Distances in geographic CRSs are therefore not measured
in meters. This has important consequences, as demonstrated in Chapter 6.

A spherical or ellipsoidal surface represents the surface of the Earth in ge-
ographic coordinate systems. Spherical models assume that the Earth is a
perfect sphere of a given radius—they have the advantage of simplicity, but,
at the same time, they are inaccurate: the Earth is not a sphere! Ellipsoidal
models are defined by two parameters: the equatorial radius and the polar
radius. These are suitable because the Earth is compressed: the equatorial
radius is around 11.5 km longer than the polar radius. The Earth is not an
ellipsoid either, but it is a better approximation than a sphere.

Ellipsoids are part of a broader component of CRSs: the datum. It contains
information on what ellipsoid to use and the precise relationship between the
Cartesian coordinates and location on the Earth’s surface. There are two types
of datum—geocentric (such as WGS84) and local (such as NAD83). You can
see examples of these two types of datums in Figure 1.25. Black lines represent
a geocentric datum, whose center is located in the Earth’s center of gravity and
is not optimized for a specific location. In a local datum, shown as a purple
dashed line, the ellipsoidal surface is shifted to align with the surface at a
particular location. These allow local variations on Earth’s surface, such as
large mountain ranges, to be accounted for in a local CRS. This can be seen
in Figure 1.25, where the local datum is fitted to the area of Philippines, but
is misaligned with most of the rest of the planet’s surface. Both datums in
Figure 1.25 are put on top of a geoid—a model of global mean sea level.

1.4.2 Projected coordinate reference systems
All projected CRSs are based on a geographic CRS, described in the previous
section, and rely on map projections to convert the three-dimensional surface
of the Earth into Easting and Northing (x and y) values in a projected CRS.
Projected CRSs are based on Cartesian coordinates on an implicitly flat surface
(see right panel of Figure 1.26). They have an origin, x and y axes, and a linear
unit of measurement such as meters.

This transition cannot be done without adding some deformations. Therefore,
some properties of the Earth’s surface are distorted in this process, such
as area, direction, distance, and shape. A projected coordinate system can
preserve only one or two of those properties. Projections are often named based
on a property they preserve: equal-area preserves area, azimuthal preserves
direction, equidistant preserves distance, and conformal preserves local shape.
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Figure 1.25: Geocentric and local geodetic datums shown on top of a geoid (in
false color and the vertical exaggeration by 10,000 scale factor). Image of the
geoid is adapted from the work of Ince et al. (2019).

There are three main groups of projection types: conic, cylindrical, and planar
(azimuthal). In a conic projection, the Earth’s surface is projected onto a
cone along a single line of tangency or two lines of tangency. Distortions are
minimized along the tangency lines and rise with the distance from those lines
in this projection. Therefore, it is best suited for maps of mid-latitude areas. A
cylindrical projection maps the surface onto a cylinder. This projection could
also be created by touching the Earth’s surface along a single line of tangency
or two lines of tangency. Cylindrical projections are used most often when
mapping the entire world. A planar projection projects data onto a flat surface
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import pyproj
epsg_codes = pyproj.get_codes('EPSG', 'CRS') ## Supported EPSG codes
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pyproj.CRS.from_epsg(4326) ## Printout of WGS84 CRS (EPSG:4326)

<Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

A quick summary of different projections, their types, properties, and suitability
can be found at https://www.geo-projections.com/. We will expand on CRSs
and explain how to project from one CRS to another in Chapter 6. But, for
now, it is sufficient to know:

• That coordinate systems are a key component of geographic objects
• Knowing which CRS your data is in, and whether it is in geographic (lon/lat)

or projected (typically meters), is important and has consequences for how
Python handles spatial and geometry operations

• CRSs of geopandas (vector layer or geometry column) and rasterio (raster)
objects can be queried with the .crs property

Here is a demonstration of the last bullet point, where we import a vector
layer and figure out its CRS (in this case, a projected CRS, namely UTM Zone
12) using the .crs property.
zion = gpd.read_file('data/zion.gpkg')
zion.crs

<Bound CRS: PROJCS["UTM Zone 12, Northern Hemisphere",GEOGCS[" ...>
Name: UTM Zone 12, Northern Hemisphere
Axis Info [cartesian]:
- [east]: Easting (Meter)
- [north]: Northing (Meter)
Area of Use:
- undefined
Coordinate Operation:
- name: Transformation from GRS 1980(IUGG, 1980) to WGS84
- method: Position Vector transformation (geog2D domain)
Datum: unknown
- Ellipsoid: GRS80
- Prime Meridian: Greenwich
Source CRS: UTM Zone 12, Northern Hemisphere

https://www.geo-projections.com
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We can also illustrate the difference between a geographic and a projected
CRS by plotting the zion data in both CRSs (Figure 1.26). Note that we are
using the .grid method of matplotlib to draw grid lines on top of the plot.
# WGS84
zion.to_crs(4326).plot(edgecolor='black', color='lightgrey').grid()
# NAD83 / UTM zone 12N
zion.plot(edgecolor='black', color='lightgrey').grid();

(a) Geographic (WGS84) (b) Projected (NAD83 / UTM zone 12N)

Figure 1.26: Examples of Coordinate Reference Systems (CRS) for a vector
layer

We are going to elaborate on reprojection from one CRS to another (.to_crs
in the above code section) in Chapter 6.

1.5 Units
An important feature of CRSs is that they contain information about spatial
units. Clearly, it is vital to know whether a house’s measurements are in feet
or meters, and the same applies to maps. It is a good cartographic practice to
add a scale bar or some other distance indicator onto maps to demonstrate
the relationship between distances on the page or screen and distances on the
ground. Likewise, it is important for the user to be aware of the units in which
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the geometry coordinates are, to ensure that subsequent calculations are done
in the right context.

Python spatial data structures in geopandas and rasterio do not natively
support the concept of measurement units. The coordinates of a vector layer
or a raster are plain numbers, referring to an arbitrary plane. For example,
according to the .transform matrix of srtm.tif we can see that the raster
resolution is 0.000833 and that its CRS is WGS84 (EPSG: 4326):
src.meta

{'driver': 'GTiff',
'dtype': 'uint16',
'nodata': 65535.0,
'width': 465,
'height': 457,
'count': 1,
'crs': CRS.from_epsg(4326),
'transform': Affine(0.0008333333332777796, 0.0, -113.23958321278403,

0.0, -0.0008333333332777843, 37.512916763165805)}

You may already know that the units of the WGS84 coordinate system
(EPSG:4326) are decimal degrees. However, that information is not accounted
for in any numeric calculation, meaning that operations such as buffers can be
returned in units of degrees, which is not appropriate in most cases.

Consequently, you should always be aware of the CRS of your datasets and the
units they use. Typically, these are decimal degrees, in a geographic CRS, or
m, in a projected CRS, although there are exceptions. Geometric calculations
such as length, area, or distance, return plain numbers in the same units of
the CRS (such as m or m2). It is up to the user to determine which units the
result is given in, and treat the result accordingly. For example, if the area
output was in m2 and we need the result in km2, then we need to divide the
result by 10002.
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2
Attribute data operations

Prerequisites
This chapter requires importing the following packages:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import geopandas as gpd
import rasterio

It also relies on the following data files:
world = gpd.read_file('data/world.gpkg')
src_elev = rasterio.open('output/elev.tif')
src_grain = rasterio.open('output/grain.tif')
src_multi_rast = rasterio.open('data/landsat.tif')

2.1 Introduction
Attribute data is non-spatial information associated with geographic (geometry)
data. A bus stop provides a simple example: its position would typically be
represented by latitude and longitude coordinates (geometry data), in addition
to its name. A bus stop in London, for example, has coordinates of -0.098

POINT (-0.098 51.495) using the Simple Feature representation described
in Chapter 1. Attributes, such as the name of the bus stop, are the topic of
this chapter.

Another example of an attribute is the elevation value for a specific grid cell
in raster data. Unlike the vector data model, the raster data model stores the
coordinate of the grid cell indirectly, meaning the distinction between attribute
and spatial information is less clear. Think of a pixel in the 3rd row and the
4th column of a raster matrix: its spatial location is defined by its index in the
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degree longitude and 51.495 degree latitude which can be represented as
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matrix. In this case, we need to move four cells in the x direction (typically
east/right on maps) and three cells in the y direction (typically south/down)
from the origin. The raster’s resolution is also important as it defines the
distance for each x- and y-step. The resolution and the origin are stored in the
raster’s metadata (header), which is a vital component of raster datasets which
specifies how pixels relate to geographic coordinates (see also Chapter 3).

This chapter teaches how to manipulate geographic objects based on attributes
such as the names of bus stops in a vector dataset and elevations of pixels in
a raster dataset. For vector data, this means techniques such as subsetting
and aggregation (see Section 2.2.1 and Section 2.2.2). Moreover, Section 2.2.3
and Section 2.2.4 demonstrate how to join data onto simple feature objects
using a shared ID and how to create new variables, respectively. Each of these
operations has a spatial equivalent: [ operator for subsetting a (Geo)DataFrame
using a boolean Series, for example, is applicable both for subsetting objects
based on their attribute and spatial relations derived using methods such as
.intersects; you can also join attributes in two geographic datasets using
spatial joins. This is good news: skills developed in this chapter are cross-
transferable. Chapter 3 extends the methods presented here to the spatial
world.

After a deep dive into various types of vector attribute operations in the next
section, raster attribute data operations are covered in Section 2.3.1, which
demonstrates extracting cell values from one or more layers (raster subsetting).
Section 2.3.2 provides an overview of ‘global’ raster operations which can be
used to summarize entire raster datasets.

2.2 Vector attribute manipulation
As mentioned in Section 1.2.2, vector layers (GeoDataFrame, from package
geopandas) are basically extended tables (DataFrame from package pandas),
the only differences being the geometry column and class. Therefore, all
ordinary table-related operations from package pandas are supported for
geopandas vector layers as well, as shown below.

2.2.1 Vector attribute subsetting
pandas supports several subsetting interfaces, though the most recommended
ones are .loc, which uses pandas indices, and .iloc, which uses (implicit)
numpy-style numeric indices.

In both cases, the method is followed by square brackets, and two indices,
separated by a comma. Each index can be:
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• A specific value, as in 1
• A list, as in [0,2,4]
• A slice, as in 0:3
• :—indicating ‘all’ indices, as in [:]

An exception to this guideline is selecting columns using a list, which we do us-
ing shorter notation, as in df[['a','b']], instead of df.loc[:, ['a','b']],
to select columns 'a' and 'b' from df.

Here are few examples of subsetting the GeoDataFrame of world countries
(Figure 1.2). First, we are subsetting rows by position. In the first example, we
are using [0:3,:], meaning ‘rows 1,2,3, all columns’. Keep in mind that indices
in Python start from 0, and slices are inclusive of the start and exclusive of the
end; therefore, 0:3 means indices 0, 1, 2, i.e., first three rows in this example.
world.iloc[0:3, :]

iso_a2 name_long ... gdpPercap geometry

0 FJ Fiji ... 8222.253784 MULTIPOLYGON (((-180 -16.55522,...
1 TZ Tanzania ... 2402.099404 MULTIPOLYGON (((33.90371 -0.95,...
2 EH Western Sahara ... NaN MULTIPOLYGON (((-8.66559 27.656...

Subsetting columns by position requires specifying that we want to keep all of
the rows (:) and then the indexes of the columns we want to keep.
world.iloc[:, 0:3]

iso_a2 name_long continent

0 FJ Fiji Oceania
1 TZ Tanzania Africa
2 EH Western Sahara Africa
... ... ... ...
174 XK Kosovo Europe
175 TT Trinidad and Tobago North America
176 SS South Sudan Africa

To subset rows and columns by position we need to specify both row and
column indices, separated by a comma.
world.iloc[0:3, 0:3]

iso_a2 name_long continent

0 FJ Fiji Oceania
1 TZ Tanzania Africa
2 EH Western Sahara Africa
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Subsetting columns by name is not done with the .iloc method, but instead
requires specifying the column names in .loc, or directly in a double square
bracket [[ notation.
world[['name_long', 'geometry']]

name_long geometry

0 Fiji MULTIPOLYGON (((-180 -16.55522,...
1 Tanzania MULTIPOLYGON (((33.90371 -0.95,...
2 Western Sahara MULTIPOLYGON (((-8.66559 27.656...
... ... ...
174 Kosovo MULTIPOLYGON (((20.59025 41.855...
175 Trinidad and Tobago MULTIPOLYGON (((-61.68 10.76, -...
176 South Sudan MULTIPOLYGON (((30.83385 3.5091...

To select many successive columns, we can use the : (slice) notation,
as in world.loc[:, 'name_long':'pop'], which selects all columns from
name_long to pop (inclusive).
world.loc[:, 'name_long':'pop']

name_long continent ... area_km2 pop

0 Fiji Oceania ... 19289.970733 885806.0
1 Tanzania Africa ... 932745.792357 52234869.0
2 Western Sahara Africa ... 96270.601041 NaN
... ... ... ... ... ...
174 Kosovo Europe ... 11230.261672 1821800.0
175 Trinidad and Tobago North America ... 7737.809855 1354493.0
176 South Sudan Africa ... 624909.099086 11530971.0

Removing rows or columns is done using the .drop method. We can remove
specific rows by specifying their ids, e.g., dropping rows 2, 3, and 5 in the
following example.
world.drop([2, 3, 5])

iso_a2 name_long ... gdpPercap geometry

0 FJ Fiji ... 8222.253784 MULTIPOLYGON
(((-180 -16.55522,...

1 TZ Tanzania ... 2402.099404 MULTIPOLYGON
(((33.90371 -0.95,...

4 US United States ... 51921.984639 MULTIPOLYGON
(((-171.73166 63.7...

... ... ... ... ... ...
174 XK Kosovo ... 8698.291559 MULTIPOLYGON

(((20.59025 41.855...
175 TT Trinidad and Tobago ... 31181.821196 MULTIPOLYGON

(((-61.68 10.76, -...
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iso_a2 name_long ... gdpPercap geometry

176 SS South Sudan ... 1935.879400 MULTIPOLYGON
(((30.83385 3.5091...

To remove specific columns we need to add an extra argument, axis=1 (i.e.,
columns).
world.drop(['name_long', 'continent'], axis=1)

iso_a2 region_un ... gdpPercap geometry

0 FJ Oceania ... 8222.253784 MULTIPOLYGON (((-180 -16.55522,...
1 TZ Africa ... 2402.099404 MULTIPOLYGON (((33.90371 -0.95,...
2 EH Africa ... NaN MULTIPOLYGON (((-8.66559 27.656...
... ... ... ... ... ...
174 XK Europe ... 8698.291559 MULTIPOLYGON (((20.59025 41.855...
175 TT Americas ... 31181.821196 MULTIPOLYGON (((-61.68 10.76, -...
176 SS Africa ... 1935.879400 MULTIPOLYGON (((30.83385 3.5091...

We can also rename columns using the .rename method, in which we pass a
dictionary with items of the form old_name:new_name to the columns argu-
ment.
world[['name_long', 'pop']].rename(columns={'pop': 'population'})

name_long population

0 Fiji 885806.0
1 Tanzania 52234869.0
2 Western Sahara NaN
... ... ...
174 Kosovo 1821800.0
175 Trinidad and Tobago 1354493.0
176 South Sudan 11530971.0

The standard numpy comparison operators (Table 2.1) can be used in boolean
subsetting with pandas/geopandas.

Table 2.1: Comparison operators that return boolean values (True/False).

Symbol Name

== Equal to
!= Not equal to

>, < Greater/Less than
>=, <= Greater/Less than or equal
&, |, ~ Logical operators: And, Or, Not
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The following example demonstrates logical vectors for subsetting by creating
a new GeoDataFrame object called small_countries that contains only those
countries and other territories from the world object whose surface area is
smaller than 10,000 km2. The first step is to create a logical vector (a Series
object) that is True for countries with an area smaller than 10,000 km2 and
False otherwise. Then, we use this vector to subset the world dataset, which
returns a new GeoDataFrame object containing only the small countries.
idx_small = world['area_km2'] < 10000 ## a logical 'Series'
small_countries = world[idx_small]
small_countries

iso_a2 name_long ... gdpPercap geometry

45 PR Puerto Rico ... 35066.046376 MULTIPOLYGON
(((-66.28243 18.51...

79 PS Palestine ... 4319.528283 MULTIPOLYGON
(((35.39756 31.489...

89 VU Vanuatu ... 2892.341604 MULTIPOLYGON
(((166.79316 -15.6...

... ... ... ... ... ...
160 None Northern Cyprus ... NaN MULTIPOLYGON

(((32.73178 35.140...
161 CY Cyprus ... 29786.365653 MULTIPOLYGON

(((32.73178 35.140...
175 TT Trinidad and Tobago ... 31181.821196 MULTIPOLYGON

(((-61.68 10.76, -...

A more concise command, which omits the intermediary object by combining
the two steps into one, generates the same result.
small_countries = world[world['area_km2'] < 10000]
small_countries

iso_a2 name_long ... gdpPercap geometry

45 PR Puerto Rico ... 35066.046376 MULTIPOLYGON
(((-66.28243 18.51...

79 PS Palestine ... 4319.528283 MULTIPOLYGON
(((35.39756 31.489...

89 VU Vanuatu ... 2892.341604 MULTIPOLYGON
(((166.79316 -15.6...

... ... ... ... ... ...
160 None Northern Cyprus ... NaN MULTIPOLYGON

(((32.73178 35.140...
161 CY Cyprus ... 29786.365653 MULTIPOLYGON

(((32.73178 35.140...
175 TT Trinidad and Tobago ... 31181.821196 MULTIPOLYGON

(((-61.68 10.76, -...
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We can also combine indexes using logical operators, such as & (and), | (or),
and ~ (not).
idx_small = world['area_km2'] < 10000
idx_asia = world['continent'] == 'Asia'
world.loc[idx_small & idx_asia, ['name_long', 'continent', 'area_km2']]

name_long continent area_km2

79 Palestine Asia 5037.103826
160 Northern Cyprus Asia 3786.364506
161 Cyprus Asia 6207.006191

The various methods shown above can be chained for any combination with
several subsetting steps. For example, the following code selects only countries
from Asia, keeps only the name_long and continent columns, and then selects
the first five rows.
world[world['continent'] == 'Asia'] \

.loc[:, ['name_long', 'continent']] \

.iloc[0:5, :]

name_long continent

5 Kazakhstan Asia
6 Uzbekistan Asia
8 Indonesia Asia
24 Timor-Leste Asia
76 Israel Asia

Logical operators &, |, and ~ (Table 2.1) can be used to combine multiple
conditions. For example, here are all countries in North America or South
America. Keep in mind that the parentheses around each condition (here,
and in analogous cases using other operators) are crucial; otherwise, due to
Python’s precedence rules1, the | operator is executed before == and we get
an error.
world[

(world['continent'] == 'North America') |
(world['continent'] == 'South America')

] \
.loc[:, ['name_long', 'continent']]

1https://docs.python.org/3/reference/expressions.html#operator-precedence

https://docs.python.org/3/reference/expressions.html#operator-precedence
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name_long continent

3 Canada North America
4 United States North America
9 Argentina South America
... ... ...
47 Cuba North America
156 Paraguay South America
175 Trinidad and Tobago North America

However, specifically, expressions combining multiple comparisons with ==
combined with | can be replaced with the .isin method and a list of values
to compare with. The advantage of .isin is more concise and easy to manage
code, especially when the number of comparisons is large. For example, the
following expression gives the same result as above.
world[world['continent'].isin(['North America', 'South America'])] \

.loc[:, ['name_long', 'continent']]

name_long continent

3 Canada North America
4 United States North America
9 Argentina South America
... ... ...
47 Cuba North America
156 Paraguay South America
175 Trinidad and Tobago North America

2.2.2 Vector attribute aggregation
Aggregation involves summarizing data based on one or more grouping variables
(typically values in a column; geographic aggregation is covered in Section 3.2.5).
A classic example of this attribute-based aggregation is calculating the number
of people per continent based on country-level data (one row per country).
The world dataset contains the necessary ingredients: the columns pop and
continent, the target variable and the grouping variable, respectively. The
aim is to find the sum() of country populations for each continent, resulting in
a smaller table or vector layer (of continents). Since aggregation is a form of
data reduction, it can be a useful early step when working with large datasets.

Attribute-based aggregation can be achieved using a combination of .groupby
and .sum (package pandas), where the former groups the data by the grouping
variable(s) and the latter calculates the sum of the specified column(s). The
.reset_index method moves the grouping variable into an ordinary column,
rather than an index (the default), which is something we typically want to do.
world_agg1 = world.groupby('continent')[['pop']].sum().reset_index()
world_agg1
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world_agg1
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continent pop

0 Africa 1.154947e+09
1 Antarctica 0.000000e+00
2 Asia 4.311408e+09
... ... ...
5 Oceania 3.775783e+07
6 Seven seas (open ocean) 0.000000e+00
7 South America 4.120608e+08

The result, in this case, is a (non-spatial) table with eight rows, one per unique
value in continent, and two columns reporting the name and population of
each continent.

If we want to include the geometry in the aggregation result, we can use the
.dissolve method. That way, in addition to the summed population, we
also get the associated geometry per continent, i.e., the union of all countries.
Note that we use the by parameter to choose which column(s) are used for
grouping, and the aggfunc parameter to choose the aggregation function for
non-geometry columns. Again, note that the .reset_index method is used
(here, and elsewhere in the book) to turn pandas and geopandas row indices,
which are automatically created for grouping variables in grouping operations
such as .dissolve, ‘back’ into ordinary columns, which are more appropriate
in the scope of this book.
world_agg2 = world[['continent', 'pop', 'geometry']] \

.dissolve(by='continent', aggfunc='sum') \

.reset_index()
world_agg2

continent geometry pop

0 Africa MULTIPOLYGON (((-11.43878 6.785... 1.154947e+09
1 Antarctica MULTIPOLYGON (((-61.13898 -79.9... 0.000000e+00
2 Asia MULTIPOLYGON (((48.67923 14.003... 4.311408e+09
... ... ... ...
5 Oceania MULTIPOLYGON (((147.91405 -43.2... 3.775783e+07
6 Seven seas (open ocean) POLYGON ((68.935 -48.625, 68.86... 0.000000e+00
7 South America MULTIPOLYGON (((-68.63999 -55.5... 4.120608e+08

In this case, the resulting world_agg2 object is a GeoDataFrame containing 8
features representing the continents of the world that we can plot (Figure 2.1).
The plt.subplots function is hereby used to control plot dimensions (to make
the plot wider and narrower) (see Section 8.2.2).
fig, ax = plt.subplots(figsize=(6, 3))
world_agg2.plot(column='pop', edgecolor='black', legend=True, ax=ax);
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Figure 2.1: Continents with summed population

Other options for the aggfunc parameter in .dissolve include 'first',
'last', 'min', 'max', 'sum', 'mean', 'median'. Additionally, we can pass
custom functions here.

As a more complex example, the following code shows how we can calculate
the total population, area, and count of countries, per continent. It is done
by passing a dictionary to the aggfunc parameter, where the keys are the
column names and the values are the aggregation functions. The result is a
GeoDataFrame object with 8 rows (one per continent) and 4 columns (one for
the continent name and one for each of the three aggregated attributes). The
rename method is used to rename the 'name_long' column into 'n', as it
now expresses the count of names (i.e., the number of countries) rather than
their names.
world_agg3 = world.dissolve(

by='continent',
aggfunc={

'name_long': 'count',
'pop': 'sum',
'area_km2': 'sum'

}).rename(columns={'name_long': 'n'}).reset_index()
world_agg3

continent geometry n pop area_km2

0 Africa MULTIPOLYGON 51 1.154947e+09 2.994620e+07
(((-11.43878 6.785...

1 Antarctica MULTIPOLYGON 1 0.000000e+00 1.233596e+07
(((-61.13898 -79.9...
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Figure 2.1: Continents with summed population
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0 Africa MULTIPOLYGON 51 1.154947e+09 2.994620e+07
(((-11.43878 6.785...

1 Antarctica MULTIPOLYGON 1 0.000000e+00 1.233596e+07
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continent geometry n pop area_km2

2 Asia MULTIPOLYGON 47 4.311408e+09 3.125246e+07
(((48.67923 14.003...

... ... ... ... ... ...
5 Oceania MULTIPOLYGON 7 3.775783e+07 8.504489e+06

(((147.91405 -43.2...
6 Seven seas POLYGON 1 0.000000e+00 1.160257e+04

(open ocean) ((68.935 -48.625, 68.86...
7 South America MULTIPOLYGON 13 4.120608e+08 1.776259e+07

(((-68.63999 -55.5...

Figure 2.2 visualizes the three aggregated attributes of our resulting layer
world_agg3.
# Summed population
fig, ax = plt.subplots(figsize=(5, 2.5))
world_agg3.plot(column='pop', edgecolor='black', legend=True, ax=ax);
# Summed area
fig, ax = plt.subplots(figsize=(5, 2.5))
world_agg3.plot(column='area_km2', edgecolor='black', legend=True, ax=ax);
# Count of countries
fig, ax = plt.subplots(figsize=(5, 2.5))
world_agg3.plot(column='n', edgecolor='black', legend=True, ax=ax);

(a) Summed population (b) Summed area (c) Count of countries

Figure 2.2: Continent’s properties, calculated using spatial aggregation using
different functions

There are several other table-related operations that are possible, such as
creating new columns or sorting the values. In the following code example,
given the world_agg3 continent summary (Figure 2.2), we:

• drop the geometry column,
• calculate population density of each continent,
• arrange continents by the number of countries each contains, and
• keep only the 3 most country-rich continents.
world_agg4 = world_agg3.drop(columns=['geometry'])
world_agg4['density'] = world_agg4['pop'] / world_agg4['area_km2']
world_agg4 = world_agg4.sort_values(by='n', ascending=False)
world_agg4 = world_agg4.head(3)
world_agg4
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continent n pop area_km2 density

0 Africa 51 1.154947e+09 2.994620e+07 38.567388
2 Asia 47 4.311408e+09 3.125246e+07 137.954201
3 Europe 39 6.690363e+08 2.306522e+07 29.006283

2.2.3 Vector attribute joining
Combining data from different sources is a common task in data preparation.
Joins do this by combining tables based on a shared ‘key’ variable. pandas has
a function named pd.merge for joining (Geo)DataFrames based on common
column(s) that follows conventions used in the database language SQL (Grole-
mund and Wickham 2016). The pd.merge result can be either a DataFrame
or a GeoDataFrame object, depending on the inputs.

A common type of attribute join on spatial data is to join DataFrames to
GeoDataFrames. To achieve this, we use pd.merge with a GeoDataFrame as the
first argument and add columns to it from a DataFrame specified as the second
argument. In the following example, we combine data on coffee production
with the world dataset. The coffee data is in a DataFrame called coffee_data
imported from a CSV file of major coffee-producing nations.
coffee_data = pd.read_csv('data/coffee_data.csv')
coffee_data

name_long coffee_production_2016 coffee_production_2017

0 Angola NaN NaN
1 Bolivia 3.0 4.0
2 Brazil 3277.0 2786.0
... ... ... ...
44 Zambia 3.0 NaN
45 Zimbabwe 1.0 1.0
46 Others 23.0 26.0

Its columns are name_long—country name, and coffee_production_2016
and coffee_production_2017—estimated values for coffee production in units
of 60-kg bags per year, for 2016 and 2017, respectively.

A left join, which preserves the first dataset, merges world with coffee_data,
based on the common 'name_long' column:
world_coffee = pd.merge(world, coffee_data, on='name_long', how='left')
world_coffee
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continent n pop area_km2 density

0 Africa 51 1.154947e+09 2.994620e+07 38.567388
2 Asia 47 4.311408e+09 3.125246e+07 137.954201
3 Europe 39 6.690363e+08 2.306522e+07 29.006283

2.2.3 Vector attribute joining
Combining data from different sources is a common task in data preparation.
Joins do this by combining tables based on a shared ‘key’ variable. pandas has
a function named pd.merge for joining (Geo)DataFrames based on common
column(s) that follows conventions used in the database language SQL (Grole-
mund and Wickham 2016). The pd.merge result can be either a DataFrame
or a GeoDataFrame object, depending on the inputs.

A common type of attribute join on spatial data is to join DataFrames to
GeoDataFrames. To achieve this, we use pd.merge with a GeoDataFrame as the
first argument and add columns to it from a DataFrame specified as the second
argument. In the following example, we combine data on coffee production
with the world dataset. The coffee data is in a DataFrame called coffee_data
imported from a CSV file of major coffee-producing nations.
coffee_data = pd.read_csv('data/coffee_data.csv')
coffee_data

name_long coffee_production_2016 coffee_production_2017

0 Angola NaN NaN
1 Bolivia 3.0 4.0
2 Brazil 3277.0 2786.0
... ... ... ...
44 Zambia 3.0 NaN
45 Zimbabwe 1.0 1.0
46 Others 23.0 26.0

Its columns are name_long—country name, and coffee_production_2016
and coffee_production_2017—estimated values for coffee production in units
of 60-kg bags per year, for 2016 and 2017, respectively.

A left join, which preserves the first dataset, merges world with coffee_data,
based on the common 'name_long' column:
world_coffee = pd.merge(world, coffee_data, on='name_long', how='left')
world_coffee
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iso_a2 name_long ... coffee_production_2016 coffee_production_2017

0 FJ Fiji ... NaN NaN
1 TZ Tanzania ... 81.0 66.0
2 EH Western Sahara ... NaN NaN
... ... ... ... ... ...
174 XK Kosovo ... NaN NaN
175 TT Trinidad ... NaN NaN

and Tobago
176 SS South Sudan ... NaN NaN

The result is a GeoDataFrame object identical to the original world
object, but with two new variables (coffee_production_2016 and
coffee_production_2017) on coffee production. This can be plotted as a
map, as illustrated (for coffee_production_2017) in Figure 2.3. Note that,
here and in many other examples in later chapters, we are using a technique
to plot two layers (all of the world countries outline, and coffee production
with symbology) at once, which will be ‘formally’ introduced towards the end
of the book in Section 8.2.5.
base = world_coffee.plot(color='white', edgecolor='lightgrey')
coffee_map = world_coffee.plot(ax=base, column='coffee_production_2017');

Figure 2.3: World coffee production, thousand 60-kg bags by country, in 2017
(source: International Coffee Organization).

To work, attribute-based joins need a ‘key variable’ in both datasets (on
parameter of pd.merge). In the above example, both world_coffee and
world DataFrames contained a column called name_long.
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� Note

By default, pd.merge uses all columns with matching names. However,
it is recommended to explicitly specify the names of the columns to be
used for matching, like we did in the last example.

In case where column names are not the same, you can use left_on and
right_on to specify the respective columns.

Note that the result world_coffee has the same number of rows as the
original dataset world. Although there are only 47 rows in coffee_data, all
177 country records are kept intact in world_coffee. Rows in the original
dataset with no match are assigned np.nan values for the new coffee production
variables. This is a characteristic of a left join (specified with how='left')
and is what we typically want to do.

What if we only want to keep countries that have a match in the key variable?
In that case an inner join can be used, which keeps only rows with a match in
both datasets. We can use it with the how='inner' argument.
pd.merge(world, coffee_data, on='name_long', how='inner')

iso_a2 name_long ... coffee_production_2016 coffee_production_2017

0 TZ Tanzania ... 81.0 66.0
1 PG Papua ... 114.0 74.0

New Guinea
2 ID Indonesia ... 742.0 360.0
... ... ... ... ... ...
42 ET Ethiopia ... 215.0 283.0
43 UG Uganda ... 408.0 443.0
44 RW Rwanda ... 36.0 42.0

2.2.4 Creating attributes and removing spatial information
Often, we would like to create a new column based on already existing columns.
For example, we want to calculate population density for each country. For
this we need to divide a population column, here pop, by an area column, here
area_km2. Note that we are working on a copy of world named world2 so
that we do not modify the original layer.
world2 = world.copy()
world2['pop_dens'] = world2['pop'] / world2['area_km2']
world2
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iso_a2 name_long ... geometry pop_dens

0 FJ Fiji ... MULTIPOLYGON 45.920547
(((-180 -16.55522,...

1 TZ Tanzania ... MULTIPOLYGON 56.001184
(((33.90371 -0.95,...

2 EH Western Sahara ... MULTIPOLYGON NaN
(((-8.66559 27.656...

... ... ... ... ... ...
174 XK Kosovo ... MULTIPOLYGON 162.222400

(((20.59025 41.855...
175 TT Trinidad and Tobago ... MULTIPOLYGON 175.048628

(((-61.68 10.76, -...
176 SS South Sudan ... MULTIPOLYGON 18.452237

(((30.83385 3.5091...

To paste (i.e., concatenate) together existing columns, we can use the ordinary
Python string operator +, as if we are working with individual strings rather
than Series. For example, we want to combine the continent and region_un
columns into a new column named con_reg, using ':' as a separator. Subse-
quently, we remove the original columns using .drop:
world2['con_reg'] = world['continent'] + ':' + world2['region_un']
world2 = world2.drop(['continent', 'region_un'], axis=1)
world2

iso_a2 name_long ... pop_dens con_reg

0 FJ Fiji ... 45.920547 Oceania:Oceania
1 TZ Tanzania ... 56.001184 Africa:Africa
2 EH Western Sahara ... NaN Africa:Africa
... ... ... ... ... ...
174 XK Kosovo ... 162.222400 Europe:Europe
175 TT Trinidad and Tobago ... 175.048628 North America:Americas
176 SS South Sudan ... 18.452237 Africa:Africa

The resulting GeoDataFrame object has a new column called con_reg represent-
ing the continent and region of each country, e.g., 'South America:Americas'
for Argentina and other South America countries. The opposite operation,
splitting one column into multiple columns based on a separator string, is done
using the .str.split method. As a result, we go back to the previous state
of two separate continent and region_un columns (only that their position
is now last, since they are newly created). The str.split method returns a
column of lists by default; to place the strings into separate str columns we
use the expand=True argument.
world2[['continent', 'region_un']] = world2['con_reg'] \

.str.split(':', expand=True)
world2
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iso_a2 name_long ... continent region_un

0 FJ Fiji ... Oceania Oceania
1 TZ Tanzania ... Africa Africa
2 EH Western Sahara ... Africa Africa
... ... ... ... ... ...
174 XK Kosovo ... Europe Europe
175 TT Trinidad and Tobago ... North America Americas
176 SS South Sudan ... Africa Africa

Renaming one or more columns can be done using the .rename method
combined with the columns argument, which should be a dictionary of the form
old_name:new_name, as shown above (Section 2.2.1). The following command,
for example, renames the lengthy name_long column to simply name.
world2.rename(columns={'name_long': 'name'})

iso_a2 name ... continent region_un

0 FJ Fiji ... Oceania Oceania
1 TZ Tanzania ... Africa Africa
2 EH Western Sahara ... Africa Africa
... ... ... ... ... ...
174 XK Kosovo ... Europe Europe
175 TT Trinidad and Tobago ... North America Americas
176 SS South Sudan ... Africa Africa

To change all column names at once, we assign a list of the ‘new’ column
names into the .columns property. The list must be of the same length as
the number of columns (i.e., world.shape[1]). This is illustrated below, which
outputs the same world2 object, but with very short names.
new_names = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'geom', 'i', 'j', 'k', 'l']
world2.columns = new_names
world2

a b ... k l

0 FJ Fiji ... Oceania Oceania
1 TZ Tanzania ... Africa Africa
2 EH Western Sahara ... Africa Africa
... ... ... ... ... ...
174 XK Kosovo ... Europe Europe
175 TT Trinidad and Tobago ... North America Americas
176 SS South Sudan ... Africa Africa

To reorder columns, we can pass a modified columns list to the subsetting
operator [. For example, the following expressions reorder world2 columns in
reverse alphabetical order.
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To reorder columns, we can pass a modified columns list to the subsetting
operator [. For example, the following expressions reorder world2 columns in
reverse alphabetical order.
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names = sorted(world2.columns, reverse=True)
world2 = world2[names]
world2

l k ... b a

0 Oceania Oceania ... Fiji FJ
1 Africa Africa ... Tanzania TZ
2 Africa Africa ... Western Sahara EH
... ... ... ... ... ...
174 Europe Europe ... Kosovo XK
175 Americas North America ... Trinidad and Tobago TT
176 Africa Africa ... South Sudan SS

Each of these attribute data operations, even though they are defined in the
pandas package and applicable to any DataFrame, preserve the geometry
column and the GeoDataFrame class. Sometimes, however, it makes sense to
remove the geometry, for example to speed-up aggregation or to export just the
attribute data for statistical analysis. To go from GeoDataFrame to DataFrame
we need to.

1. Drop the geometry column
2. Convert from GeoDataFrame into a DataFrame

For example, by the end of the following code section world2 becomes a regular
DataFrame.
world2 = world2.drop('geom', axis=1)
world2 = pd.DataFrame(world2)
world2

l k ... b a

0 Oceania Oceania ... Fiji FJ
1 Africa Africa ... Tanzania TZ
2 Africa Africa ... Western Sahara EH
... ... ... ... ... ...
174 Europe Europe ... Kosovo XK
175 Americas North America ... Trinidad and Tobago TT
176 Africa Africa ... South Sudan SS

2.3 Manipulating raster objects
Raster cell values can be considered the counterpart of vector attribute values.
In this section, we cover operations that deal with raster values in a similar
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way, namely as a series of numbers. This type of operations includes subsetting
raster values (Section 2.3.1) and calculating global summaries of raster values
(Section 2.3.2).

2.3.1 Raster subsetting
When using rasterio, raster values are accessible through a numpy array,
which can be imported with the .read method (as we saw in Section 1.3.1).
As shown in Section 1.3.1, reading a single raster layer (or the only layer of a
single-band raster, such as here) results in a two-dimensional array:
elev = src_elev.read(1)
elev

array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]], dtype=uint8)

Then, we can access any subset of cell values using numpy methods, keeping

returns the value at row 2, column 3.
elev[1, 2]

np.uint8(9)

Cell values can be modified by overwriting existing values in conjunction with
a subsetting operation, e.g., elev[1,2]=0 to set cell at row 2, column 3 of
elev to 0.
elev[1, 2] = 0
elev

array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 0, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]], dtype=uint8)

Multiple cells can also be modified in this way, e.g., elev[0,0:3]=0 to set the
first three cells in the first row to 0.
elev[0, 0:3] = 0
elev

in mind that dimensions order is (rows, columns). For example, elev[1,2]
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way, namely as a series of numbers. This type of operations includes subsetting
raster values (Section 2.3.1) and calculating global summaries of raster values
(Section 2.3.2).

2.3.1 Raster subsetting
When using rasterio, raster values are accessible through a numpy array,
which can be imported with the .read method (as we saw in Section 1.3.1).
As shown in Section 1.3.1, reading a single raster layer (or the only layer of a
single-band raster, such as here) results in a two-dimensional array:
elev = src_elev.read(1)
elev

array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]], dtype=uint8)

Then, we can access any subset of cell values using numpy methods, keeping
in mind that dimensions order is (rows,columns). For example, elev[1,2]
returns the value at row 2, column 3.
elev[1, 2]

np.uint8(9)

Cell values can be modified by overwriting existing values in conjunction with
a subsetting operation, e.g., elev[1,2]=0 to set cell at row 2, column 3 of
elev to 0.
elev[1, 2] = 0
elev

array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 0, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]], dtype=uint8)

Multiple cells can also be modified in this way, e.g., elev[0,0:3]=0 to set the
first three cells in the first row to 0.
elev[0, 0:3] = 0
elev
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array([[ 0, 0, 0, 4, 5, 6],
[ 7, 8, 0, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]], dtype=uint8)

Alternatively, reading more than one layer, or all layers (even if there is just
one, such as here) results in a three-dimensional array.
elev3d = src_elev.read()
elev3d

array([[[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]]], dtype=uint8)

� Note

You can see that the above array is three-dimensional according to the
number of brackets [, or check explicitly using .shape or .ndim.

elev3d[0, 1, 2]

np.uint8(9)

2.3.2 Summarizing raster objects
Global summaries of raster values can be calculated by applying numpy
summary functions on the array with raster values, e.g., np.mean.
np.mean(elev)

np.float64(18.083333333333332)

Note that ‘No Data’-safe functions–such as np.nanmean—should be used in
case the raster contains ‘No Data’ values which need to be ignored. Before we
can demonstrate that, we must convert the array from int to float, as int
arrays cannot contain np.nan (due to computer memory limitations).

In three-dimensional arrays, we access cell values using three indices, keeping
in mind that dimensions order is (layers, rows, columns) For example,
to get the same value shown above, at row 2, column 3 (at band 1), we use
elev[0,1,2] instead of elev[1,2].
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elev1 = elev.copy()
elev1 = elev1.astype('float64')
elev1

array([[ 0., 0., 0., 4., 5., 6.],
[ 7., 8., 0., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],
[19., 20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29., 30.],
[31., 32., 33., 34., 35., 36.]])

Now we can insert an np.nan value into the array, for example to a cell located
in the first row and third column. (Doing so in the original elev array raises
an error, because an int array cannot accommodate np.nan, as mentioned
above; try it to see for yourself.)
elev1[0, 2] = np.nan
elev1

array([[ 0., 0., nan, 4., 5., 6.],
[ 7., 8., 0., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],
[19., 20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29., 30.],
[31., 32., 33., 34., 35., 36.]])

With the np.nan value in place, the np.mean summary value becomes unknown
(np.nan).
np.mean(elev1)

np.float64(nan)

To get a summary of all non-missing values, we need to use one of the specialized
numpy functions that ignore ‘No Data’ values, such as np.nanmean:
np.nanmean(elev1)

np.float64(18.6)

Raster value statistics can be visualized in a variety of ways. One approach is
to ‘flatten’ the raster values into a one-dimensional array (using .flatten),
then use a graphical function such as plt.hist or plt.boxplot (from mat-
plotlib.pyplot). For example, the following code section shows the distribution
of values in elev using a histogram (Figure 2.4).
plt.hist(elev.flatten());
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Figure 2.4: Distribution of cell values in a continuous raster (elev.tif)

grain = src_grain.read(1)
grain

array([[1, 0, 1, 2, 2, 2],
[0, 2, 0, 0, 2, 1],
[0, 2, 2, 0, 0, 2],
[0, 0, 1, 1, 1, 1],
[1, 1, 1, 2, 1, 1],
[2, 1, 2, 2, 0, 2]], dtype=uint8)

To calculate the frequency of unique values in an array, we use the np.unique
with the return_counts=True option. The result is a tuple with two corre-
sponding arrays: the unique values, and their counts.

To summarize the distribution of values in a categorical raster, we can cal-
culate the frequencies of unique values and draw them using a barplot. Let’s
demonstrate using the grain.tif small categorical raster.
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freq = np.unique(grain, return_counts=True)
freq

(array([0, 1, 2], dtype=uint8), array([10, 13, 13]))

These two arrays can be passed to the plt.bar function to draw a barplot, as
shown in Figure 2.5.
plt.bar(*freq);

Figure 2.5: Distribution of cell values in categorical raster (grain.tif)
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3
Spatial data operations

Prerequisites
This chapter requires importing the following packages:
import os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy.ndimage
import scipy.stats
import shapely
import geopandas as gpd
import rasterio
import rasterio.plot
import rasterio.merge
import rasterio.features

It also relies on the following data files:
nz = gpd.read_file('data/nz.gpkg')
nz_height = gpd.read_file('data/nz_height.gpkg')
world = gpd.read_file('data/world.gpkg')
cycle_hire = gpd.read_file('data/cycle_hire.gpkg')
cycle_hire_osm = gpd.read_file('data/cycle_hire_osm.gpkg')
src_elev = rasterio.open('output/elev.tif')
src_landsat = rasterio.open('data/landsat.tif')
src_grain = rasterio.open('output/grain.tif')

3.1 Introduction
Spatial operations, including spatial joins between vector datasets and local
and focal operations on raster datasets, are a vital part of geocomputation.
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This chapter shows how spatial objects can be modified in a multitude of ways
based on their location and shape. Many spatial operations have a non-spatial
(attribute) equivalent, so concepts such as subsetting and joining datasets
demonstrated in the previous chapter are applicable here. This is especially
true for vector operations: Section 2.2 on vector attribute manipulation provides
the basis for understanding its spatial counterpart, namely spatial subsetting
(covered in Section 3.2.1). Spatial joining (Section 3.2.3) and aggregation
(Section 3.2.5) also have non-spatial counterparts, covered in the previous
chapter.

Spatial operations differ from non-spatial operations in a number of ways,
however. Spatial joins, for example, can be done in a number of ways—including
matching entities that intersect with or are within a certain distance of the
target dataset—while the attribution joins discussed in Section 2.2.3 in the
previous chapter can only be done in one way. Different types of spatial
relationships between objects, including intersects and disjoints, are described
in Section 3.2.2. Another unique aspect of spatial objects is distance: all spatial
objects are related through space, and distance calculations can be used to
explore the strength of this relationship, as described in the context of vector
data in Section 3.2.7.

Spatial operations on raster objects include subsetting—covered in Sec-
tion 3.3.1—and merging several raster ‘tiles’ into a single object, as demon-
strated in Section 3.3.8. Map algebra covers a range of operations that modify
raster cell values, with or without reference to surrounding cell values. The con-
cept of map algebra, vital for many applications, is introduced in Section 3.3.2;
local, focal, and zonal map algebra operations are covered in Section 3.3.3,
Section 3.3.4, and Section 3.3.5, respectively. Global map algebra operations,
which generate summary statistics representing an entire raster dataset, and
distance calculations on rasters, are discussed in Section 3.3.6.

� Note

It is important to note that spatial operations that use two spatial objects
rely on both objects having the same coordinate reference system, a topic
that was introduced in Section 1.4 and which will be covered in more
depth in Chapter 6.

3.2 Spatial operations on vector data
This section provides an overview of spatial operations on vector geographic
data represented as Simple Features using the shapely and geopandas
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packages. Section 3.3 then presents spatial operations on raster datasets, using
the rasterio and scipy packages.

3.2.1 Spatial subsetting
Spatial subsetting is the process of taking a spatial object and returning a new
object containing only features that relate in space to another object. Analogous
to attribute subsetting (covered in Section 2.2.1), subsets of GeoDataFrames
can be created with square bracket ([) operator using the syntax x[y], where
x is an GeoDataFrame from which a subset of rows/features will be returned,
and y is a boolean Series. The difference is, that, in spatial subsetting y
is created based on another geometry and using one of the binary geometry
relation methods, such as .intersects (see Section 3.2.2), rather than based
on comparison based on ordinary columns.

To demonstrate spatial subsetting, we will use the nz and nz_height layers,
which contain geographic data on the 16 main regions and 101 highest points
in New Zealand, respectively (Figure 3.1 (a)), in a projected coordinate system.
The following expression creates a new object, canterbury, representing only
one region—Canterbury.
canterbury = nz[nz['Name'] == 'Canterbury']
canterbury

Name Island ... Sex_ratio geometry

10 Canterbury South ... 0.975327 MULTIPOLYGON (((1686901.914 535...

Then, we use the .intersects method to evaluate, for each of the nz_height
points, whether they intersect with Canterbury. The result canterbury_height
is a boolean Series with the ‘answers’.
sel = nz_height.intersects(canterbury.geometry.iloc[0])
sel

0 False
1 False
2 False

...
98 False
99 False
100 False
Length: 101, dtype: bool

Finally, we can subset nz_height using the obtained Series, resulting in
the subset canterbury_height with only those points that intersect with
Canterbury.
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canterbury_height = nz_height[sel]
canterbury_height

t50_fid elevation geometry

4 2362630 2749 POINT (1378169.6 5158491.453)
5 2362814 2822 POINT (1389460.041 5168749.086)
6 2362817 2778 POINT (1390166.225 5169466.158)
... ... ... ...
92 2380298 2877 POINT (1652788.127 5348984.469)
93 2380300 2711 POINT (1654213.379 5349962.973)
94 2380308 2885 POINT (1654898.622 5350462.779)

Figure 3.1 compares the original nz_height layer (left) with the subset
canterbury_height (right).
# Original
base = nz.plot(color='white', edgecolor='lightgrey')
nz_height.plot(ax=base, color='None', edgecolor='red');
# Subset (intersects)
base = nz.plot(color='white', edgecolor='lightgrey')
canterbury.plot(ax=base, color='lightgrey', edgecolor='darkgrey')
canterbury_height.plot(ax=base, color='None', edgecolor='red');

Like in attribute subsetting (Section 2.2.1), we are using a boolean series (sel),
of the same length as the number of rows in the filtered table (nz_height),
created based on a condition applied on itself. The difference is that the
condition is not a comparison of attribute values, but an evaluation of a spatial
relation. Namely, we evaluate whether each geometry of nz_height intersects
with the canterbury geometry, using the .intersects method.

Various topological relations can be used for spatial subsetting which determine
the type of spatial relationship that features in the target object must have
with the subsetting object to be selected. These include touches, crosses, or
within, as we will see shortly in Section 3.2.2. Intersects (.intersects), which
we used in the last example, is the most commonly used method. This is a
‘catch all’ topological relation, that will return features in the target that touch,
cross or are within the source ‘subsetting’ object. As an example of another
method, we can use .disjoint to obtain all points that do not intersect with
Canterbury.
sel = nz_height.disjoint(canterbury.geometry.iloc[0])
canterbury_height2 = nz_height[sel]

The results are shown in Figure 3.2, which compares the original nz_height
layer (left) with the subset canterbury_height2 (right).
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(a) Original points (red)
(b) Spatial subset based on intersection
(red), geometry used for subsetting (Can-
terbury) (grey)

Figure 3.1: Spatial subsetting of points by intersection with polygon

# Original
base = nz.plot(color='white', edgecolor='lightgrey')
nz_height.plot(ax=base, color='None', edgecolor='red');
# Subset (disjoint)
base = nz.plot(color='white', edgecolor='lightgrey')
canterbury.plot(ax=base, color='lightgrey', edgecolor='darkgrey')
canterbury_height2.plot(ax=base, color='None', edgecolor='red');

In case we need to subset according to several geometries at once, e.g., find out
which points intersect with both Canterbury and Southland, we can dissolve
the filtering subset, using .union_all, before applying the .intersects (or
any other) operator. For example, here is how we can subset the nz_height
points which intersect with Canterbury or Southland. (Note that we are also
using the .isin method, as demonstrated at the end of Section 2.2.1.)
canterbury_southland = nz[nz['Name'].isin(['Canterbury', 'Southland'])]
sel = nz_height.intersects(canterbury_southland.union_all())
canterbury_southland_height = nz_height[sel]
canterbury_southland_height
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(a) Original points (red)
(b) Spatial subset based on disjoint (red),
geometry used for subsetting (Canterbury)
(grey)

Figure 3.2: Spatial subsetting of points disjoint from a polygon

t50_fid elevation geometry

0 2353944 2723 POINT (1204142.603 5049971.287)
4 2362630 2749 POINT (1378169.6 5158491.453)
5 2362814 2822 POINT (1389460.041 5168749.086)
... ... ... ...
92 2380298 2877 POINT (1652788.127 5348984.469)
93 2380300 2711 POINT (1654213.379 5349962.973)
94 2380308 2885 POINT (1654898.622 5350462.779)

Figure 3.3 shows the results of the spatial subsetting of nz_height points by
intersection with Canterbury and Southland.
# Original
base = nz.plot(color='white', edgecolor='lightgrey')
nz_height.plot(ax=base, color='None', edgecolor='red');
# Subset by intersection with two polygons
base = nz.plot(color='white', edgecolor='lightgrey')
canterbury_southland.plot(ax=base, color='lightgrey', edgecolor='darkgrey')
canterbury_southland_height.plot(ax=base, color='None', edgecolor='red');



64 3 Spatial data operations

(a) Original points (red)
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(a) Original points (red)
(b) Spatial subset based on intersection
(red), geometry used for subsetting (Can-
terbury and Southland) (grey)

Figure 3.3: Spatial subsetting of points by intersection with more than one
polygon

The next section further explores different types of spatial relations, also known
as binary predicates (of which .intersects and .disjoint are two examples),
that can be used to identify whether or not two features are spatially related.

3.2.2 Topological relations
Topological relations describe the spatial relationships between objects. ‘Binary
topological relationships’, to give them their full name, are logical statements
(in that the answer can only be True or False) about the spatial relationships
between two objects defined by ordered sets of points (typically forming points,
lines, and polygons) in two or more dimensions (Egenhofer and Herring 1990).
That may sound rather abstract and, indeed, the definition and classification
of topological relations is based on mathematical foundations first published
in book form in 1966 (Spanier 1995), with the field of algebraic topology
continuing into the 21st century (Dieck 2008).

Despite their mathematical origins, topological relations can be understood
intuitively with reference to visualizations of commonly used functions that
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test for common types of spatial relationships. Figure 3.4 shows a variety of
geometry pairs and their associated relations. The third and fourth pairs in
Figure 3.4 (from left to right and then down) demonstrate that, for some
relations, order is important: while the relations equals, intersects, crosses,
touches and overlaps are symmetrical, meaning that if x.relation(y) is true,
y.relation(x) will also be true, relations in which the order of the geometries
are important such as contains and within are not.

� Note

Notice that each geometry pair has a ‘DE-9IM’1 string such as FF2F11212.
DE-9IM strings describe the dimensionality (0=points, 1=lines, 2=poly-
gons) of the pairwise intersections of the interior, boundary, and exterior,
of two geometries (i.e., nine values of 0/1/2 encoded into a string). This
is an advanced topic beyond the scope of this book, which can be useful
to understand the difference between relation types, or define custom
types of relations. See the DE-9IM strings section in Geocomputation
with R (Lovelace, Nowosad, and Muenchow 2019). Also note that the
shapely package contains the .relate and .relate_pattern methods,
to derive and to test for DE-9IM patterns, respectively.

In shapely, methods testing for different types of topological relations are
known as ‘relationships’. geopandas provides their wrappers (with the same
method name) which can be applied on multiple geometries at once (such
as .intersects and .disjoint applied on all points in nz_height, see Sec-
tion 3.2.1). To see how topological relations work in practice, let’s create a
simple reproducible example, building on the relations illustrated in Figure 3.4
and consolidating knowledge of how vector geometries are represented from a
previous chapter (Section 1.2.3 and Section 1.2.5).
points = gpd.GeoSeries([

shapely.Point(0.2,0.1),
shapely.Point(0.7,0.2),
shapely.Point(0.4,0.8)

])
line = gpd.GeoSeries([

shapely.LineString([(0.4,0.2), (1,0.5)])
])
poly = gpd.GeoSeries([

shapely.Polygon([(0,0), (0,1), (1,1), (1,0.5), (0,0)])
])

1https://en.wikipedia.org/wiki/DE-9IM

https://en.wikipedia.org/wiki/DE-9IM
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of two geometries (i.e., nine values of 0/1/2 encoded into a string). This
is an advanced topic beyond the scope of this book, which can be useful
to understand the difference between relation types, or define custom
types of relations. See the DE-9IM strings section in Geocomputation
with R (Lovelace, Nowosad, and Muenchow 2019). Also note that the
shapely package contains the .relate and .relate_pattern methods,
to derive and to test for DE-9IM patterns, respectively.

In shapely, methods testing for different types of topological relations are
known as ‘relationships’. geopandas provides their wrappers (with the same
method name) which can be applied on multiple geometries at once (such
as .intersects and .disjoint applied on all points in nz_height, see Sec-
tion 3.2.1). To see how topological relations work in practice, let’s create a
simple reproducible example, building on the relations illustrated in Figure 3.4
and consolidating knowledge of how vector geometries are represented from a
previous chapter (Section 1.2.3 and Section 1.2.5).
points = gpd.GeoSeries([

shapely.Point(0.2,0.1),
shapely.Point(0.7,0.2),
shapely.Point(0.4,0.8)

])
line = gpd.GeoSeries([

shapely.LineString([(0.4,0.2), (1,0.5)])
])
poly = gpd.GeoSeries([

shapely.Polygon([(0,0), (0,1), (1,1), (1,0.5), (0,0)])
])

1https://en.wikipedia.org/wiki/DE-9IM
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Figure 3.4: Topological relations between vector geometries, inspired by Fig-
ures 1 and 2 in Egenhofer and Herring (1990). The relations for which the
x.relation(y) is true are printed for each geometry pair, with x represented
in pink and y represented in blue. The nature of the spatial relationship for
each pair is described by the Dimensionally Extended 9-Intersection Model
string.

The sample dataset which we created is composed of three GeoSeries: named
points, line, and poly, which are visualized in Figure 3.5. The last expression
is a for loop used to add text labels (0, 1, and 2) to identify the points; we
are going to explain the concepts of text annotations with geopandas .plot
in Section 8.2.4.
base = poly.plot(color='lightgrey', edgecolor='red')
line.plot(ax=base, color='black', linewidth=7)
points.plot(ax=base, color='none', edgecolor='black')
for i in enumerate(points):

base.annotate(
i[0], xy=(i[1].x, i[1].y),
xytext=(3, 3), textcoords='offset points', weight='bold'

)
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Figure 3.5: Points (points), line (line), and polygon (poly) objects used to
illustrate topological relations

A simple query is: which of the points in points intersect in some way with
polygon poly? The question can be answered by visual inspection (points 0
and 2 are touching and are within the polygon, respectively). Alternatively, we
can get the solution with the .intersects method, which reports whether or
not each geometry in a GeoSeries (points) intersects with a single shapely
geometry (poly.iloc[0]).
points.intersects(poly.iloc[0])

0 True
1 False
2 True
dtype: bool

The result shown above is a boolean Series. Its contents should match our
intuition: positive (True) results are returned for the points 0 and 2, and a
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negative result (False) for point 1. Each value in this Series represents a
feature in the first input (points).

All earlier examples in this chapter demonstrate the ‘many-to-one’ mode of
.intersects and analogous methods, where the relation is evaluated between
each of several geometries in a GeoSeries/GeoDataFrame, and an individ-
ual shapely geometry. A second mode of those methods (not demonstrated
here) is when both inputs are GeoSeries/GeoDataFrame objects. In such
case, a ‘pairwise’ evaluation takes place between geometries aligned by index
(align=True, the default) or by position (align=False). For example, the
expression nz.intersects(nz) returns a Series of 16 True values, indicating
(unsurprisingly) that each geometry in nz intersects with itself.

A third mode is when we are interested in a ‘many-to-many’ evaluation,
i.e., obtaining a matrix of all pairwise combinations of geometries from two
GeoSeries objects. At the time of writing, there is no built-in method to do this
in geopandas. However, the .apply method (package pandas) can be used
to repeat a ‘many-to-one’ evaluation over all geometries in the second layer,
resulting in a matrix of pairwise results. We will create another GeoSeries
with two polygons, named poly2, to demonstrate this.
poly2 = gpd.GeoSeries([

shapely.Polygon([(0,0), (0,1), (1,1), (1,0.5), (0,0)]),
shapely.Polygon([(0,0), (1,0.5), (1,0), (0,0)])

])

Our two input objects, points and poly2, are illustrated in Figure 3.6.
base = poly2.plot(color='lightgrey', edgecolor='red')
points.plot(ax=base, color='none', edgecolor='black')
for i in enumerate(points):

base.annotate(
i[0], xy=(i[1].x, i[1].y),
xytext=(3, 3), textcoords='offset points', weight='bold'

)

Now we can use .apply to get the intersection relations matrix. The result is
a DataFrame, where each row represents a points geometry and each column
represents a poly2 geometry. We can see that the point 0 intersects with both
polygons, while points 1 and 2 intersect with one of the polygons each.
points.apply(lambda x: poly2.intersects(x))

0 1

0 True True
1 False True
2 True False
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Figure 3.6: Inputs for demonstrating the evaluation of all pairwise intersection
relations between three points (points) and two polygons (poly2)

� Note

The .apply method (package pandas) is used to apply a function along
one of the axes of a DataFrame (or GeoDataFrame). That is, we can apply
a function on all rows (axis=1) or all columns (axis=0, the default).
When the function being applied returns a single value, the output of
.apply is a Series (e.g., .apply(len) returns the lengths of all columns,
because len returns a single value). When the function returns a Series,
then .apply returns a DataFrame (such as in the above example.)
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� Note

Since the above result, like any pairwise matrix, (1) is composed of values
of the same type, and (2) has no contrasting role for rows and columns,
is may be more convenient to use a plain numpy array to work with it.
In such case, we can use the .to_numpy method to go from DataFrame
to ndarray.
points.apply(lambda x: poly2.intersects(x)).to_numpy()

array([[ True, True],
[False, True],
[ True, False]])

The .intersects method returns True even in cases where the features just
touch: intersects is a ‘catch-all’ topological operation which identifies many
types of spatial relations, as illustrated in Figure 3.4. More restrictive questions
include which points lie within the polygon, and which features are on or
contain a shared boundary with it? The first question can be answered with
.within, and the second with .touches.
points.within(poly.iloc[0])

0 False
1 False
2 True
dtype: bool

points.touches(poly.iloc[0])

0 True
1 False
2 False
dtype: bool

Note that although the point 0 touches the boundary polygon, it is not within
it; point 2 is within the polygon but does not touch any part of its border.
The opposite of .intersects is .disjoint, which returns only objects that
do not spatially relate in any way to the selecting object.
points.disjoint(poly.iloc[0])

0 False
1 True
2 False
dtype: bool
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Another useful type of relation is ‘within distance’, where we detect features
that intersect with the target buffered by particular distance. Buffer distance
determines how close target objects need to be before they are selected. This can
be done by literally buffering (Section 1.2.5) the target geometry, and evaluating
intersection (.intersects). Another way is to calculate the distances using
the .distance method, and then evaluate whether they are within a threshold
distance.
points.distance(poly.iloc[0]) < 0.2

0 True
1 True
2 True
dtype: bool

Note that although point 1 is more than 0.2 units of distance from the nearest
vertex of poly, it is still selected when the distance is set to 0.2. This is
because distance is measured to the nearest edge, in this case, the part of the
polygon that lies directly above point 2 in Figure 3.4. We can verify that the
actual distance between point 1 and the polygon is 0.13, as follows.
points.iloc[1].distance(poly.iloc[0])

0.13416407864998736

This is also a good opportunity to repeat that all distance-related calculations
in geopandas (and shapely) assume planar geometry, and only take into
account the coordinate values. It is up to the user to make sure that all input
layers are in the same projected CRS, so that this type of calculations make
sense (see Section 6.4 and Section 6.5).

3.2.3 Spatial joining
Joining two non-spatial datasets uses a shared ‘key’ variable, as described
in Section 2.2.3. Spatial data joining applies the same concept, but instead
relies on spatial relations, described in the previous section. As with attribute
data, joining adds new columns to the target object (the argument x in joining
functions), from a source object (y).

The following example illustrates the process: imagine you have ten points
randomly distributed across the Earth’s surface and you ask, for the points
that are on land, which countries are they in? Implementing this idea in
a reproducible example will build your geographic data handling skills and
show how spatial joins work. The starting point is to create points that are
randomly scattered over the planar surface that represents Earth’s geographic
coordinates, in decimal degrees (Figure 3.7 (a)).
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np.random.seed(11) ## set seed for reproducibility
bb = world.total_bounds ## the world's bounds
x = np.random.uniform(low=bb[0], high=bb[2], size=10)
y = np.random.uniform(low=bb[1], high=bb[3], size=10)
random_points = gpd.points_from_xy(x, y, crs=4326)
random_points = gpd.GeoDataFrame({'geometry': random_points})
random_points

geometry

0 POINT (-115.10291 36.78178)
1 POINT (-172.98891 -71.02938)
2 POINT (-13.24134 65.23272)
... ...
7 POINT (-4.54623 -69.64082)
8 POINT (159.05039 -34.99599)
9 POINT (126.28622 -62.49509)

The scenario illustrated in Figure 3.7 shows that the random_points object
(top left) lacks attribute data, while the world (top right) has attributes,
including country names that are shown for a sample of countries in the
legend. Before creating the joined dataset, we use spatial subsetting to create
world_random, which contains only countries that contain random points, to
verify the number of country names returned in the joined dataset should be
four (see Figure 3.7 (b)).
world_random = world[world.intersects(random_points.union_all())]
world_random

iso_a2 name_long ... gdpPercap geometry

4 US United States ... 51921.984639 MULTIPOLYGON
(((-171.73166 63.7...

18 RU Russian Federation ... 25284.586202 MULTIPOLYGON
(((-180 64.97971, ...

52 ML Mali ... 1865.160622 MULTIPOLYGON
(((-11.51394 12.44...

159 AQ Antarctica ... NaN MULTIPOLYGON
(((-180 -89.9, 179...

Spatial joins are implemented with x.sjoin(y), as illustrated in the code
chunk below. The output is the random_joined object which is illustrated in
Figure 3.7 (c).
random_joined = random_points.sjoin(world, how='left')
random_joined



74 3 Spatial data operations

geometry index_right ... lifeExp gdpPercap

0 POINT (-115.10291 36.78178) 4.0 ... 78.841463 51921.984639
1 POINT (-172.98891 -71.02938) NaN ... NaN NaN
2 POINT (-13.24134 65.23272) NaN ... NaN NaN
... ... ... ... ... ...
7 POINT (-4.54623 -69.64082) NaN ... NaN NaN
8 POINT (159.05039 -34.99599) NaN ... NaN NaN
9 POINT (126.28622 -62.49509) NaN ... NaN NaN

Figure 3.7 shows the input points and countries, the illustration of intersecting
countries, and the join result.
# Random points
base = world.plot(color='white', edgecolor='lightgrey')
random_points.plot(ax=base, color='None', edgecolor='red');
# World countries intersecting with the points
base = world.plot(color='white', edgecolor='lightgrey')
world_random.plot(ax=base, column='name_long');
# Points with joined country names
base = world.plot(color='white', edgecolor='lightgrey')
random_joined.geometry.plot(ax=base, color='grey')
random_joined.plot(ax=base, column='name_long', legend=True);

(a) A new attribute variable is added to
random points, (b) from source world object,

(c) resulting in points associated with coun-
try names

Figure 3.7: Illustration of a spatial join
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3.2.4 Non-overlapping joins
Sometimes two geographic datasets do not touch but still have a strong geo-
graphic relationship. The datasets cycle_hire and cycle_hire_osm provide
a good example. Plotting them reveals that they are often closely related but
they do not seem to touch, as shown in Figure 3.8.
base = cycle_hire.plot(edgecolor='blue', color='none')
cycle_hire_osm.plot(ax=base, edgecolor='red', color='none');

Figure 3.8: The spatial distribution of cycle hire points in London based on
official data (blue) and OpenStreetMap data (red).

We can check if any of the points are the same by creating a pairwise boolean
matrix of .intersects relations, then evaluating whether any of the values in
it is True. Note that the .to_numpy method is applied to go from a DataFrame
to an ndarray, for which .any gives a global rather than a row-wise summary.
This is what we want in this case, because we are interested in whether any of
the points intersect, not whether any of the points in each row intersect.
m = cycle_hire.geometry.apply(

lambda x: cycle_hire_osm.geometry.intersects(x)
)
m.to_numpy().any()

np.False_
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Imagine that we need to join the capacity variable in cycle_hire_osm
('capacity') onto the official ‘target’ data contained in cycle_hire, which
looks as follows.
cycle_hire

id name ... nempty geometry

0 1 River Street ... 14 POINT (-0.10997 51.52916)
1 2 Phillimore Gardens ... 34 POINT (-0.19757 51.49961)
2 3 Christopher Street ... 32 POINT (-0.08461 51.52128)
... ... ... ... ... ...
739 775 Little Brook Green ... 17 POINT (-0.22387 51.49666)
740 776 Abyssinia Close ... 10 POINT (-0.16703 51.46033)
741 777 Limburg Road ... 11 POINT (-0.1653 51.46192)

This is when a non-overlapping join is needed. Spatial join (gpd.sjoin) along
with buffered geometries (see Section 4.2.3) can be used to do that, as demon-
strated below using a threshold distance of 20 m. Note that we transform the
data to a projected CRS (27700) to use real buffer distances, in meters (see
Section 6.4).
crs = 27700
cycle_hire_buffers = cycle_hire.copy().to_crs(crs)
cycle_hire_buffers.geometry = cycle_hire_buffers.buffer(20)
cycle_hire_buffers = gpd.sjoin(

cycle_hire_buffers,
cycle_hire_osm.to_crs(crs),
how='left'

)
cycle_hire_buffers

id name_left ... cyclestreets_id description

0 1 River Street ... None None
1 2 Phillimore Gardens ... None None
2 3 Christopher Street ... None None
... ... ... ... ... ...
739 775 Little Brook Green ... NaN NaN
740 776 Abyssinia Close ... NaN NaN
741 777 Limburg Road ... NaN NaN

Note that the number of rows in the joined result is greater than the target.
This is because some cycle hire stations in cycle_hire_buffers have multiple
matches in cycle_hire_osm. To aggregate the values for the overlapping
points and return the mean, we can use the aggregation methods shown in
Section 2.2.2, resulting in an object with the same number of rows as the
target. We also go back from buffers to points using .centroid method.
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cycle_hire_buffers = cycle_hire_buffers[['id', 'capacity', 'geometry']] \
.dissolve(by='id', aggfunc='mean') \
.reset_index()

cycle_hire_buffers.geometry = cycle_hire_buffers.centroid
cycle_hire_buffers

id geometry capacity

0 1 POINT (531203.517 182832.066) 9.0
1 2 POINT (525208.067 179391.922) 27.0
2 3 POINT (532985.807 182001.572) NaN
... ... ... ...
739 775 POINT (523391.016 179020.043) NaN
740 776 POINT (527437.473 175077.168) NaN
741 777 POINT (527553.301 175257) NaN

The capacity of nearby stations can be verified by comparing a plot of the
capacity of the source cycle_hire_osm data, with the join results in the new
object cycle_hire_buffers (Figure 3.9).
# Input
fig, ax = plt.subplots(1, 1, figsize=(6, 3))
cycle_hire_osm.plot(column='capacity', legend=True, ax=ax);
# Join result
fig, ax = plt.subplots(1, 1, figsize=(6, 3))
cycle_hire_buffers.plot(column='capacity', legend=True, ax=ax);

(a) Input (cycle_hire_osm) (b) Join result (cycle_hire_buffers)

Figure 3.9: Non-overlapping join

3.2.5 Spatial aggregation
As with attribute data aggregation, spatial data aggregation condenses data:
aggregated outputs have fewer rows than non-aggregated inputs. Statistical
aggregating functions, such as mean, average, or sum, summarize multiple
values of a variable, and return a single value per grouping variable. Section 2.2.2
demonstrated how the .groupby method, combined with summary functions
such as .sum, condense data based on attribute variables. This section shows
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how grouping by spatial objects can be achieved using spatial joins combined
with non-spatial aggregation.

Returning to the example of New Zealand, imagine you want to find out
the average height of nz_height points in each region. It is the geometry of
the source (nz) that defines how values in the target object (nz_height) are
grouped. This can be done in three steps:

1. Figuring out which nz region each nz_height point falls in—using
gpd.sjoin

2. Summarizing the average elevation per region—using .groupby and
.mean

3. Joining the result back to nz—using pd.merge

First, we ‘attach’ the region classification of each point, using spatial join
(Section 3.2.3). Note that we are using the minimal set of columns required: the
geometries (for the spatial join to work), the point elevation (to later calculate
an average), and the region name (to use as key when joining the results back
to nz). The result tells us which nz region each elevation point falls in.
nz_height2 = gpd.sjoin(

nz_height[['elevation', 'geometry']],
nz[['Name', 'geometry']],
how='left'

)
nz_height2

elevation geometry index_right Name

0 2723 POINT (1204142.603 5049971.287) 12 Southland
1 2820 POINT (1234725.325 5048309.302) 11 Otago
2 2830 POINT (1235914.511 5048745.117) 11 Otago
... ... ... ... ...
98 2751 POINT (1820659.873 5649488.235) 2 Waikato
99 2720 POINT (1822262.592 5650428.656) 2 Waikato
100 2732 POINT (1822492.184 5650492.304) 2 Waikato

Second, we calculate the average elevation, using ordinary (non-spatial) aggre-
gation (Section 2.2.2). This result tells us the average elevation of all nz_height
points located within each nz region.
nz_height2 = nz_height2.groupby('Name')[['elevation']].mean().reset_index()
nz_height2
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nz_height2
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Name elevation

0 Canterbury 2994.600000
1 Manawatu-Wanganui 2777.000000
2 Marlborough 2720.000000
... ... ...
4 Southland 2723.000000
5 Waikato 2734.333333
6 West Coast 2889.454545

The third and final step is joining the averages back to the nz layer.
nz2 = pd.merge(nz[['Name', 'geometry']], nz_height2, on='Name', how='left')
nz2

Name geometry elevation

0 Northland MULTIPOLYGON (((1745493.196 600... NaN
1 Auckland MULTIPOLYGON (((1803822.103 590... NaN
2 Waikato MULTIPOLYGON (((1860345.005 585... 2734.333333
... ... ... ...
13 Tasman MULTIPOLYGON (((1616642.877 542... NaN
14 Nelson MULTIPOLYGON (((1624866.278 541... NaN
15 Marlborough MULTIPOLYGON (((1686901.914 535... 2720.000000

We now have created the nz2 layer, which gives the average nz_height ele-
vation value per polygon. The result is shown in Figure 3.10. Note that the
missing_kwds part determines the style of geometries where the symbology
attribute (elevation) is missing, because there were no nz_height points
overlapping with them. The default is to omit them, which is usually not what
we want, but with {'color':'grey','edgecolor':'black'}, those polygons
are shown with black outline and grey fill.
nz2.plot(

column='elevation',
legend=True,
cmap='Blues', edgecolor='black',
missing_kwds={'color': 'grey', 'edgecolor': 'black'}

);

3.2.6 Joining incongruent layers
Spatial congruence is an important concept related to spatial aggregation. An
aggregating object (which we will refer to as y) is congruent with the target
object (x) if the two objects have shared borders. Often this is the case for
administrative boundary data, whereby larger units—such as Middle Layer
Super Output Areas (MSOAs) in the UK, or districts in many other European
countries—are composed of many smaller units.
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Figure 3.10: Average height of the top 101 high points across the regions of
New Zealand

Incongruent aggregating objects, by contrast, do not share common borders
with the target (Qiu, Zhang, and Zhou 2012). This is problematic for spatial
aggregation (and other spatial operations) illustrated in Figure 3.11: aggre-
gating the centroid of each sub-zone will not return accurate results. Areal
interpolation overcomes this issue by transferring values from one set of areal
units to another, using a range of algorithms including simple area-weighted ap-
proaches and more sophisticated approaches such as ‘pycnophylactic’ methods
(Tobler 1979).

To demonstrate joining incongruent layers, we will create a ‘synthetic’ layer
comprising a regular grid of rectangles of size 100 × 100 km, covering the
extent of the nz layer. This recipe can be used to create a regular grid covering
any given layer (other than nz), at the specified resolution (res). Most of the
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functions have been explained in previous chapters; we leave it as an exercise
for the reader to explore how the code works.
# Settings: grid extent, resolution, and CRS
bounds = nz.total_bounds
crs = nz.crs
res = 100000
# Calculating grid dimensions
xmin, ymin, xmax, ymax = bounds
cols = list(range(int(np.floor(xmin)), int(np.ceil(xmax+res)), res))
rows = list(range(int(np.floor(ymin)), int(np.ceil(ymax+res)), res))
rows.reverse()
# For each cell, create 'shapely' polygon (rectangle)
polygons = []
for x in cols:

for y in rows:
polygons.append(

shapely.Polygon([(x,y), (x+res, y), (x+res, y-res), (x, y-res)])
)

# To 'GeoDataFrame'
grid = gpd.GeoDataFrame({'geometry': polygons}, crs=crs)
# Remove rows/columns beyond the extent
sel = grid.intersects(shapely.box(*bounds))
grid = grid[sel]
# Add consecutive IDs
grid['id'] = grid.index
grid

geometry id

0 POLYGON ((1090143 6248536, 1190... 0
1 POLYGON ((1090143 6148536, 1190... 1
2 POLYGON ((1090143 6048536, 1190... 2
... ... ...
156 POLYGON ((1990143 5048536, 2090... 156
157 POLYGON ((1990143 4948536, 2090... 157
158 POLYGON ((1990143 4848536, 2090... 158

Figure 3.11 shows the newly created grid layer, along with the nz layer.
base = grid.plot(color='none', edgecolor='grey')
nz.plot(

ax=base,
column='Population',
edgecolor='black',
legend=True,
cmap='Reds'

);
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Figure 3.11: The nz layer, with population size in each region, overlaid with a
regular grid of rectangles

Our goal, now, is to ‘transfer’ the 'Population' attribute (Figure 3.11) to the
rectangular grid polygons, which is an example of a join between incongruent
layers. To do that, we basically need to calculate—for each grid cell—the
weighted sum of the population in nz polygons coinciding with that cell. The
weights in the weighted sum calculation are the ratios between the area of the
coinciding ‘part’ out of the entire nz polygon. That is, we (inevitably) assume
that the population in each nz polygon is equally distributed across space,
therefore a partial nz polygon contains the respective partial population size.

We start by calculating the entire area of each nz polygon, as follows, using
the .area method (Section 1.2.7).
nz['area'] = nz.area
nz
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Our goal, now, is to ‘transfer’ the 'Population' attribute (Figure 3.11) to the
rectangular grid polygons, which is an example of a join between incongruent
layers. To do that, we basically need to calculate—for each grid cell—the
weighted sum of the population in nz polygons coinciding with that cell. The
weights in the weighted sum calculation are the ratios between the area of the
coinciding ‘part’ out of the entire nz polygon. That is, we (inevitably) assume
that the population in each nz polygon is equally distributed across space,
therefore a partial nz polygon contains the respective partial population size.

We start by calculating the entire area of each nz polygon, as follows, using
the .area method (Section 1.2.7).
nz['area'] = nz.area
nz
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Name Island ... geometry area

0 Northland North ... MULTIPOLYGON (((1745493.196 600... 1.289058e+10
1 Auckland North ... MULTIPOLYGON (((1803822.103 590... 4.911565e+09
2 Waikato North ... MULTIPOLYGON (((1860345.005 585... 2.458882e+10
... ... ... ... ... ...
13 Tasman South ... MULTIPOLYGON (((1616642.877 542... 9.594918e+09
14 Nelson South ... MULTIPOLYGON (((1624866.278 541... 4.080754e+08
15 Marlborough South ... MULTIPOLYGON (((1686901.914 535... 1.046485e+10

Next, we use the .overlay method to calculate the pairwise intersections
between nz and grid. As a result, we now have a layer where each nz polygon
is split according to the grid polygons, hereby named nz_grid.
nz_grid = nz.overlay(grid)
nz_grid = nz_grid[['id', 'area', 'Population', 'geometry']]
nz_grid

id area Population geometry

0 64 1.289058e+10 175500.0 POLYGON ((1586362.965 6168009.0...
1 80 1.289058e+10 175500.0 POLYGON ((1590143 6162776.641, ...
2 81 1.289058e+10 175500.0 POLYGON ((1633099.964 6066188.0...
... ... ... ... ...
107 89 1.046485e+10 46200.0 POLYGON ((1641283.955 5341361.1...
108 103 1.046485e+10 46200.0 POLYGON ((1690724.332 5458875.4...
109 104 1.046485e+10 46200.0 MULTIPOLYGON (((1694233.995 543...

Figure 3.12 illustrates the effect of .overlay:
nz_grid.plot(color='none', edgecolor='black');

We also need to calculate the areas of the intersections, here into a new
attribute 'area_sub'. If an nz polygon was completely within a single grid
polygon, then area_sub is going to be equal to area; otherwise, it is going to
be smaller.
nz_grid['area_sub'] = nz_grid.area
nz_grid

id area Population geometry area_sub

0 64 1.289058e+10 175500.0 POLYGON 3.231015e+08
((1586362.965 6168009.0...

1 80 1.289058e+10 175500.0 POLYGON
((1590143 6162776.641, ... 4.612641e+08

2 81 1.289058e+10 175500.0 POLYGON
((1633099.964 6066188.0... 5.685656e+09

... ... ... ... ... ...
107 89 1.046485e+10 46200.0 POLYGON 1.826943e+09

((1641283.955 5341361.1...
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id area Population geometry area_sub

108 103 1.046485e+10 46200.0 POLYGON 1.227037e+08
((1690724.332 5458875.4...

109 104 1.046485e+10 46200.0 MULTIPOLYGON 4.874611e+08
(((1694233.995 543...

The resulting layer nz_grid, with the area_sub attribute, is shown in Fig-
ure 3.13.
base = grid.plot(color='none', edgecolor='grey')
nz_grid.plot(

ax=base,
column='area_sub',
edgecolor='black',
legend=True,
cmap='Reds'

);

Note that each of the intersections still holds the Population attribute of
its ‘origin’ feature of nz, i.e., each portion of the nz area is associated with
the original complete population count for that area. The real population
size of each nz_grid feature, however, is smaller, or equal, depending on the
geographic area proportion that it occupies out of the original nz feature. To
make the correction, we first calculate the ratio (area_prop) and then multiply
it by the population. The new (lowercase) attribute population now has the
correct estimate of population sizes in nz_grid:
nz_grid['area_prop'] = nz_grid['area_sub'] / nz_grid['area']
nz_grid['population'] = nz_grid['Population'] * nz_grid['area_prop']
nz_grid

id area ... area_prop population

0 64 1.289058e+10 ... 0.025065 4398.897141
1 80 1.289058e+10 ... 0.035783 6279.925114
2 81 1.289058e+10 ... 0.441071 77407.916241
... ... ... ... ... ...
107 89 1.046485e+10 ... 0.174579 8065.550415
108 103 1.046485e+10 ... 0.011725 541.709946
109 104 1.046485e+10 ... 0.046581 2152.033881

What is left to be done is to sum (see Section 2.2.2) the population in all parts
forming the same grid cell and join (see Section 2.2.3) them back to the grid
layer. Note that many of the grid cells have ‘No Data’ for population, because
they have no intersection with nz at all (Figure 3.11).
nz_grid = nz_grid.groupby('id')['population'].sum().reset_index()
grid = pd.merge(grid, nz_grid[['id', 'population']], on='id', how='left')
grid
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id area Population geometry area_sub

108 103 1.046485e+10 46200.0 POLYGON 1.227037e+08
((1690724.332 5458875.4...
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The resulting layer nz_grid, with the area_sub attribute, is shown in Fig-
ure 3.13.
base = grid.plot(color='none', edgecolor='grey')
nz_grid.plot(

ax=base,
column='area_sub',
edgecolor='black',
legend=True,
cmap='Reds'

);

Note that each of the intersections still holds the Population attribute of
its ‘origin’ feature of nz, i.e., each portion of the nz area is associated with
the original complete population count for that area. The real population
size of each nz_grid feature, however, is smaller, or equal, depending on the
geographic area proportion that it occupies out of the original nz feature. To
make the correction, we first calculate the ratio (area_prop) and then multiply
it by the population. The new (lowercase) attribute population now has the
correct estimate of population sizes in nz_grid:
nz_grid['area_prop'] = nz_grid['area_sub'] / nz_grid['area']
nz_grid['population'] = nz_grid['Population'] * nz_grid['area_prop']
nz_grid

id area ... area_prop population

0 64 1.289058e+10 ... 0.025065 4398.897141
1 80 1.289058e+10 ... 0.035783 6279.925114
2 81 1.289058e+10 ... 0.441071 77407.916241
... ... ... ... ... ...
107 89 1.046485e+10 ... 0.174579 8065.550415
108 103 1.046485e+10 ... 0.011725 541.709946
109 104 1.046485e+10 ... 0.046581 2152.033881

What is left to be done is to sum (see Section 2.2.2) the population in all parts
forming the same grid cell and join (see Section 2.2.3) them back to the grid
layer. Note that many of the grid cells have ‘No Data’ for population, because
they have no intersection with nz at all (Figure 3.11).
nz_grid = nz_grid.groupby('id')['population'].sum().reset_index()
grid = pd.merge(grid, nz_grid[['id', 'population']], on='id', how='left')
grid
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Figure 3.12: The pairwise intersections of nz and grid, calculated with
.overlay

geometry id population

0 POLYGON ((1090143 6248536, 1190... 0 NaN
1 POLYGON ((1090143 6148536, 1190... 1 NaN
2 POLYGON ((1090143 6048536, 1190... 2 NaN
... ... ... ...
147 POLYGON ((1990143 5048536, 2090... 156 NaN
148 POLYGON ((1990143 4948536, 2090... 157 NaN
149 POLYGON ((1990143 4848536, 2090... 158 NaN

Figure 3.14 shows the final result grid with the incongruently-joined
population attribute from nz.
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Figure 3.13: The areas of pairwise intersections in the nz_grid layer

base = grid.plot(
column='population',
edgecolor='black',
legend=True,
cmap='Reds'

);
nz.plot(ax=base, color='none', edgecolor='grey', legend=True);

We can demonstrate that, expectedly, the summed population in nz and grid
is identical, even though the geometry is different (since we created grid to
completely cover nz), by comparing the .sum of the population attribute in
both layers.
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Figure 3.13: The areas of pairwise intersections in the nz_grid layer

base = grid.plot(
column='population',
edgecolor='black',
legend=True,
cmap='Reds'

);
nz.plot(ax=base, color='none', edgecolor='grey', legend=True);

We can demonstrate that, expectedly, the summed population in nz and grid
is identical, even though the geometry is different (since we created grid to
completely cover nz), by comparing the .sum of the population attribute in
both layers.
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Figure 3.14: The nz layer and a regular grid of rectangles: final result

nz['Population'].sum()

np.float64(4787200.0)

grid['population'].sum()

np.float64(4787199.999999998)

The procedure in this section is known as an area-weighted interpolation of a
spatially extensive (e.g., population) variable. In extensive interpolation, we
assume that the variable of interest represents counts (such as, here, inhabitants)
uniformly distributed across space. In such case, each part of a given polygon
captures the respective proportion of counts (such as, half of a region with N
inhabitants contains N/2 inhabitants). Accordingly, summing the parts gives
the total count of the total area.
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An area-weighted interpolation of a spatially intensive variable (e.g., population
density) is almost identical, except that we would have to calculate the weighted
.mean rather than .sum, to preserve the average rather than the sum. In
intensive interpolation, we assume that the variable of interest represents
counts per unit area, i.e., density. Since density is (assumed to be) uniform,
any part of a given polygon has exactly the same density as that of the whole
polygon. Density values are therefore computed as weighted averages, rather
than sums, of the parts. Also, see the ‘Area-weighted interpolation’ section in
Pebesma and Bivand (2023).

3.2.7 Distance relations
While topological relations are binary—a feature either intersects with another
or does not—distance relations are continuous. The distance between two
objects is calculated with the .distance method. The method is applied on
a GeoSeries (or a GeoDataFrame), with the argument being an individual
shapely geometry. The result is a Series of pairwise distances.

� Note

geopandas uses similar syntax and mode of operation for many of its
methods and functions, including:

• Numeric calculations, such as .distance (this section), returning nu-
meric values

• Topological evaluation methods, such as .intersects or .disjoint
(Section 3.2.2), returning boolean values

• Geometry generating-methods, such as .intersection (Section 4.2.5),
returning geometries

In all cases, the input is a GeoSeries and (or a GeoDataFrame) and a
shapely geometry, and the output is a Series or GeoSeries of results,
contrasting each geometry from the GeoSeries with the shapely geome-
try. The examples in this book demonstrate this, so-called ‘many-to-one’,
mode of the functions.
All of the above-mentioned methods also have a pairwise mode, perhaps
less useful and not used in the book, where we evaluate relations between
pairs of geometries in two GeoSeries, aligned either by index or by
position.

To illustrate the .distance method, let’s take the three highest points in New
Zealand with .sort_values and .iloc.
nz_highest = nz_height.sort_values(by='elevation', ascending=False).iloc[:3, :]
nz_highest
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t50_fid elevation geometry

64 2372236 3724 POINT (1369317.63 5169132.284)
63 2372235 3717 POINT (1369512.866 5168235.616)
67 2372252 3688 POINT (1369381.942 5168761.875)

Additionally, we need the geographic centroid of the Canterbury region
(canterbury, created in Section 3.2.1).
canterbury_centroid = canterbury.centroid.iloc[0]

Now we are able to apply .distance to calculate the distances from each of
the three elevation points to the centroid of the Canterbury region.
nz_highest.distance(canterbury_centroid)

64 115539.995747
63 115390.248038
67 115493.594066
dtype: float64

To obtain a distance matrix, i.e., a pairwise set of distances between all
combinations of features in objects x and y, we need to use the .apply
method (analogous to the way we created the .intersects boolean matrix in
Section 3.2.2). To illustrate this, let’s now take two regions in nz, Otago and
Canterbury, represented by the object co.
sel = nz['Name'].str.contains('Canter|Otag')
co = nz[sel]
co

Name Island ... geometry area

10 Canterbury South ... MULTIPOLYGON (((1686901.914 535... 4.532656e+10
11 Otago South ... MULTIPOLYGON (((1335204.789 512... 3.190356e+10

The distance matrix (technically speaking, a DataFrame) d between each of the
first three elevation points, and the two regions, is then obtained as follows. In
plain language, we take the geometry from each row in nz_height.iloc[:3,:],
and apply the .distance method on co with its rows as the argument.
d = nz_height.iloc[:3, :].apply(lambda x: co.distance(x.geometry), axis=1)
d

10 11

0 123537.158269 15497.717252
1 94282.773074 0.000000
2 93018.560814 0.000000
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Figure 3.15: The first three nz_height points, and the Otago and Canterbury
regions from nz

Note that the distance between the second and third features in nz_height
and the second feature in co is zero. This demonstrates the fact that distances
between points and polygons refer to the distance to any part of the polygon:
the second and third points in nz_height are in Otago, which can be verified
by plotting them (two almost completely overlapping points in Figure 3.15).
fig, ax = plt.subplots()
co.plot(color='lightgrey', edgecolor='black', ax=ax)
co.apply(

lambda x: ax.annotate(
text=x['Name'],
xy=x.geometry.centroid.coords[0],
ha='center'

),
axis=1

)
nz_height.iloc[:3, :].plot(color='none', edgecolor='black', ax=ax);
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3.3 Spatial operations on raster data
This section builds on Section 2.3, which highlights various basic methods
for manipulating raster datasets, to demonstrate more advanced and explic-
itly spatial raster operations, and uses the elev.tif and grain.tif rasters
manually created in Section 1.3.2.

3.3.1 Spatial subsetting
The previous chapter (and especially Section 2.3) demonstrated how to retrieve
values associated with specific row and column combinations from a raster.
Raster values can also be extracted by location (coordinates) and other spatial
objects. To use coordinates for subsetting, we can use the .sample method of
a rasterio file connection object, combined with a list of coordinate tuples.
The method is demonstrated below to find the value of the cell that covers
a point located at coordinates of (0.1,0.1) in elev. The returned object is
a generator. The rationale for returning a generator, rather than a list, is
memory efficiency. The number of sampled points may be huge, in which case
we would want to generate the values one at a time rather than all at once.
src_elev.sample([(0.1, 0.1)])

<generator object sample_gen at 0x7f43f83101c0>

� Note

The technical terms iterable, iterator, and generator in Python may be
confusing, so here is a short summary, ordered from most general to
most specific:

• An iterable is any object that we can iterate on, such as using a for
loop. For example, a list is iterable.

• An iterator is an object that represents a stream of data, which we
can go over, each time getting the next element using next. Iterators
are also iterable, meaning that you can over them in a loop, but they
are stateful (e.g., they remember which item was obtained using next),
meaning that you can go over them just once.

• A generator is a function that returns an iterator. For example, the
.sample method in the above example is a generator. The rasterio
package makes use of generators in some of its functions, as we will
see later on (Section 5.5.1).

In case we nevertheless want all values at once, such as when the number of
points is small, we can force the generation of all values from a generator at
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once, using list. Since there was just one point, the result is one extracted
value, in this case 16.
list(src_elev.sample([(0.1, 0.1)]))

[array([16], dtype=uint8)]

We can use the same technique to extract the values of multiple points at once.
For example, here we extract the raster values at two points, (0.1,0.1) and
(1.1,1.1). The resulting values are 16 and 6.
list(src_elev.sample([(0.1, 0.1), (1.1, 1.1)]))

[array([16], dtype=uint8), array([6], dtype=uint8)]

The location of the two sample points on top of the elev.tif raster is illus-
trated in Figure 3.16.
fig, ax = plt.subplots()
rasterio.plot.show(src_elev, ax=ax)
gpd.GeoSeries([shapely.Point(0.1, 0.1)]) \

.plot(color='black', edgecolor='white', markersize=50, ax=ax)
gpd.GeoSeries([shapely.Point(1.1, 1.1)]) \

.plot(color='black', edgecolor='white', markersize=50, ax=ax);

� Note

We elaborate on the plotting technique used to display the points and the
raster in Section 8.2.5. We will also introduce a more user-friendly and
general method to extract raster values to points, using the rasterstats
package, in Section 5.3.1.

Another common use case of spatial subsetting is using a boolean mask, based
on another raster with the same extent and resolution, or the original one,
as illustrated in Figure 3.17. To do that, we erase the values in the array of
one raster, according to another corresponding mask raster. For example, let’s
read (Section 1.3.1) the elev.tif raster values into an array named elev
(Figure 3.17 (a)).
elev = src_elev.read(1)
elev
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once, using list. Since there was just one point, the result is one extracted
value, in this case 16.
list(src_elev.sample([(0.1, 0.1)]))

[array([16], dtype=uint8)]

We can use the same technique to extract the values of multiple points at once.
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list(src_elev.sample([(0.1, 0.1), (1.1, 1.1)]))

[array([16], dtype=uint8), array([6], dtype=uint8)]

The location of the two sample points on top of the elev.tif raster is illus-
trated in Figure 3.16.
fig, ax = plt.subplots()
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gpd.GeoSeries([shapely.Point(0.1, 0.1)]) \

.plot(color='black', edgecolor='white', markersize=50, ax=ax)
gpd.GeoSeries([shapely.Point(1.1, 1.1)]) \

.plot(color='black', edgecolor='white', markersize=50, ax=ax);

� Note

We elaborate on the plotting technique used to display the points and the
raster in Section 8.2.5. We will also introduce a more user-friendly and
general method to extract raster values to points, using the rasterstats
package, in Section 5.3.1.
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as illustrated in Figure 3.17. To do that, we erase the values in the array of
one raster, according to another corresponding mask raster. For example, let’s
read (Section 1.3.1) the elev.tif raster values into an array named elev
(Figure 3.17 (a)).
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elev
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Figure 3.16: The elev.tif raster, and two points where we extract its values

and create a corresponding random boolean mask named mask (Figure 3.17
(b)), of the same shape as elev.tif with values randomly assigned to True
and False.
np.random.seed(1)
mask = np.random.choice([True, False], src_elev.shape)
mask

array([[False, False, True, True, False, False],
[False, False, False, True, True, False],
[ True, False, False, True, True, False],
[ True, True, True, False, True, True],
[False, True, True, True, False, True],
[ True, True, False, False, False, False]])

Next, suppose that we want to keep only those values of elev which are False
in mask (i.e., they are not masked). In other words, we want to mask elev with
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mask. The result will be stored in a copy named masked_elev (Figure 3.17
(c)). In the case of elev.tif, to be able to store np.nan in the array of values,
we also need to convert it to float (see Section 2.3.2). Afterwards, masking
is a matter of assigning np.nan into a subset defined by the mask, using the
‘boolean array indexing’ syntax of numpy.
masked_elev = elev.copy()
masked_elev = masked_elev.astype('float64')
masked_elev[mask] = np.nan
masked_elev

array([[ 1., 2., nan, nan, 5., 6.],
[ 7., 8., 9., nan, nan, 12.],
[nan, 14., 15., nan, nan, 18.],
[nan, nan, nan, 22., nan, nan],
[25., nan, nan, nan, 29., nan],
[nan, nan, 33., 34., 35., 36.]])

Figure 3.17 shows the original elev raster, the mask raster, and the resulting
masked_elev raster.
rasterio.plot.show(elev);
rasterio.plot.show(mask);
rasterio.plot.show(masked_elev);

(a) Original raster (b) Raster mask (c) Output masked raster

Figure 3.17: Subsetting raster values using a boolean mask

The mask can be created from the array itself, using condition(s). That way,
we can replace some values (e.g., values assumed to be wrong) with np.nan,
such as in the following example.
elev2 = elev.copy()
elev2 = elev2.astype('float64')
elev2[elev2 < 20] = np.nan
elev2
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array([[nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan],
[nan, 20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29., 30.],
[31., 32., 33., 34., 35., 36.]])

This technique is also used to reclassify raster values (see Section 3.3.3).

3.3.2 Map algebra
The term ‘map algebra’ was coined in the late 1970s to describe a ‘set of
conventions, capabilities, and techniques’ for the analysis of geographic raster
and (although less prominently) vector data (Tomlin 1994). In this context,
we define map algebra more narrowly, as operations that modify or summarize
raster cell values, with reference to surrounding cells, zones, or statistical
functions that apply to every cell.

Map algebra operations tend to be fast, because raster datasets only implicitly
store coordinates, hence the old adage ‘raster is faster but vector is corrector’.
The location of cells in raster datasets can be calculated by using its matrix
position and the resolution and origin of the dataset (stored in the raster
metadata, Section 1.3.1). For the processing, however, the geographic position
of a cell is barely relevant as long as we make sure that the cell position is
still the same after the processing. Additionally, if two or more raster datasets
share the same extent, projection, and resolution, one could treat them as
matrices for the processing.

Map algebra (or cartographic modeling with raster data) divides raster opera-
tions into four subclasses (Tomlin 1990), with each working on one or several
grids simultaneously:

• Local or per-cell operations (Section 3.3.3)
• Focal or neighborhood operations. Most often the output cell value is the

result of a 3 × 3 input cell block (Section 3.3.4)
• Zonal operations are similar to focal operations, but the surrounding pixel

grid on which new values are computed can have irregular sizes and shapes
(Section 3.3.5)

• Global or per-raster operations; that means the output cell derives its value
potentially from one or several entire rasters (Section 3.3.6)

This typology classifies map algebra operations by the number of cells used for
each pixel processing step and the type of output. For the sake of completeness,
we should mention that raster operations can also be classified by disciplines
such as terrain, hydrological analysis, or image classification. The following
sections explain how each type of map algebra operations can be used, with
reference to worked examples.
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3.3.3 Local operations
Local operations comprise all cell-by-cell operations in one or several layers.
Raster algebra is a classical use case of local operations—this includes adding
or subtracting values from a raster, squaring, and multiplying rasters. Raster
algebra also allows logical operations such as finding all raster cells that are
greater than a specific value (e.g., 5 in our example below). Local operations
are applied using the numpy array operations syntax, as demonstrated below.

First, let’s take the array of elev.tif raster values, which we already read
earlier (Section 3.3.1).
elev

array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]], dtype=uint8)

Now, any element-wise array operation can be applied using numpy arithmetic
or conditional operators and functions, comprising local raster operations in
spatial analysis terminology. For example, elev+elev adds the values of elev
to itself, resulting in a raster with double values.
elev + elev

array([[ 2, 4, 6, 8, 10, 12],
[14, 16, 18, 20, 22, 24],
[26, 28, 30, 32, 34, 36],
[38, 40, 42, 44, 46, 48],
[50, 52, 54, 56, 58, 60],
[62, 64, 66, 68, 70, 72]], dtype=uint8)

Note that some functions and operators automatically change the data type
to accommodate the resulting values, while other operators do not, potentially
resulting in overflow (i.e., incorrect values for results beyond the data type
range, such as trying to accommodate values above 255 in an int8 array). For
example, elev**2 (elev squared) results in overflow. Since the ** operator
does not automatically change the data type, leaving it as int8, the resulting
array has incorrect values for 16**2, 17**2, etc., which are above 255 and
therefore cannot be accommodated.
elev**2

array([[ 1, 4, 9, 16, 25, 36],
[ 49, 64, 81, 100, 121, 144],
[169, 196, 225, 0, 33, 68],
[105, 144, 185, 228, 17, 64],
[113, 164, 217, 16, 73, 132],
[193, 0, 65, 132, 201, 16]], dtype=uint8)
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To avoid this situation, we can, for instance, transform elev to the standard
int64 data type, using .astype before applying the ** operator. That way,
all results, up to 36**2 (1296), can be easily accommodated, since the int64
data type supports values up to 9223372036854775807 (Table 7.2).
elev.astype(int)**2

array([[ 1, 4, 9, 16, 25, 36],
[ 49, 64, 81, 100, 121, 144],
[ 169, 196, 225, 256, 289, 324],
[ 361, 400, 441, 484, 529, 576],
[ 625, 676, 729, 784, 841, 900],
[ 961, 1024, 1089, 1156, 1225, 1296]])

Now we get correct results.

Figure 3.18 demonstrates the result of the last two examples (elev+elev and
elev.astype(int)**2), and two other ones (np.log(elev) and elev>5).
rasterio.plot.show(elev + elev, cmap='Oranges');
rasterio.plot.show(elev.astype(int)**2, cmap='Oranges');
rasterio.plot.show(np.log(elev), cmap='Oranges');
rasterio.plot.show(elev > 5, cmap='Oranges');

(a) elev+elev (b) elev.astype
(int)**2 (c) np.log(elev) (d) elev>5

Figure 3.18: Examples of different local operations of the elev raster object:
adding two rasters, squaring, applying logarithmic transformation, and per-
forming a logical operation.

Another good example of local operations is the classification of intervals of
numeric values into groups such as grouping a digital elevation model into low
(class 1), middle (class 2) and high (class 3) elevations. Here, the raster values
in the ranges 0–12, 12–24, and 24–36 are reclassified to take values 1, 2, and
3, respectively.
recl = elev.copy()
recl[(elev > 0) & (elev <= 12)] = 1
recl[(elev > 12) & (elev <= 24)] = 2
recl[(elev > 24) & (elev <= 36)] = 3
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Figure 3.19 compares the original elev raster with the reclassified recl one.
rasterio.plot.show(elev, cmap='Oranges');
rasterio.plot.show(recl, cmap='Oranges');

(a) Original (b) Reclassified

Figure 3.19: Reclassifying a continuous raster into three categories.

The calculation of the Normalized Difference Vegetation Index (NDVI)2 is
a well-known local (pixel-by-pixel) raster operation. It returns a raster with
values between -1 and 1; positive values indicate the presence of living plants
(mostly > 0.2). NDVI is calculated from red and near-infrared (NIR) bands of
remotely sensed imagery, typically from satellite systems such as Landsat or
Sentinel-2. Vegetation absorbs light heavily in the visible light spectrum, and
especially in the red channel, while reflecting NIR light, which is emulated in
the NVDI formula (Equation 3.1),

NDV I = NIR − Red

NIR + Red
(3.1)

, where NIR is the near-infrared band and Red is the red band.

Let’s calculate NDVI for the multispectral Landsat satellite file (landsat.tif)
of the Zion National Park. The file landsat.tif contains surface reflectance
values (range 0-1) in the blue, green, red, and near-infrared (NIR) bands. We
start by reading the file and extracting the NIR and red bands, which are the
fourth and third bands, respectively. Next, we apply the formula to calculate
the NDVI values.

2https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index

https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
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landsat = src_landsat.read()
nir = landsat[3]
red = landsat[2]
ndvi = (nir-red)/(nir+red)

When plotting an RGB image using the rasterio.plot.show function, the
function assumes that values are in the range [0,1] for floats, or [0,255] for
integers (otherwise clipped) and the order of bands is RGB. To prepare the
multi-band raster for rasterio.plot.show, we, therefore, reverse the order of
the first three bands (to go from B-G-R-NIR to R-G-B), using the [:3] slice
to select the first three bands and then the [::-1] slice to reverse the bands
order, and divide by the raster maximum to set the maximum value to 1.
landsat_rgb = landsat[:3][::-1] / landsat.max()

� Note

Python slicing notation, which numpy, pandas and geopandas also
follow, is object[start:stop:step]. The default is to start from the
beginning, go to the end, and use steps of 1. Otherwise, start is inclusive
and end is exclusive, whereas negative step values imply going backwards
starting from the end. Also, always keep in mind that Python indices
start from 0. When subsetting two- or three-dimensional objects, indices
for each dimension are separated by commas, where either index can be
set to : meaning ‘all values’. The last dimensions can also be omitted
implying :, e.g., to subset the first three bands from a three-dimensional
array a we can use either a[:3,:,:] or a[:3].
In the above example:

• The slicing expression [:3] therefore means layers 0, 1, 2 (up to 3,
exclusive)

• The slicing expression [::-1] therefore means all (three) bands in
reverse order

Figure 3.20 shows the RGB image and the NDVI values calculated for the
Landsat satellite image of the Zion National Park.
rasterio.plot.show(landsat_rgb, cmap='RdYlGn');
rasterio.plot.show(ndvi, cmap='Greens');

3.3.4 Focal operations
While local functions operate on one cell at a time (though possibly from
multiple layers), focal operations take into account a central (focal) cell and
its neighbors. The neighborhood (also named kernel, filter, or moving window)
under consideration is typically of 3 × 3 cells (that is, the central cell and its
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(a) RGB image (b) NDVI

Figure 3.20: RGB image and NDVI values calculated for the Landsat satellite
image of the Zion National Park

eight surrounding neighbors), but can take on any other (not necessarily rect-
angular) shape as defined by the user. A focal operation applies an aggregation
function to all cells within the specified neighborhood, uses the corresponding
output as the new value for the central cell, and moves on to the next central
cell (Figure 3.21). Other names for this operation are spatial filtering and
convolution (Burrough, McDonnell, and Lloyd 2015).

In Python, the scipy.ndimage (Virtanen et al. 2020) package has a compre-
hensive collection of functions to perform filtering of numpy arrays, such
as:

• scipy.ndimage.minimum_filter,
• scipy.ndimage.maximum_filter,
• scipy.ndimage.uniform_filter (i.e., mean filter),
• scipy.ndimage.median_filter, etc.

In this group of functions, we define the shape of the moving window with
either one of size—a single number (e.g., 3), or tuple (e.g., (3,3)), implying
a filter of those dimensions, or footprint—a boolean array, representing both
the window shape and the identity of elements being included.

In addition to specific built-in filters, convolve—applies the sum function
after multiplying by a custom weights array, and generic_filter—makes it
possible to pass any custom function, where the user can specify any type of
custom window-based calculation.
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Figure 3.21: Input raster (left) and resulting output raster (right) due to a
focal operation—finding the minimum value in 3 × 3 moving windows.

For example, here we apply the minimum filter with window size of 3 on
elev. As a result, we now have a new array elev_min, where each value is the
minimum in the corresponding 3 × 3 neighborhood in elev.
elev_min = scipy.ndimage.minimum_filter(elev, size=3)
elev_min

array([[ 1, 1, 2, 3, 4, 5],
[ 1, 1, 2, 3, 4, 5],
[ 7, 7, 8, 9, 10, 11],
[13, 13, 14, 15, 16, 17],
[19, 19, 20, 21, 22, 23],
[25, 25, 26, 27, 28, 29]], dtype=uint8)

Special care should be given to the edge pixels – how should they be calcu-
lated? The scipy.ndimage filtering functions give several options through
the mode parameter (see the documentation of any filtering function, such as
scipy.ndimage.median_filter, for the definition of each mode): reflect
(the default), constant, nearest, mirror, wrap. Sometimes artificially ex-
tending raster edges is considered unsuitable. In other words, we may wish
the resulting raster to contain pixel values with ‘complete’ windows only, for
example, to have a uniform sample size or because values in all directions
matter (such as in topographic calculations). There is no specific option not
to extend edges in scipy.ndimage. However, to get the same effect, the edges
of the filtered array can be assigned with np.nan, in a number of rows and
columns according to filter size. For example, when using a filter of size=3,
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the outermost ‘layer’ of pixels may be assigned with np.nan, reflecting the fact
that these pixels have incomplete 3 × 3 neighborhoods (Figure 3.21):
elev_min = elev_min.astype(float)
elev_min[:, [0, -1]] = np.nan
elev_min[[0, -1], :] = np.nan
elev_min

array([[nan, nan, nan, nan, nan, nan],
[nan, 1., 2., 3., 4., nan],
[nan, 7., 8., 9., 10., nan],
[nan, 13., 14., 15., 16., nan],
[nan, 19., 20., 21., 22., nan],
[nan, nan, nan, nan, nan, nan]])

We can quickly check if the output meets our expectations. In our example, the
minimum value has to be always the upper left corner of the moving window
(remember we have created the input raster by row-wise incrementing the cell
values by one, starting at the upper left corner).

Focal functions or filters play a dominant role in image processing. For example,
low-pass or smoothing filters use the mean function to remove extremes. By
contrast, high-pass filters, often created with custom neighborhood weights,
accentuate features.

In the case of categorical data, we can replace the mean with the mode, i.e.,
the most common value. To demonstrate applying a mode filter, let’s read the
small sample categorical raster grain.tif.
grain = src_grain.read(1)
grain

array([[1, 0, 1, 2, 2, 2],
[0, 2, 0, 0, 2, 1],
[0, 2, 2, 0, 0, 2],
[0, 0, 1, 1, 1, 1],
[1, 1, 1, 2, 1, 1],
[2, 1, 2, 2, 0, 2]], dtype=uint8)

There is no built-in filter function for a mode filter in scipy.ndimage, but we
can use the scipy.ndimage.generic_filter function along with a custom
filtering function, internally utilizing scipy.stats.mode.
grain_mode = scipy.ndimage.generic_filter(

grain,
lambda x: scipy.stats.mode(x.flatten())[0],
size=3

)
grain_mode = grain_mode.astype(float)
grain_mode[:, [0, -1]] = np.nan
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grain

array([[1, 0, 1, 2, 2, 2],
[0, 2, 0, 0, 2, 1],
[0, 2, 2, 0, 0, 2],
[0, 0, 1, 1, 1, 1],
[1, 1, 1, 2, 1, 1],
[2, 1, 2, 2, 0, 2]], dtype=uint8)

There is no built-in filter function for a mode filter in scipy.ndimage, but we
can use the scipy.ndimage.generic_filter function along with a custom
filtering function, internally utilizing scipy.stats.mode.
grain_mode = scipy.ndimage.generic_filter(

grain,
lambda x: scipy.stats.mode(x.flatten())[0],
size=3

)
grain_mode = grain_mode.astype(float)
grain_mode[:, [0, -1]] = np.nan
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grain_mode[[0, -1], :] = np.nan
grain_mode

array([[nan, nan, nan, nan, nan, nan],
[nan, 0., 0., 0., 2., nan],
[nan, 0., 0., 0., 1., nan],
[nan, 1., 1., 1., 1., nan],
[nan, 1., 1., 1., 1., nan],
[nan, nan, nan, nan, nan, nan]])

� Note

scipy.stats.mode is a function to summarize array values, returning
the mode (most common value). It is analogous to numpy summary
functions and methods, such as .mean or .max. numpy itself does not
provide the mode function, however, which is why we use scipy for that.

Terrain processing is another important application of focal operations. Such
functions are provided by multiple Python packages, including the general
purpose xarray package, and more specialized packages such as richdem and
pysheds. Useful terrain metrics include:

• Slope, measured in units of percent, degrees, or radians (Horn 1981)
• Aspect, meaning each cell’s downward slope direction (Horn 1981)
• Slope curvature, including ‘planform’ and ‘profile’ curvature (Zevenbergen

and Thorne 1987)

For example, each of these, and other, terrain metrics can be computed with
the richdem package.

� Note

Terrain metrics are essentially focal filters with customized functions.
Using scipy.ndimage.generic_filter, along with such custom func-
tions, is an option for those who would like to calculate terrain metric
through coding by hand and/or limiting their code dependencies. For
example, the How Aspect works3 and How Slope works4 pages from the
ArcGIS Pro documentation provide explanations and formulas of the
required functions for aspect and slope metrics (Figure 3.22), respec-
tively, which can be translated to numpy-based functions to be used in
scipy.ndimage.generic_filter to calculate those metrics.

3https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-aspect-
works.htm

4https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-slope-
works.htm

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-aspectworks.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-aspectworks.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-slopeworks.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-slopeworks.htm


104 3 Spatial data operations

Another extremely fast, memory-efficient, and concise, alternative, is to the use
the GDAL program called gdaldem. gdaldem can be used to calculate slope,
aspect, and other terrain metrics through a single command, accepting an
input file path and exporting the result to a new file. This is our first example
in the book where we demonstrate a situation where it may be worthwhile to
leave the Python environment, and utilize a GDAL program directly, rather
than through their wrappers (such as rasterio and other Python packages),
whether to access a computational algorithm not easily accessible in a Python
package, or for GDAL’s memory-efficiency and speed benefits.

� Note

GDAL contains a collection of over 40 programs, mostly aimed at raster
processing. These include programs for fundamental operations, such as:

• gdal_translate—convert between raster file formats
• gdalwarp—raster reprojection
• gdal_rasterize—rasterize vector features
• gdal_merge.py—raster mosaic
In this book, we use rasterio for the above-mentioned operations, al-
though the GDAL programs are a good alternative for those who are
more comfortable with the command line. However, we do use two GDAL
programs for tasks that are lacking in rasterio and not well-implemented
in other Python packages: gdaldem (this section), and gdal_contour
(Section 5.5.3).

GDAL, along with all of its programs, should be available in your Python
environment, since GDAL is a dependency of rasterio. The following example,
which should be run from the command line, takes the srtm_32612.tif raster
(which we are going to create in Section 6.8, therefore it is in the 'output'
directory), calculates slope (in decimal degrees, between 0 and 90), and exports
the result to a new file srtm_32612_slope.tif. Note that the arguments of
gdaldem are the metric name (slope), then the input file path, and finally the
output file path.
os.system('gdaldem slope output/srtm_32612.tif output/srtm_32612_slope.tif')

Here we ran the gdaldem command through os.system, in order to remain
in the Python environment, even though we are calling an external program.
Alternatively, you can run the standalone command in the command line
interface you are using, such as the Anaconda Prompt:
gdaldem slope output/srtm_32612.tif output/srtm_32612_slope.tif
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Replacing the metric name, we can calculate other terrain properties. For ex-
ample, here is how we can calculate an aspect raster srtm_32612_aspect.tif,
also in degrees (between 0 and 360).
os.system('gdaldem aspect output/srtm_32612.tif output/srtm_32612_aspect.tif')

Figure 3.22 shows the results, using our more familiar plotting methods from
rasterio. The code section is relatively long due to the workaround to create
a color key (see Section 8.2.3) and removing ‘No Data’ flag values from the
arrays so that the color key does not include them. Also note that we are using
one of matplotlib’s cyclic color scales ('twilight') when plotting aspect
(Figure 3.22 (c)).
# Input DEM
src_srtm = rasterio.open('output/srtm_32612.tif')
srtm = src_srtm.read(1).astype(float)
srtm[srtm == src_srtm.nodata] = np.nan
fig, ax = plt.subplots()
rasterio.plot.show(src_srtm, cmap='Spectral_r', ax=ax)
fig.colorbar(ax.imshow(srtm, cmap='Spectral_r'), ax=ax);
# Slope
src_srtm_slope = rasterio.open('output/srtm_32612_slope.tif')
srtm_slope = src_srtm_slope.read(1)
srtm_slope[srtm_slope == src_srtm_slope.nodata] = np.nan
fig, ax = plt.subplots()
rasterio.plot.show(src_srtm_slope, cmap='Spectral_r', ax=ax)
fig.colorbar(ax.imshow(srtm_slope, cmap='Spectral_r'), ax=ax);
# Aspect
src_srtm_aspect = rasterio.open('output/srtm_32612_aspect.tif')
srtm_aspect = src_srtm_aspect.read(1)
srtm_aspect[srtm_aspect == src_srtm_aspect.nodata] = np.nan
fig, ax = plt.subplots()
rasterio.plot.show(src_srtm_aspect, cmap='twilight', ax=ax)
fig.colorbar(ax.imshow(srtm_aspect, cmap='twilight'), ax=ax);

3.3.5 Zonal operations
Just like focal operations, zonal operations apply an aggregation function to
multiple raster cells. However, a second raster, usually with categorical values,
defines the zonal filters (or ‘zones’) in the case of zonal operations, as opposed
to a predefined neighborhood window in the case of focal operation presented in
the previous section. Consequently, raster cells defining the zonal filter do not
necessarily have to be neighbors. Our grain.tif raster is a good example, as
illustrated in Figure 1.24: different grain sizes are spread irregularly throughout
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(a) Input DEM (b) Slope (degrees) (c) Aspect (degrees)

Figure 3.22: Slope and aspect calculation from a DEM

the raster. Finally, the result of a zonal operation is a summary table grouped
by zone, which is why this operation is also known as zonal statistics in the
GIS world. This is in contrast to focal operations (Section 3.3.4) which return
a raster object.

To demonstrate, let’s get back to the grain.tif and elev.tif rasters. To
calculate zonal statistics, we use the arrays with raster values, which we
already imported earlier. Our intention is to calculate the average (or any
other summary function, for that matter) of elevation in each zone defined by
grain values. To do that, first we first obtain the unique values defining the
zones using np.unique.
np.unique(grain)

array([0, 1, 2], dtype=uint8)

Now, we can use dictionary comprehension (see note below) to split the elev
array into separate one-dimensional arrays with values per grain group, with
keys being the unique grain values.
z = {i: elev[grain == i] for i in np.unique(grain)}
z

{np.uint8(0): array([ 2, 7, 9, 10, 13, 16, 17, 19, 20, 35], dtype=uint8),
np.uint8(1): array([ 1, 3, 12, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32], dtype=uint8),
np.uint8(2): array([ 4, 5, 6, 8, 11, 14, 15, 18, 28, 31, 33, 34, 36], dtype=uint8)}

� Note

List comprehension and dictionary comprehension are concise ways to
create a list or a dict, respectively, from an iterable object. Both are,
conceptually, a concise syntax to replace for loops where we iterate over
an object and return a same-length object with the results. Here are
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minimal examples of list and dictionary comprehension, respectively, to
demonstrate the idea:

• [i**2 for i in [2,4,6]]—Returns [4,16,36]
• {i: i**2 for i in [2,4,6]}—Returns {2:4, 4:16, 6:36}
List comprehension is more commonly encountered in practice. We use it
in Section 4.2.6, Section 5.4.2, Section 5.5.1, and Section 5.6. Dictionary
comprehension is only used in one place in the book (this section).

At this stage, we can expand the dictionary comprehension expression to
calculate the mean elevation associated with each grain size class. Namely,
instead of placing the elevation values (elev[grain==i]) into the dictionary
values, we place their (rounded) mean (elev[grain==i].mean().round(1)).
z = {i: elev[grain == i].mean().round(1) for i in np.unique(grain)}
z

{np.uint8(0): np.float64(14.8),
np.uint8(1): np.float64(21.2),
np.uint8(2): np.float64(18.7)}

This returns the statistics for each category, here the mean elevation for each
grain size class. For example, the mean elevation in pixels characterized by
grain size 0 is 14.8, and so on.

3.3.6 Global operations and distances
Global operations are a special case of zonal operations with the entire raster
dataset representing a single zone. The most common global operations are
descriptive statistics for the entire raster dataset such as the minimum or
maximum—we already discussed those in Section 2.3.2.

Aside from that, global operations are also useful for the computation of
distance and weight rasters. In the first case, one can calculate the distance
from each cell to specific target cells or vector geometries. For example, one
might want to compute the distance to the nearest coast (see Section 5.6). We
might also want to consider topography, that means, we are not only interested
in the pure distance but would like also to avoid the crossing of mountain ranges
when going to the coast. To do so, we can weight the distance with elevation so
that each additional altitudinal meter ‘prolongs’ the Euclidean distance (this
is beyond the scope of the book). Visibility and viewshed computations also
belong to the family of global operations (also beyond the scope of the book).

3.3.7 Map algebra counterparts in vector processing
Many map algebra operations have a counterpart in vector processing (Liu
and Mason 2009). Computing a distance raster (global operation) while only
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considering a maximum distance (logical focal operation) is the equivalent
of a vector buffer operation (Section 4.2.3). Reclassifying raster data (either
local or zonal function depending on the input) is equivalent to dissolving
vector data (Section 4.2.7). Overlaying two rasters (local operation), where
one contains ‘No Data’ values representing a mask, is similar to vector clipping
(Section 4.2.5). Quite similar to spatial clipping is intersecting two layers
(Section 3.2.1, Section 3.2.6). The difference is that these two layers (vector or
raster) simply share an overlapping area. However, be careful with the wording.
Sometimes the same words have slightly different meanings for raster and
vector data models. While aggregating polygon geometries means dissolving
boundaries, for raster data geometries it means increasing cell sizes and thereby
reducing spatial resolution. Zonal operations dissolve the cells of one raster
in accordance with the zones (categories) of another raster dataset using an
aggregating function.

3.3.8 Merging rasters
Suppose we would like to compute the NDVI (see Section 3.3.3), and addition-
ally want to compute terrain attributes from elevation data for observations
within a study area. Such computations rely on remotely sensed information.
The corresponding source imagery is often divided into scenes covering a spe-
cific spatial extent (i.e., tiles), and frequently, a study area covers more than
one scene. Then, we would need to merge (also known as mosaic) the scenes
covering our study area. In case when all scenes are aligned (i.e., share the
same origin and resolution), this can be thought of as simply gluing them into
one big raster; otherwise, all scenes need to be resampled (see Section 4.3.3)
to the same grid (e.g., the one defined by the first scene).

For example, let’s merge digital elevation data from two SRTM elevation tiles,
for Austria ('aut.tif') and Switzerland ('ch.tif'). Merging can be done
using function rasterio.merge.merge, which accepts a list of raster file
connections, and returns the new ndarray and the corresponding transform
object, representing the resulting mosaic.
src_1 = rasterio.open('data/aut.tif')
src_2 = rasterio.open('data/ch.tif')
out_image, out_transform = rasterio.merge.merge([src_1, src_2])

� Note

Some Python packages (such as rasterio) are split into several so-
called sub-modules. The sub-modules are installed collectively when
installing the main package. However, each sub-module needs to be
loaded separately to be able to use its functions. For example, the
rasterio.merge.merge function (see last code block) comes from the
rasterio.merge sub-module of rasterio. Loading rasterio with
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import rasterio does not expose the rasterio.merge.merge function;
instead, we have to load rasterio.merge with import rasterio.merge,
and only then use rasterio.merge.merge.
Also check out the first code block in this chapter, where
we load rasterio as well as three sub-modules: rasterio.plot,
rasterio.merge, and rasterio.features.

Figure 3.23 shows both inputs and the resulting mosaic.
rasterio.plot.show(src_1);
rasterio.plot.show(src_2);
rasterio.plot.show(out_image, transform=out_transform);

(a) aut.tif (b) ch.tif
(c) Mosaic
(aut.tif+ch.tif)

Figure 3.23: Raster merging

By default in rasterio.merge.merge, areas of overlap retain the value of the
first raster (method='first'). Other possible methods are:

• 'last'—Value of the last raster
• 'min'—Minimum value
• 'max'—Maximum value

When dealing with non-overlapping tiles, such as aut.tif and ch.tif (above),
the method argument has no practical effect. However, it becomes relevant
when we want to combine spectral imagery from scenes that were taken on
different dates. The above four options for method do not cover the commonly
required scenario when we would like to compute the mean value—for ex-
ample to calculate a seasonal average NDVI image from a set of partially
overlapping satellite images (such as Landsat). An alternative workflow to
rasterio.merge.merge, for calculating a mosaic as well as averaging any
overlaps, is to go through two steps:

• Resampling all scenes into a common ‘global’ grid (Section 4.3.3), thereby
producing a series of matching rasters (with the area surrounding each scene
set as ‘No Data’)

• Averaging the rasters through raster algebra (Section 3.3.3), using
np.mean(m,axis=0) or np.nanmean(m,axis=0) (depending whether we pre-
fer to ignore ‘No Data’ or not), where m is the multi-band array, which would
return a single-band array of averages.
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Geometry operations

Prerequisites
This chapter requires importing the following packages:
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import shapely
import geopandas as gpd
import topojson as tp
import rasterio
import rasterio.plot
import rasterio.warp
import rasterio.mask

It also relies on the following data files:
seine = gpd.read_file('data/seine.gpkg')
us_states = gpd.read_file('data/us_states.gpkg')
nz = gpd.read_file('data/nz.gpkg')
src = rasterio.open('data/dem.tif')
src_elev = rasterio.open('output/elev.tif')

4.1 Introduction
So far the book has explained the structure of geographic datasets (Chapter 1),
and how to manipulate them based on their non-geographic attributes (Chap-
ter 2) and spatial relations (Chapter 3). This chapter focuses on manipulating
the geographic elements of geographic objects, for example by simplifying and
converting vector geometries, and by cropping raster datasets. After reading it
you should understand and have control over the geometry column in vector
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layers and the extent and geographic location of pixels represented in rasters
in relation to other geographic objects.

Section 4.2 covers transforming vector geometries with ‘unary’ and ‘binary’
operations. Unary operations work on a single geometry in isolation, including
simplification (of lines and polygons), the creation of buffers and centroids,
and shifting/scaling/rotating single geometries using ‘affine transformations’
(Section 4.2.1 to Section 4.2.4). Binary transformations modify one geometry
based on the shape of another, including clipping and geometry unions, covered
in Section 4.2.5 and Section 4.2.7, respectively. Type transformations (from a
polygon to a line, for example) are demonstrated in Section 4.2.8.

Section 4.3 covers geometric transformations on raster objects. This involves
changing the size and number of the underlying pixels, and assigning them
new values. It teaches how to change the extent and the origin of a raster
manually (Section 4.3.1), how to change the resolution in fixed steps through
aggregation and disaggregation (Section 4.3.2), and finally how to resample a
raster into any existing template, which is the most general and often most
practical approach (Section 4.3.3). These operations are especially useful if
one would like to align raster datasets from diverse sources. Aligned raster
objects share a one-to-one correspondence between pixels, allowing them to be
processed using map algebra operations (Section 3.3.3).

In the next chapter (Chapter 5), we deal with the special case of geometry
operations that involve both a raster and a vector layer together. It shows how
raster values can be ‘masked’ and ‘extracted’ by vector geometries. Importantly
it shows how to ‘polygonize’ rasters and ‘rasterize’ vector datasets, making
the two data models more interchangeable.

4.2 Geometric operations on vector data
This section is about operations that in some way change the geometry of
vector layers. It is more advanced than the spatial data operations presented
in the previous chapter (in Section 3.2), because here we drill down into the
geometry: the functions discussed in this section work on the geometric part
(the geometry column, which is a GeoSeries object), either as standalone
object or as part of a GeoDataFrame.

4.2.1 Simplification
Simplification is a process for generalization of vector objects (lines and poly-
gons) usually for use in smaller-scale maps. Another reason for simplifying
objects is to reduce the amount of memory, disk space, and network bandwidth
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they consume: it may be wise to simplify complex geometries before publishing
them as interactive maps. The geopandas package provides the .simplify
method, which uses the GEOS implementation of the Douglas-Peucker algo-
rithm to reduce the vertex count. .simplify uses tolerance to control the
level of generalization in map units (Douglas and Peucker 1973).

For example, a simplified geometry of a 'LineString' geometry, representing
the river Seine and tributaries, using tolerance of 2000 meters, can be created
using the seine.simplify(2000) command (Figure 4.1).
seine_simp = seine.simplify(2000)
seine.plot();
seine_simp.plot();

(a) Original (b) Simplified (tolerance = 2000 m)

Figure 4.1: Simplification of the seine line layer

The resulting seine_simp object is a copy of the original seine but with fewer
vertices. This is apparent, with the result being visually simpler (Figure 4.1,
right) and consuming about twice less memory than the original object, as
shown in the comparison below.
print(f'Original: {sys.getsizeof(seine)} bytes')
print(f'Simplified: {sys.getsizeof(seine_simp)} bytes')

Original: 350 bytes
Simplified: 188 bytes

Simplification is also applicable for polygons. This is illustrated using
us_states, representing the contiguous United States. As we show in Chap-
ter 6, for many calculations geopandas (through shapely, and, ultimately,
GEOS) assumes that the data is in a projected CRS and this could lead to
unexpected results when applying distance-related operators. Therefore, the
first step is to project the data into some adequate projected CRS, such as
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US National Atlas Equal Area (EPSG:9311) (on the left in Figure 4.2), using
.to_crs (Section 6.7).
us_states9311 = us_states.to_crs(9311)

The .simplify method from geopandas works the same way with a
'Polygon'/'MultiPolygon' layer such as us_states9311:
us_states_simp1 = us_states9311.simplify(100000)

A limitation with .simplify, however, is that it simplifies objects on a per-
geometry basis. This means the topology is lost, resulting in overlapping and
‘holey’ areal units as illustrated in Figure 4.2 (b). The .toposimplify method
from package topojson provides an alternative that overcomes this issue.
The main advantage of .toposimplify is that it is topologically ‘aware’: it
simplifies the combined borders of the polygons (rather than each polygon
on its own), thus ensuring that the overlap is maintained. The following code
chunk uses .toposimplify to simplify us_states9311. Note that, when using
the topojson package, we first need to calculate a topology object, using
function tp.Topology, and then apply the simplification function, such as
.toposimplify, to obtain a simplified layer. We are also using the .to_gdf
method to return a GeoDataFrame.
topo = tp.Topology(us_states9311, prequantize=False)
us_states_simp2 = topo.toposimplify(100000).to_gdf()

Figure 4.2 compares the original input polygons and two simplification methods
applied to us_states9311.
us_states9311.plot(color='lightgrey', edgecolor='black');
us_states_simp1.plot(color='lightgrey', edgecolor='black');
us_states_simp2.plot(color='lightgrey', edgecolor='black');

(a) Original (b) Simplified using
geopandas

(c) Simplified using
topojson

Figure 4.2: Polygon simplification in action, comparing the original geometry of
the contiguous United States with simplified versions, generated with functions
from the geopandas (middle), and topojson (right), packages.
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4.2.2 Centroids
Centroid operations identify the center of geographic objects. Like statistical
measures of central tendency (including mean and median definitions of ‘aver-
age’), there are many ways to define the geographic center of an object. All of
them create single-point representations of more complex vector objects.

The most commonly used centroid operation is the geographic centroid. This
type of centroid operation (often referred to as ‘the centroid’) represents the
center of mass in a spatial object (think of balancing a plate on your finger).
Geographic centroids have many uses, for example to create a simple point
representation of complex geometries, to estimate distances between polygons,
or to specify the location where polygon text labels are placed. Centroids of
the geometries in a GeoSeries or a GeoDataFrame are accessible through the
.centroid property, as demonstrated in the code below, which generates the
geographic centroids of regions in New Zealand and tributaries to the River
Seine (black points in Figure 4.3).
nz_centroid = nz.centroid
seine_centroid = seine.centroid

Sometimes the geographic centroid falls outside the boundaries of their parent
objects (think of vector data in shape of a doughnut). In such cases ‘point on
surface’ operations, created with the .representative_point method, can
be used to guarantee the point will be in the parent object (e.g., for labeling
irregular multipolygon objects such as island states), as illustrated by the red
points in Figure 4.3. Notice that these red points always lie on their parent
objects.
nz_pos = nz.representative_point()
seine_pos = seine.representative_point()

The centroids and points on surface are illustrated in Figure 4.3.
# New Zealand
base = nz.plot(color='white', edgecolor='lightgrey')
nz_centroid.plot(ax=base, color='None', edgecolor='black')
nz_pos.plot(ax=base, color='None', edgecolor='red');
# Seine
base = seine.plot(color='grey')
seine_pos.plot(ax=base, color='None', edgecolor='red')
seine_centroid.plot(ax=base, color='None', edgecolor='black');

4.2.3 Buffers
Buffers are polygons representing the area within a given distance of a geometric
feature: regardless of whether the input is a point, line or polygon, the output
is a polygon (when using positive buffer distance). Unlike simplification, which
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(a) New Zealand

(b) Seine

Figure 4.3: Centroids (black) and points on surface (red) of New Zealand and
Seine datasets.

is often used for visualization and reducing file size, buffering tends to be used
for geographic data analysis. How many points are within a given distance of
this line? Which demographic groups are within travel distance of this new
shop? These kinds of questions can be answered and visualized by creating
buffers around the geographic entities of interest.

Figure 4.4 illustrates buffers of two different sizes (5 and 50 km) surrounding
the river Seine and tributaries. These buffers were created with commands
below, using the .buffer method, applied to a GeoSeries or GeoDataFrame.
The .buffer method requires one important argument: the buffer distance,
provided in the units of the CRS, in this case, meters.
seine_buff_5km = seine.buffer(5000)
seine_buff_50km = seine.buffer(50000)

The results are shown in Figure 4.4.
seine_buff_5km.plot(color='none', edgecolor=['c', 'm', 'y']);
seine_buff_50km.plot(color='none', edgecolor=['c', 'm', 'y']);
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(a) 5 km buffer
(b) 50 km buffer

Figure 4.4: Buffers around the Seine dataset of 5 km and 50 km. Note the
colors, which reflect the fact that one buffer is created per geometry feature.

Note that both .centroid and .buffer return a GeoSeries object, even when
the input is a GeoDataFrame.
seine_buff_5km

0 POLYGON ((657550.332 6852587.97...
1 POLYGON ((517151.801 6930724.10...
2 POLYGON ((701519.74 6813075.492...
dtype: geometry

In the common scenario when the original attributes of the input features need
to be retained, you can replace the existing geometry with the new GeoSeries
by creating a copy of the original GeoDataFrame and assigning the new buffer
GeoSeries to the geometry column.
seine_buff_5km = seine.copy()
seine_buff_5km.geometry = seine.buffer(5000)
seine_buff_5km

name geometry

0 Marne POLYGON ((657550.332 6852587.97...
1 Seine POLYGON ((517151.801 6930724.10...
2 Yonne POLYGON ((701519.74 6813075.492...

An alternative option is to add a secondary geometry column directly to the
original GeoDataFrame.
seine['geometry_5km'] = seine.buffer(5000)
seine
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(a) 5 km buffer
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Figure 4.4: Buffers around the Seine dataset of 5 km and 50 km. Note the
colors, which reflect the fact that one buffer is created per geometry feature.

Note that both .centroid and .buffer return a GeoSeries object, even when
the input is a GeoDataFrame.
seine_buff_5km

0 POLYGON ((657550.332 6852587.97...
1 POLYGON ((517151.801 6930724.10...
2 POLYGON ((701519.74 6813075.492...
dtype: geometry

In the common scenario when the original attributes of the input features need
to be retained, you can replace the existing geometry with the new GeoSeries
by creating a copy of the original GeoDataFrame and assigning the new buffer
GeoSeries to the geometry column.
seine_buff_5km = seine.copy()
seine_buff_5km.geometry = seine.buffer(5000)
seine_buff_5km

name geometry

0 Marne POLYGON ((657550.332 6852587.97...
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An alternative option is to add a secondary geometry column directly to the
original GeoDataFrame.
seine['geometry_5km'] = seine.buffer(5000)
seine
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name geometry geometry_5km

0 Marne MULTILINESTRING ((879955.277 67... POLYGON
((657550.332 6852587.97...

1 Seine MULTILINESTRING ((828893.615 67... POLYGON
((517151.801 6930724.10...

2 Yonne MULTILINESTRING ((773482.137 66... POLYGON
((701519.74 6813075.492...

You can then switch to either geometry column (i.e., make it ‘active’) using
.set_geometry, as in:
seine = seine.set_geometry('geometry_5km')

Let’s revert to the original state of seine before moving on to the next section.
seine = seine.set_geometry('geometry')
seine = seine.drop('geometry_5km', axis=1)

4.2.4 Affine transformations
Affine transformations include, among others, shifting (translation), scaling

but angles and lengths are not necessarily preserved. These transformations are
an essential part of geocomputation. For example, shifting is needed for labels
placement, scaling is used in non-contiguous area cartograms, and many affine
transformations are applied when reprojecting or improving the geometry that
was created based on a distorted or wrongly projected map.

The geopandas package implements affine transformation, for objects of
classes GeoSeries and GeoDataFrame. In both cases, the method is applied on
the GeoSeries part, returning just the GeoSeries of transformed geometries.

Affine transformations of GeoSeries can be done using the
.affine_transform method, which is a wrapper around the
shapely.affinity.affine_transform function. A two-dimensional affine
transformation requires a six-parameter list [a,b,d,e,xoff,yoff] which
represents Equation 4.1 and Equation 4.2 for transforming the coordinates.

x′ = ax + by + xoff (4.1)

y′ = dx + ey + yoff (4.2)

There are also simplified GeoSeries methods for specific scenarios, such as:

• .translate(xoff=0.0, yoff=0.0)
• .scale(xfact=1.0, yfact=1.0, origin='center')
• .rotate(angle, origin='center', use_radians=False)

and rotation, or any combination of these. They preserve lines and parallelism,
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For example, shifting only requires the xoff and yoff , using .translate. The
code below shifts the y-coordinates of nz by 100 km to the north, but leaves
the x-coordinates untouched.
nz_shift = nz.translate(0, 100000)
nz_shift

0 MULTIPOLYGON (((1745493.196 610...
1 MULTIPOLYGON (((1803822.103 600...
2 MULTIPOLYGON (((1860345.005 595...

...
13 MULTIPOLYGON (((1616642.877 552...
14 MULTIPOLYGON (((1624866.278 551...
15 MULTIPOLYGON (((1686901.914 545...
Length: 16, dtype: geometry

� Note

shapely, and consequently geopandas, operations, typically ignore the
z-dimension (if there is one) of geometries in operations. For example,
shapely.LineString([(0,0,0),(0,0,1)]).length returns 0 (and not
1), since .length ignores the z-dimension. This is not an issue in this
book (and in most real-world spatial analysis applications), since we are
dealing only with two-dimensional geometries.

Scaling enlarges or shrinks objects by a factor, and can be applied either
globally or locally. Global scaling increases or decreases all coordinates values
in relation to the origin coordinates, while keeping all geometries topological
relations intact. geopandas implements scaling using the .scale method.
Local scaling treats geometries independently and requires points around which
geometries are going to be scaled, e.g., centroids. In the example below, each
geometry is shrunk by a factor of two around the centroids (Figure 4.5 (b)). To
achieve that, we pass the 0.5 and 0.5 scaling factors (for x and y, respectively),
and the 'centroid' option for the point of origin.
nz_scale = nz.scale(0.5, 0.5, origin='centroid')
nz_scale

0 MULTIPOLYGON (((1710099.077 603...
1 MULTIPOLYGON (((1778686.524 591...
2 MULTIPOLYGON (((1839927.904 582...

...
13 MULTIPOLYGON (((1593619.59 5418...
14 MULTIPOLYGON (((1628907.395 542...
15 MULTIPOLYGON (((1665262.436 536...
Length: 16, dtype: geometry
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When setting the origin in .scale, other than 'centroid' it is possible to
use 'center', for the bounding box center, or specific point coordinates, such
as (0,0).

Rotating the geometries can be done using the .rotate method. When rotating,
we need to specify the rotation angle (positive values imply clockwise rotation)
and the origin points (using the same options as in .scale). For example, the
following expression rotates nz by 30° counter-clockwise, around the geometry
centroids.
nz_rotate = nz.rotate(-30, origin='centroid')
nz_rotate

0 MULTIPOLYGON (((1701904.887 597...
1 MULTIPOLYGON (((1779714.772 587...
2 MULTIPOLYGON (((1890843.462 582...

...
13 MULTIPOLYGON (((1616991.636 539...
14 MULTIPOLYGON (((1617733.547 542...
15 MULTIPOLYGON (((1665898.669 533...
Length: 16, dtype: geometry

Figure 4.5 shows the original layer nz, and the shifting, scaling, and rotation
results.
# Shift
base = nz.plot(color='lightgrey', edgecolor='darkgrey')
nz_shift.plot(ax=base, color='red', edgecolor='darkgrey');
# Scale
base = nz.plot(color='lightgrey', edgecolor='darkgrey')
nz_scale.plot(ax=base, color='red', edgecolor='darkgrey');
# Rotate
base = nz.plot(color='lightgrey', edgecolor='darkgrey')
nz_rotate.plot(ax=base, color='red', edgecolor='darkgrey');

4.2.5 Pairwise geometry-generating operations

x = shapely.Point((0, 0)).buffer(1)
y = shapely.Point((1, 0)).buffer(1)
shapely.GeometryCollection([x, y])

Spatial clipping is a form of spatial subsetting that involves changes to the
geometry columns of at least some of the affected features. Clipping can only
apply to features more complex than points: lines, polygons, and their ‘multi’
equivalents. To illustrate this concept, we will start with a simple example:
two overlapping circles with a center point one unit away from each other and
a radius of one (Figure 4.6).
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(a) Shift (b) Scale (c) Rotate

Figure 4.5: Affine transformations of the nz layer: shift, scale, and rotate

Figure 4.6: Overlapping polygon (circle) geometries x and y

Imagine you want to select not one circle or the other, but the space covered
by both x and y. This can be done using the .intersection method from
shapely, illustrated using objects named x and y which represent the left- and
right-hand circles (Figure 4.7).
x.intersection(y)

Figure 4.7: Intersection between x and y
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More generally, clipping is an example of a ‘pairwise geometry-generating
operation’, where new geometries are generated from two inputs. Other than
.intersection (Figure 4.7), there are three other standard pairwise operators:
.difference (Figure 4.8), .union (Figure 4.9), and .symmetric_difference
(Figure 4.10).
x.difference(y)

Figure 4.8: Difference between x and y (namely, x ‘minus’ y)

x.union(y)

Figure 4.9: Union of x and y

x.symmetric_difference(y)

Figure 4.10: Symmetric difference between x and y

Keep in mind that x and y are interchangeable in all predicates ex-
cept for .difference, where x.difference(y) means x minus y, whereas
y.difference(x) means y minus x.
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The latter examples demonstrate pairwise operations between individual
shapely geometries. The geopandas package, as is often the case, contains
wrappers of these shapely functions to be applied to multiple, or pairwise, use
cases. For example, applying either of the pairwise methods on a GeoSeries
or GeoDataFrame, combined with a shapely geometry, returns the pairwise
(many-to-one) results (which is analogous to other operators, like .intersects
or .distance, see Section 3.2.1 and Section 3.2.7, respectively).

Let’s demonstrate the ‘many-to-one’ scenario by calculating the difference
between each geometry in a GeoSeries and a fixed shapely geometry. To
create the latter, let’s take x and combine it with itself translated (Section 4.2.4)
to a distance of 1 and 2 units ‘upwards’ on the y-axis.
geom1 = gpd.GeoSeries(x)
geom2 = geom1.translate(0, 1)
geom3 = geom1.translate(0, 2)
geom = pd.concat([geom1, geom2, geom3])
geom

0 POLYGON ((1 0, 0.99518 -0.09802...
0 POLYGON ((1 1, 0.99518 0.90198,...
0 POLYGON ((1 2, 0.99518 1.90198,...
dtype: geometry

Figure 4.11 shows the GeoSeries geom with the shapely geometry (in red)
that we will intersect with it.
fig, ax = plt.subplots()
geom.plot(color='#00000030', edgecolor='black', ax=ax)
gpd.GeoSeries(y).plot(color='#FF000040', edgecolor='black', ax=ax);

Now, using .intersection automatically applies the shapely method of the
same name on each geometry in geom, returning a new GeoSeries, which we
name geom_inter_y, with the pairwise intersections. Note the empty third
geometry (can you explain the meaning of this result?).
geom_inter_y = geom.intersection(y)
geom_inter_y

0 POLYGON ((0.99518 -0.09802, 0.9...
0 POLYGON ((0.99518 0.90198, 0.98...
0 POLYGON EMPTY
dtype: geometry

Figure 4.12 is a plot of the result geom_inter_y.
geom_inter_y.plot(color='#00000030', edgecolor='black');

The .overlay method (see Section 3.2.6) further extends this technique, mak-
ing it possible to apply ‘many-to-many’ pairwise geometry generations between
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Figure 4.11: A GeoSeries with three circles (in grey), and a shapely geometry
that we will subtract from it (in red)

all pairs of two GeoDataFrames. The output is a new GeoDataFrame with the
pairwise outputs, plus the attributes of both inputs which were the inputs
of the particular pairwise output geometry. Also see the Set operations with
overlay1 article in the geopandas documentation for examples of .overlay.

4.2.6 Subsetting vs. clipping
In the last two chapters we have introduced two types of spatial operators:
boolean, such as .intersects (Section 3.2.1), and geometry-generating, such
as .intersection (Section 4.2.5). Here, we illustrate the difference between
them. We do this using the specific scenario of subsetting points by polygons,
where (unlike in other cases) both methods can be used for the same purpose
and giving the same result.

1https://geopandas.org/en/stable/docs/user_guide/set_operations.html

https://geopandas.org/en/stable/docs/user_guide/set_operations.html
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Figure 4.12: The output GeoSeries, after subtracting a shapely geometry
using .intersection

To illustrate the point, we will subset points that cover the bounding box of
the circles x and y from Figure 4.6. Some points will be inside just one circle,
some will be inside both, and some will be inside neither. The following code
sections generate the sample data for this section, a simple random distribution
of points within the extent of circles x and y, resulting in output illustrated in
Figure 4.13. We create the sample points in two steps. First, we figure out the
bounds where random points are to be generated.
bounds = x.union(y).bounds
bounds

(-1.0, -1.0, 2.0, 1.0)

Second, we use np.random.uniform to calculate n random x- and y-coordinates
within the given bounds.
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np.random.seed(1)
n = 10
coords_x = np.random.uniform(bounds[0], bounds[2], n)
coords_y = np.random.uniform(bounds[1], bounds[3], n)
coords = list(zip(coords_x, coords_y))
coords

[(np.float64(0.2510660141077219), np.float64(-0.1616109711934104)),
(np.float64(1.1609734803264744), np.float64(0.370439000793519)),
(np.float64(-0.9996568755479653), np.float64(-0.5910955005369651)),
(np.float64(-0.0930022821044807), np.float64(0.7562348727818908)),
(np.float64(-0.5597323275486609), np.float64(-0.9452248136041477)),
(np.float64(-0.7229842156936066), np.float64(0.34093502035680445)),
(np.float64(-0.4412193658669873), np.float64(-0.16539039526574606)),
(np.float64(0.03668218112914312), np.float64(0.11737965689150331)),
(np.float64(0.1903024226920098), np.float64(-0.7192261228095325)),
(np.float64(0.6164502020100708), np.float64(-0.6037970218302424))]

Third, we transform the list of coordinates into a list of shapely points, and
then to a GeoSeries.
pnt = [shapely.Point(i) for i in coords]
pnt = gpd.GeoSeries(pnt)

The result pnt, with x and y circles in the background, is shown in Figure 4.13.
base = pnt.plot(color='none', edgecolor='black')
gpd.GeoSeries(x).plot(ax=base, color='none', edgecolor='darkgrey');
gpd.GeoSeries(y).plot(ax=base, color='none', edgecolor='darkgrey');

Now, we can get back to our question: how to subset the points to only
return the points that intersect with both x and y? The code chunks below
demonstrate two ways to achieve the same result. In the first approach, we can
calculate a boolean Series, evaluating whether each point of pnt intersects
with the intersection of x and y (see Section 3.2.1), and then use it to subset
pnt to get the result pnt1.
sel = pnt.intersects(x.intersection(y))
pnt1 = pnt[sel]
pnt1

0 POINT (0.25107 -0.16161)
7 POINT (0.03668 0.11738)
9 POINT (0.61645 -0.6038)
dtype: geometry

In the second approach, we can also find the intersection between the input
points represented by pnt, using the intersection of x and y as the subset-
ting/clipping object. Since the second argument is an individual shapely
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Figure 4.13: Randomly distributed points within the bounding box enclosing
circles x and y

geometry (x.intersection(y)), we get ‘pairwise’ intersections of each pnt
with it (see Section 4.2.5):
pnt2 = pnt.intersection(x.intersection(y))
pnt2

0 POINT (0.25107 -0.16161)
1 POINT EMPTY
2 POINT EMPTY

...
7 POINT (0.03668 0.11738)
8 POINT EMPTY
9 POINT (0.61645 -0.6038)
Length: 10, dtype: geometry

The subset pnt2 is shown in Figure 4.14.
base = pnt.plot(color='none', edgecolor='black')
gpd.GeoSeries(x).plot(ax=base, color='none', edgecolor='darkgrey');
gpd.GeoSeries(y).plot(ax=base, color='none', edgecolor='darkgrey');
pnt2.plot(ax=base, color='red');
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Figure 4.14: Randomly distributed points within the bounding box enclosing
circles x and y. The points that intersect with both objects x and y are
highlighted.

The only difference between the two approaches is that .intersection returns
all intersections, even if they are empty. When these are filtered out, pnt2
becomes identical to pnt1:
pnt2 = pnt2[~pnt2.is_empty]
pnt2

0 POINT (0.25107 -0.16161)
7 POINT (0.03668 0.11738)
9 POINT (0.61645 -0.6038)
dtype: geometry

The example above is rather contrived and provided for educational rather
than applied purposes. However, we encourage the reader to reproduce the
results to deepen your understanding of handling geographic vector objects in
Python.

4.2.7 Geometry unions
Spatial aggregation can silently dissolve the geometries of touching polygons
in the same group, as we saw in Section 2.2.2. This is demonstrated in the
code chunk below, in which 49 us_states are aggregated into 4 regions using
the .dissolve method.
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regions = us_states[['REGION', 'geometry', 'total_pop_15']] \
.dissolve(by='REGION', aggfunc='sum').reset_index()

regions

Figure 4.15 compares the original us_states layer with the aggregated regions
layer.
# States
fig, ax = plt.subplots(figsize=(9, 2.5))
us_states.plot(ax=ax, edgecolor='black', column='total_pop_15', legend=True);
# Regions
fig, ax = plt.subplots(figsize=(9, 2.5))
regions.plot(ax=ax, edgecolor='black', column='total_pop_15', legend=True);

(a) 49 States (b) 4 Regions

Figure 4.15: Spatial aggregation on contiguous polygons, illustrated by ag-
gregating the population of 49 US states into 4 regions, with population
represented by color. Note the operation automatically dissolves boundaries
between states.

What is happening with the geometries here? Behind the scenes, .dissolve
combines the geometries and dissolves the boundaries between them using the
.union_all method per group. This is demonstrated in the code chunk below
which creates a united western US using the standalone .union_all operation.
Note that the result is a shapely geometry, as the individual attributes are
‘lost’ as part of dissolving (Figure 4.16).
us_west = us_states[us_states['REGION'] == 'West']
us_west_union = us_west.geometry.union_all()
us_west_union

REGION geometry total_pop_15

0 Midwest MULTIPOLYGON (((-89.10077 36.94... 67546398.0
1 Northeast MULTIPOLYGON (((-75.61724 39.83... 55989520.0
2 South MULTIPOLYGON (((-81.3855 30.273... 118575377.0
3 West MULTIPOLYGON (((-118.36998 32.8... 72264052.0
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What is happening with the geometries here? Behind the scenes, .dissolve
combines the geometries and dissolves the boundaries between them using the
.union_all method per group. This is demonstrated in the code chunk below
which creates a united western US using the standalone .union_all operation.
Note that the result is a shapely geometry, as the individual attributes are
‘lost’ as part of dissolving (Figure 4.16).
us_west = us_states[us_states['REGION'] == 'West']
us_west_union = us_west.geometry.union_all()
us_west_union
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Figure 4.16: Western US

To dissolve two (or more) groups of a GeoDataFrame into one geometry, we
can either (a) use a combined condition or (b) concatenate the two separate
subsets and then dissolve using .union_all.
# Approach 1
sel = (us_states['REGION'] == 'West') | (us_states['NAME'] == 'Texas')
texas_union = us_states[sel]
texas_union = texas_union.geometry.union_all()
# Approach 2
us_west = us_states[us_states['REGION'] == 'West']
texas = us_states[us_states['NAME'] == 'Texas']
texas_union = pd.concat([us_west, texas]).union_all()

The result is identical in both cases, shown in Figure 4.17.
texas_union

Figure 4.17: Western US and Texas

4.2.8 Type transformations
Transformation of geometries, from one type to another, also known as ‘ge-
ometry casting’, is often required to facilitate spatial analysis. Either the
geopandas or the shapely packages can be used for geometry casting, de-
pending on the type of transformation, and the way that the input is organized
(whether as individual geometry, or a vector layer). Therefore, the exact ex-
pression(s) depend on the specific transformation we are interested in.

In general, you need to figure out the required input of the respec-
tive constructor function according to the ‘destination’ geometry (e.g.,
shapely.LineString, etc.), then reshape the input of the source geometry
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into the right form to be passed to that function. Or, when available, you can
use a wrapper from geopandas.

In this section, we demonstrate several common scenarios. We start with
transformations of individual geometries from one type to another, using
shapely methods:

• 'MultiPoint' to 'LineString' (Figure 4.19)
• 'MultiPoint' to 'Polygon' (Figure 4.20)
• 'LineString' to 'MultiPoint' (Figure 4.22)
• 'Polygon' to 'MultiPoint' (Figure 4.23)
• 'Polygon's to 'MultiPolygon' (Figure 4.24)
• 'MultiPolygon's to 'Polygon's (Figure 4.25, Figure 4.26)

Then, we move on and demonstrate casting workflows on GeoDataFrames, where
we have further considerations, such as keeping track of geometry attributes,
and the possibility of dissolving, rather than just combining, geometries. As
we will see, these are done either by manually applying shapely methods on
all geometries in the given layer, or using geopandas wrapper methods which
do it automatically:

• 'MultiLineString' to 'LineString's (using .explode) (Figure 4.28)
• 'LineString' to 'MultiPoint's (using .apply) (Figure 4.29)
• 'LineString's to 'MultiLineString' (using .dissolve)
• 'Polygon's to 'MultiPolygon' (using .dissolve or .agg) (Figure 4.30)
• 'Polygon' to '(Multi)LineString' (using .boundary or .exterior)

(demonstrated in a subsequent chapter, see Section 5.4.2)

Let’s start with the simple individual-geometry casting examples, to illustrate
how geometry casting works on shapely geometry objects. First, let’s create
a 'MultiPoint' (Figure 4.18).
multipoint = shapely.MultiPoint([(1,1), (3,3), (5,1)])
multipoint

Figure 4.18: A 'MultiPoint' geometry used to demonstrate shapely type
transformations

A 'LineString' can be created using shapely.LineString from a list
of points. Thus, a 'MultiPoint' can be converted to a 'LineString' by
passing the points into a list, then passing them to shapely.LineString
(Figure 4.19). The .geoms property, mentioned in Section 1.2.5, gives access
to the individual parts that comprise a multi-part geometry, as an iterable
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object similar to a list; it is one of the shapely access methods to internal
parts of a geometry.
linestring = shapely.LineString(multipoint.geoms)
linestring

Figure 4.19: A 'LineString' created from the 'MultiPoint' in Figure 4.18

Similarly, a 'Polygon' can be created using function shapely.Polygon, which
accepts a sequence of point coordinates. In principle, the last coordinate must be
equal to the first, in order to form a closed shape. However, shapely.Polygon
is able to complete the last coordinate automatically, and therefore we can
pass all of the coordinates of the 'MultiPoint' directly to shapely.Polygon
(Figure 4.20).
polygon = shapely.Polygon(multipoint.geoms)
polygon

Figure 4.20: A 'Polygon' created from the 'MultiPoint' in Figure 4.18

The source 'MultiPoint' geometry, and the derived 'LineString' and
'Polygon' geometries are shown in Figure 4.21. Note that we convert the
shapely geometries to GeoSeries to be able to use the geopandas .plot
method.
gpd.GeoSeries(multipoint).plot();
gpd.GeoSeries(linestring).plot();
gpd.GeoSeries(polygon).plot();

Conversion from 'MultiPoint' to 'LineString', shown above (Figure 4.19),
is a common operation that creates a line object from ordered point obser-
vations, such as GPS measurements or geotagged media. This allows spatial
operations, such as calculating the length of the path traveled. Conversion from
'MultiPoint' or 'LineString' to 'Polygon' (Figure 4.20) is often used to
calculate an area, for example from the set of GPS measurements taken around
a lake or from the corners of a building lot.
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(a) 'MultiPoint' (b) 'LineString' (c) 'Polygon'

Figure 4.21: Examples of 'LineString’ and 'Polygon' casted from a
'MultiPoint' geometry

Our 'LineString' geometry can be converted back to a 'MultiPoint' geom-
etry by passing its coordinates directly to shapely.MultiPoint (Figure 4.22).
shapely.MultiPoint(linestring.coords)

Figure 4.22: A 'MultiPoint' created from the 'LineString' in Figure 4.19

A 'Polygon' (exterior) coordinates can be passed to shapely.MultiPoint,
to go back to a 'MultiPoint' geometry, as well (Figure 4.23).
shapely.MultiPoint(polygon.exterior.coords)

Figure 4.23: A 'MultiPoint' created from the 'Polygon' in Figure 4.20

Using these methods, we can transform between 'Point', 'LineString', and
'Polygon' geometries, assuming there is a sufficient number of points (at least
two for a line, and at least three for a polygon). When dealing with multi-part
geometries using shapely, we can:

• Access single-part geometries (e.g., each 'Polygon' in a 'MultiPolygon'
geometry) using .geoms[i], where i is the index of the geometry

• Combine single-part geometries into a multi-part geometry, by passing a
list of the latter to the constructor function
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Our 'LineString' geometry can be converted back to a 'MultiPoint' geom-
etry by passing its coordinates directly to shapely.MultiPoint (Figure 4.22).
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Figure 4.22: A 'MultiPoint' created from the 'LineString' in Figure 4.19

A 'Polygon' (exterior) coordinates can be passed to shapely.MultiPoint,
to go back to a 'MultiPoint' geometry, as well (Figure 4.23).
shapely.MultiPoint(polygon.exterior.coords)

Figure 4.23: A 'MultiPoint' created from the 'Polygon' in Figure 4.20

Using these methods, we can transform between 'Point', 'LineString', and
'Polygon' geometries, assuming there is a sufficient number of points (at least
two for a line, and at least three for a polygon). When dealing with multi-part
geometries using shapely, we can:

• Access single-part geometries (e.g., each 'Polygion' in a 'MultiPolygon'
geometry) using .geoms[i], where i is the index of the geometry

• Combine single-part geometries into a multi-part geometry, by passing a
list of the latter to the constructor function
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For example, here is how we combine two 'Polygon' geometries
into a 'MultiPolygon' (while also using a shapely affine func-
tion shapely.affinity.translate, which is underlying the geopandas
.translate method used earlier, see Section 4.2.4) (Figure 4.24):
multipolygon = shapely.MultiPolygon([

polygon,
shapely.affinity.translate(polygon.centroid.buffer(1.5), 3, 2)

])
multipolygon

Figure 4.24: A 'MultiPolygon' created from the 'Polygon' in Figure 4.20
and another polygon

Given multipolygon, here is how we can get back the 'Polygon' part 1
(Figure 4.25):
multipolygon.geoms[0]

Figure 4.25: The 1st part extracted from the 'MultiPolygon' in Figure 4.24

and part 2 (Figure 4.26):
multipolygon.geoms[1]

Figure 4.26: The 2nd part extracted from the 'MultiPolygon' in Figure 4.24
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However, dealing with multi-part geometries can be easier with geopandas.
Thanks to the fact that geometries in a GeoDataFrame are associated with
attributes, we can keep track of the origin of each geometry: duplicating the
attributes when going from multi-part to single-part (using .explode, see
below), or ‘collapsing’ the attributes through aggregation when going from
single-part to multi-part (using .dissolve, see Section 4.2.7).

Let’s demonstrate going from multi-part to single-part (Figure 4.28) and then
back to multi-part (Section 4.2.7), using a small line layer. As input, we will
create a 'MultiLineString' geometry composed of three lines (Figure 4.27).
l1 = shapely.LineString([(1, 5), (4, 3)])
l2 = shapely.LineString([(4, 4), (4, 1)])
l3 = shapely.LineString([(2, 2), (4, 2)])
ml = shapely.MultiLineString([l1, l2, l3])
ml

Figure 4.27: A 'MultiLineString' geometry composed of three lines

Let’s place it into a GeoSeries.
geom = gpd.GeoSeries(ml)
geom

0 MULTILINESTRING ((1 5, 4 3), (4...
dtype: geometry

Then, put it into a GeoDataFrame with an attribute called 'id':
dat = gpd.GeoDataFrame(geometry=geom, data=pd.DataFrame({'id': [1]}))
dat

id geometry

0 1 MULTILINESTRING ((1 5, 4 3), (4...

You can imagine it as a road or river network. The above layer dat has only
one row that defines all the lines. This restricts the number of operations that
can be done, for example, it prevents adding names to each line segment or
calculating lengths of single lines. Using shapely methods with which we are
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already familiar with (see above), the individual single-part geometries (i.e.,
the ‘parts’) can be accessed through the .geoms property.
list(ml.geoms)

[<LINESTRING (1 5, 4 3)>, <LINESTRING (4 4, 4 1)>, <LINESTRING (2 2, 4 2)>]

However, specifically for the ‘multi-part to single part’ type transformation
scenario, there is also a method called .explode, which can convert an entire
multi-part GeoDataFrame to a single-part one. The advantage is that the
original attributes (such as id) are retained, so that we can keep track of
the original multi-part geometry properties that each part came from. The
index_parts=True argument also lets us keep track of the original multipart
geometry indices, and part indices, named level_0 and level_1, respectively.
dat1 = dat.explode(index_parts=True).reset_index()
dat1

level_0 level_1 id geometry

0 0 0 1 LINESTRING (1 5, 4 3)
1 0 1 1 LINESTRING (4 4, 4 1)
2 0 2 1 LINESTRING (2 2, 4 2)

For example, here we see that all 'LineString' geometries came from the same
multi-part geometry (level_0=0), which had three parts (level_1=0,1,2).
Figure 4.28 demonstrates the effect of .explode in converting a layer with
multi-part geometries into a layer with single-part geometries.
dat.plot(column='id', linewidth=7);
dat1.plot(column='level_1', linewidth=7);

As a side-note, let’s demonstrate how the above shapely casting methods
can be translated to geopandas. Suppose that we want to transform dat1,
which is a layer of type 'LineString' with three features, to a layer of
type 'MultiPoint' (also with three features). Recall that for a single geom-
etry, we use the expression shapely.MultiPoint(x.coords), where x is a
'LineString' (Figure 4.22). When dealing with a GeoDataFrame, we wrap
the conversion into .apply, to apply it to all geometries:
dat2 = dat1.copy()
dat2.geometry = dat2.geometry.apply(lambda x: shapely.MultiPoint(x.coords))
dat2

level_0 level_1 id geometry

0 0 0 1 MULTIPOINT (1 5, 4 3)
1 0 1 1 MULTIPOINT (4 4, 4 1)
2 0 2 1 MULTIPOINT (2 2, 4 2)

The result is illustrated in Figure 4.29.
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(a) 'MultiLineString' layer (b) 'LineString' layer, after applying
.explode

Figure 4.28: Transformation of a 'MultiLineString' layer with one feature,
into a 'LineString' layer with three features, using .explode

dat1.plot(column='level_1', linewidth=7);
dat2.plot(column='level_1', markersize=50);

The opposite transformation, i.e., ‘single-part to multi-part’, is achieved using
the .dissolve method (which we are already familiar with, see Section 4.2.7).
For example, here is how we can get from the 'LineString' layer with three
features back to the 'MultiLineString' layer with one feature (since, in this
case, there is just one group):
dat1.dissolve(by='id').reset_index()

id geometry level_0 level_1

0 1 MULTILINESTRING ((1 5, 4 3), (4... 0 0

The next code chunk is another example, dissolving the 16 polygons in nz into
two geometries of the north and south parts (i.e., the two 'Island' groups).
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(a) 'MultiLineString' layer (b) 'LineString' layer, after applying
.explode
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the .dissolve method (which we are already familiar with, see Section 4.2.7).
For example, here is how we can get from the 'LineString' layer with three
features back to the 'MultiLineString' layer with one feature (since, in this
case, there is just one group):
dat1.dissolve(by='id').reset_index()

id geometry level_0 level_1

0 1 MULTILINESTRING ((1 5, 4 3), (4... 0 0

The next code chunk is another example, dissolving the 16 polygons in nz into
two geometries of the north and south parts (i.e., the two 'Island' groups).
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(a) 'LineString' layer (b) 'MultiPoint' layer

Figure 4.29: Transformation of a 'LineString' layer with three features, into
a 'MultiPoint' layer (also with three features), using .apply and shapely
methods

nz_dis1 = nz[['Island', 'Population', 'geometry']] \
.dissolve(by='Island', aggfunc='sum') \
.reset_index()

nz_dis1

Island geometry Population

0 North MULTIPOLYGON (((1865558.829 546... 3671600.0
1 South MULTIPOLYGON (((1229729.735 479... 1115600.0

Note that .dissolve not only combines single-part into multi-part geometries,
but also dissolves any internal borders. So, in fact, the resulting geometries may
be single-part (in case when all parts touch each other, unlike in nz). If, for
some reason, we want to combine geometries into multi-part without dissolving,
we can fall back to the pandas .agg method (custom table aggregation),
supplemented with a shapely function specifying how exactly we want to
transform each group of geometries into a new single geometry. In the following
example, for instance, we collect all 'Polygon' and 'MultiPolygon' parts
of nz into a single 'MultiPolygon' geometry with many separate parts (i.e.,
without dissolving), per group.
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nz_dis2 = nz \
.groupby('Island') \
.agg({

'Population': 'sum',
'geometry': lambda x: shapely.MultiPolygon(x.explode().to_list())

}) \
.reset_index()

nz_dis2 = gpd.GeoDataFrame(nz_dis2).set_geometry('geometry').set_crs(nz.crs)
nz_dis2

Island Population geometry

0 North 3671600.0 MULTIPOLYGON (((1745493.196 600...
1 South 1115600.0 MULTIPOLYGON (((1557042.169 531...

The difference between the last two results nz_dis1 and nz_dis2 (with and
without dissolving, respectively) is not evident in the printout: in both cases
we got a layer with two features of type 'MultiPolygon'. However, in the first
case internal borders were dissolved, while in the second case they were not.
This is illustrated in Figure 4.30:

(a) Dissolving (using the geopandas
.dissolve method)

(b) Combining into multi-part without
dissolving (using .agg and a custom
shapely-based function)

Figure 4.30: Combining New Zealand geometries into one, for each island, with
and without dissolving
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nz_dis2 = nz \
.groupby('Island') \
.agg({

'Population': 'sum',
'geometry': lambda x: shapely.MultiPolygon(x.explode().to_list())

}) \
.reset_index()

nz_dis2 = gpd.GeoDataFrame(nz_dis2).set_geometry('geometry').set_crs(nz.crs)
nz_dis2

Island Population geometry

0 North 3671600.0 MULTIPOLYGON (((1745493.196 600...
1 South 1115600.0 MULTIPOLYGON (((1557042.169 531...

The difference between the last two results nz_dis1 and nz_dis2 (with and
without dissolving, respectively) is not evident in the printout: in both cases
we got a layer with two features of type 'MultiPolygon'. However, in the first
case internal borders were dissolved, while in the second case they were not.
This is illustrated in Figure 4.30:

(a) Dissolving (using the geopandas
.dissolve method)

(b) Combining into multi-part without
dissolving (using .agg and a custom
shapely-based function)

Figure 4.30: Combining New Zealand geometries into one, for each island, with
and without dissolving
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nz_dis1.plot(color='lightgrey', edgecolor='black');
nz_dis2.plot(color='lightgrey', edgecolor='black');

It is also worthwhile to note the .boundary and .exterior properties of
GeoSeries, which are used to cast polygons to lines, with or without interior
rings, respectively (see Section 5.4.2).

4.3 Geometric operations on raster data
Geometric raster operations include the shift, flipping, mirroring, scaling,
rotation, or warping of images. These operations are necessary for a variety
of applications including georeferencing, used to allow images to be overlaid
on an accurate map with a known CRS (Liu and Mason 2009). A variety of
georeferencing techniques exist, including:

• Georectification based on known ground control points
• Orthorectification, which also accounts for local topography
• Image registration is used to combine images of the same thing but shot from

different sensors, by aligning one image with another (in terms of coordinate
system and resolution)

Python is rather unsuitable for the first two points since these often require
manual intervention which is why they are usually done with the help of
dedicated GIS software. On the other hand, aligning several images is possible
in Python and this section shows among others how to do so. This often includes
changing the extent, the resolution, and the origin of an image. A matching
projection is of course also required but is already covered in Section 6.8.

In any case, there are other reasons to perform a geometric operation on a
single raster image. For instance, a common reason for aggregating a raster
is to decrease run-time or save disk space. Of course, this approach is only
recommended if the task at hand allows a coarser resolution of raster data.

4.3.1 Extent and origin
When merging or performing map algebra on rasters, their resolution, pro-
jection, origin, and/or extent have to match. Otherwise, how should we add

raster with a resolution of 1 decimal degree? The same problem arises when
we would like to merge satellite imagery from different sensors with different
projections and resolutions. We can deal with such mismatches by aligning the
rasters. Typically, raster alignment is done through resampling—that way, it is
guaranteed that the rasters match exactly (Section 4.3.3). However, sometimes

the values of one raster with a resolution of 0.2 decimal degree to a second
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it can be useful to modify raster placement and extent manually, by adding
or removing rows and columns, or by modifying the origin, that is, slightly
shifting the raster. Sometimes, there are reasons other than alignment with a
second raster for manually modifying raster extent and placement. For example,
it may be useful to add extra rows and columns to a raster prior to focal
operations, so that it is easier to operate on the edges.

Let’s demonstrate the first operation, raster padding. First, we will read the
array with the elev.tif values:
r = src_elev.read(1)
r

array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]], dtype=uint8)

To pad an ndarray, we can use the np.pad function. The function accepts an
array, and a tuple of the form ((rows_top,rows_bottom),(columns_left,
columns_right)). Also, we can specify the value that’s being used for padding
with constant_values (e.g., 18). For example, here we pad r with one extra
row and two extra columns, on both sides, resulting in the array r_pad:
rows = 1
cols = 2
r_pad = np.pad(r, ((rows,rows),(cols,cols)), constant_values=18)
r_pad

array([[18, 18, 18, 18, 18, 18, 18, 18, 18, 18],
[18, 18, 1, 2, 3, 4, 5, 6, 18, 18],
[18, 18, 7, 8, 9, 10, 11, 12, 18, 18],
[18, 18, 13, 14, 15, 16, 17, 18, 18, 18],
[18, 18, 19, 20, 21, 22, 23, 24, 18, 18],
[18, 18, 25, 26, 27, 28, 29, 30, 18, 18],
[18, 18, 31, 32, 33, 34, 35, 36, 18, 18],
[18, 18, 18, 18, 18, 18, 18, 18, 18, 18]], dtype=uint8)

However, for r_pad to be used in any spatial operation, we also have to update
its transformation matrix. Whenever we add extra columns on the left, or extra
rows on top, the raster origin changes. To reflect this fact, we have to take to
‘original’ origin and add the required multiple of pixel widths or heights (i.e.,
raster resolution steps). The transformation matrix of a raster is accessible
from the raster file metadata (Section 1.3.2) or, as a shortcut, through the
.transform property of the raster file connection. For example, the next code
chunk shows the transformation matrix of elev.tif.
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it can be useful to modify raster placement and extent manually, by adding
or removing rows and columns, or by modifying the origin, that is, slightly
shifting the raster. Sometimes, there are reasons other than alignment with a
second raster for manually modifying raster extent and placement. For example,
it may be useful to add extra rows and columns to a raster prior to focal
operations, so that it is easier to operate on the edges.

Let’s demonstrate the first operation, raster padding. First, we will read the
array with the elev.tif values:
r = src_elev.read(1)
r

array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12],
[13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36]], dtype=uint8)

To pad an ndarray, we can use the np.pad function. The function accepts an
array, and a tuple of the form ((rows_top,rows_bottom),(columns_left,
columns_right)). Also, we can specify the value that’s being used for padding
with constant_values (e.g., 18). For example, here we pad r with one extra
row and two extra columns, on both sides, resulting in the array r_pad:
rows = 1
cols = 2
r_pad = np.pad(r, ((rows,rows),(cols,cols)), constant_values=18)
r_pad

array([[18, 18, 18, 18, 18, 18, 18, 18, 18, 18],
[18, 18, 1, 2, 3, 4, 5, 6, 18, 18],
[18, 18, 7, 8, 9, 10, 11, 12, 18, 18],
[18, 18, 13, 14, 15, 16, 17, 18, 18, 18],
[18, 18, 19, 20, 21, 22, 23, 24, 18, 18],
[18, 18, 25, 26, 27, 28, 29, 30, 18, 18],
[18, 18, 31, 32, 33, 34, 35, 36, 18, 18],
[18, 18, 18, 18, 18, 18, 18, 18, 18, 18]], dtype=uint8)

However, for r_pad to be used in any spatial operation, we also have to update
its transformation matrix. Whenever we add extra columns on the left, or extra
rows on top, the raster origin changes. To reflect this fact, we have to take to
‘original’ origin and add the required multiple of pixel widths or heights (i.e.,
raster resolution steps). The transformation matrix of a raster is accessible
from the raster file metadata (Section 1.3.2) or, as a shortcut, through the
.transform property of the raster file connection. For example, the next code
chunk shows the transformation matrix of elev.tif.
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src_elev.transform

Affine(0.5, 0.0, -1.5,
0.0, -0.5, 1.5)

From the transformation matrix, we are able to extract the origin.
xmin, ymax = src_elev.transform[2], src_elev.transform[5]
xmin, ymax

(-1.5, 1.5)

We can also get the resolution of the data, which is the distance between two
adjacent pixels.
dx, dy = src_elev.transform[0], src_elev.transform[4]
dx, dy

(0.5, -0.5)

These two parts of information are enough to calculate the new origin
(xmin_new,ymax_new) of the padded raster.
xmin_new = xmin - dx * cols
ymax_new = ymax - dy * rows
xmin_new, ymax_new

(-2.5, 2.0)

Using the updated origin, we can update the transformation matrix (Sec-
tion 1.3.2). Keep in mind that the meaning of the last two arguments is xsize,
ysize, so we need to pass the absolute value of dy (since it is negative).
new_transform = rasterio.transform.from_origin(

west=xmin_new,
north=ymax_new,
xsize=dx,
ysize=abs(dy)

)
new_transform

Affine(0.5, 0.0, -2.5,
0.0, -0.5, 2.0)

Figure 4.31 shows the padded raster, with the outline of the original
elev.tif (in red), demonstrating that the origin was shifted correctly and the
new_transform works fine.
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fig, ax = plt.subplots()
rasterio.plot.show(r_pad, transform=new_transform, cmap='Greys', ax=ax)
elev_bbox = gpd.GeoSeries(shapely.box(*src_elev.bounds))
elev_bbox.plot(color='none', edgecolor='red', ax=ax);

Figure 4.31: The padded elev.tif raster, and the extent of the original
elev.tif raster (in red)

We can shift a raster origin not just when padding, but in any other use case,
just by changing its transformation matrix. The effect is that the raster is
going to be shifted (which is analogous to .translate for shifting a vector
layer, see Section 4.2.4). Manually shifting a raster to arbitrary distance is
rarely needed in real-life scenarios, but it is useful to know how to do it at least
for a better understanding of the concept of raster origin. As an example, let’s
shift the origin of elev.tif by (-0.25,0.25). First, we need to calculate the
new origin.
xmin_new = xmin - 0.25 # shift xmin to the left
ymax_new = ymax + 0.25 # shift ymax upwards
xmin_new, ymax_new

(-1.75, 1.75)

To shift the origin in other directions we should change the two operators (-,
+) accordingly.
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fig, ax = plt.subplots()
rasterio.plot.show(r_pad, transform=new_transform, cmap='Greys', ax=ax)
elev_bbox = gpd.GeoSeries(shapely.box(*src_elev.bounds))
elev_bbox.plot(color='none', edgecolor='red', ax=ax);

Figure 4.31: The padded elev.tif raster, and the extent of the original
elev.tif raster (in red)

We can shift a raster origin not just when padding, but in any other use case,
just by changing its transformation matrix. The effect is that the raster is
going to be shifted (which is analogous to .translate for shifting a vector
layer, see Section 4.2.4). Manually shifting a raster to arbitrary distance is
rarely needed in real-life scenarios, but it is useful to know how to do it at least
for a better understanding of the concept of raster origin. As an example, let’s
shift the origin of elev.tif by (-0.25,0.25). First, we need to calculate the
new origin.
xmin_new = xmin - 0.25 # shift xmin to the left
ymax_new = ymax + 0.25 # shift ymax upwards
xmin_new, ymax_new

(-1.75, 1.75)

To shift the origin in other directions we should change the two operators (-,
+) accordingly.
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Then, same as when padding (see above), we create an updated transformation
matrix.
new_transform = rasterio.transform.from_origin(

west=xmin_new,
north=ymax_new,
xsize=dx,
ysize=abs(dy)

)
new_transform

Affine(0.5, 0.0, -1.75,
0.0, -0.5, 1.75)

Figure 4.32 shows the shifted raster and the outline of the original elev.tif
raster (in red).

Figure 4.32: The elev.tif raster shifted by (0.25,0.25), and its original
extent (in red)
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fig, ax = plt.subplots()
rasterio.plot.show(r, transform=new_transform, cmap='Greys', ax=ax)
elev_bbox.plot(color='none', edgecolor='red', ax=ax);

4.3.2 Aggregation and disaggregation
Raster datasets vary based on their resolution, from high-resolution datasets
that enable individual trees to be seen, to low-resolution datasets covering
large swaths of the Earth. Raster datasets can be transformed to either
decrease (aggregate) or increase (disaggregate) their resolution, for a number of
reasons. For example, aggregation can be used to reduce computational resource
requirements of raster storage and subsequent steps, while disaggregation can
be used to match other datasets, or to add detail.

� Note

Raster aggregation is, in fact, a special case of raster resampling (see
Section 4.3.3), where the target raster grid is aligned with the original
raster, only with coarser pixels. Conversely, raster resampling is the
general case where the new grid is not necessarily an aggregation of
the original one, but any other type of grid (i.e., shifted and or having
increased/reduced resolution, by any factor).

As an example, we here change the spatial resolution of dem.tif by a factor
of 5 (Figure 4.33). To aggregate a raster using rasterio, we go through two
steps:

• Reading the raster values (using .read) into an out_shape that is different
from the original .shape

• Updating the transform according to out_shape

Let’s demonstrate it, using the dem.tif file. Note the original shape of the
raster; it has 117 rows and 117 columns.
src.read(1).shape

(117, 117)

Also note the transform, which tells us that the raster resolution is about 30.85
m.
src.transform

Affine(30.849999999999604, 0.0, 794599.1076146346,
0.0, -30.84999999999363, 8935384.324602526)
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fig, ax = plt.subplots()
rasterio.plot.show(r, transform=new_transform, cmap='Greys', ax=ax)
elev_bbox.plot(color='none', edgecolor='red', ax=ax);

4.3.2 Aggregation and disaggregation
Raster datasets vary based on their resolution, from high-resolution datasets
that enable individual trees to be seen, to low-resolution datasets covering
large swaths of the Earth. Raster datasets can be transformed to either
decrease (aggregate) or increase (disaggregate) their resolution, for a number of
reasons. For example, aggregation can be used to reduce computational resource
requirements of raster storage and subsequent steps, while disaggregation can
be used to match other datasets, or to add detail.

� Note

Raster aggregation is, in fact, a special case of raster resampling (see
Section 4.3.3), where the target raster grid is aligned with the original
raster, only with coarser pixels. Conversely, raster resampling is the
general case where the new grid is not necessarily an aggregation of
the original one, but any other type of grid (i.e., shifted and or having
increased/reduced resolution, by any factor).

As an example, we here change the spatial resolution of dem.tif by a factor
of 5 (Figure 4.33). To aggregate a raster using rasterio, we go through two
steps:

• Reading the raster values (using .read) into an out_shape that is different
from the original .shape

• Updating the transform according to out_shape

Let’s demonstrate it, using the dem.tif file. Note the original shape of the
raster; it has 117 rows and 117 columns.
src.read(1).shape

(117, 117)

Also note the transform, which tells us that the raster resolution is about 30.85
m.
src.transform

Affine(30.849999999999604, 0.0, 794599.1076146346,
0.0, -30.84999999999363, 8935384.324602526)
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To aggregate, instead of reading the raster values the usual way, as in
src.read(1), we can specify out_shape to read the values into a different
shape. Here, we calculate a new shape which is downscaled by a factor of 5,
i.e., the number of rows and columns is multiplied by 0.2. We must truncate
any partial rows and columns, e.g., using int. Each new pixel is now obtained,
or resampled, from ∼ 5 × 5 =∼ 25 ‘old’ raster values. It is crucial to choose an
appropriate resampling method through the resampling parameter. Here we
use rasterio.enums.Resampling.average, i.e., the new ‘large’ pixel value is
the average of all coinciding small pixels, which makes sense for our elevation
data in dem.tif. See Section 4.3.3 for a list of other available methods.
factor = 0.2
r = src.read(1,

out_shape=(
int(src.height * factor),
int(src.width * factor)
),

resampling=rasterio.enums.Resampling.average
)

As expected, the resulting array r has ~5 times smaller dimensions, as shown
below.
r.shape

(23, 23)

What’s left to be done is the second step, to update the transform, taking
into account the change in raster shape. This can be done as follows, using
.transform.scale.
new_transform = src.transform * src.transform.scale(

(src.width / r.shape[1]),
(src.height / r.shape[0])

)
new_transform

Affine(156.93260869565017, 0.0, 794599.1076146346,
0.0, -156.9326086956198, 8935384.324602526)

Figure 4.33 shows the original raster and the aggregated one.
rasterio.plot.show(src);
rasterio.plot.show(r, transform=new_transform);

This is a good opportunity to demonstrate exporting a raster with modified
dimensions and transformation matrix. We can update the raster metadata
required for writing with the update method.
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(a) Original (b) Aggregated (using average resampling)

Figure 4.33: Aggregating a raster by a factor of 5, using average resampling

dst_kwargs = src.meta.copy()
dst_kwargs.update({

'transform': new_transform,
'width': r.shape[1],
'height': r.shape[0],

})
dst_kwargs

{'driver': 'GTiff',
'dtype': 'float32',
'nodata': nan,
'width': 23,
'height': 23,
'count': 1,
'crs': CRS.from_epsg(32717),
'transform': Affine(156.93260869565017, 0.0, 794599.1076146346,

0.0, -156.9326086956198, 8935384.324602526)}

Then we can create a new file (dem_agg5.tif) in writing mode, and write the
values from the aggregated array r into the 1st band of the file (see Section 7.6.2
for a detailed explanation of writing raster files with rasterio).
dst = rasterio.open('output/dem_agg5.tif', 'w', **dst_kwargs)
dst.write(r, 1)
dst.close()
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(a) Original (b) Aggregated (using average resampling)

Figure 4.33: Aggregating a raster by a factor of 5, using average resampling

dst_kwargs = src.meta.copy()
dst_kwargs.update({

'transform': new_transform,
'width': r.shape[1],
'height': r.shape[0],

})
dst_kwargs

{'driver': 'GTiff',
'dtype': 'float32',
'nodata': nan,
'width': 23,
'height': 23,
'count': 1,
'crs': CRS.from_epsg(32717),
'transform': Affine(156.93260869565017, 0.0, 794599.1076146346,

0.0, -156.9326086956198, 8935384.324602526)}

Then we can create a new file (dem_agg5.tif) in writing mode, and write the
values from the aggregated array r into the 1st band of the file (see Section 7.6.2
for a detailed explanation of writing raster files with rasterio).
dst = rasterio.open('output/dem_agg5.tif', 'w', **dst_kwargs)
dst.write(r, 1)
dst.close()
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� Note

The ** syntax in Python is known as variable-length ‘keyword arguments’.
It is used to pass a dictionary of numerous parameter:argument pairs
to named arguments of a function. In rasterio.open writing mode, the
‘keyword arguments’ syntax often comes in handy, because, instead of
specifying each and every property of a new file, we pass a (modified)
.meta dictionary based on another, template, raster.
Technically, keep in mind that the expression:
rasterio.open('out.tif', 'w', **dst_kwargs)
where dst_kwargs is a dict of the following form (typically coming from
a template raster, possibly with few updated properties using .update,
see above):
{'driver': 'GTiff',
'dtype': 'float32',
'nodata': nan,
...

}
is a shortcut of:
rasterio.open(

'out.tif', 'w',
driver=dst_kwargs['driver'],
dtype=dst_kwargs['dtype'],
nodata=dst_kwargs['nodata'],
...

)
Positional arguments is a related technique; see note in Section 6.8.

The opposite operation, namely disaggregation, is when we increase the res-
olution of raster objects. Either of the supported resampling methods (see
Section 4.3.3) can be used. However, since we are not actually summarizing
information but transferring the value of a large pixel into multiple small pixels,
it makes sense to use either:

• Nearest neighbor resampling (rasterio.enums.Resampling.nearest),

be incorrect (such as in categorical rasters)
• Smoothing techniques, such as bilinear resampling

(rasterio.enums.Resampling.bilinear), when we would like the
smaller pixels to reflect gradual change between the original values, e.g.,
when the disaggregated raster is used for visualization purposes

To disaggregate a raster, we go through exactly the same workflow as for
aggregation, only using a different scaling factor, such as factor=5 instead of
factor=0.2, i.e., increasing the number of raster pixels instead of decreasing.

when we want to keep the original values as is, since modifying them would
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In the example below, we disaggregate using bilinear interpolation, to get a
smoothed high-resolution raster.
factor = 5
r2 = src.read(1,

out_shape=(
int(src.height * factor),
int(src.width * factor)
),

resampling=rasterio.enums.Resampling.bilinear
)

As expected, the dimensions of the disaggregated raster are this time ~5 times
bigger than the original ones.
r2.shape

(585, 585)

To calculate the new transform, we use the same expression as for aggregation,
only with the new r2 shape.
new_transform2 = src.transform * src.transform.scale(

(src.width / r2.shape[1]),
(src.height / r2.shape[0])

)
new_transform2

Affine(6.169999999999921, 0.0, 794599.1076146346,
0.0, -6.169999999998726, 8935384.324602526)

The original raster dem.tif was already quite detailed, so it would be difficult
to see any difference when plotting it along with the disaggregation result. A
zoom-in of a small section of the rasters works better. Figure 4.34 shows the
top-left corners of the original raster and the disaggregated one, demonstrating
the increase in the number of pixels through disaggregation.
rasterio.plot.show(src.read(1)[:5, :5], transform=src.transform);
rasterio.plot.show(r2[:25, :25], transform=new_transform2);

Code to export the disaggregated raster would be identical to the one used
above for the aggregated raster.

4.3.3 Resampling
Raster aggregation and disaggregation (Section 4.3.2) are only suitable when
we want to change just the resolution of our raster by a fixed factor. However,
what to do when we have two or more rasters with different resolutions and
origins? This is the role of resampling—a process of computing values for new
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In the example below, we disaggregate using bilinear interpolation, to get a
smoothed high-resolution raster.
factor = 5
r2 = src.read(1,

out_shape=(
int(src.height * factor),
int(src.width * factor)
),

resampling=rasterio.enums.Resampling.bilinear
)

As expected, the dimensions of the disaggregated raster are this time ~5 times
bigger than the original ones.
r2.shape

(585, 585)

To calculate the new transform, we use the same expression as for aggregation,
only with the new r2 shape.
new_transform2 = src.transform * src.transform.scale(

(src.width / r2.shape[1]),
(src.height / r2.shape[0])

)
new_transform2

Affine(6.169999999999921, 0.0, 794599.1076146346,
0.0, -6.169999999998726, 8935384.324602526)

The original raster dem.tif was already quite detailed, so it would be difficult
to see any difference when plotting it along with the disaggregation result. A
zoom-in of a small section of the rasters works better. Figure 4.34 shows the
top-left corners of the original raster and the disaggregated one, demonstrating
the increase in the number of pixels through disaggregation.
rasterio.plot.show(src.read(1)[:5, :5], transform=src.transform);
rasterio.plot.show(r2[:25, :25], transform=new_transform2);

Code to export the disaggregated raster would be identical to the one used
above for the aggregated raster.

4.3.3 Resampling
Raster aggregation and disaggregation (Section 4.3.2) are only suitable when
we want to change just the resolution of our raster by a fixed factor. However,
what to do when we have two or more rasters with different resolutions and
origins? This is the role of resampling—a process of computing values for new
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(a) Original (b) Disaggregated (using bilinear resam-
pling)

pixel locations. In short, this process takes the values of our original raster and
recalculates new values for a target raster with custom resolution and origin
(Figure 4.35).

There are several methods for estimating values for a raster with different
resolutions/origins (Figure 4.35). The main resampling methods include:

• Nearest neighbor—assigns the value of the nearest cell of the original raster
to the cell of the target one. This is a fast simple technique that is usually
suitable for resampling categorical rasters

• Bilinear interpolation—assigns a weighted average of the four nearest cells
from the original raster to the cell of the target one. This is the fastest
method that is appropriate for continuous rasters

• Cubic interpolation—uses values of the 16 nearest cells of the original raster
to determine the output cell value, applying third-order polynomial functions.
Used for continuous rasters and results in a smoother surface compared to
bilinear interpolation, but is computationally more demanding

• Cubic spline interpolation—also uses values of the 16 nearest cells of the
original raster to determine the output cell value, but applies cubic splines
(piecewise third-order polynomial functions). Used for continuous rasters

• Lanczos windowed sinc resampling—uses values of the 36 nearest cells of the
original raster to determine the output cell value. Used for continuous rasters

Figure 4.34: Disaggregating a raster by a factor of 5, using bilinear resampling.
Only a small portion (top-left corner) of the rasters is shown, to zoom-in and
demonstrate the effect of disaggregation.
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• Additionally, we can use straightforward summary methods, taking into
account all pixels that coincide with the target pixel, such as average (Fig-
ure 4.33), minimum, maximum (Figure 4.35), median, mode, and sum

The above explanation highlights that only nearest neighbor resampling is
suitable for categorical rasters, while all remaining methods can be used (with
different outcomes) for continuous rasters.

With rasterio, resampling can be done using the rasterio.warp.reproject
function. To clarify this naming convention, note that raster reprojection is
not fundamentally different from resampling—the difference is just whether
the target grid is in the same CRS as the origin (resampling) or in a different
CRS (reprojection). In other words, reprojection is resampling into a grid that
is in a different CRS. Accordingly, both resampling and reprojection are done
using the same function rasterio.warp.reproject. We will demonstrate
reprojection using rasterio.warp.reproject later in Section 6.8.

The information required for rasterio.warp.reproject, whether we are
resampling or reprojecting, is:

• The source and target CRS. These may be identical, when resampling, or
different, when reprojecting

• The source and target transform

Importantly, rasterio.warp.reproject can work with file connections, such
as a connection to an output file in write ('w') mode. This makes the function
efficient for large rasters.

The target and destination CRS are straightforward to specify, depending
on our choice. The source transform is also readily available, through the
.transform property of the source file connection. The only complicated part
is to figure out the destination transform. When resampling, the transform is
typically derived either from a template raster, such as an existing raster file that
we would like our origin raster to match, or from a numeric specification of our
target grid (see below). Otherwise, when the exact grid is not of importance, we
can simply aggregate or disaggregate our raster as shown above (Section 4.3.2).
(Note that when reprojecting, the target transform is more difficult to figure out,
therefore we further use the rasterio.warp.calculate_default_transform
function to compute it, as will be shown in Section 6.8.)

Finally, the resampling method is specified through the resampling parameter
of rasterio.warp.reproject. The default is nearest neighbor resampling.
However, as mentioned above, you should be aware of the distinction between
resampling methods, and choose the appropriate one according to the data
type (continuous/categorical), the input and output resolution, and resampling
purposes. Possible arguments for resampling include:

• rasterio.enums.Resampling.nearest—Nearest neighbor
• rasterio.enums.Resampling.bilinear—Bilinear
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• rasterio.enums.Resampling.cubic—Cubic
• rasterio.enums.Resampling.lanczos—Lanczos windowed
• rasterio.enums.Resampling.average—Average
• rasterio.enums.Resampling.mode—Mode. i.e., most common value
• rasterio.enums.Resampling.min—Minimum
• rasterio.enums.Resampling.max—Maximum
• rasterio.enums.Resampling.med—Median
• rasterio.enums.Resampling.sum—Sum

Let’s demonstrate resampling into a destination grid which is specified through
numeric constraints, such as the extent and resolution. Again, these could
have been specified manually (such as here), or obtained from a template
raster metadata that we would like to match. Note that the resolution of the
destination grid is ~10 times more coarse (300 m) than the original resolution
of dem.tif (~30 m) (Figure 4.35).
xmin = 794650
xmax = 798250
ymin = 8931750
ymax = 8935350
res = 300

The corresponding transform based on these constraints can be created using
the rasterio.transform.from_origin function, as follows:
dst_transform = rasterio.transform.from_origin(

west=xmin,
north=ymax,
xsize=res,
ysize=res

)
dst_transform

Affine(300.0, 0.0, 794650.0,
0.0, -300.0, 8935350.0)

In case we needed to resample into a grid specified by an existing template
raster, we could have skipped this step and simply read the transform from
the template file, as in rasterio.open('template.tif').transform.

We can move on to creating the destination file connection. For that, we also
have to know the raster dimensions, which can be derived from the extent and
the resolution.
width = int((xmax - xmin) / res)
height = int((ymax - ymin) / res)
width, height

(12, 12)
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Now we can create the destination file connection. We are using the same
metadata as the source file, except for the dimensions and the transform, which
are going to be different and reflect the resampling process.
dst_kwargs = src.meta.copy()
dst_kwargs.update({

'transform': dst_transform,
'width': width,
'height': height

})
dst = rasterio.open('output/dem_resample_nearest.tif', 'w', **dst_kwargs)

Finally, we reproject using function rasterio.warp.reproject. Note that
the source and destination are specified using rasterio.band applied on both
file connections, reflecting the fact that we operate on a specific layer of the
rasters. The resampling method being used here is nearest neighbor resampling
(rasterio.enums.Resampling.nearest).
rasterio.warp.reproject(

source=rasterio.band(src, 1),
destination=rasterio.band(dst, 1),
src_transform=src.transform,
src_crs=src.crs,
dst_transform=dst_transform,
dst_crs=src.crs,
resampling=rasterio.enums.Resampling.nearest

)

(Band(ds=<open DatasetWriter name='output/dem_resample_nearest.tif' mode='w'>,
bidx=1, dtype='float32', shape=(12, 12)),

Affine(300.0, 0.0, 794650.0,
0.0, -300.0, 8935350.0))

In the end, we close the file connection, thus finalizing the new file
output/dem_resample_nearest.tif with the resampling result (Figure 4.35).
dst.close()

Here is another code section just to demonstrate a different resampling method,
the maximum resampling, i.e., every new pixel gets the maximum value of
all the original pixels it coincides with (Figure 4.35). Note that all arguments
in the rasterio.warp.reproject function call are identical to the previous
example, except for the resampling method.
dst = rasterio.open('output/dem_resample_maximum.tif', 'w', **dst_kwargs)
rasterio.warp.reproject(

source=rasterio.band(src, 1),
destination=rasterio.band(dst, 1),
src_transform=src.transform,
src_crs=src.crs,
dst_transform=dst_transform,
dst_crs=src.crs,
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resampling=rasterio.enums.Resampling.max
)
dst.close()

The original raster dem.tif, and the two resampling results
dem_resample_nearest.tif and dem_resample_maximum.tif, are shown in
Figure 4.35.
# Input
fig, ax = plt.subplots(figsize=(4,4))
rasterio.plot.show(src, ax=ax);
# Nearest neighbor
fig, ax = plt.subplots(figsize=(4,4))
rasterio.plot.show(rasterio.open('output/dem_resample_nearest.tif'), ax=ax);
# Maximum
fig, ax = plt.subplots(figsize=(4,4))
rasterio.plot.show(rasterio.open('output/dem_resample_maximum.tif'), ax=ax);

(a) Input (b) Nearest neighbor (c) Maximum

Figure 4.35: The original raster dem.tif and two different resampling method
results



5
Raster-vector interactions

Prerequisites
This chapter requires importing the following packages:
import os
import math
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import shapely
import geopandas as gpd
import rasterio
import rasterio.plot
import rasterio.mask
import rasterio.features
import rasterstats

It also relies on the following data files:
src_srtm = rasterio.open('data/srtm.tif')
src_nlcd = rasterio.open('data/nlcd.tif')
src_grain = rasterio.open('output/grain.tif')
src_elev = rasterio.open('output/elev.tif')
src_dem = rasterio.open('data/dem.tif')
zion = gpd.read_file('data/zion.gpkg')
zion_points = gpd.read_file('data/zion_points.gpkg')
cycle_hire_osm = gpd.read_file('data/cycle_hire_osm.gpkg')
us_states = gpd.read_file('data/us_states.gpkg')
nz = gpd.read_file('data/nz.gpkg')
src_nz_elev = rasterio.open('data/nz_elev.tif')
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5.1 Introduction
This chapter focuses on interactions between raster and vector geographic data
models, both introduced in Chapter 1. It includes three main techniques:

• Raster cropping and masking using vector objects (Section 5.2)
• Extracting raster values using different types of vector data (Section 5.3)
• Raster-vector conversion (Section 5.4 and Section 5.5)

These concepts are demonstrated using data from previous chapters, to under-
stand their potential real-world applications.

5.2 Raster masking and cropping
Many geographic data projects involve integrating data from many different
sources, such as remote sensing images (rasters) and administrative boundaries
(vectors). Often the extent of input raster datasets is larger than the area of
interest. In this case, raster masking, cropping, or both, are useful for unifying
the spatial extent of input data (Figure 5.2 (b) and (c), and the following
two examples, illustrate the difference between masking and cropping). Both
operations reduce object memory use and associated computational resources
for subsequent analysis steps, and may be a necessary preprocessing step before
creating attractive maps involving raster data.

We will use two layers to illustrate raster cropping:

• The srtm.tif raster representing elevation, in meters above sea level, in
south-western Utah: a rasterio file connection named src_srtm (see Fig-
ure 5.2 (a))

• The zion.gpkg vector layer representing the Zion National Park boundaries
(a GeoDataFrame named zion)

Both target and cropping objects must have the same projection. Since it is
easier and more precise to reproject vector layers, compared to rasters, we use
the following expression to reproject (Section 6.7) the vector layer zion into
the CRS of the raster src_srtm.
zion = zion.to_crs(src_srtm.crs)

To mask the image, i.e., convert all pixels which do not intersect with the zion
polygon to ‘No Data’, we use the rasterio.mask.mask function.
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out_image_mask, out_transform_mask = rasterio.mask.mask(
src_srtm,
zion.geometry,
crop=False,
nodata=9999

)

Note that we need to choose and specify a ‘No Data’ value, within the valid
range according to the data type. Since srtm.tif is of type uint16 (how can
we check?), we choose 9999 (a positive integer that is guaranteed not to occur
in the raster). Also note that rasterio does not directly support geopandas
data structures, so we need to pass a ‘collection’ of shapely geometries: a
GeoSeries (see above) or a list of shapely geometries (see next example)
both work. The output consists of two objects. The first one is the out_image
array with the masked values.
out_image_mask

array([[[9999, 9999, 9999, ..., 9999, 9999, 9999],
[9999, 9999, 9999, ..., 9999, 9999, 9999],
[9999, 9999, 9999, ..., 9999, 9999, 9999],
...,
[9999, 9999, 9999, ..., 9999, 9999, 9999],
[9999, 9999, 9999, ..., 9999, 9999, 9999],
[9999, 9999, 9999, ..., 9999, 9999, 9999]]], dtype=uint16)

The second one is a new transformation matrix out_transform.
out_transform_mask

Affine(0.0008333333332777796, 0.0, -113.23958321278403,
0.0, -0.0008333333332777843, 37.512916763165805)

Note that masking (without cropping!) does not modify the raster extent. There-
fore, the new transform is identical to the original (src_srtm.transform).

Unfortunately, the out_image and out_transform objects do not contain
any information indicating that 9999 represents ‘No Data’. To associate the
information with the raster, we must write it to file along with the corresponding
metadata. For example, to write the masked raster to file, we first need to
modify the ‘No Data’ setting in the metadata.
dst_kwargs = src_srtm.meta
dst_kwargs.update(nodata=9999)
dst_kwargs
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{'driver': 'GTiff',
'dtype': 'uint16',
'nodata': 9999,
'width': 465,
'height': 457,
'count': 1,
'crs': CRS.from_epsg(4326),
'transform': Affine(0.0008333333332777796, 0.0, -113.23958321278403,

0.0, -0.0008333333332777843, 37.512916763165805)}

Then we can write the masked raster to file with the updated metadata object.
new_dataset = rasterio.open('output/srtm_masked.tif', 'w', **dst_kwargs)
new_dataset.write(out_image_mask)
new_dataset.close()

Now we can re-import the raster and check that the ‘No Data’ value is correctly
set.
src_srtm_mask = rasterio.open('output/srtm_masked.tif')

The .meta property contains the nodata entry. Now, any relevant operation
(such as plotting, see Figure 5.2 (b)) will take ‘No Data’ into account.
src_srtm_mask.meta

{'driver': 'GTiff',
'dtype': 'uint16',
'nodata': 9999.0,
'width': 465,
'height': 457,
'count': 1,
'crs': CRS.from_epsg(4326),
'transform': Affine(0.0008333333332777796, 0.0, -113.23958321278403,

0.0, -0.0008333333332777843, 37.512916763165805)}

The related operation, cropping, reduces the raster extent to the extent of the
vector layer:

• To crop and mask, we can use rasterio.mask.mask, same as above for
masking, while setting crop=True (Figure 5.2 (d))

• To just crop, without masking, we can derive the bounding box polygon
of the vector layer, and then crop using that polygon, also combined with
crop=True (Figure 5.2 (c))

For the example of cropping only, the extent polygon of zion can be obtained
as a shapely geometry object using .union_all().envelope (Figure 5.1).
bb = zion.union_all().envelope
bb
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Figure 5.1: Bounding box 'Polygon' geometry of the zion layer

The extent can now be used for masking. Here, we are also using the
all_touched=True option, so that pixels which are partially overlapping with
the extent are also included in the output.
out_image_crop, out_transform_crop = rasterio.mask.mask(

src_srtm,
[bb],
crop=True,
all_touched=True,
nodata=9999

)

In the case of cropping, there is no particular reason to write the result to file
for easier plotting, such as in the other two examples, since there are no ‘No
Data’ values (Figure 5.2 (c)).

� Note

As mentioned above, rasterio functions typically accept vector geome-
tries in the form of lists of shapely objects. GeoSeries are conceptually
very similar, and also accepted. However, even an individual geometry
has to be in a list, which is why we pass [bb], and not bb, in the above
rasterio.mask.mask function call (the latter would raise an error).

Finally, the third example is where we perform both crop and mask operations,
using rasterio.mask.mask with crop=True passing zion.geometry.
out_image_mask_crop, out_transform_mask_crop = rasterio.mask.mask(

src_srtm,
zion.geometry,
crop=True,
nodata=9999

)
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Figure 5.1: Bounding box 'Polygon' geometry of the zion layer
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dst_kwargs = src_srtm.meta
dst_kwargs.update({

'nodata': 9999,
'transform': out_transform_mask_crop,
'width': out_image_mask_crop.shape[2],
'height': out_image_mask_crop.shape[1]

})
new_dataset = rasterio.open(

'output/srtm_masked_cropped.tif',
'w',
**dst_kwargs

)
new_dataset.write(out_image_mask_crop)
new_dataset.close()

Let’s also create a file connection to the newly created file
srtm_masked_cropped.tif in order to plot it (Figure 5.2 (d)).
src_srtm_mask_crop = rasterio.open('output/srtm_masked_cropped.tif')

Figure 5.2 shows the original raster, and the three masking and/or cropping
results.
# Original
fig, ax = plt.subplots(figsize=(3.5, 3.5))
rasterio.plot.show(src_srtm, ax=ax)
zion.plot(ax=ax, color='none', edgecolor='black');
# Masked
fig, ax = plt.subplots(figsize=(3.5, 3.5))
rasterio.plot.show(src_srtm_mask, ax=ax)
zion.plot(ax=ax, color='none', edgecolor='black');
# Cropped
fig, ax = plt.subplots(figsize=(3.5, 3.5))
rasterio.plot.show(out_image_crop, transform=out_transform_crop, ax=ax)
zion.plot(ax=ax, color='none', edgecolor='black');
# Masked+Cropped
fig, ax = plt.subplots(figsize=(3.5, 3.5))
rasterio.plot.show(src_srtm_mask_crop, ax=ax)
zion.plot(ax=ax, color='none', edgecolor='black');

When writing the result to a file, it is here crucial to update the transform
and dimensions, since they were modified as a result of cropping. Also note
that out_image_mask_crop is a three-dimensional array (even though it has

and .shape[2] (rather than .shape[0] and .shape[1]), respectively.
one band in this case), so the number of rows and columns are in .shape[1]
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(a) Original (b) Masked

(c) Cropped (d) Masked+Cropped

Figure 5.2: Raster masking and cropping

5.3 Raster extraction
Raster extraction is the process of identifying and returning the values associ-
ated with a ‘target’ raster at specific locations, based on a (typically vector)
geographic ‘selector’ object. The reverse of raster extraction—assigning raster
cell values based on vector objects—is rasterization, described in Section 5.4.
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5.3 Raster extraction
Raster extraction is the process of identifying and returning the values associ-
ated with a ‘target’ raster at specific locations, based on a (typically vector)
geographic ‘selector’ object. The reverse of raster extraction—assigning raster
cell values based on vector objects—is rasterization, described in Section 5.4.
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In the following examples, we use a package called rasterstats, which is
specifically aimed at extracting raster values:

• To points (Section 5.3.1) or to lines (Section 5.3.2), via the
rasterstats.point_query function

• To polygons (Section 5.3.3), via the rasterstats.zonal_stats function

5.3.1 Extraction to points
The simplest type of raster extraction is getting the values of raster cells at
specific points. To demonstrate extraction to points, we will use zion_points,
which contains a sample of 30 locations within the Zion National Park
(Figure 5.3).

Figure 5.3: 30-point locations within the Zion National Park, with elevation in
the background
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fig, ax = plt.subplots()
rasterio.plot.show(src_srtm, ax=ax)
zion_points.plot(ax=ax, color='black', edgecolor='white');

The following expression extracts elevation values from srtm.tif according to
zion_points, using rasterstats.point_query.
result1 = rasterstats.point_query(

zion_points,
src_srtm.read(1),
nodata = src_srtm.nodata,
affine = src_srtm.transform,
interpolate='nearest'

)

The first two arguments are the vector layer and the array with raster values.
The nodata and affine arguments are used to align the array values into

argument controls the way that the cell values are assigned to the point;
interpolate='nearest' typically makes more sense, as opposed to the other
option interpolate='bilinear' which is the default.

Alternatively, we can pass a raster file path to rasterstats.point_query,
in which case nodata and affine are not necessary, as the function can
understand those properties directly from the raster file.
result2 = rasterstats.point_query(

zion_points,
'data/srtm.tif',
interpolate='nearest'

)

Either way, the resulting object is a list of raster values, corresponding to
zion_points. For example, here are the elevations of the first five points.
result1[:5]

[1802, 2433, 1886, 1370, 1452]

To get a GeoDataFrame with the original points geometries (and other at-
tributes, if any), as well as the extracted raster values, we can assign the
extraction result into a new column. As you can see, both approaches give the
same result.
zion_points['elev1'] = result1
zion_points['elev2'] = result2
zion_points

the CRS and to correctly treat ‘No Data’ flags. Finally, the interpolate
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fig, ax = plt.subplots()
rasterio.plot.show(src_srtm, ax=ax)
zion_points.plot(ax=ax, color='black', edgecolor='white');

The following expression extracts elevation values from srtm.tif according to
zion_points, using rasterstats.point_query.
result1 = rasterstats.point_query(

zion_points,
src_srtm.read(1),
nodata = src_srtm.nodata,
affine = src_srtm.transform,
interpolate='nearest'

)

The first two arguments are the vector layer and the array with raster values.
The nodata and affine arguments are used to align the array values into
the CRS, and to correctly treat ‘No Data’ flags. Finally, the interpolate
argument controls the way that the cell values are assigned to the point;
interpolate='nearest' typically makes more sense, as opposed to the other
option interpolate='bilinear' which is the default.

Alternatively, we can pass a raster file path to rasterstats.point_query,
in which case nodata and affine are not necessary, as the function can
understand those properties directly from the raster file.
result2 = rasterstats.point_query(

zion_points,
'data/srtm.tif',
interpolate='nearest'

)

Either way, the resulting object is a list of raster values, corresponding to
zion_points. For example, here are the elevations of the first five points.
result1[:5]

[1802, 2433, 1886, 1370, 1452]

To get a GeoDataFrame with the original points geometries (and other at-
tributes, if any), as well as the extracted raster values, we can assign the
extraction result into a new column. As you can see, both approaches give the
same result.
zion_points['elev1'] = result1
zion_points['elev2'] = result2
zion_points
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geometry elev1 elev2

0 POINT (-112.91587 37.20013) 1802 1802
1 POINT (-113.09369 37.39263) 2433 2433
2 POINT (-113.02462 37.33466) 1886 1886
... ... ... ...
27 POINT (-113.03655 37.23446) 1372 1372
28 POINT (-113.13933 37.39004) 1905 1905
29 POINT (-113.09677 37.24237) 1574 1574

The function supports extracting from just one raster band at a time. When
passing an array, we can read the required band (as in, .read(1), .read(2),
etc.). When passing a raster file path, we can set the band using the band_num
argument (the default being band_num=1).

5.3.2 Extraction to lines
Raster extraction is also applicable with line selectors. The typical line extrac-
tion algorithm is to extract one value for each raster cell touched by a line.
However, this particular approach is not recommended to obtain values along
the transects, as it is hard to get the correct distance between each pair of
extracted raster values.

For line extraction, a better approach is to split the line into many points (at
equal distances along the line) and then extract the values for these points
using the ‘extraction to points’ technique (Section 5.3.1). To demonstrate this,
the code below creates (see Section 1.2 for recap) zion_transect, a straight
line going from northwest to southeast of the Zion National Park.
coords = [[-113.2, 37.45], [-112.9, 37.2]]
zion_transect = shapely.LineString(coords)
print(zion_transect)

LINESTRING (-113.2 37.45, -112.9 37.2)

The utility of extracting heights from a linear selector is illustrated by imagining
that you are planning a hike. The method demonstrated below provides an
‘elevation profile’ of the route (the line does not need to be straight), useful for
estimating how long it will take due to long climbs.

First, we need to create a layer consisting of points along our line
(zion_transect), at specified intervals (e.g., 250). To do that, we need to
transform the line into a projected CRS (so that we work with true dis-
tances, in m), such as UTM. This requires going through a GeoSeries, as
shapely geometries have no CRS definition nor concept of reprojection (see
Section 1.2.6).
zion_transect_utm = gpd.GeoSeries(zion_transect, crs=4326).to_crs(32612)
zion_transect_utm = zion_transect_utm.iloc[0]
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The printout of the new geometry shows this is still a straight line between
two points, only with coordinates in a projected CRS.
print(zion_transect_utm)

LINESTRING (305399.67208180577 4147066.650206682, 331380.8917453843 4118750.0947884847)

Next, we need to calculate the distances, along the line, where points are going
to be generated. We do this using np.arange. The result is a numeric sequence
starting at 0, going up to line .length, in steps of 250 (m).
distances = np.arange(0, zion_transect_utm.length, 250)
distances[:7] ## First 7 distance cutoff points

array([ 0., 250., 500., 750., 1000., 1250., 1500.])

The distance cutoffs are used to sample (‘interpolate’) points along the line.
The shapely .interpolate method is used to generate the points, which
then are reprojected back to the geographic CRS of the raster (EPSG:4326).
zion_transect_pnt = [zion_transect_utm.interpolate(d) for d in distances]
zion_transect_pnt = gpd.GeoSeries(zion_transect_pnt, crs=32612) \

.to_crs(src_srtm.crs)
zion_transect_pnt

0 POINT (-113.2 37.45)
1 POINT (-113.19804 37.44838)
2 POINT (-113.19608 37.44675)

...
151 POINT (-112.90529 37.20443)
152 POINT (-112.90334 37.2028)
153 POINT (-112.9014 37.20117)
Length: 154, dtype: geometry

Finally, we extract the elevation values for each point in our transect and
combine the information with zion_transect_pnt (after ‘promoting’ it to a
GeoDataFrame, to accommodate extra attributes), using the point extraction
method shown earlier (Section 5.3.1). We also attach the respective distance
cutoff points distances.
result = rasterstats.point_query(

zion_transect_pnt,
src_srtm.read(1),
nodata = src_srtm.nodata,
affine = src_srtm.transform,
interpolate='nearest'

)
zion_transect_pnt = gpd.GeoDataFrame(geometry=zion_transect_pnt)
zion_transect_pnt['dist'] = distances
zion_transect_pnt['elev'] = result
zion_transect_pnt
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The printout of the new geometry shows this is still a straight line between
two points, only with coordinates in a projected CRS.
print(zion_transect_utm)

LINESTRING (305399.67208180577 4147066.650206682, 331380.8917453843 4118750.0947884847)

Next, we need to calculate the distances, along the line, where points are going
to be generated. We do this using np.arange. The result is a numeric sequence
starting at 0, going up to line .length, in steps of 250 (m).
distances = np.arange(0, zion_transect_utm.length, 250)
distances[:7] ## First 7 distance cutoff points

array([ 0., 250., 500., 750., 1000., 1250., 1500.])

The distance cutoffs are used to sample (‘interpolate’) points along the line.
The shapely .interpolate method is used to generate the points, which
then are reprojected back to the geographic CRS of the raster (EPSG:4326).
zion_transect_pnt = [zion_transect_utm.interpolate(d) for d in distances]
zion_transect_pnt = gpd.GeoSeries(zion_transect_pnt, crs=32612) \

.to_crs(src_srtm.crs)
zion_transect_pnt

0 POINT (-113.2 37.45)
1 POINT (-113.19804 37.44838)
2 POINT (-113.19608 37.44675)

...
151 POINT (-112.90529 37.20443)
152 POINT (-112.90334 37.2028)
153 POINT (-112.9014 37.20117)
Length: 154, dtype: geometry

Finally, we extract the elevation values for each point in our transect and
combine the information with zion_transect_pnt (after ‘promoting’ it to a
GeoDataFrame, to accommodate extra attributes), using the point extraction
method shown earlier (Section 5.3.1). We also attach the respective distance
cutoff points distances.
result = rasterstats.point_query(

zion_transect_pnt,
src_srtm.read(1),
nodata = src_srtm.nodata,
affine = src_srtm.transform,
interpolate='nearest'

)
zion_transect_pnt = gpd.GeoDataFrame(geometry=zion_transect_pnt)
zion_transect_pnt['dist'] = distances
zion_transect_pnt['elev'] = result
zion_transect_pnt
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geometry dist elev

0 POINT (-113.2 37.45) 0.0 2001
1 POINT (-113.19804 37.44838) 250.0 2037
2 POINT (-113.19608 37.44675) 500.0 1949
... ... ... ...
151 POINT (-112.90529 37.20443) 37750.0 1837
152 POINT (-112.90334 37.2028) 38000.0 1841
153 POINT (-112.9014 37.20117) 38250.0 1819

The information in zion_transect_pnt, namely the 'dist' and 'elev' at-
tributes, can now be used to draw an elevation profile, as illustrated in Fig-
ure 5.4.
# Raster and a line transect
fig, ax = plt.subplots()
rasterio.plot.show(src_srtm, ax=ax)
gpd.GeoSeries(zion_transect).plot(ax=ax, color='black')
zion.plot(ax=ax, color='none', edgecolor='white');
# Elevation profile
fig, ax = plt.subplots()
zion_transect_pnt.set_index('dist')['elev'].plot(ax=ax)
ax.set_xlabel('Distance (m)')
ax.set_ylabel('Elevation (m)');

(b) Extracted elevation profile

(a) Raster and a line transect

Figure 5.4: Extracting a raster values profile to line
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5.3.3 Extraction to polygons
The final type of geographic vector object for raster extraction is polygons.
Like lines, polygons tend to return many raster values per vector geome-
try. For continuous rasters (Figure 5.5 (a)), we typically want to generate
summary statistics for raster values per polygon, for example to character-
ize a single region or to compare many regions. The generation of raster
summary statistics, by polygons, is demonstrated in the code below using
rasterstats.zonal_stats, which creates a list of summary statistics (in this
case a list of length 1, since there is just one polygon).
result = rasterstats.zonal_stats(

zion,
src_srtm.read(1),
nodata = src_srtm.nodata,
affine = src_srtm.transform,
stats = ['mean', 'min', 'max']

)
result

[{'min': 1122.0, 'max': 2661.0, 'mean': 1818.211830154405}]

� Note

rasterstats.zonal_stats, just like rasterstats.point_query (Sec-
tion 5.3.1), supports raster input as file paths, rather than arrays plus
nodata and affine arguments.

pd.DataFrame(result)

min max mean

0 1122.0 2661.0 1818.21183

Because there is only one polygon in the example, a DataFrame with a single
row is returned. However, if zion was composed of more than one polygon,
we would accordingly get more rows in the DataFrame. The result provides
useful summaries, for example that the maximum height in the park is 2661
m above see level.

Note the stats argument, where we determine what type of statistics are
calculated per polygon. Possible values other than 'mean', 'min', and 'max'
include:

• 'count'—The number of valid (i.e., excluding ‘No Data’) pixels
• 'nodata'—The number of pixels with ‘No Data’

Transformation of the list to a DataFrame (e.g., to attach the derived at-
tributes to the original polygon layer) is straightforward with the pd.DataFrame
constructor.
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5.3.3 Extraction to polygons
The final type of geographic vector object for raster extraction is polygons.
Like lines, polygons tend to return many raster values per vector geome-
try. For continuous rasters (Figure 5.5 (a)), we typically want to generate
summary statistics for raster values per polygon, for example to character-
ize a single region or to compare many regions. The generation of raster
summary statistics, by polygons, is demonstrated in the code below using
rasterstats.zonal_stats, which creates a list of summary statistics (in this
case a list of length 1, since there is just one polygon).
result = rasterstats.zonal_stats(

zion,
src_srtm.read(1),
nodata = src_srtm.nodata,
affine = src_srtm.transform,
stats = ['mean', 'min', 'max']

)
result

[{'min': 1122.0, 'max': 2661.0, 'mean': 1818.211830154405}]

� Note

rasterstats.zonal_stats, just like rasterstats.point_query (Sec-
tion 5.3.1), supports raster input as file paths, rather than arrays plus
nodata and affine arguments.

Transformation of the list to a DataFrame (e.g., to attach the derived
attributes to the original polygon layer), is straightforward with the
pd.DataFrame constructor.
pd.DataFrame(result)

min max mean

0 1122.0 2661.0 1818.21183

Because there is only one polygon in the example, a DataFrame with a single
row is returned. However, if zion was composed of more than one polygon,
we would accordingly get more rows in the DataFrame. The result provides
useful summaries, for example that the maximum height in the park is 2661
m above see level.

Note the stats argument, where we determine what type of statistics are
calculated per polygon. Possible values other than 'mean', 'min', and 'max'
include:

• 'count'—The number of valid (i.e., excluding ‘No Data’) pixels
• 'nodata'—The number of pixels with ‘No Data’
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• 'majority'—The most frequently occurring value
• 'median'—The median value

See the documentation of rasterstats.zonal_stats for the complete list.
Additionally, the rasterstats.zonal_stats function accepts user-defined
functions for calculating any custom statistics.

To count occurrences of categorical raster values within polygons (Figure 5.5
(b)), we can use masking (Section 5.2) combined with np.unique, as follows.
out_image, out_transform = rasterio.mask.mask(

src_nlcd,
zion.geometry.to_crs(src_nlcd.crs),
crop=False,
nodata=src_nlcd.nodata

)
counts = np.unique(out_image, return_counts=True)
counts

(array([ 2, 3, 4, 5, 6, 7, 8, 255], dtype=uint8),
array([ 4205, 98285, 298299, 203701, 235, 62, 679, 852741]))

According to the result, for example, the value 2 (‘Developed’ class) appears
in 4205 pixels within the Zion polygon.

Figure 5.5 illustrates the two types of raster extraction to polygons described
above.

(a) Continuous raster (b) Categorical raster

Figure 5.5: Sample data used for continuous and categorical raster extraction
to a polygon
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# Continuous raster
fig, ax = plt.subplots()
rasterio.plot.show(src_srtm, ax=ax)
zion.plot(ax=ax, color='none', edgecolor='black');
# Categorical raster
fig, ax = plt.subplots()
rasterio.plot.show(src_nlcd, ax=ax, cmap='Set3')
zion.to_crs(src_nlcd.crs).plot(ax=ax, color='none', edgecolor='black');

5.4 Rasterization
Rasterization is the conversion of vector objects into their representation in
raster objects. Usually, the output raster is used for quantitative analysis (e.g.,
analysis of terrain) or modeling. As we saw in Chapter 1, the raster data
model has some characteristics that make it conducive to certain methods.
Furthermore, the process of rasterization can help simplify datasets because
the resulting values all have the same spatial resolution: rasterization can be
seen as a special type of geographic data aggregation.

The rasterio package contains the rasterio.features.rasterize function
for doing this work. To make it happen, we need to have the ‘template’ grid
definition, i.e., the ‘template’ raster defining the extent, resolution and CRS
of the output, in the out_shape (the output dimensions) and transform (the
transformation matrix) arguments of rasterio.features.rasterize. In case
we have an existing template raster, we simply need to query its .shape and
.transform. On the other hand, if we need to create a custom template, e.g.,
covering the vector layer extent with specified resolution, there is some extra
work to calculate both of these objects (see next example).

As for the vector geometries and their associated values, the
rasterio.features.rasterize function requires the input vector shapes in
the form of an iterable object of geometry,value pairs, where:

• geometry is the given geometry (shapely geometry object)
• value is the value to be ‘burned’ into pixels coinciding with the geometry

(int or float)

Furthermore, we define how to deal with multiple values burned
into the same pixel, using the merge_alg parameter. The default
merge_alg=rasterio.enums.MergeAlg.replace means that ‘later’ values re-
place ‘earlier’ ones, i.e., the pixel gets the ‘last’ burned value. The other
option merge_alg=rasterio.enums.MergeAlg.add means that burned values
are summed, i.e., the pixel gets the sum of all burned values.
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# Continuous raster
fig, ax = plt.subplots()
rasterio.plot.show(src_srtm, ax=ax)
zion.plot(ax=ax, color='none', edgecolor='black');
# Categorical raster
fig, ax = plt.subplots()
rasterio.plot.show(src_nlcd, ax=ax, cmap='Set3')
zion.to_crs(src_nlcd.crs).plot(ax=ax, color='none', edgecolor='black');

5.4 Rasterization
Rasterization is the conversion of vector objects into their representation in
raster objects. Usually, the output raster is used for quantitative analysis (e.g.,
analysis of terrain) or modeling. As we saw in Chapter 1, the raster data
model has some characteristics that make it conducive to certain methods.
Furthermore, the process of rasterization can help simplify datasets because
the resulting values all have the same spatial resolution: rasterization can be
seen as a special type of geographic data aggregation.

The rasterio package contains the rasterio.features.rasterize function
for doing this work. To make it happen, we need to have the ‘template’ grid
definition, i.e., the ‘template’ raster defining the extent, resolution and CRS
of the output, in the out_shape (the output dimensions) and transform (the
transformation matrix) arguments of rasterio.features.rasterize. In case
we have an existing template raster, we simply need to query its .shape and
.transform. On the other hand, if we need to create a custom template, e.g.,
covering the vector layer extent with specified resolution, there is some extra
work to calculate both of these objects (see next example).

As for the vector geometries and their associated values, the
rasterio.features.rasterize function requires the input vector shapes in
the form of an iterable object of geometry,value pairs, where:

• geometry is the given geometry (shapely geometry object)
• value is the value to be ‘burned’ into pixels coinciding with the geometry

(int or float)

Furthermore, we define how to deal with multiple values burned
into the same pixel, using the merge_alg parameter. The default
merge_alg=rasterio.enums.MergeAlg.replace means that ‘later’ values re-
place ‘earlier’ ones, i.e., the pixel gets the ‘last’ burned value. The other
option merge_alg=rasterio.enums.MergeAlg.add means that burned values
are summed, i.e., the pixel gets the sum of all burned values.
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When rasterizing lines and polygons, we also have the choice between two pixel-
matching algorithms. The default, all_touched=False, implies pixels that
are selected by Bresenham’s line algorithm1 (for lines) or pixels whose center
is within the polygon (for polygons). The other option all_touched=True, as
the name suggests, implies that all pixels intersecting with the geometry are
matched.

Finally, we can set the fill value, which is the value that ‘unaffected’ pixels
get, with fill=0 being the default.

How the rasterio.features.rasterize function works with all of these
various parameters will be made clear in the next examples.

The geographic resolution of the ‘template’ raster has a major impact on
the results: if it is too low (cell size is too large), the result may miss the
full geographic variability of the vector data; if it is too high, computational
times may be excessive. There are no simple rules to follow when deciding an
appropriate geographic resolution, which is heavily dependent on the intended
use of the results. Often the target resolution is imposed on the user, for
example when the output of rasterization needs to be aligned to an existing
raster.

Depending on the input data, rasterization typically takes one of two forms
which we demonstrate next:

• in point rasterization (Section 5.4.1), we typically choose how to treat multi-
ple points: either to summarize presence/absence, point count, or summed
attribute values (Figure 5.6)

• in line and polygon rasterization (Section 5.4.2), there are typically no such
‘overlaps’ and we simply ‘burn’ attribute values, or fixed values, into pixels
coinciding with the given geometries (Figure 5.7)

5.4.1 Rasterizing points
To demonstrate point rasterization, we will prepare a ‘template’ raster that has
the same extent and CRS as the input vector data cycle_hire_osm_projected
(a dataset on cycle hire points in London, illustrated in Figure 5.6 (a)) and
a spatial resolution of 1000 m. To do that, we first take our point layer and
transform it to a projected CRS.
cycle_hire_osm_projected = cycle_hire_osm.to_crs(27700)

Next, we calculate the out_shape and transform of the template raster.
To calculate the transform, we combine the top-left corner of the
cycle_hire_osm_projected bounding box with the required resolution (e.g.,
1000 m).

1https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
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bounds = cycle_hire_osm_projected.total_bounds
res = 1000
transform = rasterio.transform.from_origin(

west=bounds[0],
north=bounds[3],
xsize=res,
ysize=res

)
transform

Affine(1000.0, 0.0, np.float64(523038.61452275474),
0.0, -1000.0, np.float64(184971.40854297992))

To calculate the out_shape, we divide the x-axis and y-axis extent by the
resolution, taking the ceiling of the results.
rows = math.ceil((bounds[3] - bounds[1]) / res)
cols = math.ceil((bounds[2] - bounds[0]) / res)
shape = (rows, cols)
shape

(11, 16)

Finally, we are ready to rasterize. As mentioned above, point rasterization can
be a very flexible operation: the results depend not only on the nature of the
template raster, but also on the pixel ‘activation’ method, namely the way we
deal with multiple points matching the same pixel.

To illustrate this flexibility, we will try three different approaches to point
rasterization (Figure 5.6 (b)-(d)). First, we create a raster representing the
presence or absence of cycle hire points (known as presence/absence rasters).
In this case, we transfer the value of 1 to all pixels where at least one point falls
in. In the rasterio framework, we use the rasterio.features.rasterize
function, which requires an iterable object of geometry,value pairs. In this
first example, we transform the point GeoDataFrame into a list of shapely
geometries and the (fixed) value of 1, using list comprehension, as follows. The
first five elements of the list are hereby printed to illustrate its structure.
g = [(g, 1) for g in cycle_hire_osm_projected.geometry]
g[:5]

[(<POINT (532353.838 182857.655)>, 1),
(<POINT (529848.35 183337.175)>, 1),
(<POINT (530635.62 182608.992)>, 1),
(<POINT (532540.398 182495.756)>, 1),
(<POINT (530432.094 182906.846)>, 1)]

The list of geometry,value pairs is passed to rasterio.features.
rasterize, along with the out_shape and transform which define the raster
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0.0, -1000.0, np.float64(184971.40854297992))

To calculate the out_shape, we divide the x-axis and y-axis extent by the
resolution, taking the ceiling of the results.
rows = math.ceil((bounds[3] - bounds[1]) / res)
cols = math.ceil((bounds[2] - bounds[0]) / res)
shape = (rows, cols)
shape

(11, 16)

Finally, we are ready to rasterize. As mentioned above, point rasterization can
be a very flexible operation: the results depend not only on the nature of the
template raster, but also on the pixel ‘activation’ method, namely the way we
deal with multiple points matching the same pixel.

To illustrate this flexibility, we will try three different approaches to point
rasterization (Figure 5.6 (b)-(d)). First, we create a raster representing the
presence or absence of cycle hire points (known as presence/absence rasters).
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template. The result ch_raster1 is an ndarray with the burned values of 1
where the pixel coincides with at least one point, and 0 in ‘unaffected’ pixels.
Note that merge_alg=rasterio.enums.MergeAlg.replace (the default) is
used here, which means that a pixel gets 1 when one or more points fall in it,
or keeps the original 0 value otherwise.
ch_raster1 = rasterio.features.rasterize(

shapes=g,
out_shape=shape,
transform=transform

)
ch_raster1

array([[0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)

In our second variant of point rasterization, we count the number of bike hire
stations. To do that, we use the fixed value of 1 (same as in the last example),
but this time combined with the merge_alg=rasterio.enums.MergeAlg.add
argument. That way, multiple values burned into the same pixel are summed,
rather than replaced keeping last (which is the default). The new output,
ch_raster2, shows the number of cycle hire points in each grid cell.
g = [(g, 1) for g in cycle_hire_osm_projected.geometry]
ch_raster2 = rasterio.features.rasterize(

shapes=g,
out_shape=shape,
transform=transform,
merge_alg=rasterio.enums.MergeAlg.add

)
ch_raster2

array([[ 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 3, 3],
[ 0, 0, 0, 1, 3, 3, 5, 5, 8, 9, 1, 3, 2, 6, 7, 0],
[ 0, 0, 0, 8, 5, 4, 11, 10, 12, 9, 11, 4, 8, 5, 4, 0],
[ 0, 1, 4, 10, 10, 11, 18, 16, 13, 12, 8, 6, 5, 2, 3, 0],
[ 3, 3, 9, 3, 5, 14, 10, 15, 9, 9, 5, 8, 0, 0, 12, 2],
[ 4, 5, 9, 11, 6, 7, 7, 3, 10, 9, 4, 0, 0, 0, 0, 0],
[ 4, 0, 7, 8, 8, 4, 11, 10, 7, 3, 0, 0, 0, 0, 0, 0],
[ 0, 1, 3, 0, 0, 1, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 1, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

dtype=uint8)
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The cycle hire locations have different numbers of bicycles described by the
capacity variable, raising the question, what is the capacity in each grid
cell? To calculate that, in our third point rasterization variant we sum the
field ('capacity') rather than the fixed values of 1. This requires using a
more complex list comprehension expression, where we also (1) extract both
geometries and the attribute of interest, and (2) filter out ‘No Data’ values,
which can be done as follows. You are invited to run the separate parts to see
how this works; the important point is that, in the end, we get the list g with
the geometry,value pairs to be burned, only that the value is now variable,
rather than fixed, among points.
g = [(g, v) for g, v in cycle_hire_osm_projected[['geometry', 'capacity']] \

.dropna(subset='capacity')

.to_numpy() \

.tolist()]
g[:5]

[(<POINT (532353.838 182857.655)>, 14.0),
(<POINT (530635.62 182608.992)>, 11.0),
(<POINT (532620.775 181944.736)>, 20.0),
(<POINT (527891.578 181374.392)>, 6.0),
(<POINT (530399.064 181205.925)>, 17.0)]

Now we rasterize the points, again using
merge_alg=rasterio.enums.MergeAlg.add to sum the capacity values per
pixel.
ch_raster3 = rasterio.features.rasterize(

shapes=g,
out_shape=shape,
transform=transform,
merge_alg=rasterio.enums.MergeAlg.add

)
ch_raster3

array([[ 0., 0., 0., 0., 0., 11., 34., 0., 0., 0., 0.,
0., 0., 11., 35., 24.],

[ 0., 0., 0., 7., 30., 46., 60., 73., 72., 75., 6.,
50., 25., 47., 36., 0.],

[ 0., 0., 0., 89., 36., 31., 167., 97., 115., 80., 138.,
61., 65., 109., 43., 0.],

[ 0., 11., 42., 104., 108., 138., 259., 206., 203., 135., 107.,
37., 0., 25., 60., 0.],

[ 88., 41., 83., 28., 64., 115., 99., 249., 107., 117., 60.,
33., 0., 0., 0., 0.],

[ 0., 89., 107., 95., 73., 119., 69., 23., 140., 141., 46.,
0., 0., 0., 0., 0.],

[ 0., 0., 55., 97., 101., 59., 119., 109., 75., 12., 0.,
0., 0., 0., 0., 0.],

[ 0., 10., 23., 0., 0., 5., 41., 0., 8., 0., 0.,
0., 0., 0., 0., 0.],
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0., 0., 0., 0., 0.],

[ 0., 0., 55., 97., 101., 59., 119., 109., 75., 12., 0.,
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5.4 Rasterization 173

[ 0., 19., 9., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],

[ 0., 29., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],

[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.]], dtype=float32)

The result ch_raster3 shows the total capacity of cycle hire points in each
grid cell.

# Input points
fig, ax = plt.subplots()
cycle_hire_osm_projected.plot(column='capacity', ax=ax);
# Presence/Absence
fig, ax = plt.subplots()
rasterio.plot.show(ch_raster1, transform=transform, ax=ax);
# Point counts
fig, ax = plt.subplots()
rasterio.plot.show(ch_raster2, transform=transform, ax=ax);
# Summed attribute values
fig, ax = plt.subplots()
rasterio.plot.show(ch_raster3, transform=transform, ax=ax);

5.4.2 Rasterizing lines and polygons
Another dataset based on California’s polygons and borders (created below)
illustrates rasterization of lines. There are three preliminary steps. First, we
subset the California polygon.
california = us_states[us_states['NAME'] == 'California']
california

GEOID NAME ... total_pop_15 geometry

26 06 California ... 38421464.0 MULTIPOLYGON (((-118.60338 33.4...

Second, we ‘cast’ the polygon into a 'MultiLineString' geometry, using the
.boundary property that GeoSeries and DataFrames have.
california_borders = california.boundary
california_borders

26 MULTILINESTRING ((-118.60338 33...
dtype: geometry

The input point layer cycle_hire_osm_projected and the three variants
of rasterizing it ch_raster1, ch_raster2, and ch_raster3 are shown in
Figure 5.6.
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(a) Input points (b) Presence/Absence

(c) Point counts (d) Summed attribute values

Figure 5.6: Original data and three variants of point rasterization

Third, we create the transform and shape describing our template raster,
with a resolution of 0.5 degree, using the same approach as in Section 5.4.1.
bounds = california_borders.total_bounds
res = 0.5
transform = rasterio.transform.from_origin(

west=bounds[0],
north=bounds[3],
xsize=res,
ysize=res

)
rows = math.ceil((bounds[3] - bounds[1]) / res)
cols = math.ceil((bounds[2] - bounds[0]) / res)
shape = (rows, cols)
shape

(19, 21)

Finally, we rasterize california_borders based on the calculated template’s
shape and transform. When considering line or polygon rasterization, one
useful additional argument is all_touched. By default it is False, but when
changed to True—all cells that are touched by a line or polygon border get a
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value. Line rasterization with all_touched=True is demonstrated in the code
below (Figure 5.7, left). We are also using fill=np.nan to set ‘background’
values to ‘No Data’.
california_raster1 = rasterio.features.rasterize(

[(g, 1) for g in california_borders],
out_shape=shape,
transform=transform,
all_touched=True,
fill=np.nan,
dtype=np.float64

)

Compare it to polygon rasterization, with all_touched=False (the default),
which selects only raster cells whose centroids are inside the selector polygon,
as illustrated in Figure 5.7 (right).
california_raster2 = rasterio.features.rasterize(

[(g, 1) for g in california.geometry],
out_shape=shape,
transform=transform,
fill=np.nan,
dtype=np.float64

)

To illustrate which raster pixels are actually selected as part of rasterization,
we also show them as points. This also requires the following code section to
calculate the points, which we explain in Section 5.5.
height = california_raster1.shape[0]
width = california_raster1.shape[1]
cols, rows = np.meshgrid(np.arange(width), np.arange(height))
x, y = rasterio.transform.xy(transform, rows, cols)
x = np.array(x).flatten()
y = np.array(y).flatten()
z = california_raster1.flatten()
geom = gpd.points_from_xy(x, y, crs=california.crs)
pnt = gpd.GeoDataFrame(data={'value':z}, geometry=geom)
pnt

value geometry

0 1.0 POINT (-124.15959 41.75952)
1 1.0 POINT (-123.65959 41.75952)
2 1.0 POINT (-123.15959 41.75952)
... ... ...
396 1.0 POINT (-115.15959 32.75952)
397 1.0 POINT (-114.65959 32.75952)
398 NaN POINT (-114.15959 32.75952)
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Figure 5.7 shows the input vector layer, the rasterization results, and the points
pnt.
# Line rasterization
fig, ax = plt.subplots()
rasterio.plot.show(california_raster1, transform=transform, ax=ax, cmap='Set3')
gpd.GeoSeries(california_borders).plot(ax=ax, edgecolor='darkgrey', linewidth=1)
pnt.plot(ax=ax, color='black', markersize=1);
# Polygon rasterization
fig, ax = plt.subplots()
rasterio.plot.show(california_raster2, transform=transform, ax=ax, cmap='Set3')
california.plot(ax=ax, color='none', edgecolor='darkgrey', linewidth=1)
pnt.plot(ax=ax, color='black', markersize=1);

(a) Line rasterization
w/ all_touched=True

(b) Polygon rasterization
w/ all_touched=False

Figure 5.7: Examples of line and polygon rasterization

5.5 Spatial vectorization
Spatial vectorization is the counterpart of rasterization (Section 5.4). It involves
converting spatially continuous raster data into spatially discrete vector data
such as points, lines, or polygons. There are three standard methods to convert
a raster to a vector layer, which we cover next:

• Raster to polygons (Section 5.5.1)—converting raster cells to rectangular
polygons, representing pixel areas
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converting spatially continuous raster data into spatially discrete vector data
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polygons, representing pixel areas
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• Raster to points (Section 5.5.2)—converting raster cells to points, representing
pixel centroids

• Raster to contours (Section 5.5.3)

Let us demonstrate all three in the given order.

5.5.1 Raster to polygons
The rasterio.features.shapes gives access to raster pixels as polygon ge-
ometries, along with the associated raster values. The returned object is a
generator (see note in Section 3.3.1), yielding geometry,value pairs.

For example, the following expression returns a generator named shapes,
referring to the pixel polygons.
shapes = rasterio.features.shapes(rasterio.band(src_grain, 1))
shapes

<generator object shapes at 0x7fdcfc1cb540>

We can generate all shapes at once into a list named pol with list(shapes).
pol = list(shapes)

Each element in pol is a tuple of length 2, containing the GeoJSON-like
dict—representing the polygon geometry and the value of the pixel(s) which
comprise the polygon. For example, here is the first element of pol.
pol[0]

({'type': 'Polygon',
'coordinates': [[(-1.5, 1.5),

(-1.5, 1.0),
(-1.0, 1.0),
(-1.0, 1.5),
(-1.5, 1.5)]]},

1.0)

� Note

Note that, when transforming a raster cell into a polygon, five-coordinate
pairs need to be kept in memory to represent its geometry (explaining
why rasters are often fast compared with vectors!).

To transform the list coming out of rasterio.features.shapes into the
familiar GeoDataFrame, we need few more steps of data reshaping. First, we ap-
ply the shapely.geometry.shape function to go from a list of GeoJSON-like
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dicts to a list of shapely geometry objects. The list can then be converted
to a GeoSeries (see Section 1.2.6).
geom = [shapely.geometry.shape(i[0]) for i in pol]
geom = gpd.GeoSeries(geom, crs=src_grain.crs)
geom

0 POLYGON ((-1.5 1.5, -1.5 1, -1 ...
1 POLYGON ((-1 1.5, -1 1, -0.5 1,...
2 POLYGON ((-0.5 1.5, -0.5 1, 0 1...

...
11 POLYGON ((0 -0.5, 0 -1, -0.5 -1...
12 POLYGON ((0.5 -1, 0.5 -1.5, 1 -...
13 POLYGON ((1 -1, 1 -1.5, 1.5 -1....
Length: 14, dtype: geometry

The values can also be extracted from the rasterio.features.shapes result
and turned into a corresponding Series.
values = [i[1] for i in pol]
values = pd.Series(values)
values

0 1.0
1 0.0
2 1.0

...
11 2.0
12 0.0
13 2.0
Length: 14, dtype: float64

Finally, the two can be combined into a GeoDataFrame, hereby named result.
result = gpd.GeoDataFrame({'value': values, 'geometry': geom})
result

value geometry

0 1.0 POLYGON ((-1.5 1.5, -1.5 1, -1 ...
1 0.0 POLYGON ((-1 1.5, -1 1, -0.5 1,...
2 1.0 POLYGON ((-0.5 1.5, -0.5 1, 0 1...
... ... ...
11 2.0 POLYGON ((0 -0.5, 0 -1, -0.5 -1...
12 0.0 POLYGON ((0.5 -1, 0.5 -1.5, 1 -...
13 2.0 POLYGON ((1 -1, 1 -1.5, 1.5 -1....

The polygon layer result is shown in Figure 5.8.



178 5 Raster-vector interactions

dicts to a list of shapely geometry objects. The list can then be converted
to a GeoSeries (see Section 1.2.6).
geom = [shapely.geometry.shape(i[0]) for i in pol]
geom = gpd.GeoSeries(geom, crs=src_grain.crs)
geom

0 POLYGON ((-1.5 1.5, -1.5 1, -1 ...
1 POLYGON ((-1 1.5, -1 1, -0.5 1,...
2 POLYGON ((-0.5 1.5, -0.5 1, 0 1...

...
11 POLYGON ((0 -0.5, 0 -1, -0.5 -1...
12 POLYGON ((0.5 -1, 0.5 -1.5, 1 -...
13 POLYGON ((1 -1, 1 -1.5, 1.5 -1....
Length: 14, dtype: geometry

The values can also be extracted from the rasterio.features.shapes result
and turned into a corresponding Series.
values = [i[1] for i in pol]
values = pd.Series(values)
values

0 1.0
1 0.0
2 1.0

...
11 2.0
12 0.0
13 2.0
Length: 14, dtype: float64

Finally, the two can be combined into a GeoDataFrame, hereby named result.
result = gpd.GeoDataFrame({'value': values, 'geometry': geom})
result

value geometry

0 1.0 POLYGON ((-1.5 1.5, -1.5 1, -1 ...
1 0.0 POLYGON ((-1 1.5, -1 1, -0.5 1,...
2 1.0 POLYGON ((-0.5 1.5, -0.5 1, 0 1...
... ... ...
11 2.0 POLYGON ((0 -0.5, 0 -1, -0.5 -1...
12 0.0 POLYGON ((0.5 -1, 0.5 -1.5, 1 -...
13 2.0 POLYGON ((1 -1, 1 -1.5, 1.5 -1....

The polygon layer result is shown in Figure 5.8.
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result.plot(column='value', edgecolor='black', legend=True);

Figure 5.8: grain.tif converted to a polygon layer

As highlighted using edgecolor='black', neighboring pixels shar-
ing the same raster value are dissolved into larger polygons. The
rasterio.features.shapes function unfortunately does not offer a
way to avoid this type of dissolving. One suggestion is to add unique values
between 0 and 0.9999 to all pixels, convert to polygons, and then get back to
the original values using np.floor.

5.5.2 Raster to points
To transform a raster to points, we can use the rasterio.transform.xy func-
tion. As the name suggests, the function accepts row and column indices, and
transforms them into x- and y-coordinates (using the raster’s transformation
matrix). For example, the coordinates of the top-left pixel can be calculated
passing the (row,col) indices of (0,0).
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src = rasterio.open('output/elev.tif')
rasterio.transform.xy(src.transform, 0, 0)

(np.float64(-1.25), np.float64(1.25))

� Note

Keep in mind that the coordinates of the top-left pixel ((-1.25, 1.25)),
as calculated in the above expression, refer to the pixel centroid. Therefore,
they are not identical to the raster origin coordinates ((-1.5,1.5)), as
specified in the transformation matrix, which are the coordinates of the
top-left edge/corner of the raster (see Figure 5.9).
src.transform
Affine(0.5, 0.0, -1.5,

0.0, -0.5, 1.5)

To generalize the above expression to calculate the coordinates of all pixels,
we first need to generate a grid of all possible row/column index combinations.
This can be done using np.meshgrid, as follows.
height = src.shape[0]
width = src.shape[1]
cols, rows = np.meshgrid(np.arange(width), np.arange(height))

We now have two arrays, rows and cols, matching the shape of elev.tif
and containing the corresponding row and column indices.
rows

array([[0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5]])

cols

array([[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5]])



180 5 Raster-vector interactions
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top-left edge/corner of the raster (see Figure 5.9).
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To generalize the above expression to calculate the coordinates of all pixels,
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This can be done using np.meshgrid, as follows.
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cols, rows = np.meshgrid(np.arange(width), np.arange(height))

We now have two arrays, rows and cols, matching the shape of elev.tif
and containing the corresponding row and column indices.
rows
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[1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5]])

cols
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[0, 1, 2, 3, 4, 5]])
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These can be passed to rasterio.transform.xy to transform the indices into
point coordinates, accordingly stored in lists of arrays x and y.
x, y = rasterio.transform.xy(src.transform, rows, cols)

x

[array([-1.25, -0.75, -0.25, 0.25, 0.75, 1.25]),
array([-1.25, -0.75, -0.25, 0.25, 0.75, 1.25]),
array([-1.25, -0.75, -0.25, 0.25, 0.75, 1.25]),
array([-1.25, -0.75, -0.25, 0.25, 0.75, 1.25]),
array([-1.25, -0.75, -0.25, 0.25, 0.75, 1.25]),
array([-1.25, -0.75, -0.25, 0.25, 0.75, 1.25])]

y

[array([1.25, 1.25, 1.25, 1.25, 1.25, 1.25]),
array([0.75, 0.75, 0.75, 0.75, 0.75, 0.75]),
array([0.25, 0.25, 0.25, 0.25, 0.25, 0.25]),
array([-0.25, -0.25, -0.25, -0.25, -0.25, -0.25]),
array([-0.75, -0.75, -0.75, -0.75, -0.75, -0.75]),
array([-1.25, -1.25, -1.25, -1.25, -1.25, -1.25])]

Typically we want to work with the points in the form of a GeoDataFrame
which also holds the attribute(s) value(s) as point attributes. To get there,
we can transform the coordinates as well as any attributes to 1-dimensional
arrays, and then use methods we are already familiar with (Section 1.2.6) to
combine them into a GeoDataFrame.
x = np.array(x).flatten()
y = np.array(y).flatten()
z = src.read(1).flatten()
geom = gpd.points_from_xy(x, y, crs=src.crs)
pnt = gpd.GeoDataFrame(data={'value':z}, geometry=geom)
pnt

value geometry

0 1 POINT (-1.25 1.25)
1 2 POINT (-0.75 1.25)
2 3 POINT (-0.25 1.25)
... ... ...
33 34 POINT (0.25 -1.25)
34 35 POINT (0.75 -1.25)
35 36 POINT (1.25 -1.25)
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This ‘high-level’ workflow, like many other rasterio-based workflows covered
in the book, is a commonly used one but lacking from the package itself. From
the user’s perspective, it may be a good idea to wrap the workflow into a
function (e.g., raster_to_points(src), returning a GeoDataFrame), to be
re-used whenever we need it.

Figure 5.9 shows the input raster and the resulting point layer.
# Input raster
fig, ax = plt.subplots()
pnt.plot(column='value', legend=True, ax=ax)
rasterio.plot.show(src_elev, ax=ax);
# Points
fig, ax = plt.subplots()
pnt.plot(column='value', legend=True, edgecolor='black', ax=ax)
rasterio.plot.show(src_elev, alpha=0, ax=ax);

(a) Input raster (b) Points

Figure 5.9: Raster and point representation of elev.tif

Note that ‘No Data’ pixels can be filtered out from the conversion, if necessary
(see Section 5.6).

5.5.3 Raster to contours
Another common type of spatial vectorization is the creation of contour lines,
representing lines of continuous height or temperatures (isotherms), for example.
We will use a real-world digital elevation model (DEM) because the artificial
raster elev.tif produces parallel lines (task for the reader: verify this and
explain why this happens). Plotting contour lines is straightforward, using the
contour=True option of rasterio.plot.show (Figure 5.10).
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fig, ax = plt.subplots()
rasterio.plot.show(src_dem, ax=ax)
rasterio.plot.show(

src_dem,
ax=ax,
contour=True,
levels=np.arange(0,1200,50),
colors='black'

);

Figure 5.10: Displaying raster contours

Unfortunately, rasterio does not provide any way of extracting the contour
lines in the form of a vector layer, for uses other than plotting.
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There are two possible workarounds:

1. Using gdal_contour on the command line (see below), or through
its Python interface osgeo

2. Writing a custom function to export contour coordinates generated
by, e.g., matplotlib or skimage

We demonstrate the first approach, using gdal_contour. Although we deviate
from the Python-focused approach towards more direct interaction with GDAL,
the benefit of gdal_contour is the proven algorithm, customized to spatial
data, and with many relevant options. Both the gdal_contour program (along
with other GDAL programs) and its osgeo Python wrapper, should already
be installed on your system since GDAL is a dependency of rasterio. Using
the command line pathway, generating 50 m contours of the dem.tif file can
be done as follows.
os.system('gdal_contour -a elev data/dem.tif output/dem_contour.gpkg -i 50.0')

Like all GDAL programs (also see gdaldem example in Section 3.3.4),
gdal_contour works with files. Here, the input is the data/dem.tif file and
the result is exported to the output/dem_contour.gpkg file.

To illustrate the result, let’s read the resulting dem_contour.gpkg layer back
into the Python environment. Note that the layer contains an attribute named
'elev' (as specified using -a elev) with the contour elevation values.
contours1 = gpd.read_file('output/dem_contour.gpkg')
contours1

ID elev geometry

0 0 750.0 LINESTRING (795382.355 8935384....
1 1 800.0 LINESTRING (795237.703 8935384....
2 2 650.0 LINESTRING (798098.379 8935384....
... ... ... ...
29 29 450.0 LINESTRING (795324.083 8931774....
30 30 450.0 LINESTRING (795488.616 8931774....
31 31 450.0 LINESTRING (795717.42 8931774.8...

Figure 5.11 shows the input raster and the resulting contour layer.
fig, ax = plt.subplots()
rasterio.plot.show(src_dem, ax=ax)
contours1.plot(ax=ax, edgecolor='black');
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Figure 5.11: Contours of the dem.tif raster, calculated using the
gdal_contour program

5.6 Distance to nearest geometry
Calculating a raster of distances to the nearest geometry is an example of a
‘global’ raster operation (Section 3.3.6). To demonstrate it, suppose that we
need to calculate a raster representing the distance to the nearest coast in New
Zealand. This example also wraps many of the concepts introduced in this
chapter and in previous chapters, such as raster aggregation (Section 4.3.2),
raster conversion to points (Section 5.5.2), and rasterizing points (Section 5.4.1).

For the coastline, we will dissolve the New Zealand administrative division
polygon layer and ‘extract’ the boundary as a 'MultiLineString' geometry
(Figure 5.12). Note that .dissolve(by=None) (Section 2.2.2) calls .union_all



186 5 Raster-vector interactions

on all geometries (i.e., aggregates everything into one group), which is what
we want to do here.
coastline = nz.dissolve().to_crs(src_nz_elev.crs).boundary.iloc[0]
coastline

Figure 5.12: New Zealand coastline geometry

For a ‘template’ raster, we will aggregate the New Zealand DEM, in the
nz_elev.tif file, to 5 times coarser resolution. The code section below follows
the aggregation example in Section 4.3.2.
factor = 0.2
# Reading aggregated array
r = src_nz_elev.read(1,

out_shape=(
int(src_nz_elev.height * factor),
int(src_nz_elev.width * factor)
),

resampling=rasterio.enums.Resampling.average
)
# Updating the transform
new_transform = src_nz_elev.transform * src_nz_elev.transform.scale(

(src_nz_elev.width / r.shape[1]),
(src_nz_elev.height / r.shape[0])

)
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The resulting array r/new_transform and the lines layer coastline are plotted
in Figure 5.13. Note that the raster values are average elevations based on
5 × 5 pixels, but this is irrelevant for the subsequent calculation; the raster
is going to be used as a template, and all of its values will be replaced with
distances to coastline (Figure 5.14).
fig, ax = plt.subplots()
rasterio.plot.show(r, transform=new_transform, ax=ax)
gpd.GeoSeries(coastline).plot(ax=ax, edgecolor='red');

Figure 5.13: Template to calculate distance to nearest geometry (coastlines, in
red)

To calculate the actual distances, we must convert each pixel to a vector (point)
geometry. For this purpose, we use the technique demonstrated in Section 5.5.2,
but we’re keeping the points as a list of shapely geometries, rather than a
GeoDataFrame, since such a list is sufficient for the subsequent calculation.
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height = r.shape[0]
width = r.shape[1]
cols, rows = np.meshgrid(np.arange(width), np.arange(height))
x, y = rasterio.transform.xy(new_transform, rows, cols)
x = np.array(x).flatten()
y = np.array(y).flatten()
z = r.flatten()
x = x[~np.isnan(z)]
y = y[~np.isnan(z)]
geom = gpd.points_from_xy(x, y, crs=california.crs)
geom = list(geom)
geom[:5]

[<POINT (1572956.546 6189460.927)>,
<POINT (1577956.546 6189460.927)>,
<POINT (1582956.546 6189460.927)>,
<POINT (1587956.546 6189460.927)>,
<POINT (1592956.546 6189460.927)>]

The result geom is a list of shapely geometries, representing raster cell
centroids (excluding np.nan pixels, which were filtered out).

Now we can calculate the corresponding list of point geometries and associated
distances, using the .distance method from shapely:
distances = [(i, i.distance(coastline)) for i in geom]
distances[0]

(<POINT (1572956.546 6189460.927)>, 826.7523956221047)

Finally, we rasterize (see Section 5.4.1) the distances into our raster template.
image = rasterio.features.rasterize(

distances,
out_shape=r.shape,
dtype=np.float64,
transform=new_transform,
fill=np.nan

)
image

array([[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
...,
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan]])
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The final result, a raster of distances to the nearest coastline, is shown in
Figure 5.14.
fig, ax = plt.subplots()
rasterio.plot.show(image, transform=new_transform, ax=ax)
gpd.GeoSeries(coastline).plot(ax=ax, edgecolor='red');

Figure 5.14: Distance to nearest coastline in New Zealand
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Reprojecting geographic data

Prerequisites
This chapter requires importing the following packages:
import shutil
import math
import numpy as np
import matplotlib.pyplot as plt
import shapely
import pyproj
import geopandas as gpd
import rasterio
import rasterio.plot
import rasterio.warp

It also relies on the following data files:
src_srtm = rasterio.open('data/srtm.tif')
src_nlcd = rasterio.open('data/nlcd.tif')
zion = gpd.read_file('data/zion.gpkg')
world = gpd.read_file('data/world.gpkg')
cycle_hire_osm = gpd.read_file('data/cycle_hire_osm.gpkg')

6.1 Introduction
Section 1.4 introduced coordinate reference systems (CRSs), with a focus on
the two major types: geographic (‘lon/lat’, with units in degrees longitude
and latitude) and projected (typically with units of meters from a datum)
coordinate systems. This chapter builds on that knowledge and goes further.
It demonstrates how to set and transform geographic data from one CRS
to another and, furthermore, highlights specific issues that can arise due to
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ignoring CRSs that you should be aware of, especially if your data is stored
with lon/lat coordinates.

It is important to know if your data is in a projected or geographic coordinate
system, and the consequences of this for geometry operations. However, if you
know the CRS of your data and the consequences for geometry operations
(covered in the next section), CRSs should just work behind the scenes: people
often suddenly need to learn about CRSs when things go wrong. Having a
clearly defined project CRS that all project data is in, plus understanding
how and why to use different CRSs, can ensure that things do not go wrong.
Furthermore, learning about coordinate systems will deepen your knowledge
of geographic datasets and how to use them effectively.

This chapter teaches the fundamentals of CRSs, demonstrates the consequences
of using different CRSs (including what can go wrong), and how to ‘reproject’
datasets from one coordinate system to another. In the next section we intro-
duce CRSs in Python, followed by Section 6.3 which shows how to get and set
CRSs associated with spatial objects. Section 6.4 demonstrates the importance
of knowing what CRS your data is in with reference to a worked example of
creating buffers. We tackle questions of when to reproject and which CRS to
use in Section 6.5 and Section 6.6, respectively. Finally, we cover reprojecting
vector and raster objects in Section 6.7 and Section 6.8 and using custom
projections in Section 6.9.

6.2 Coordinate Reference Systems
Most modern geographic tools that require CRS conversions, including Python
packages and desktop GIS software such as QGIS, interface with PROJ, an
open source C++ library that ‘transforms coordinates from one coordinate
reference system (CRS) to another’. CRSs can be described in many ways,
including the following:

• Simple, yet potentially ambiguous, statements, such as ‘it’s in lon/lat coordi-
nates’

• Formalized, yet now outdated, ‘proj-strings’, such as +proj=longlat
+ellps=WGS84 +datum=WGS84 +no_defs

• With an identifying ‘authority:code’ text string, such as EPSG:4326

Each refers to the same thing: the ‘WGS84’ coordinate system that forms
the basis of Global Positioning System (GPS) coordinates and many other
datasets. But which one is correct?

The short answer is that the third way to identify CRSs is correct: EPSG:4326
is understood by geopandas and rasterio packages covered in this book,
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plus many other software projects for working with geographic data including
QGIS and PROJ. EPSG:4326 is future-proof. Furthermore, although it is
machine readable, unlike the proj-string representation EPSG:4326 is short,
easy to remember and highly ‘findable’ online (searching for EPSG:4326 yields
a dedicated page on the website epsg.io1, for example). The more concise
identifier 4326 is also understood by geopandas and rasterio.

The longer answer is that none of the three descriptions is sufficient, and more
detail is needed for unambiguous CRS handling and transformations: due to
the complexity of CRSs, it is not possible to capture all relevant information
about them in such short text strings. For this reason, the Open Geospatial
Consortium (OGC, which also developed the Simple Features specification
that the geopandas package implements) developed an open standard format
for describing CRSs that is called WKT (Well Known Text). This is detailed
in a 100+ page document that ‘defines the structure and content of a text
string implementation of the abstract model for coordinate reference systems
described in ISO 19111:2019’ (Open Geospatial Consortium 2019). The WKT
representation of the WGS84 CRS, which has the identifier EPSG:4326 is as
follows.
crs = pyproj.CRS.from_string('EPSG:4326') # or '.from_epsg(4326)'
print(crs.to_wkt(pretty=True))

GEOGCRS["WGS 84",
ENSEMBLE["World Geodetic System 1984 ensemble",

MEMBER["World Geodetic System 1984 (Transit)"],
MEMBER["World Geodetic System 1984 (G730)"],
MEMBER["World Geodetic System 1984 (G873)"],
MEMBER["World Geodetic System 1984 (G1150)"],
MEMBER["World Geodetic System 1984 (G1674)"],
MEMBER["World Geodetic System 1984 (G1762)"],
MEMBER["World Geodetic System 1984 (G2139)"],
ELLIPSOID["WGS 84",6378137,298.257223563,

LENGTHUNIT["metre",1]],
ENSEMBLEACCURACY[2.0]],

PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],

CS[ellipsoidal,2],
AXIS["geodetic latitude (Lat)",north,

ORDER[1],
ANGLEUNIT["degree",0.0174532925199433]],

AXIS["geodetic longitude (Lon)",east,
ORDER[2],
ANGLEUNIT["degree",0.0174532925199433]],

1https://epsg.io/4326

https://epsg.io/4326
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Consortium (OGC, which also developed the Simple Features specification
that the geopandas package implements) developed an open standard format
for describing CRSs that is called WKT (Well Known Text). This is detailed
in a 100+ page document that ‘defines the structure and content of a text
string implementation of the abstract model for coordinate reference systems
described in ISO 19111:2019’ (Open Geospatial Consortium 2019). The WKT
representation of the WGS84 CRS, which has the identifier EPSG:4326 is as
follows.
crs = pyproj.CRS.from_string('EPSG:4326') # or '.from_epsg(4326)'
print(crs.to_wkt(pretty=True))

GEOGCRS["WGS 84",
ENSEMBLE["World Geodetic System 1984 ensemble",

MEMBER["World Geodetic System 1984 (Transit)"],
MEMBER["World Geodetic System 1984 (G730)"],
MEMBER["World Geodetic System 1984 (G873)"],
MEMBER["World Geodetic System 1984 (G1150)"],
MEMBER["World Geodetic System 1984 (G1674)"],
MEMBER["World Geodetic System 1984 (G1762)"],
MEMBER["World Geodetic System 1984 (G2139)"],
ELLIPSOID["WGS 84",6378137,298.257223563,

LENGTHUNIT["metre",1]],
ENSEMBLEACCURACY[2.0]],

PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],

CS[ellipsoidal,2],
AXIS["geodetic latitude (Lat)",north,

ORDER[1],
ANGLEUNIT["degree",0.0174532925199433]],

AXIS["geodetic longitude (Lon)",east,
ORDER[2],
ANGLEUNIT["degree",0.0174532925199433]],

1https://epsg.io/4326
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USAGE[
SCOPE["Horizontal component of 3D system."],
AREA["World."],
BBOX[-90,-180,90,180]],

ID["EPSG",4326]]

Should any attributes or values given in the cited identifier be in conflict
with attributes or values given explicitly in the WKT description, the WKT
values shall prevail.

The convention of referring to CRSs identifiers in the form AUTHORITY:CODE
allows a wide range of formally defined coordinate systems to be referred to.
The most commonly used authority in CRS identifiers is EPSG, an acronym
for the European Petroleum Survey Group which published a standardized list
of CRSs. Other authorities can be used in CRS identifiers. ESRI:54030, for
example, refers to ESRI’s implementation of the Robinson projection, which
has the following WKT string.
crs = pyproj.CRS.from_string('ESRI:54030')
print(crs.to_wkt(pretty=True))

PROJCRS["World_Robinson",
BASEGEOGCRS["WGS 84",

DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,

LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,

ANGLEUNIT["Degree",0.0174532925199433]]],
CONVERSION["World_Robinson",

METHOD["Robinson"],
PARAMETER["Longitude of natural origin",0,

ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],

PARAMETER["False easting",0,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],

PARAMETER["False northing",0,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],

The output of the command shows how the CRS identifier (also known as a
Spatial Reference Identifier, or SRID) works: it is simply a look-up, providing a
unique identifier associated with a more complete WKT representation of the
CRS. This raises the question: what happens if there is a mismatch between
the identifier and the longer WKT representation of a CRS? On this point
Open Geospatial Consortium (Open Geospatial Consortium 2019) is clear, and
the verbose WKT representation takes precedence over the identifier:
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CS[Cartesian,2],
AXIS["(E)",east,

ORDER[1],
LENGTHUNIT["metre",1]],

AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1]],

USAGE[
SCOPE["Not known."],
AREA["World."],
BBOX[-90,-180,90,180]],

ID["ESRI",54030]]

WKT strings are exhaustive, detailed, and precise, allowing for unambiguous
CRSs storage and transformations. They contain all relevant information about
any given CRS, including its datum and ellipsoid, prime meridian, projection,
and units.

Recent PROJ versions (6+) still allow use of proj-strings to define coordinate op-
erations, but some proj-string keys (+nadgrids, +towgs84, +k, +init=epsg:)
are either no longer supported or are discouraged. Additionally, only three
datums (i.e., WGS84, NAD83, and NAD27) can be directly set in proj-string.
Longer explanations of the evolution of CRS definitions and the PROJ library
can be found in Bivand (2021), Chapter 2 of Pebesma and Bivand (2022), and
a blog post by Floris Vanderhaeghe2.

� Note

As outlined in the PROJ documentation, there are different versions
of the WKT CRS format including WKT1 and two variants of WKT2,
the latter of which (WKT2, 2018 specification) corresponds to the ISO
19111:2019 (Open Geospatial Consortium 2019).

6.3 Querying and setting coordinate systems
Let’s see how CRSs are stored in Python spatial objects and how they can
be queried and set. First, we will look at getting and setting CRSs in vector
geographic data objects. Consider the GeoDataFrame object named world,
imported from a file world.gpkg that represents countries worldwide. Its CRS
can be retrieved using the .crs property.

2https://inbo.github.io/tutorials/tutorials/spatial_crs_coding/

https://inbo.github.io/tutorials/tutorials/spatial_crs_coding
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world.crs

<Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

The output specifies the following pieces of information:

1. The CRS type (Geographic 2D CRS) and SRID code (EPSG:4326)
2. The CRS name (WGS 84)
3. The axes (latitude, longitude) and their units (degree)
4. The applicable area name (World) and bounding box ((-180.0,

-90.0, 180.0, 90.0))
5. The datum (WGS 84)

The WKT representation, which is internally used when saving the object to a
file or doing any coordinate operations, can be extracted using .crs.to_wkt()
as shown above (Section 6.2). We can also see that the world object has the
WGS84 ellipsoid, the latitude and longitude axis order, and uses the Greenwich
prime meridian. We also have the suitable area specification for the use of this
CRS, and CRS identifier: EPSG:4326.

The CRS specification object, such as world.crs, has several useful properties
and methods to explicitly retrieve information about the used CRS. For exam-
ple, we can check whether the CRS is geographic with the .is_geographic
property.
world.crs.is_geographic

True

CRS units of both axes (typically identical) can be retrieved with the
.axis_info property.
world.crs.axis_info[0].unit_name, world.crs.axis_info[1].unit_name

('degree', 'degree')
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AUTHORITY and CODE strings may be obtained with the .to_authority()
method.
world.crs.to_authority()

('EPSG', '4326')

In cases when a coordinate reference system (CRS) is missing or the wrong CRS
is set, the .set_crs method can be used on a GeoSeries or a GeoDataFrame
to set it. The CRS can be specified using an EPSG code as the first argument.
In case the object already has a different CRS definition, we must also specify
allow_override=True to replace it (otherwise we get an error). In the first
example we set the EPSG:4326 CRS, which has no effect because world already
has that exact CRS definition, while the second example replaces the existing
CRS with a new definition of EPSG:3857.
world2 = world.set_crs(4326)
world3 = world.set_crs(3857, allow_override=True)

The provided number is interpreted as an EPSG code. We can also use strings,
as in 'EPSG:4326', which is useful to make the code more clear and when
using other authorities than EPSG.
world4 = world.set_crs('ESRI:54009', allow_override=True)

In rasterio, the CRS information is stored as part of a raster file connection
metadata (Section 1.3.1). Replacing the CRS definition for a rasterio file
connection is typically not necessary, because it is not considered in any
operation; only the transformation matrix and coordinates are. One exception
is when writing the raster, in which case we need to construct the metadata of
the raster file to be written, and therein specify the CRS anyway (Section 1.3.2).
However, if we, for some reason, need to change the CRS definition in the file
connection metadata, we can do that when opening the file in r+ (reading and
writing) mode. To demonstrate, we will create a copy of the nlcd.tif file,
named nlcd_modified_crs.tif,
shutil.copy('data/nlcd.tif', 'output/nlcd_modified_crs.tif')

'output/nlcd_modified_crs.tif'

and examine its existing CRS.
src_nlcd2 = rasterio.open('output/nlcd_modified_crs.tif', 'r+')
src_nlcd2.crs

CRS.from_epsg(26912)
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� Note

The rasterio.open function modes generally follows Python’s standard
file connection modes, with possible arguments being 'r' (read), 'w'
(write), 'r+' (read/write), and 'w+' (write/read) (the 'a' ‘append’
mode is irrelevant for raster files). In the book, and in general, the most
commonly used modes are 'r' (read) and 'w' (write). 'r+', used in the
last example, means ‘read/write’. Unlike with 'w', 'r+' does not delete
the existing content on open, making 'r+' suitable for making changes
in an existing file (such as here, replacing the CRS).

To replace the definition with a new one, such as EPSG:3857, we can use the
.crs method, as shown below.
src_nlcd2.crs = 3857
src_nlcd2.close()

Next, examining the file connection demonstrates that the CRS was indeed
changed.
rasterio.open('output/nlcd_modified_crs.tif').crs

CRS.from_epsg(3857)

Importantly, the .set_crs (for vector layers) or the assignment to .crs (for
rasters), as shown above, do not alter coordinates’ values or geometries. Their
role is only to set a metadata information about the object CRS. Consequently,
the objects we created, world3, world4, and src_nlcd2 are ‘incorrect’, in the
sense that the geometries are in fact given in a different CRS than specified in
the associated CRS definition.

In some cases, the CRS of a geographic object is unknown, as is the case in
the London dataset created in the code chunk below, building on the example
of London introduced in Section 1.2.6.
lnd_point = shapely.Point(-0.1, 51.5)
lnd_geom = gpd.GeoSeries([lnd_point])
lnd_layer = gpd.GeoDataFrame({'geometry': lnd_geom})
lnd_layer

geometry

0 POINT (-0.1 51.5)

Querying the .crs of such a layer returns None, therefore nothing is printed.
lnd_layer.crs
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This implies that geopandas does not know what the CRS is and is unwilling
to guess. Unless a CRS is manually specified or is loaded from a source that
has CRS metadata, geopandas does not make any explicit assumptions about
which coordinate systems, other than to say ‘I don’t know’. This behavior makes
sense given the diversity of available CRSs but differs from some approaches,
such as the GeoJSON file format specification, which makes the simplifying
assumption that all coordinates have a lon/lat CRS: EPSG:4326.

A CRS can be added to GeoSeries or GeoDataFrame objects using the
.set_crs method, as mentioned above.
lnd_layer = lnd_layer.set_crs(4326)

When working with geopandas and rasterio, datasets without a specified CRS
are not an issue in most workflows, since only the coordinates are considered.
It is up to the user to make sure that, when working with more than one
layer, all of the coordinates are given in the same CRS (whether specified or
not). When exporting the results, though, it is important to keep the CRS
definition in place, because other software typically do use, and require, the
CRS definition in calculations. It should also be mentioned that, in some cases
the CRS specification is left unspecified on purpose, for example when working
with layers in arbitrary or non-geographic space (simulations, internal building
plans, analysis of plot-scale ecological patterns, etc.).

6.4 Geometry operations on projected and unprojected
data

The geopandas package, through its dependency shapely, assumes planar
geometry and works with distance/area values assumed to be in CRS units. In
fact, the CRS definition is typically ignored, and the respective functions (such
as in plotting and distance calculations) are applied on the ‘bare’ shapely
geometries. Accordingly, it is crucial to make sure that:

• Geometric calculations are only applied in projected CRS
• If there is more than one layer involved—all layers have to be in the same

(projected) CRS
• Distance and area values, are passed, and returned, in CRS units

For example, to calculate a buffer of 100 km around London, we need to work
with a layer representing London in a projected CRS (e.g., EPSG:27700) and
pass the distance value in the CRS units (e.g., 100000 m).

In the following code chunk we create, from scratch, a point layer
lnd_layer_proj with a point representing London (compare it to lnd_layer,
in a geographical CRS which we created above, see Section 6.3).
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lnd_point_proj = shapely.Point(530000, 180000)
lnd_geom_proj = gpd.GeoSeries([lnd_point_proj], crs=27700)
lnd_layer_proj = gpd.GeoDataFrame({'geometry': lnd_geom_proj})
lnd_layer_proj

geometry

0 POINT (530000 180000)

Now, we can use the .buffer method (Section 4.2.3) to calculate the buffer of
100 km around London.
lnd_layer_proj_buff = lnd_layer_proj.buffer(100000)
lnd_layer_proj_buff

0 POLYGON ((630000 180000, 629518...
dtype: geometry

The resulting buffer is shown in the left panel of Figure 6.1.

Calculating a 100-km buffer directly for lnd_layer, which is in a geographical
CRS, is impossible. Since the lnd_layer is in decimal degrees, the closest
thing to a 100-km buffer would be to use a distance of 1 degree, which is
roughly equivalent to 100 km (1 degree is about 111 km at the equator):
lnd_layer_buff = lnd_layer.buffer(1)
lnd_layer_buff

/tmp/ipykernel_151433/855451079.py:1: UserWarning:

Geometry is in a geographic CRS. Results from 'buffer' are
likely incorrect. Use 'GeoSeries.to_crs()' to re-project
geometries to a projected CRS before this operation.

0 POLYGON ((0.9 51.5, 0.89518 51....
dtype: geometry

However, this is incorrect, as told by the warning message and shown in the
right panel of Figure 6.1. The association between degrees and true distance
varies over the surface of the earth and we cannot assume it is fixed.
uk = world[world['name_long'] == 'United Kingdom']
uk_proj = uk.to_crs(27700)
# Around projected point
base = uk_proj.plot(color='none', edgecolor='darkgrey', linewidth=0.5)
lnd_layer_proj_buff.plot(color='grey', edgecolor='black', alpha=0.5, ax=base)
lnd_layer_proj.plot(color='red', ax=base);
# Around point in lon/lat
base = uk.plot(color='none', edgecolor='darkgrey', linewidth=0.5)
lnd_layer_buff.plot(color='grey', edgecolor='black', alpha=0.5, ax=base)
lnd_layer.plot(color='red', ax=base);
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(a) Around a projected point and dis-
tance of 100 km

(b) Around a point in lon/lat using
distance of 1 degree (incorrectly ap-
proximating 100 km)

Figure 6.1: Buffers around London

� Note

The distance between two lines of longitude, called merid-
ians, is around 111 km at the equator (execute import
geopy.distance;geopy.distance.geodesic((0,0),(0,1)) to find
the precise distance). This shrinks to zero at the poles. At the latitude
of London, for example, meridians are less than 70 km apart (challenge:
execute code that verifies this). Lines of latitude, by contrast, are
equidistant from each other irrespective of latitude: they are always
around 111 km apart, including at the equator and near the poles.

� Note

The spherely3 package, in early stages of development at the time
of writing, is aimed at providing a spherical-geometry counterpart to
shapely, so that true distances (in m) and areas (in m2) can be directly
calculated on geometries in geographic CRS.

3https://github.com/benbovy/spherely

https://github.com/benbovy/spherely
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6.5 When to reproject?
The previous section showed how to set the CRS manually, with an expression
such as lnd_layer.set_crs(4326). In real-world applications, however, CRSs
are usually set automatically when data is read-in. Thus, in many projects the
main CRS-related task is to transform objects, from one CRS into another.
But when should data be transformed? And into which CRS? There are no
clear-cut answers to these questions and CRS selection always involves trade-
offs (Maling 1992). However, there are some general principles provided in this
section that can help you decide.

First, it’s worth considering when to transform. In some cases, transformation
to a geographic CRS is essential, such as when publishing data online (for
example, a Leaflet-based map using Python package folium). Another case
is when two objects with different CRSs must be compared or combined, as
shown when we try to find the distance between two objects with different
CRSs.
lnd_layer.distance(lnd_layer_proj)

/tmp/ipykernel_151433/2145313019.py:1: UserWarning:

Geometry is in a geographic CRS. Results from 'distance' are
likely incorrect. Use 'GeoSeries.to_crs()' to re-project
geometries to a projected CRS before this operation.

/tmp/ipykernel_151433/2145313019.py:1: UserWarning:

CRS mismatch between the CRS of left geometries and the CRS of
right geometries.
Use `to_crs()` to reproject one of the input geometries to match
the CRS of the other.

Left CRS: EPSG:4326
Right CRS: EPSG:27700

0 559715.614087
dtype: float64

Here, we got a meaningless distance value of 559715, and a warning.

To make the lnd_layer and lnd_layer_proj objects geographically compa-
rable, one of them must be transformed into the CRS of the other. But which
CRS to use? The answer depends on context: many projects, especially those
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involving web mapping, require outputs in EPSG:4326, in which case it is worth
transforming the projected object. If, however, the project requires geometric
calculations, implying planar geometry, e.g., calculating buffers (Section 6.4),
it is necessary to transform data with a geographic CRS into an equivalent
object with a projected CRS, such as the British National Grid (EPSG:27700).
That is the subject of Section 6.6.

6.6 Which CRS to use?
The question of which CRS is tricky, and there is rarely a ‘right’ answer:
‘There exist no all-purpose projections, all involve distortion when far from
the center of the specified frame’ (Bivand, Pebesma, and Gómez-Rubio 2013).
Additionally, you should not be attached just to one projection for every task.
It is possible to use one projection for some part of the analysis, another
projection for a different part, and even some other for visualization. Always
try to pick the CRS that serves your goal best!

When selecting geographic CRSs, the answer is often WGS84. It is used not
only for web mapping, but also because GPS datasets and thousands of raster
and vector datasets are provided in this CRS by default. WGS84 is the most
common CRS in the world, so it is worth knowing its EPSG code: 4326. This
‘magic number’ can be used to convert objects with unusual projected CRSs
into something that is widely understood.

What about when a projected CRS is required? In some cases, it is not
something that we are free to decide: ‘often the choice of projection is made by
a public mapping agency’ (Bivand, Pebesma, and Gómez-Rubio 2013). This
means that when working with local data sources, it is likely preferable to
work with the CRS in which the data was provided, to ensure compatibility,
even if the official CRS is not the most accurate. The example of London was
easy to answer because the British National Grid (with its associated EPSG
code 27700) is well known, and the original dataset (lnd_layer) already had
that CRS.

A commonly used default is Universal Transverse Mercator (UTM), a set of
CRSs that divide the Earth into 60 longitudinal wedges and 20 latitudinal
segments. The transverse Mercator projection used by UTM CRSs is conformal
but distorts areas and distances with increasing severity with distance from
the center of the UTM zone. Documentation from the GIS software Manifold
therefore suggests restricting the longitudinal extent of projects using UTM
zones to 6 degrees from the central meridian4. Therefore, we recommend using

4http://www.manifold.net/doc/mfd9/universal_transverse_mercator_projection.htm

http://www.manifold.net/doc/mfd9/universal_transverse_mercator_projection.htm
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involving web mapping, require outputs in EPSG:4326, in which case it is worth
transforming the projected object. If, however, the project requires geometric
calculations, implying planar geometry, e.g., calculating buffers (Section 6.4),
it is necessary to transform data with a geographic CRS into an equivalent
object with a projected CRS, such as the British National Grid (EPSG:27700).
That is the subject of Section 6.6.

6.6 Which CRS to use?
The question of which CRS is tricky, and there is rarely a ‘right’ answer:
‘There exist no all-purpose projections, all involve distortion when far from
the center of the specified frame’ (Bivand, Pebesma, and Gómez-Rubio 2013).
Additionally, you should not be attached just to one projection for every task.
It is possible to use one projection for some part of the analysis, another
projection for a different part, and even some other for visualization. Always
try to pick the CRS that serves your goal best!

When selecting geographic CRSs, the answer is often WGS84. It is used not
only for web mapping, but also because GPS datasets and thousands of raster
and vector datasets are provided in this CRS by default. WGS84 is the most
common CRS in the world, so it is worth knowing its EPSG code: 4326. This
‘magic number’ can be used to convert objects with unusual projected CRSs
into something that is widely understood.

What about when a projected CRS is required? In some cases, it is not
something that we are free to decide: ‘often the choice of projection is made by
a public mapping agency’ (Bivand, Pebesma, and Gómez-Rubio 2013). This
means that when working with local data sources, it is likely preferable to
work with the CRS in which the data was provided, to ensure compatibility,
even if the official CRS is not the most accurate. The example of London was
easy to answer because the British National Grid (with its associated EPSG
code 27700) is well known, and the original dataset (lnd_layer) already had
that CRS.

A commonly used default is Universal Transverse Mercator (UTM), a set of
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UTM only when your focus is on preserving angles for a relatively small
area!

Almost every place on Earth has a UTM code, such as '60H' which refers,
among others, to northern New Zealand. UTM EPSG codes run sequentially
from 32601 to 32660 for northern hemisphere locations and from 32701 to
32760 for southern hemisphere locations.

To show how the system works, let’s create a function, lonlat2UTM to calculate
the EPSG code associated with any point on the planet.
def lonlat2UTM(lon, lat):

utm = (math.floor((lon + 180) / 6) % 60) + 1
if lat > 0:

utm += 32600
else:

utm += 32700
return utm

The following command uses this function to identify the UTM zone and
associated EPSG code for Auckland.
lonlat2UTM(174.7, -36.9)

32760

Here is another example for London (where we ‘unpack’ the coordinates of the
1st geometry in lnd_layer into the lonlat2UTM function arguments).
lonlat2UTM(*lnd_layer.geometry.iloc[0].coords[0])

32630

Currently, we also have tools helping us to select a proper CRS. For example,
the webpage https://crs-explorer.proj.org/ lists CRSs based on selected
location and type. Important note: while these tools are helpful in many
situations, you need to be aware of the properties of the recommended CRS
before you apply it.

In cases where an appropriate CRS is not immediately clear, the choice of
CRS should depend on the properties that are most important to preserve in
the subsequent maps and analysis. All CRSs are either equal-area, equidistant,
conformal (with shapes remaining unchanged), or some combination of com-
promises of those (Section 1.4.2). Custom CRSs with local parameters can be
created for a region of interest and multiple CRSs can be used in projects when
no single CRS suits all tasks. ‘Geodesic calculations’ can provide a fall-back if
no CRSs are appropriate5. Regardless of the projected CRS used, the results
may not be accurate for geometries covering hundreds of kilometers.

5https://proj.org/geodesic.html

https://crs-explorer.proj.org
https://proj.org/geodesic.html
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When deciding on a custom CRS, we recommend the following:

• A Lambert azimuthal equal-area (LAEA) projection for a custom local
projection (set latitude and longitude of origin to the center of the study
area), which is an equal-area projection at all locations but distorts shapes
beyond thousands of kilometers

• Azimuthal equidistant (AEQD) projections for a specifically accurate straight-
line distance between a point and the center point of the local projection

• Lambert conformal conic (LCC) projections for regions covering thousands of
kilometers, with the cone set to keep distance and area properties reasonable
between the secant lines

• Stereographic (STERE) projections for polar regions, but taking care not
to rely on area and distance calculations thousands of kilometers from the
center

One possible approach to automatically select a projected CRS specific to a
local dataset is to create an azimuthal equidistant (AEQD) projection for the
center-point of the study area. This involves creating a custom CRS (with
no EPSG code) with units of meters based on the center point of a dataset.
Note that this approach should be used with caution: no other datasets will
be compatible with the custom CRS created and results may not be accurate
when used on extensive datasets covering hundreds of kilometers.

The principles outlined in this section apply equally to vector and raster
datasets. Some features of CRS transformation however are unique to each
geographic data model. We will cover the particularities of vector data trans-
formation in Section 6.7 and those of raster transformation in Section 6.8. The
last section, Section 6.9, shows how to create custom map projections.

6.7 Reprojecting vector geometries
Section 1.2 demonstrated how vector geometries are made-up of points, and
how points form the basis of more complex objects such as lines and polygons.
Reprojecting vectors thus consists of transforming the coordinates of these
points, which form the vertices of lines and polygons.

Section 6.4 contains an example in which at a GeoDataFrame had to be
transformed into an equivalent object, with a different CRS, to calculate the
distance between two objects. Reprojection of vector layers is done using the
.to_crs method.
lnd_layer2 = lnd_layer.to_crs(27700)
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Now that a transformed version of lnd_layer has been created, the distance
between the two representations of London can be found using the .distance
method.
lnd_layer2.distance(lnd_layer_proj)

0 2017.949587
dtype: float64

It may come as a surprise that lnd_layer and lnd_layer2 are just over 2
km apart! The difference in location between the two points is not due to
imperfections in the transforming operation (which is in fact very accurate)
but the low precision of the manually specified coordinates when creating
lnd_layer and lnd_layer_proj.

Reprojecting to a different CRS is also demonstrated below using
cycle_hire_osm, a point layer that represents ‘docking stations’ where you
can hire bicycles in London. The contents of the CRS object associated with
a given geometry column are changed when the object’s CRS is transformed.
In the code chunk below, we create a new version of cycle_hire_osm with a
projected CRS.
cycle_hire_osm_projected = cycle_hire_osm.to_crs(27700)
cycle_hire_osm_projected.crs

<Projected CRS: EPSG:27700>
Name: OSGB36 / British National Grid
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: United Kingdom (UK) - offshore to boundary of UKCS
within 49°45'N to 61°N and 9°W to 2°E; onshore Great Britain
(England, Wales and Scotland). Isle of Man onshore.
- bounds: (-9.01, 49.75, 2.01, 61.01)
Coordinate Operation:
- name: British National Grid
- method: Transverse Mercator
Datum: Ordnance Survey of Great Britain 1936
- Ellipsoid: Airy 1830
- Prime Meridian: Greenwich

The resulting object has a new CRS according to the EPSG code 27700. How
to find out more details about this EPSG code, or any code? One option
is to search for it online. Another option is to create a standalone CRS
object within the Python environment (using pyproj.CRS.from_string or
pyproj.CRS.from_epsg, see Section 6.2), and then query its properties, such
as .name and .to_wkt().
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crs_lnd_new = pyproj.CRS.from_epsg(27700)
crs_lnd_new.name, crs_lnd_new.to_wkt()

('OSGB36 / British National Grid',
'PROJCRS["OSGB36 / British National Grid",BASEGEOGCRS["OSGB36",
DATUM["Ordnance Survey of Great Britain 1936",ELLIPSOID
["Airy 1830",6377563.396,299.3249646,LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4277]],CONVERSION["British National Grid",
METHOD["Transverse Mercator",ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",49,
ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",-2,ANGLEUNIT["degree",
0.0174532925199433],ID["EPSG",8802]],PARAMETER["Scale
factor at natural origin",0.9996012717,SCALEUNIT["unity",1],
ID["EPSG",8805]],PARAMETER["False easting",400000,
LENGTHUNIT["metre",1],ID["EPSG",8806]],
PARAMETER["False northing",-100000,LENGTHUNIT["metre",1],
ID["EPSG",8807]]],CS[Cartesian,2],
AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1]],
AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1]],
USAGE[SCOPE["Engineering survey, topographic mapping."],
AREA["United Kingdom (UK) - offshore to boundary of UKCS
within 49°45\'N to 61°N and 9°W to 2°E; onshore Great Britain
(England, Wales and Scotland). Isle of Man onshore."],
BBOX[49.75,-9.01,61.01,2.01]],ID["EPSG",27700]]')

The result shows that the EPSG code 27700 represents the British National
Grid, a result that could have been found by searching online for ‘EPSG 27700’.

6.8 Reprojecting raster geometries
The CRSs concepts described in the previous section apply equally to rasters.
However, there are important differences in reprojection of vectors and rasters:
transforming a vector object involves changing the coordinates of every vertex,
but this does not apply to raster data. Rasters are composed of rectangular
cells of the same size (expressed by map units, such as degrees or meters),
so it is usually impracticable to transform coordinates of pixels separately.
Raster reprojection involves creating a new raster object in the destination
CRS, often with a different number of columns and rows than the original.
The attributes must subsequently be re-estimated, allowing the new pixels
to be ‘filled’ with appropriate values. In other words, raster reprojection can
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be thought of as two separate spatial operations: a vector reprojection of the
raster extent to another CRS (Section 6.7), and computation of new pixel
values through resampling (Section 4.3.3). Due to this additional complexity,
in most cases when both raster and vector data are used, it is better to avoid
reprojecting rasters and reproject vectors instead.

� Note

Reprojection of regular rasters is also known as warping. Additionally,
there is a second similar operation called ‘transformation’. Instead of
resampling all of the values, it leaves all values intact but recomputes new
coordinates for every raster cell, changing the grid geometry. For example,
it could convert the input raster (a regular grid) into a curvilinear grid.
The rasterio, like common raster file formats (such as GeoTIFF), does
not support curvilinear grids. The xarray package, for instance, can be
used to work with curvilinear grids.

The raster reprojection process is done using two functions from the
rasterio.warp sub-package:

1. rasterio.warp.calculate_default_transform, used to calculate
the new transformation matrix in the destination CRS, according
to the source raster dimensions and bounds. Alternatively, the des-
tination transformation matrix can be obtained from an existing
raster; this is common practice when we need to align one raster
with another, for instance to be able to combine them in raster
algebra operations (Section 3.3.3) (see below)

2. rasterio.warp.reproject, introduced in Section 4.3.3, calculates
cell values in the destination grid, using the user-selected resampling
method (such as nearest neighbor, or bilinear)

src_nlcd

<open DatasetReader name='data/nlcd.tif' mode='r'>

Recall from previous chapters that the raster transformation matrix and
dimensions are accessible from the file connection using src_nlcd.transform,
src_nlcd.width, src_nlcd.height, and src_nlcd.bounds, respectively.

Let’s take a look at two examples of raster transformation: using categorical
and continuous data. Land cover data are usually represented by categorical
maps. The nlcd.tif file provides information for a small area in Utah, USA,
obtained from National Land Cover Database 2011 in the NAD83 / UTM
zone 12N CRS. We already created a connection to the nlcd.tif file at the
beginning of this chapter, named src_nlcd.
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This information will be required to calculate the destination transformation
matrix.

First, let’s define the destination CRS. In this case, we choose WGS84 (EPSG
code 4326).
dst_crs = 'EPSG:4326'

Now, we are ready to calculate the destination raster transformation matrix
(dst_transform), and the destination dimensions (dst_width, dst_height),
using rasterio.warp.calculate_default_transform, as follows:
dst_transform, dst_width, dst_height = rasterio.warp.calculate_default_transform(

src_nlcd.crs,
dst_crs,
src_nlcd.width,
src_nlcd.height,
*src_nlcd.bounds

)

Here is the result.
dst_transform

Affine(0.00031506316853514724, 0.0, -113.24138811813536,
0.0, -0.00031506316853514724, 37.51912722777022)

dst_width

1244
dst_height

1246

� Note

The * syntax in Python is known as variable-length ‘positional arguments’.
It is used to pass a list or tuple (or other iterables object) to positional
arguments of a function.
For example, in the last code block, *, in *src_nlcd.bounds, is
used to unpack src_nlcd.bounds (an iterable of length 4) to
four separate arguments (left, bottom, right, and top), which
rasterio.warp.calculate_default_transform requires in that order.
In other words, the expression from the last example:
rasterio.warp.calculate_default_transform(

src_nlcd.crs,
dst_crs,
src_nlcd.width,
src_nlcd.height,
*src_nlcd.bounds

)
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is a shortcut of:
rasterio.warp.calculate_default_transform(

src_nlcd.crs,
dst_crs,
src_nlcd.width,
src_nlcd.height,
src_nlcd.bounds[0],
src_nlcd.bounds[1],
src_nlcd.bounds[2],
src_nlcd.bounds[3]

)
‘Keyword arguments’ is a related technique; see note in Section 4.3.2.

Recall from Section 4.3.3 that resampling using rasterio.warp.reproject
can take place directly into a ‘destination’ raster file connection. Therefore,
our next step is to create the metadata file used for writing the reprojected
raster to file. For convenience, we are taking the metadata of the source raster
(src_nlcd.meta), making a copy (dst_kwargs), and then updating those
specific properties that need to be changed. Note that the reprojection process
typically creates ‘No Data’ pixels, even when there were none in the input
raster, since the raster orientation changes and the edges need to be ‘filled’ to
get back a rectangular extent. For example, a reprojected raster may appear
as a ‘tilted’ rectangle, inside a larger straight rectangular extent, whereas the
margins around the tilted rectangle are inevitably filled with ‘No Data’ (e.g.,
the white stripes surrounding the edges in Figure 6.2 (b) are ‘No Data’ pixels
created as a result of reprojection). We need to specify a ‘No Data’ value of
our choice, if there is no existing definition, or keep the existing source raster
‘No Data’ setting, such as 255 in this case.
dst_kwargs = src_nlcd.meta.copy()
dst_kwargs.update({

'crs': dst_crs,
'transform': dst_transform,
'width': dst_width,
'height': dst_height

})
dst_kwargs

{'driver': 'GTiff',
'dtype': 'uint8',
'nodata': 255.0,
'width': 1244,
'height': 1246,
'count': 1,
'crs': 'EPSG:4326',
'transform': Affine(0.00031506316853514724, 0.0, -113.24138811813536,

0.0, -0.00031506316853514724, 37.51912722777022)}
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Now, we are ready to create the reprojected raster. Here, reprojection takes
place between two file connections, meaning that the raster value arrays are
not being read into memory at once. (It is also possible to reproject into an
in-memory ndarray object.)

To write the reprojected raster, we first create a destination file con-
nection dst_nlcd, pointing at the output file path of our choice
('output/nlcd_4326.tif'), using the updated metadata object created earlier
(dst_kwargs):
dst_nlcd = rasterio.open('output/nlcd_4326.tif', 'w', **dst_kwargs)

Then, we use the rasterio.warp.reproject function to calculate and write
the reprojection result into the dst_nlcd file connection.
rasterio.warp.reproject(

source=rasterio.band(src_nlcd, 1),
destination=rasterio.band(dst_nlcd, 1),
src_transform=src_nlcd.transform,
src_crs=src_nlcd.crs,
dst_transform=dst_transform,
dst_crs=dst_crs,
resampling=rasterio.enums.Resampling.nearest

)

Note–like in the example in Section 4.3.3—that the source and destination
accept a ‘band’ object, created using rasterio.band. In this case, there is just
one band. If there were more bands, we would have to repeat the procedure
for each band, using i instead of 1 inside a loop. Finally, we close the file
connection so that the data are actually written.
dst_nlcd.close()

Many properties of the new object differ from the previous one, including
the number of columns and rows (and therefore number of cells), resolution
(transformed from meters into degrees), and extent, as summarized below by
comparing the .meta object of the source and destination rasters.
src_nlcd.meta

{'driver': 'GTiff',
'dtype': 'uint8',
'nodata': 255.0,
'width': 1073,
'height': 1359,
'count': 1,
'crs': CRS.from_epsg(26912),
'transform': Affine(31.530298224786595, 0.0, 301903.344386758,

0.0, -31.52465870178793, 4154086.47216415)}
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src_nlcd_4326 = rasterio.open('output/nlcd_4326.tif')
src_nlcd_4326.meta

{'driver': 'GTiff',
'dtype': 'uint8',
'nodata': 255.0,
'width': 1244,
'height': 1246,
'count': 1,
'crs': CRS.from_epsg(4326),
'transform': Affine(0.00031506316853514724, 0.0, -113.24138811813536,

0.0, -0.00031506316853514724, 37.51912722777022)}

Examining the unique raster values tells us that the new raster has the same
categories, plus the value 255 representing ‘No Data’:
np.unique(src_nlcd.read(1))

array([1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)

np.unique(src_nlcd_4326.read(1))

array([ 1, 2, 3, 4, 5, 6, 7, 8, 255], dtype=uint8)

Figure 6.2 illustrates the effect of reprojection, comparing nlcd.tif (the input)
and nlcd_4326.tif (the reprojection result), visually.
rasterio.plot.show(src_nlcd, cmap='Set3');
rasterio.plot.show(src_nlcd_4326, cmap='Set3');

In the above example, we automatically calculated an opti-
mal (i.e., most information preserving) destination grid using
rasterio.warp.calculate_default_transform. This is appropriate
when there are no specific requirements for the destination raster spatial
properties. Namely, we are not required to obtain a specific origin and
resolution, but just wish to preserve the raster values as much as possible.
To do that, rasterio.warp.calculate_default_transform ‘tries’ to keep
the extent and resolution of the destination raster as similar as possible to
the source. In other situations, however, we need to reproject a raster into a
specific ‘template’, so that it corresponds, for instance, with other rasters we
use in the analysis. In the following code examples, we reproject the nlcd.tif
raster, again, but this time using the nlcd_4326.tif reprojection result as
the ‘template’ to demonstrate this alternative workflow.

First, we create a connection to our ‘template’ raster to read its metadata.
template = rasterio.open('output/nlcd_4326.tif')
template.meta
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(a) Original (EPSG:26912)

(b) Reprojected (EPSG:4326)

Figure 6.2: Reprojecting a categorical raster using nearest neighbor resampling

{'driver': 'GTiff',
'dtype': 'uint8',
'nodata': 255.0,
'width': 1244,
'height': 1246,
'count': 1,
'crs': CRS.from_epsg(4326),
'transform': Affine(0.00031506316853514724, 0.0, -113.24138811813536,

0.0, -0.00031506316853514724, 37.51912722777022)}

Then, we create a write-mode connection to our destination raster, using this
exact metadata, meaning that the resampling result is going to have identical
properties as the ‘template’.
dst_nlcd_2 = rasterio.open('output/nlcd_4326_2.tif', 'w', **template.meta)

Now, we can resample and write the result with rasterio.warp.reproject.
rasterio.warp.reproject(

source=rasterio.band(src_nlcd, 1),
destination=rasterio.band(dst_nlcd_2, 1),
src_transform=src_nlcd.transform,
src_crs=src_nlcd.crs,
dst_transform=dst_nlcd_2.transform,
dst_crs=dst_nlcd_2.crs,
resampling=rasterio.enums.Resampling.nearest

)
dst_nlcd_2.close()
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Naturally, the outputs of the last two examples—nlcd_4326.tif and
nlcd_4326_2.tif—are identical, as we used the same destination grid and
the same source data. We can check it with np.all.
d = rasterio.open('output/nlcd_4326.tif').read(1) == \

rasterio.open('output/nlcd_4326_2.tif').read(1)
np.all(d)

np.True_

The difference is that in the first example we calculated the template au-
tomatically, using rasterio.warp.calculate_default_transform, while in
the second example we used an existing raster as the ‘template’.

Importantly, when the template raster has much more ‘coarse’ resolu-
tion than the source raster, the rasterio.enums.Resampling.average
(for continuous rasters) or rasterio.enums.Resampling.mode (for
categorical rasters) resampling methods should be used, instead of
rasterio.enums.Resampling.nearest. Otherwise, much of the data will
be lost, as the ‘nearest’ method can capture one-pixel value only for each
destination raster pixel.

Reprojecting continuous rasters (with numeric or, in this case, integer val-
ues) follows an almost identical procedure. This is demonstrated below with
srtm.tif from the Shuttle Radar Topography Mission (SRTM), which repre-
sents height in meters above sea level (elevation) with the WGS84 CRS.

We will reproject this dataset into a projected CRS, but not with the nearest
neighbor method. Instead, we will use the bilinear method which computes
the output cell value based on the four nearest cells in the original raster.
The values in the projected dataset are the distance-weighted average of
the values from these four cells: the closer the input cell is to the center of
the output cell, the greater its weight. The following code section creates a
text string representing WGS 84 / UTM zone 12N, and reprojects the raster
into this CRS, using the bilinear method. The code is practically the same
as in the first example in this section, except for changing the source and
destination file names, and replacing rasterio.enums.Resampling.nearest
with rasterio.enums.Resampling.bilinear.
dst_crs = 'EPSG:32612'
dst_transform, dst_width, dst_height = rasterio.warp.calculate_default_transform(

src_srtm.crs,
dst_crs,
src_srtm.width,
src_srtm.height,
*src_srtm.bounds

)
dst_kwargs = src_srtm.meta.copy()
dst_kwargs.update({

'crs': dst_crs,
'transform': dst_transform,
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'width': dst_width,
'height': dst_height

})
dst_srtm = rasterio.open('output/srtm_32612.tif', 'w', **dst_kwargs)
rasterio.warp.reproject(

source=rasterio.band(src_srtm, 1),
destination=rasterio.band(dst_srtm, 1),
src_transform=src_srtm.transform,
src_crs=src_srtm.crs,
dst_transform=dst_transform,
dst_crs=dst_crs,
resampling=rasterio.enums.Resampling.bilinear

)
dst_srtm.close()

Figure 6.3 shows the input and the reprojected SRTM rasters.
rasterio.plot.show(src_srtm);
rasterio.plot.show(rasterio.open('output/srtm_32612.tif'));

(a) Original (EPSG:4326)

(b) Reprojected (EPSG:32612)

Figure 6.3: Reprojecting a continuous raster using bilinear resampling

6.9 Custom map projections
Established CRSs captured by AUTHORITY:CODE identifiers such as EPSG:4326
are well suited for many applications. However, it is desirable to use alternative
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projections or to create custom CRSs in some cases. Section 6.6 mentioned
reasons for using custom CRSs, and provided several possible approaches. Here,
we show how to apply these ideas in Python.

One approach is to take an existing WKT definition of a CRS, modify some
of its elements, and then use the new definition for reprojecting, using the
reprojection methods shown above for vector layers (Section 6.7) and rasters
(Section 6.8). For example, let’s transform the zion.gpkg vector layer to a
custom azimuthal equidistant (AEQD) CRS. Using a custom AEQD CRS
requires knowing the coordinates of the center point of a dataset in degrees
(geographic CRS). In our case, this information can be extracted by calculating
the centroid of the zion layer transformed into WGS84:
lon, lat = zion.to_crs(4326).union_all().centroid.coords[0]
lon, lat

(-113.02644198455553, 37.298236985233885)

Next, we can use the obtained lon/lat coordinates in coords to update the
WKT definition of the azimuthal equidistant (AEQD) CRS seen below. Notice
that we modified just two values below—"Central_Meridian" to the longitude
and "Latitude_Of_Origin" to the latitude of our centroid.
my_wkt = f'''PROJCS["Custom_AEQD",
GEOGCS["GCS_WGS_1984",
DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],

PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]],

PROJECTION["Azimuthal_Equidistant"],
PARAMETER["Central_Meridian",{lon}],
PARAMETER["Latitude_Of_Origin",{lat}],
UNIT["Meter",1.0]]'''

print(my_wkt)

PROJCS["Custom_AEQD",
GEOGCS["GCS_WGS_1984",
DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],

PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]],

PROJECTION["Azimuthal_Equidistant"],
PARAMETER["Central_Meridian",-113.02644198455553],
PARAMETER["Latitude_Of_Origin",37.298236985233885],
UNIT["Meter",1.0]]
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� Note

The above expression uses the so-called ‘f-strings’ syntax, which is one of
several Python techniques to embed values inside a string (as alternatives
to concatenating with +). For example, given:
x = 5
the expression:
f'the value of x is {x}'
is a shortcut to:
'the value of x is ' + str(x)
both returning the string 'the value of x is 5'.

This approach’s last step is to transform our original object (zion) to our new
custom CRS (zion_aeqd).
zion_aeqd = zion.to_crs(my_wkt)

Custom projections can also be made interactively, for example, using the
Projection Wizard6 web application (Šavrič, Jenny, and Jenny 2016). This
website allows you to select a spatial extent of your data and a distortion
property, and returns a list of possible projections. The list also contains WKT
definitions of the projections that you can copy and use for reprojections. See
Open Geospatial Consortium (Open Geospatial Consortium 2019) for details
on creating custom CRS definitions with WKT strings.

PROJ strings can also be used to create custom projections, accepting the
limitations inherent to projections, especially of geometries covering large
geographic areas, as mentioned in Section 6.2. Many projections have been
developed and can be set with the +proj= element of PROJ strings, with
dozens of projections described in detail on the PROJ website alone.

When mapping the world while preserving area relationships, the Mollweide
projection, illustrated in Figure 6.4, is a popular and often sensible choice
(Jenny et al. 2017). To use this projection, we need to specify it using the
proj-string element, '+proj=moll', in the .to_crs method:
world.to_crs('+proj=moll').plot(color='none', edgecolor='black');

It is often desirable to minimize distortion for all spatial properties (area, direc-
tion, distance) when mapping the world. One of the most popular projections
to achieve this is Winkel tripel ('+proj=wintri'), illustrated in Figure 6.5.
world.to_crs('+proj=wintri').plot(color='none', edgecolor='black');

6https://projectionwizard.org/#

https://projectionwizard.org/#
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Figure 6.4: Mollweide projection of the world

Figure 6.5: Winkel tripel projection of the world

Moreover, proj-string parameters can be modified in most CRS definitions, for
example, the center of the projection can be adjusted using the +lon_0 and
+lat_0 parameters. The below code transforms the coordinates to the Lambert
azimuthal equal-area projection centered on the longitude and latitude of New
York City (Figure 6.6).
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world.to_crs('+proj=laea +x_0=0 +y_0=0 +lon_0=-74 +lat_0=40') \
.plot(color='none', edgecolor='black');

Figure 6.6: Lambert azimuthal equal-area projection of the world centered on
New York City

More information on CRS modifications can be found in the Using PROJ
documentation7.

7https://proj.org/usage/index.html

https://proj.org/usage/index.html
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7
Geographic data I/O

Prerequisites
This chapter requires importing the following packages:
import urllib.request
import zipfile
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import shapely
import pyogrio
import geopandas as gpd
import rasterio
import rasterio.plot
import cartopy
import osmnx as ox

It also relies on the following data files:
nz = gpd.read_file('data/nz.gpkg')
nz_elev = rasterio.open('data/nz_elev.tif')

7.1 Introduction
This chapter is about reading and writing geographic data. Geographic data
input is essential for geocomputation: real-world applications are impossible
without data. Data output is also vital, enabling others to use valuable new or
improved datasets resulting from your work. Taken together, these processes
of input/output can be referred to as data I/O.

Geographic data I/O is often done with few lines of code at the beginning and
end of projects. It is often overlooked as a simple one-step process. However,
mistakes made at the outset of projects (e.g., using an out-of-date or in some
way faulty dataset) can lead to large problems later down the line, so it is
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worth putting considerable time into identifying which datasets are available,
where they can be found and how to retrieve them. These topics are covered
in Section 7.2, which describes several geoportals, which collectively contain
many terabytes of data, and how to use them. To further ease data access, a
number of packages for downloading geographic data have been developed, as
demonstrated in Section 7.3.

There are many geographic file formats, each of which has pros and cons,
described in Section 7.4. The process of reading and writing files efficiently is
covered in Section 7.5 and Section 7.6, respectively.

7.2 Retrieving open data
A vast and ever-increasing amount of geographic data is available on the
internet, much of which is free to access and use (with appropriate credit given
to its providers)1. In some ways there is now too much data, in the sense that
there are often multiple places to access the same dataset. Some datasets are
of poor quality. In this context, it is vital to know where to look, so the first
section covers some of the most important sources. Various ‘geoportals’ (web
services providing geospatial datasets, such as Data.gov2) are a good place to
start, providing a wide range of data but often only for specific locations (as
illustrated in the updated Wikipedia page3 on the topic).

Some global geoportals overcome this issue. The GEOSS portal4 and the
Copernicus Data Space Ecosystem5, for example, contain many raster datasets
with global coverage. A wealth of vector datasets can be accessed from the
SEDAC6 portal run by the National Aeronautics and Space Administration
(NASA) and the European Union’s INSPIRE geoportal7, with global and
regional coverage.

Most geoportals provide a graphical interface allowing datasets to be queried
based on characteristics such as spatial and temporal extent, the United States
Geological Survey’s EarthExplorer8 and NASA’s EarthData Search9 being
prime examples. Exploring datasets interactively on a browser is an effective
way of understanding available layers. From reproducibility and efficiency
perspectives, downloading data is, however, best done with code. Downloads

1For example, visit https://freegisdata.rtwilson.com/ for a vast list of websites with
freely available geographic datasets.

2https://catalog.data.gov/dataset?metadata_type=geospatial
3https://en.wikipedia.org/wiki/Geoportal
4http://www.geoportal.org/
5https://dataspace.copernicus.eu//
6http://sedac.ciesin.columbia.edu/
7http://inspire-geoportal.ec.europa.eu/
8https://earthexplorer.usgs.gov/
9https://search.earthdata.nasa.gov/search

https://freegisdata.rtwilson.com
https://catalog.data.gov/dataset?metadata_type=geospatial
https://en.wikipedia.org/wiki/Geoportal
http://www.geoportal.org
https://dataspace.copernicus.eu
http://sedac.ciesin.columbia.edu
http://inspire-geoportal.ec.europa.eu
https://earthexplorer.usgs.gov
https://search.earthdata.nasa.gov/search
https://Data.gov
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Figure 7.1: World airports layer, downloaded from the Natural Earth Data
website using Python

can be initiated from the command line using a variety of techniques, primarily
via URLs and APIs (see the Sentinel API10, for example).

Files hosted on static URLs can be downloaded with the following method,
as illustrated in the code chunk below which accesses the Natural Earth
Data11 website to download the world airports layer zip file and to extract the
contained ESRI Shapefile. Note that the download code is complicated by the
fact that the server checks the User-agent header of the request, basically to
make sure that the download takes place through a browser. To overcome this,
we add a header corresponding to a request coming from a browser (such as
Firefox) in our code.

# Set URL+filename
url = 'https://naciscdn.org/naturalearth/10m/cultural/ne_10m_airports.zip'
filename = 'output/ne_10m_airports.zip'
# Download
urllib.request.urlretrieve(url, filename)
# Extract
f = zipfile.ZipFile(filename, 'r')
f.extractall('output')
f.close()

The ESRI Shapefile that has been created in the output directory can then
be imported and plotted (Figure 7.1) as follows using geopandas.

10https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/APIHubDescription
11https://www.naturalearthdata.com/

https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/APIHubDescription
https://www.naturalearthdata.com
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ne = gpd.read_file(filename.replace('.zip', '.shp'))
ne.plot();

7.3 Geographic data packages
Several Python packages have been developed for accessing geographic data,
two of which are demonstrated below. These provide interfaces to one or more
spatial libraries or geoportals and aim to make data access even quicker from
the command line.

Administrative borders are often useful in spatial analysis. These can be
accessed with the cartopy.io.shapereader.natural_earth function from
the cartopy package (Met Office 2010-2015). For example, the following code
loads the 'admin_2_counties' dataset of US counties into a GeoDataFrame.
filename = cartopy.io.shapereader.natural_earth(

resolution='10m',
category='cultural',
name='admin_2_counties'

)
counties = gpd.read_file(filename)
counties

FEATURECLA SCALERANK ... NAME_ZHT geometry

0 Admin-2 scale rank 0 ... 霍特科姆縣 MULTIPOLYGON
(((-122.75302 48.9...

1 Admin-2 scale rank 0 ... 奧卡諾根縣 POLYGON
((-120.85196 48.99251, ...

2 Admin-2 scale rank 0 ... 費里縣 POLYGON
((-118.83688 48.99251, ...

... ... ... ... ... ...
3221 Admin-2 scale rank 0 ... 維拉爾巴 POLYGON

((-66.44407 18.17665, -...
3222 Admin-2 scale rank 0 ... 大薩瓦納 POLYGON

((-66.88464 18.02481, -...
3223 Admin-2 scale rank 0 ... 馬里考 POLYGON

((-66.89856 18.1879, -6...

The resulting layer counties is shown in Figure 7.2.
counties.plot();
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((-66.88464 18.02481, -...
3223 Admin-2 scale rank 0 ... 馬里考 POLYGON

((-66.89856 18.1879, -6...

The resulting layer counties is shown in Figure 7.2.
counties.plot();
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Figure 7.2: US counties, downloaded from the Natural Earth Data website
using package cartopy

Note that Figure 7.2 x-axis spans the entire range of longitudes, between -180
and 180, since the Aleutian Islands county (which is small and difficult to see
on the map) crosses the International Date Line.

Other layers can from NaturalEarth be accessed the same way. You need
to specify the resolution, category, and name of the requested dataset in
Natural Earth Data, then run the cartopy.io.shapereader.natural_earth,
which downloads the file(s) and returns the path, and read the file into
the Python environment, e.g., using gpd.read_file. This is an alternative
approach to ‘directly’ downloading files as shown earlier (Section 7.2).

The second example uses the osmnx package (Boeing 2017) to find
parks from the OpenStreetMap (OSM) database. As illustrated in the
code chunk below, OpenStreetMap data can be obtained using the
ox.features.features_from_place function. The first argument is a string
which is geocoded to a polygon (the ox.features.features_from_bbox and
ox.features.features_from_polygon can also be used to query a custom
area of interest). The second argument specifies the OSM tag(s)12, selecting
which OSM elements we’re interested in (parks, in this case), represented by
key-value pairs.
parks = ox.features.features_from_place(

query='leeds uk',
tags={'leisure': 'park'}

)

The result is a GeoDataFrame with the parks in Leeds. Now, we can plot the
geometries with the name property in the tooltips using explore (Figure 7.3).
parks[['name', 'geometry']].explore()

12https://wiki.openstreetmap.org/wiki/Map_features

https://wiki.openstreetmap.org/wiki/Map_features
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Figure 7.3: Parks in Leeds, based on OpenStreetMap data, downloaded using
package osmnx

It should be noted that the osmnx package downloads OSM data from the
Overpass API13, which is rate limited and therefore unsuitable for queries
covering very large areas. To overcome this limitation, you can download OSM
data extracts, such as in Shapefile format from Geofabrik14, and then load
them from the file into the Python environment.

OpenStreetMap is a vast global database of crowd-sourced data, is growing
daily, and has a wider ecosystem of tools enabling easy access to the data,
from the Overpass turbo15 web service for rapid development and testing of
OSM queries to osm2pgsql for importing the data into a PostGIS database.
Although the quality of datasets derived from OSM varies, the data source
and wider OSM ecosystems have many advantages: they provide datasets that
are available globally, free of charge, and constantly improving thanks to an
army of volunteers. Using OSM encourages ‘citizen science’ and contributions
back to the digital commons (you can start editing data representing a part of
the world you know well at https://www.openstreetmap.org/).

One way to obtain spatial information is to perform geocoding—transform a
description of a location, usually an address, into a set of coordinates. This
is typically done by sending a query to an online service and getting the
location as a result. Many such services exist that differ in the used method of

13https://wiki.openstreetmap.org/wiki/Overpass_API
14https://download.geofabrik.de/
15https://overpass-turbo.eu/

https://download.geofabrik.de
https://overpass-turbo.eu
https://www.openstreetmap.org
https://wiki.openstreetmap.org/wiki/Overpass_API
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geocoding, usage limitations, costs, or API key requirements. Nominatim16 is
a well-known free service, based on OpenStreetMap data, and there are many
other free and commercial geocoding services.

geopandas provides the gpd.tools.geocode function, which can geocode
addresses to a GeoDataFrame. Internally it uses the geopy pack-
age, supporting several providers through the provider parameter (use
geopy.geocoders.SERVICE_TO_GEOCODER to see possible options). The ex-
ample below searches for John Snow blue plaque17 coordinates located on a
building in the Soho district of London. The result is a GeoDataFrame with the
address we passed to gpd.tools.geocode, and the detected point location.
result = gpd.tools.geocode('54 Frith St, London W1D 4SJ, UK', timeout=10)
result

geometry address

0 POINT (-0.13178 51.51377) 54, Frith Street, W1D 3JD, Frit...

Importantly, (1) we can pass a list of multiple addresses instead of just one,
resulting in a GeoDataFrame with corresponding multiple rows, and (2) ‘No
Results’ responses are represented by POINT EMPTY geometries, as shown in
the following example.
result = gpd.tools.geocode(

['54 Frith St, London W1D 4SJ, UK', 'abcdefghijklmnopqrstuvwxyz'],
timeout=10

)
result

geometry address

0 POINT (-0.13178 51.51377) 54, Frith Street, W1D 3JD, Frit...
1 POINT EMPTY None

The result is visualized in Figure 7.4 using the .explore function. We are
using the marker_kwds parameter of .explore to make the marker larger (see
Section 8.3.2).
result.iloc[[0]].explore(color='red', marker_kwds={'radius':20})

16https://nominatim.openstreetmap.org/ui/about.html
17https://en.m.wikipedia.org/wiki/John_Snow_(public_house)

https://nominatim.openstreetmap.org/ui/about.html
https://en.m.wikipedia.org/wiki/John_Snow_(public_house)
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Figure 7.4: Specific address in London, geocoded into a GeoDataFrame

7.4 File formats
Geographic datasets are usually stored as files or in spatial databases. File
formats usually can either store vector or raster data, while spatial databases
such as PostGIS can store both. The large variety of file formats may seem be-
wildering, but there has been much consolidation and standardization since the
beginnings of GIS software in the 1960s when the first widely distributed pro-
gram SYMAP for spatial analysis was created at Harvard University (Coppock
and Rhind 1991).

GDAL (which originally was pronounced as ‘goo-dal’, with the double ‘o’
making a reference to object-orientation), the Geospatial Data Abstraction
Library, has resolved many issues associated with incompatibility between
geographic file formats since its release in 2000. GDAL provides a unified and
high-performance interface for reading and writing of many raster and vector
data formats. Many open and proprietary GIS programs, including GRASS,
ArcGIS and QGIS, use GDAL behind their GUIs for doing the legwork of
ingesting and spitting out geographic data in appropriate formats. Most Python
packages for working with spatial data, including geopandas and rasterio
used in this book, also rely on GDAL for importing and exporting spatial data
files.

GDAL provides access to more than 200 vector and raster data formats.
Table 7.1 presents some basic information about selected and often-used
spatial file formats.
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Table 7.1: Commonly used spatial data file formats

Name Extension Info Type Model

ESRI Shapefile .shp (the
main file)

Popular format consisting of at
least three files. No support for:
files > 2GB; mixed types;
names > 10 chars; cols > 255.

Vector Partially
open

GeoJSON .geojson Extends the JSON exchange
format by including a subset of
the simple feature
representation; mostly used for
storing coordinates in longitude
and latitude; it is extended by
the TopoJSON format.

Vector Open

KML .kml XML-based format for spatial
visualization, developed for use
with Google Earth. Zipped
KML file forms the KMZ
format.

Vector Open

GPX .gpx XML schema created for
exchange of GPS data.

Vector Open

FlatGeobuf .fgb Single file format allowing for
quick reading and writing of
vector data. Has streaming
capabilities.

Vector Open

GeoTIFF .tif/.tiff Popular raster format. A TIFF
file containing additional spatial
metadata.

Raster Open

Arc ASCII .asc Text format where the first six
lines represent the raster header,
followed by the raster cell values
arranged in rows and columns.

Raster Open

SQLite/SpatiaLite .sqlite Standalone relational database,
SpatiaLite is the spatial
extension of SQLite.

Vector
and raster

Open

ESRI FileGDB .gdb Spatial and nonspatial objects
created by ArcGIS. Allows:
multiple feature classes;
topology. Limited support from
GDAL.

Vector
and raster

Proprietary

GeoPackage .gpkg Lightweight database container
based on SQLite allowing an
easy and platform-independent
exchange of geodata.

Vector
and (very
limited)
raster

Open

An important development ensuring the standardization and open-sourcing
of file formats was the founding of the Open Geospatial Consortium (OGC)
in 1994. Beyond defining the Simple Features data model (see Section 1.2.4),
the OGC also coordinates the development of open standards, for example as
used in file formats such as KML and GeoPackage. Open file formats of the
kind endorsed by the OGC have several advantages over proprietary formats:



228 7 Geographic data I/O

the standards are published, ensure transparency and open up the possibility
for users to further develop and adjust the file formats to their specific needs.

ESRI Shapefile is the most popular vector data exchange format; however, it
is not a fully open format (though its specification is open). It was developed
in the early 1990s and, from a modern standpoint, has a number of limitations.
First of all, it is a multi-file format, which consists of at least three files. It also
only supports 255 columns, its column names are restricted to ten characters
and the file size limit is 2 GB. Furthermore, ESRI Shapefile does not support
all possible geometry types, for example, it is unable to distinguish between a
polygon and a multipolygon. Despite these limitations, a viable alternative had
been missing for a long time. In 2014, GeoPackage emerged, and seems to be
a more than suitable replacement candidate for ESRI Shapefile. GeoPackage
is a format for exchanging geospatial information and an OGC standard.
This standard describes the rules on how to store geospatial information in a
tiny SQLite container. Hence, GeoPackage is a lightweight spatial database
container, which allows the storage of vector and raster data but also of non-
spatial data and extensions. Aside from GeoPackage, there are other geospatial
data exchange formats worth checking out (Table 7.1).

The GeoTIFF format seems to be the most prominent raster data format. It
allows spatial information, such as the CRS definition and the transformation
matrix (see Section 1.3.1), to be embedded within a TIFF file. Similar to
ESRI Shapefile, this format was firstly developed in the 1990s, but as an open
format. Additionally, GeoTIFF is still being expanded and improved. One of
the most significant recent additions to the GeoTIFF format is its variant
called COG (Cloud Optimized GeoTIFF). Raster objects saved as COGs can
be hosted on HTTP servers, so other people can read only parts of the file
without downloading the whole file (Section 7.5.2).

There is also a plethora of other spatial data formats that we do not explain
in detail or mention in Table 7.1 due to the book limits. If you need to use
other formats, we encourage you to read the GDAL documentation about
vector and raster drivers. Additionally, some spatial data formats can store
other data models (types) than vector or raster. Two examples are LAS and
LAZ formats for storing lidar point clouds, and NetCDF and HDF for storing
multidimensional arrays.

Finally, spatial data are also often stored using tabular (non-spatial) text
formats, including CSV files or Excel spreadsheets. This can be convenient to
share spatial (point) datasets with people who, or software that, struggle with
spatial data formats. If necessary, the table can be converted to a point layer
(see examples in Section 1.2.6 and Section 3.2.3).
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7.5 Data input (I)
Executing commands such as gpd.read_file (the main function we use for
loading vector data) or rasterio.open+.read (the main group of functions
used for loading raster data) silently sets off a chain of events that reads data
from files. Moreover, there are many Python packages containing a wide range
of geographic data or providing simple access to different data sources. All of
them load the data into the Python environment or, more precisely, assign
objects to your workspace, stored in RAM and accessible within the Python
session. The latter is the most straightforward approach, suitable when RAM
is not a limiting factor. For large vector layers and rasters, partial reading
may be required. For vector layers, we will demonstrate how to read subsets of
vector layers, filtered by attributes or by location (Section 7.5.1). For rasters,
we already showed earlier in the book how the user can choose which specific
bands to read (Section 1.3.1), or read resampled data to a lower resolution
(Section 4.3.2). In this section, we also show how to read specific rectangular
extents (‘windows’) from a raster file (Section 7.5.2).

7.5.1 Vector data
Spatial vector data comes in a wide variety of file formats. Most popular
representations such as .shp, .geojson, and .gpkg files can be imported and
exported with geopandas function gpd.read_file and method .to_file
(covered in Section 7.6), respectively.

geopandas uses GDAL to read and write data, via pyogrio since
geopandas version 1.0.0 (previously via fiona). After pyogrio is imported,
pyogrio.list_drivers can be used to list drivers available to GDAL, includ-
ing whether they can read ('r'), append ('a'), or write ('w') data, or all
three.
pyogrio.list_drivers()

{'PCIDSK': 'rw',
'PDS4': 'rw',
...
'AVCE00': 'r',
'HTTP': 'r'}

The first argument of the geopandas versatile data import function
gpd.read_file is filename, which is typically a string, but can also be
a file connection. The content of a string could vary between different drivers.
In most cases, as with the ESRI Shapefile (.shp) or the GeoPackage format
(.gpkg), the filename argument would be a path or a URL to an actual file,
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such as geodata.gpkg. The driver is automatically selected based on the file
extension, as demonstrated for a .gpkg file below.
world = gpd.read_file('data/world.gpkg')

For some drivers, such as a File Geodatabase (OpenFileGDB), filename could
be provided as a folder name. GeoJSON, a plain text format, on the other
hand, can be read from a .geojson file, but also from a string.
gpd.read_file('{"type":"Point","coordinates":[34.838848,31.296301]}')

geometry

0 POINT (34.83885 31.2963)

Some vector formats, such as GeoPackage, can store multiple data layers. By de-
fault, gpd.read_file reads the first layer of the file specified in filename. How-
ever, using the layer argument you can specify any other layer. To list the avail-
able layers, we can use function gpd.list_layers (or pyogrio.list_layers).

The gpd.read_file function also allows for reading just parts of the file into
RAM with two possible mechanisms. The first one is related to the where
argument, which allows specifying what part of the data to read using an SQL
WHERE expression. An example below extracts data for Tanzania only from the
world.gpkg file (Figure 7.5 (a)). It is done by specifying that we want to get
all rows for which name_long equals to 'Tanzania'.
tanzania = gpd.read_file('data/world.gpkg', where='name_long="Tanzania"')
tanzania

iso_a2 name_long ... gdpPercap geometry

0 TZ Tanzania ... 2402.099404 MULTIPOLYGON (((33.90371 -0.95,...

If you do not know the names of the available columns, a good approach is
to read the layer metadata using pyogrio.read_info. The resulting object
contains, among other properties, the column names (fields) and data types
(dtypes):
info = pyogrio.read_info('data/world.gpkg')
info['fields']

array(['iso_a2', 'name_long', 'continent', 'region_un', 'subregion',
'type', 'area_km2', 'pop', 'lifeExp', 'gdpPercap'], dtype=object)

info['dtypes']

array(['object', 'object', 'object', 'object', 'object', 'object',
'float64', 'float64', 'float64', 'float64'], dtype=object)
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The second mechanism uses the mask argument to filter data based on in-
tersection with an existing geometry. This argument expects a geometry
(GeoDataFrame, GeoSeries, or shapely geometry) representing the area where
we want to extract the data. Let’s try it using a small example—we want to
read polygons from our file that intersect with the buffer of 50,000 m of Tanza-
nia’s borders. To do it, we need to transform the geometry to a projected CRS
(such as EPSG:32736), prepare our ‘filter’ by creating the buffer (Section 4.2.3),
and transform back to the original CRS to be used as a mask (Figure 7.5 (a)).
tanzania_buf = tanzania.to_crs(32736).buffer(50000).to_crs(4326)

Now, we can pass the ‘filter’ geometry tanzania_buf to the mask argument
of gpd.read_file.
tanzania_neigh = gpd.read_file('data/world.gpkg', mask=tanzania_buf)

Our result, shown in Figure 7.5 (b), contains Tanzania and every country
intersecting with its 50,000 m buffer. Note that the last two expressions are
used to add text labels with the name_long of each country, placed at the
country centroid.
# Using 'where'
fig, ax = plt.subplots()
tanzania.plot(ax=ax, color='lightgrey', edgecolor='grey')
tanzania.apply(

lambda x: ax.annotate(text=x['name_long'],
xy=x.geometry.centroid.coords[0], ha='center'), axis=1

);
# Using 'mask'
fig, ax = plt.subplots()
tanzania_neigh.plot(ax=ax, color='lightgrey', edgecolor='grey')
tanzania_buf.plot(ax=ax, color='none', edgecolor='red')
tanzania_neigh.apply(

lambda x: ax.annotate(text=x['name_long'],
xy=x.geometry.centroid.coords[0], ha='center'), axis=1

);

A different, gpd.read_postgis, function can be used to read a vector layer
from a PostGIS database.

Often we need to read CSV files (or other tabular formats) which have x
and y coordinate columns, and turn them into a GeoDataFrame with point
geometries. To do that, we can import the file using pandas (e.g., using
pd.read_csv or pd.read_excel), then go from DataFrame to GeoDataFrame
using the gpd.points_from_xy function, as shown earlier in the book (See
Section 1.2.6 and Section 3.2.3). For example, the table cycle_hire_xy.csv,
where the coordinates are stored in the X and Y columns in EPSG:4326, can be
imported, converted to a GeoDataFrame, and plotted, as follows (Figure 7.6).
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(a) Using a where query (matching
'Tanzania') (b) Using a mask (a geometry shown in red)

Figure 7.5: Reading a subset of the vector layer file world.gpkg

cycle_hire = pd.read_csv('data/cycle_hire_xy.csv')
geom = gpd.points_from_xy(cycle_hire['X'], cycle_hire['Y'], crs=4326)
geom = gpd.GeoSeries(geom)
cycle_hire_xy = gpd.GeoDataFrame(data=cycle_hire, geometry=geom)
cycle_hire_xy.plot();

Figure 7.6: The cycle_hire_xy.csv table transformed to a point layer
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Instead of columns describing ‘XY’ coordinates, a single column can also
contain the geometry information, not necessarily points but possibly any
other geometry type. Well-known text (WKT), well-known binary (WKB), and
GeoJSON are examples of formats used to encode geometry in such a column.
For instance, the world_wkt.csv file has a column named 'WKT', representing
polygons of the world’s countries (in WKT format). When importing the CSV
file into a DataFrame, the 'WKT' column is interpreted just like any other
string column.
world_wkt = pd.read_csv('data/world_wkt.csv')
world_wkt

WKT iso_a2 ... lifeExp gdpPercap

0 MULTIPOLYGON (((180.0 -16.06713... FJ ... 69.960000 8222.253784
1 MULTIPOLYGON (((33.903711197104... TZ ... 64.163000 2402.099404
2 MULTIPOLYGON (((-8.665589565454... EH ... NaN NaN
... ... ... ... ... ...
174 MULTIPOLYGON (((20.590246546680... XK ... 71.097561 8698.291559
175 MULTIPOLYGON (((-61.68 10.76,-6... TT ... 70.426000 31181.821196
176 MULTIPOLYGON (((30.833852421715... SS ... 55.817000 1935.879400

To convert it to a GeoDataFrame, we can apply the gpd.GeoSeries.from_wkt
function (which is analogous to shapely’s shapely.from_wkt, see Sec-
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The resulting layer is shown in Figure 7.7.
world_wkt.plot();

Figure 7.7: The world_wkt.csv table transformed to a polygon layer

As a final example, we will show how geopandas also reads KML files. A
KML file stores geographic information in XML format—a data format for the
creation of web pages and the transfer of data in an application-independent
way (Nolan and Lang 2014). Here, we access a KML file from the web.

The sample KML file KML_Samples.kml contains more than one layer.
u = 'https://developers.google.com/kml/documentation/KML_Samples.kml'
gpd.list_layers(u)

name geometry_type

0 Placemarks Point Z
1 Highlighted Icon Point Z
2 Paths LineString Z
3 Google Campus Polygon Z
4 Extruded Polygon Polygon Z
5 Absolute and Relative Polygon Z

We can choose, for instance, the first layer 'Placemarks' and read it, using
gpd.read_file with an additional layer argument.
placemarks = gpd.read_file(u, layer='Placemarks')
placemarks
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Name Description geometry

0 Simple placemark Attached to the ground. Intelli... POINT Z
(-122.0822 37.42229 0)

1 Floating placemark Floats a defined distance above... POINT Z
(-122.08408 37.422 50)

2 Extruded placemark Tethered to the ground by a cus... POINT Z
(-122.08577 37.42157 50)

7.5.2 Raster data
Similar to vector data, raster data comes in many file formats, some of which
support multilayer files. rasterio.open is used to create a file connection to
a raster file, which can be subsequently used to read the metadata and/or the
values, as shown previously (Section 1.3.1).
src = rasterio.open('data/srtm.tif')
src

<open DatasetReader name='data/srtm.tif' mode='r'>

All of the previous examples, like the one above, read spatial information from
files stored on your hard drive. However, GDAL also allows reading data directly
from online resources, such as HTTP/HTTPS/FTP web resources. Let’s try it
by connecting to the global monthly snow probability at 500 m resolution for
the period 2000-2012 (Hengl 2021). Snow probability for December is stored as
a Cloud Optimized GeoTIFF (COG) file (see Section 7.4) and can be accessed
by its HTTPS URI.
url = 'https://zenodo.org/record/5774954/files/'
url += 'clm_snow.prob_esacci.dec_p.90_500m_s0..0cm_2000..2012_v2.0.tif'
src = rasterio.open(url)
src

<open DatasetReader name='https://zenodo.org/record/5774954/
files/clm_snow.prob_esacci.dec_p.90_500m_s0..0cm_2000..2012_
v2.0.tif' mode='r'>

In the example above rasterio.open creates a connection to the file without
obtaining any values, as we did for the local srtm.tif file. The values can
be read into an ndarray using the .read method of the file connection (Sec-
tion 1.3.1). Using parameters of .read allows us to just read a small portion
of the data, without downloading the entire file. This is very useful when
working with large datasets hosted online from resource-constrained computing
environments such as laptops.

For example, we can read a specified rectangular extent of the raster. With
rasterio, this is done using the so-called windowed reading capabilities. Note
that, with windowed reading, we import just a subset of the raster extent
into an ndarray covering any partial extent. Windowed reading is therefore
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memory- (and, in this case, bandwidth-) efficient, since it avoids reading the
entire raster into memory. It can also be considered an alternative pathway to
cropping (Section 5.2).

To read a raster window, let’s first define the bounding box coordinates. For
example, here we use a 10 × 10 degrees extent coinciding with Reykjavik.
xmin=-30
xmax=-20
ymin=60
ymax=70

Using the extent coordinates along with the raster transformation matrix, we
create a window object, using the rasterio.windows.from_bounds function.
This function basically ‘translates’ the extent from coordinates, to row/column
ranges.
w = rasterio.windows.from_bounds(

left=xmin,
bottom=ymin,
right=xmax,
top=ymax,
transform=src.transform

)
w

Window(col_off=35999.99999999998, row_off=4168.799999999996,
width=2399.9999999999927, height=2400.0)

Now we can read the partial array, according to the specified window w, by
passing it to the .read method.
r = src.read(1, window=w)
r

array([[100, 100, 100, ..., 255, 255, 255],
[100, 100, 100, ..., 255, 255, 255],
[100, 100, 100, ..., 255, 255, 255],
...,
[255, 255, 255, ..., 255, 255, 255],
[255, 255, 255, ..., 255, 255, 255],
[255, 255, 255, ..., 255, 255, 255]], dtype=uint8)

Note that the transformation matrix of the window is not the same as that
of the original raster (unless it incidentally starts from the top-left corner)!
Therefore, we must re-create the transformation matrix, with the modified
origin (xmin,ymax), yet the same resolution, as follows.
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w_transform = rasterio.transform.from_origin(
west=xmin,
north=ymax,
xsize=src.transform[0],
ysize=abs(src.transform[4])

)
w_transform

Affine(0.00416666666666667, 0.0, -30.0,
0.0, -0.00416666666666667, 70.0)

The array r along with the updated transformation matrix w_transform
comprise the partial window, which we can keep working with just like with
any other raster, as shown in previous chapters. Figure 7.8 shows the result,
along with the location of Reykjavik.

Figure 7.8: Raster window read from a remote Cloud Optimized GeoTIFF
(COG) file source
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fig, ax = plt.subplots()
rasterio.plot.show(r, transform=w_transform, ax=ax)
gpd.GeoSeries(shapely.Point(-21.94, 64.15)).plot(ax=ax, color='red');

Another option is to extract raster values at particular points, directly from
the file connection, using the .sample method (see Section 3.3.1). For example,
we can get the snow probability for December in Reykjavik (70%) by specifying
its coordinates and applying .sample.
coords = (-21.94, 64.15)
values = src.sample([coords])
list(values)

[array([70], dtype=uint8)]

The example above efficiently extracts and downloads a single value instead of
the entire GeoTIFF file, saving valuable resources.

Note that URIs can also identify vector datasets, enabling you to import
datasets from online storage with geopandas, including datasets within ZIP
archives hosted on the web.
gpd.read_file("zip+https://github.com/Toblerity/Fiona/files/11151652/coutwildrnp.zip")

PERIMETER FEATURE2 ... STATE geometry

0 1.221070 None ... UT POLYGON ((-111.73528 41.99509, ...
1 0.755827 None ... UT POLYGON ((-112.00385 41.5527, -...
2 1.708510 None ... CO POLYGON ((-106.79289 40.98353, ...
... ... ... ... ... ...
64 0.263251 None ... CO POLYGON ((-108.35329 37.26869, ...
65 0.119581 None ... CO POLYGON ((-108.44212 37.29754, ...
66 0.120627 None ... CO POLYGON ((-108.5527 37.28285, -...

7.6 Data output (O)
Writing geographic data allows you to convert from one format to another
and to save newly created objects for permanent storage. Depending on the
data type (vector or raster), object class (e.g., GeoDataFrame), and type and
amount of stored information (e.g., object size, range of values), it is important
to know how to store spatial files in the most efficient way. The next two
subsections will demonstrate how to do this.
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7.6.1 Vector data
The counterpart of gpd.read_file is the .to_file method that a
GeoDataFrame has. It allows you to write GeoDataFrame objects to a wide
range of geographic vector file formats, including the most common ones,
such as .geojson, .shp and .gpkg. Based on the file name, .to_file decides
automatically which driver to use. The speed of the writing process depends
also on the driver.

For example, to export the world layer to a GeoPackage file, we can use
.to_file and specify the output file name.
world.to_file('output/world.gpkg')

Note, that if you try to write to the same data source again, the function will
overwrite the file.
world.to_file('output/world.gpkg')

Instead of overwriting the file, we could add new rows to the file with mode='a'
(‘append’ mode, as opposed to the default mode='w' for the ‘write’ mode).
Appending is supported by several spatial formats, including GeoPackage.
world.to_file('output/w_many_features.gpkg')
world.to_file('output/w_many_features.gpkg', mode='a')

Now, w_many_features.gpkg contains a polygonal layer named world with
two ‘copies’ of each country (that is 177×2=354 features, whereas the world
layer has 177 features).
gpd.read_file('output/w_many_features.gpkg').shape

(354, 11)

Alternatively, you can create another, separate, layer, within the same file,
which is supported by some formats, including GeoPackage.
world.to_file('output/w_many_layers.gpkg')
world.to_file('output/w_many_layers.gpkg', layer='world2')

In this case, w_many_layers.gpkg has two ‘layers’: w_many_layers (same
as the file name, when layer is unspecified) and world2. Incidentally, the
contents of the two layers are identical, but this does not have to be so. Each
layer from such a file can be imported separately using the layer argument of
gpd.read_file.
layer1 = gpd.read_file('output/w_many_layers.gpkg', layer='w_many_layers')
layer2 = gpd.read_file('output/w_many_layers.gpkg', layer='world2')
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7.6.2 Raster data
To write a raster file using rasterio, we need to pass a raster file path to
rasterio.open in writing ('w') mode. This implies creating a new empty file
(or overwriting an existing one). Next, we need to write the raster values to the
file using the .write method of the file connection. Finally, we should close
the file connection using the .close method.

As opposed to reading mode ('r', the default) mode, the rasterio.open
function in writing mode needs quite a lot of information, in addition to the
file path and mode:

• driver—The file format. The general recommendation is 'GTiff' for Geo-
TIFF, but other formats are also supported (see Table 7.1)

• height—Number of rows
• width—Number of columns
• count—Number of bands
• nodata—The value which represents ‘No Data’, if any
• dtype—The raster data type, one of numpy types supported by the driver

(e.g., np.int64) (see Table 7.2)
• crs—The CRS, e.g., using an EPSG code (such as 4326)
• transform—The transform matrix
• compress—A compression method to apply, such as 'lzw'. This is optional

and most useful for large rasters. Note that, at the time of writing, this does
not work well18 for writing multiband rasters

� Note

Note that 'GTiff (GeoTIFF, .tif), which is the recommended driver,
supports just some of the possible numpy data types (see Table 7.2).
Importantly, it does not support np.int64, the default int type. The
recommendation in such case it to use np.int32 (if the range is sufficient),
or np.float64.

Once the file connection with the right metadata is ready, we do the actual
writing using the .write method of the file connection. If there are several
bands we may execute the .write method several times, as in .write(a,n),
where a is a two-dimensional array representing a single band, and n is the
band index (starting from 1, see below). Alternatively, we can write all bands
at once, as in .write(a), where a is a three-dimensional array. When done,
we close the file connection using the .close method. Some functions, such as
rasterio.warp.reproject used for resampling and reprojecting (Section 4.3.3
and Section 6.8) directly accept a file connection in 'w' mode, thus handling
the writing (of a resampled or reprojected raster) for us.

18https://gis.stackexchange.com/questions/404738/why-does-rasterio-compression-
reduces-image-size-with-single-band-but-not-with-m

https://gis.stackexchange.com/questions/404738/why-does-rasterio-compressionreduces-image-size-with-single-band-but-not-with-m
https://gis.stackexchange.com/questions/404738/why-does-rasterio-compressionreduces-image-size-with-single-band-but-not-with-m


240 7 Geographic data I/O

7.6.2 Raster data
To write a raster file using rasterio, we need to pass a raster file path to
rasterio.open in writing ('w') mode. This implies creating a new empty file
(or overwriting an existing one). Next, we need to write the raster values to the
file using the .write method of the file connection. Finally, we should close
the file connection using the .close method.

As opposed to reading mode ('r', the default) mode, the rasterio.open
function in writing mode needs quite a lot of information, in addition to the
file path and mode:

• driver—The file format. The general recommendation is 'GTiff' for Geo-
TIFF, but other formats are also supported (see Table 7.1)

• height—Number of rows
• width—Number of columns
• count—Number of bands
• nodata—The value which represents ‘No Data’, if any
• dtype—The raster data type, one of numpy types supported by the driver

(e.g., np.int64) (see Table 7.2)
• crs—The CRS, e.g., using an EPSG code (such as 4326)
• transform—The transform matrix
• compress—A compression method to apply, such as 'lzw'. This is optional

and most useful for large rasters. Note that, at the time of writing, this does
not work well18 for writing multiband rasters

� Note

Note that 'GTiff (GeoTIFF, .tif), which is the recommended driver,
supports just some of the possible numpy data types (see Table 7.2).
Importantly, it does not support np.int64, the default int type. The
recommendation in such case it to use np.int32 (if the range is sufficient),
or np.float64.

Once the file connection with the right metadata is ready, we do the actual
writing using the .write method of the file connection. If there are several
bands we may execute the .write method several times, as in .write(a,n),
where a is a two-dimensional array representing a single band, and n is the
band index (starting from 1, see below). Alternatively, we can write all bands
at once, as in .write(a), where a is a three-dimensional array. When done,
we close the file connection using the .close method. Some functions, such as
rasterio.warp.reproject used for resampling and reprojecting (Section 4.3.3
and Section 6.8) directly accept a file connection in 'w' mode, thus handling
the writing (of a resampled or reprojected raster) for us.

18https://gis.stackexchange.com/questions/404738/why-does-rasterio-compression-
reduces-image-size-with-single-band-but-not-with-m

7.6 Data output (O) 241

Most of the properties are either straightforward to choose, based on our aims
(e.g., driver, crs, compress, nodata), or directly derived from the array with
the raster values itself (e.g., height, width, count, dtype). The most compli-
cated property is the transform, which specifies the raster origin and resolution.
The transform is typically either obtained from an existing raster (serving as
a ‘template’), created from scratch based on manually specified origin and res-
olution values (e.g., using rasterio.transform.from_origin), or calculated
automatically (e.g., using rasterio.warp.calculate_default_transform),
as shown in previous chapters.

Earlier in the book, we have already demonstrated five common scenarios of
writing rasters, covering the above-mentioned considerations:

• Creating from scratch (Section 1.3.2)—we created and wrote two rasters
from scratch by associating the elev and grain arrays with an arbitrary
spatial extent. The custom arbitrary transformation matrix was created using
rasterio.transform.from_origin

• Aggregating (Section 4.3.2)—we wrote an aggregated raster, by resampling
from an existing raster file, then updating the transformation matrix using
.transform.scale

• Resampling (Section 4.3.3)—we resampled a raster into a cus-
tom grid, manually creating the transformation matrix using
rasterio.transform.from_origin, then resampling and writing the
output using rasterio.warp.reproject

• Masking and cropping (Section 5.2)—we wrote masked and/or cropped arrays
from a raster, possibly updating the transformation matrix and dimensions
(when cropping)

• Reprojecting (Section 6.8)—we reprojected a raster into another
CRS, by automatically calculating an optimal transform using
rasterio.warp.calculate_default_transform, then resampling and
writing the output using rasterio.warp.reproject

To summarize, the raster-writing scenarios differ in two aspects:

1. The way that the transformation matrix for the output raster is
obtained:

•Imported from an existing raster (see below)
•Created from scratch, using rasterio.transform.from_origin

(Section 1.3.2)
•Calculated automatically, using rasterio.warp.calculate_

default_transform (Section 6.8)
2. The way that the raster is written:

•Using the .write method, given an existing array (Section 1.3.2,
Section 4.3.2)

•Using rasterio.warp.reproject to calculate and write a re-
sampled or reprojected array (Section 4.3.3, Section 6.8)
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A minimal example of writing a raster file named r.tif from scratch, to
remind the main concepts, is given below. First, we create a small 2 × 2 array.
r = np.array([1,2,3,4]).reshape(2,2).astype(np.int8)
r

array([[1, 2],
[3, 4]], dtype=int8)

Next, we define a transformation matrix, specifying the origin and resolution.
new_transform = rasterio.transform.from_origin(

west=-0.5,
north=51.5,
xsize=2,
ysize=2

)
new_transform

Affine(2.0, 0.0, -0.5,
0.0, -2.0, 51.5)

Then, we establish the writing-mode file connection to r.tif, which will be
either created or overwritten.
dst = rasterio.open(

'output/r.tif', 'w',
driver = 'GTiff',
height = r.shape[0],
width = r.shape[1],
count = 1,
dtype = r.dtype,
crs = 4326,
transform = new_transform

)
dst

<open DatasetWriter name='output/r.tif' mode='w'>

Next, we write the array of values into the file connection with the .write
method. Keep in mind that r here is a two-dimensional array representing one
band, and 1 is the band index where the array is written into the file.
dst.write(r, 1)

Finally, we close the connection.
dst.close()
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These expressions, taken together, create a new file output/r.tif, which is
a 2 × 2 raster, having a 2 decimal degree resolution, with the top-left corner
placed over London.

To make the picture of raster export complete, there are three important con-
cepts we have not covered yet: array and raster data types, writing multiband
rasters, and handling ‘No Data’ values.

Arrays (i.e., ndarray objects defined in package numpy) are used to store
raster values when reading them from file, using .read (Section 1.3.1). All
values in an array are of the same type, whereas the numpy package supports
numerous numeric data types of various precision (and, accordingly, memory
footprint). Raster formats, such as GeoTIFF, support (a subset of) exactly
the same data types as numpy, which means that reading a raster file uses
as little RAM as possible. The most useful types for raster data, and their
support in GeoTIFF are summarized in Table 7.2.

Table 7.2: Commonly used numpy data types for rasters, and whether they
are supported by the GeoTIFF ('GTiff') file format

Data type Description GeoTIFF

int8 Integer in a single byte (-128 to 127)
int16 Integer in 16 bits (-32768 to 32767) +
int32 Integer in 32 bits (-2147483648 to 2147483647) +
int64 Integer in 64 bits (-9223372036854775808 to

9223372036854775807)
uint8 Unsigned integer in 8 bits (0 to 255) +
uint16 Unsigned integer in 16 bits (0 to 65535) +
uint32 Unsigned integer in 32 bits (0 to 4294967295) +
uint64 Unsigned integer in 64 bits (0 to 18446744073709551615)
float16 Half-precision (16 bit) float (-65504 to 65504)
float32 Single-precision (32 bit) float (1e-38 to 1e38) +
float64 Double-precision (64 bit) float (1e-308 to 1e308) +

The raster data type needs to be specified when writing a raster, typically using
the same type as that of the array to be written (e.g., see the dtype=r.dtype
part in the last example). For an existing raster file, the data type can be
queried through the .dtype property of the metadata (.meta['dtype']).
rasterio.open('output/r.tif').meta['dtype']

'int8'

The above expression shows that the GeoTIFF file r.tif has the data type
np.int8, as specified when creating the file with rasterio.open, according
to the data type of the array we wrote into the file (dtype=r.dtype).
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r.dtype

dtype('int8')

When reading the raster file back into the Python session, the exact same
array is recreated.
rasterio.open('output/r.tif').read().dtype

dtype('int8')

These code sections demonstrate the agreement between GeoTIFF (and other
file formats) data types, which are universal and understood by many programs
and programming languages, and the corresponding ndarray data types which
are defined by numpy (Table 7.2).

Writing multiband rasters is similar to writing single-band rasters, only that
we need to:

• Define a number of bands other than count=1, according to the number of
bands we are going to write

• Execute the .write method multiple times, once for each layer

For completeness, let’s demonstrate writing a multi-band raster named r3.tif,
which is similar to r.tif, but having three bands with values r*1, r*2, and
r*3 (i.e., the array r multiplied by 1, 2, or 3). Since most of the metadata
is going to be the same, this is also a good opportunity to (re-)demonstrate
updating an existing metadata object rather than creating one from scratch.
First, let’s make a copy of the metadata we already have in r.tif.
dst_kwds = rasterio.open('output/r.tif').meta
dst_kwds

{'driver': 'GTiff',
'dtype': 'int8',
'nodata': None,
'width': 2,
'height': 2,
'count': 1,
'crs': CRS.from_epsg(4326),
'transform': Affine(2.0, 0.0, -0.5,

0.0, -2.0, 51.5)}

Second, we update the count entry, replacing 1 (single-band) with 3 (three-
band) using the .update method.
dst_kwds.update(count=3)
dst_kwds
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{'driver': 'GTiff',
'dtype': 'int8',
'nodata': None,
'width': 2,
'height': 2,
'count': 3,
'crs': CRS.from_epsg(4326),
'transform': Affine(2.0, 0.0, -0.5,

0.0, -2.0, 51.5)}

Finally, we can create a file connection using the updated metadata, write the
values of the three bands, and close the connection (note that we are switching
to the ‘keyword argument’ syntax of Python function calls here; see note in
Section 4.3.2).
dst = rasterio.open('output/r3.tif', 'w', **dst_kwds)
dst.write(r*1, 1)
dst.write(r*2, 2)
dst.write(r*3, 3)
dst.close()

As a result, a three-band raster named r3.tif is created.

Rasters often contain ‘No Data’ values, representing missing data, for example,
unreliable measurements due to clouds or pixels outside of the photographed
extent. In a numpy ndarray object, ‘No Data’ values may be represented by
the special np.nan value. However, due to computer memory limitations, only
arrays of type float can contain np.nan, while arrays of type int cannot.
For int rasters containing ‘No Data’, we typically mark missing data with
a specific value beyond the valid range (e.g., -9999). The missing data ‘flag’
definition is stored in the file (set through the nodata property of the file
connection, see above). When reading an int raster with ‘No Data’ back into
Python, we need to be aware of the flag, if any. Let’s demonstrate it through
examples.

We will start with the simpler case, rasters of type float. Since float arrays
may contain the ‘native’ value np.nan, representing ‘No Data’ is straightfor-
ward. For example, suppose that we have a float array of size 2×2 containing
one np.nan value.
r = np.array([1.1,2.1,np.nan,4.1]).reshape(2,2)
r

array([[1.1, 2.1],
[nan, 4.1]])

r.dtype

dtype('float64')
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When writing this type of array to a raster file, we do not need to specify any
particular nodata ‘flag’ value.
dst = rasterio.open(

'output/r_nodata_float.tif', 'w',
driver = 'GTiff',
height = r.shape[0],
width = r.shape[1],
count = 1,
dtype = r.dtype,
crs = 4326,
transform = new_transform

)
dst.write(r, 1)
dst.close()

This is equivalent to nodata=None.
rasterio.open('output/r_nodata_float.tif').meta

{'driver': 'GTiff',
'dtype': 'float64',
'nodata': None,
'width': 2,
'height': 2,
'count': 1,
'crs': CRS.from_epsg(4326),
'transform': Affine(2.0, 0.0, -0.5,

0.0, -2.0, 51.5)}

Reading from the raster back into the Python session reproduces the same
exact array, including np.nan.
rasterio.open('output/r_nodata_float.tif').read()

array([[[1.1, 2.1],
[nan, 4.1]]])

Now, conversely, suppose that we have an int array with missing data, where
the ‘missing’ value must inevitably be marked using a specific int ‘flag’ value,
such as -9999 (remember that we can’t store np.nan in an int array!).
r = np.array([1,2,-9999,4]).reshape(2,2).astype(np.int32)
r

array([[ 1, 2],
[-9999, 4]], dtype=int32)
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r.dtype

dtype('int32')

When writing the array to file, we must specify nodata=-9999 to keep track
of our ‘No Data’ flag.
dst = rasterio.open(

'output/r_nodata_int.tif', 'w',
driver = 'GTiff',
height = r.shape[0],
width = r.shape[1],
count = 1,
dtype = r.dtype,
nodata = -9999,
crs = 4326,
transform = new_transform

)
dst.write(r, 1)
dst.close()

Examining the metadata of the file we’ve just created confirms that the
nodata=-9999 setting was stored in the file r_nodata_int.tif.
rasterio.open('output/r_nodata_int.tif').meta

{'driver': 'GTiff',
'dtype': 'int32',
'nodata': -9999.0,
'width': 2,
'height': 2,
'count': 1,
'crs': CRS.from_epsg(4326),
'transform': Affine(2.0, 0.0, -0.5,

0.0, -2.0, 51.5)}

If you try to open the file in GIS software, such as QGIS, you will see the
missing data interpreted (e.g., the pixel shown as blank), meaning that the
software is aware of the flag. However, reading the data back into Python
reproduces an int array with -9999, due to the limitation of int arrays stated
before.
src = rasterio.open('output/r_nodata_int.tif')
r = src.read()
r

array([[[ 1, 2],
[-9999, 4]]], dtype=int32)
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The Python user must therefore be mindful of ‘No Data’ int rasters, for
example to avoid interpreting the value -9999 literally. For instance, if we
‘forget’ about the nodata flag, the literal calculation of the .mean would
incorrectly include the value -9999.
r.mean()

np.float64(-2498.0)

There are two basic ways to deal with the situation: either converting the raster
to float, or using a ‘No Data’ mask. The first approach, simple and particularly
relevant for small rasters where memory constraints are irrelevant, is to go
from int to float, to gain the ability of the natural np.nan representation.
Here is how we can do this with r_nodata_int.tif. We detect the missing
data flag, convert the raster to float, then assign np.nan into the cells that
are supposed to be missing.
mask = r == src.nodata
r = r.astype(np.float64)
r[mask] = np.nan
r

array([[[ 1., 2.],
[nan, 4.]]])

From there on, we deal with np.nan the usual way, such as using np.nanmean
to calculate the mean excluding ‘No Data’.
np.nanmean(r)

np.float64(2.3333333333333335)

The second approach is to read the values into a so-called ‘masked’ array,
using the argument masked=True of the .read method. A masked array can be
thought of as an extended ndarray, with two components: .data (the values)
and .mask (a corresponding boolean array marking ‘No Data’ values).
r = src.read(masked=True)
r

masked_array(
data=[[[1, 2],

[--, 4]]],
mask=[[[False, False],

[ True, False]]],
fill_value=-9999,
dtype=int32)

Complete treatment of masked arrays is beyond the scope of this book. However,
the basic idea is that many numpy operations ‘honor’ the mask, so that the
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user does not have to keep track of the way that ‘No Data’ values are marked,
similarly to the natural np.nan representation and regardless of the data type.
For example, the .mean of a masked array ignores the value -9999, because it
is masked, taking into account just the valid values 1, 2, and 4.
r.mean()

np.float64(2.3333333333333335)

Switching to float and assigning np.nan is the simpler approach, since that
way we can keep working with the familiar ndarray data structure for all raster
types, whether int or float. Nevertheless, learning how to work with masked
arrays can be beneficial when we have good reasons to keep our raster data in
int arrays (for example, due to RAM limits) and still perform operations that
take missing values into account.

Finally, keep in mind that, confusingly, float rasters may represent ‘No Data’
using a specific ‘flag’ (such as -9999.0), instead, or in addition to (!), the
native np.nan representation. In such cases, the same considerations shown
for int apply to float rasters as well.
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Making maps with Python

Prerequisites
This chapter requires importing the following packages:
import matplotlib.pyplot as plt
import geopandas as gpd
import rasterio
import rasterio.plot
import contextily as cx
import folium

It also relies on the following data files:
nz = gpd.read_file('data/nz.gpkg')
nz_height = gpd.read_file('data/nz_height.gpkg')
nz_elev = rasterio.open('data/nz_elev.tif')

8.1 Introduction

Amateur-looking maps can undermine your audience’s ability to understand
important information and weaken the presentation of a professional data
investigation.

DOI: 10.1201/9781003379911-8 250

A satisfying and important aspect of geographic research is communicating the
results. Map making—the art of cartography—is an ancient skill that involves
communication, intuition, and an element of creativity. In addition to being fun
and creative, cartography also has important practical applications. A carefully
crafted map can be the best way of communicating the results of your work,
but poorly designed maps can leave a bad impression. Common design issues
include poor placement, size, and readability of text and careless selection of
colors, as outlined in the style guide of the Journal of Maps. Furthermore, poor
map making can hinder the communication of results (Brewer 2015):

https://doi.org/10.1201/9781003379911-8
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Maps have been used for several thousand years for a wide variety of purposes.
Historic examples include maps of buildings and land ownership in the Old
Babylonian dynasty more than 3000 years ago and Ptolemy’s world map in
his masterpiece Geography nearly 2000 years ago (Talbert 2014).

Map making has historically been an activity undertaken only by, or on behalf
of, the elite. This has changed with the emergence of open-source mapping
software such as mapping packages in Python, R, and other languages, and
the ‘print composer’ in QGIS, which enable anyone to make high-quality maps,
enabling ‘citizen science’. Maps are also often the best way to present the
findings of geocomputational research in a way that is accessible. Map making
is therefore a critical part of geocomputation and its emphasis not only on
describing, but also changing the world.

Basic static display of vector layers in Python is done with the .plot method or
the rasterio.plot.show function, for vector layers and rasters, as we saw in
Section 1.2.2 and Section 1.3.1, respectively. Other, more advanced uses of these
methods, were also encountered in subsequent chapters, when demonstrating
the various outputs we got. In this chapter, we provide a comprehensive
summary of the most useful workflows of these two methods for creating static
maps (Section 8.2). Static maps can be easily shared and viewed (whether
digitally or in print), however they can only convey as much information as
a static image can. Interactive maps provide much more flexibility in terms
of user experience and amount of information, however they often require
more work to design and effectively share. Thus, in Section 8.3, we move on to
elaborate on the .explore method for creating interactive maps, which was
also briefly introduced earlier in Section 1.2.2.

8.2 Static maps
Static maps are the most common type of visual output from geocomputation.
For example, we have been using .plot and rasterio.plot.show through-
out the book, to display geopandas and rasterio geocomputation results,
respectively. In this section, we systematically review and elaborate on the
various properties that can be customized when using those functions.

A static map is basically a digital image. When stored in a file, standard formats
include .png and .pdf for graphical raster and vector outputs, respectively.
Thanks to their simplicity, static maps can be shared in a wide variety of ways:
in print, through files sent by e-mail, embedded in documents and web pages,
etc.

Nevertheless, there are many aesthetic considerations when making a static
map, and there is also a wide variety of ways to create static maps using novel
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presentation methods. This is the focus of the field of cartography, and beyond
the scope of this book.

Let’s move on to the basics of static mapping with Python.

8.2.1 Minimal examples
A vector layer (GeoDataFrame) or a geometry column (GeoSeries) can be
displayed using their .plot method (Section 1.2.2). A minimal example of
a vector layer map is obtained using .plot with nothing but the defaults
(Figure 8.1).
nz.plot();

Figure 8.1: Minimal example of a static vector layer plot with .plot
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A rasterio raster file connection, or a numpy ndarray, can be displayed using
rasterio.plot.show (Section 1.3.1). Figure 8.2 shows a minimal example of
a static raster map.
rasterio.plot.show(nz_elev);

Figure 8.2: Minimal example of a static raster plot with rasterio.plot.show

8.2.2 Styling
The most useful visual properties of the geometries, that can be specified in
.plot, include color, edgecolor, and markersize (for points) (Figure 8.3).
nz.plot(color='lightgrey');
nz.plot(color='none', edgecolor='blue');
nz.plot(color='lightgrey', edgecolor='blue');
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(a) Light grey fill (b) No fill, blue edge (c) Light grey fill, blue edge

Figure 8.3: Setting color and edgecolor in static maps of a vector layer

The next example uses markersize to get larger points (Figure 8.4). It also
demonstrates how to control the overall figure size, such as 4 × 4 in in this

Figure 8.4: Setting markersize in a static map of a vector layer
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case, using plt.subplots to initialize the plot and its figsize parameter to
specify dimensions.
fig, ax = plt.subplots(figsize=(4,4))
nz_height.plot(markersize=100, ax=ax);

� Note

As you have probably noticed throughout the book, the plt.subplots
function is used to initialize a maptplotlib plot layout, possibly also
specifying image size (e.g., Figure 8.4) and multi-panel layout (e.g.,
Figure 8.18). The returned value is a tuple of Figure and Axes objects,
which we conventionally unpack to variables named fig and ax. These
two variables represent the entire figure, and the elements of individual
sub-figures, respectively.
For our purposes in this book, we have been using just the ax object,
passing it to the ax parameter in further function calls, in order to add
subsequent layers (e.g., Figure 8.16) or other elements (e.g., Figure 8.10)
into the same panel. In a single-panel figure, we pass ax itself, whereas
in a multi-panel figure we pass individual elements representing a spe-
cific panel (such as ax[0] or ax[0][0], depending of the layout; see
Section 8.2.7)
Note that in some of the cases we have used an alternative to
plt.subplots—we assigned an initial plot into a variable, conventionally
named base, similarly passing it to the ax parameter of further calls,
e.g., to add subsequent layers (e.g., Figure 8.14); this (shorter) syntax,
though, is less general than plt.subplots and not applicable in some
of the cases (such as displaying a raster and a vector layer in the same
plot, e.g., Figure 8.16).

8.2.3 Symbology
We can set symbology in a .plot using the following parameters:

• column—a column name
• legend—whether to show a legend
• cmap—color map, a.k.a. color scale, a palette from which the colors are

sampled

For example, Figure 8.5 shows the nz polygons colored according to the
'Median_income' attribute (column), with a legend.
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nz.plot(column='Median_income', legend=True);

Figure 8.5: Symbology in a static map created with .plot

The default color scale which you see in Figure 8.5 is cmap='viridis'. The
cmap (‘color map’) argument can be used to specify one of countless color
scales. A first safe choice is often the ColorBrewer1 collection of color scales,
specifically designed for mapping. Any color scale can be reversed, using the _r
suffix. Finally, other color scales are available: see the matplotlib colormaps
article2 for details. The following code section demonstrates three-color scale
specifications other than the default (Figure 8.6).

1https://colorbrewer2.org/
2https://matplotlib.org/stable/tutorials/colors/colormaps.html

https://colorbrewer2.org
https://matplotlib.org/stable/tutorials/colors/colormaps.html
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nz.plot(column='Median_income', legend=True, cmap='Reds');
nz.plot(column='Median_income', legend=True, cmap='Reds_r');
nz.plot(column='Median_income', legend=True, cmap='plasma');

(a) The 'Reds' color scale
from ColorBrewer

(b) Reversed 'Reds'
color scale

(c) The 'plasma' color scale
from matplotlib

Figure 8.6: Symbology in a static map of a vector layer, created with .plot

Categorical symbology is also supported, such as when column points to an
str attribute. For categorical variables, it makes sense to use a qualitative
color scale, such as 'Set1' from ColorBrewer. For example, the following
expression sets symbology according to the 'Island' column (Figure 8.7).
nz.plot(column='Island', legend=True, cmap='Set1');

In case the legend interferes with the contents (such as in Figure 8.7), we can
modify the legend position using the legend_kwds argument (Figure 8.8).
nz.plot(column='Island', legend=True, cmap='Set1', legend_kwds={'loc': 4});

The rasterio.plot.show function is also based on matplotlib (Hunter 2007),
and thus supports the same kinds of cmap arguments (Figure 8.9).
rasterio.plot.show(nz_elev, cmap='BrBG');
rasterio.plot.show(nz_elev, cmap='BrBG_r');
rasterio.plot.show(nz_elev, cmap='gist_earth');

Unfortunately, there is no built-in option to display a legend in
rasterio.plot.show. The following workaround, reverting to matplotlib
methods, can be used to achieve it instead (Figure 8.10). Basically, the
code reverts to the matplotlib .colorbar method to add a legend, using
the plt.imshow function that draws an image of a numpy array (which
rasterio.plot.show is a wrapper of).
fig, ax = plt.subplots()
i = plt.imshow(nz_elev.read(1), cmap='BrBG')
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Figure 8.7: Symbology for a categorical variable

rasterio.plot.show(nz_elev, cmap='BrBG', ax=ax);
fig.colorbar(i, ax=ax);

8.2.4 Labels
Labels are often useful to annotate maps and identify the location of specific
features. GIS software, as opposed to matplotlib, has specialized algorithms for
label placement, e.g., to avoid overlaps between adjacent labels. Furthermore,
editing in graphical editing software is sometimes used for fine-tuning of label
placement. Nevertheless, simple labels added within the Python environment
can be a good starting point, both for interactive exploration and sharing
analysis results.
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Figure 8.7: Symbology for a categorical variable
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Figure 8.8: Setting legend position in .plot

To demonstrate it, suppose that we have a layer nz1 of regions comprising the
New Zealand southern Island.
nz1 = nz[nz['Island'] == 'South']

To add a label in matplotlib, we use the .annotate method where the
important arguments are the label string and the placement (a tuple of the
form (x,y)). When labeling vector layers, we typically want to add numerous
labels, based on (one or more) attribute of each feature. To do that, we can
run a for loop, or use the .apply method, to pass the label text and the
coordinates of each feature to .annotate. In the following example, we use the
.apply method the pass the region name ('Name' attribute) and the geometry
centroid coordinates, for each region, to .annotate. We are also using ha,
short for horizontalalignment, with 'center' (other options are 'right'
and 'left') (Figure 8.11).
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(a) The 'BrBG' color scale
from ColorBrewer

(b) Reversed 'BrBG_r'
color scale

(c) The 'gist_earth' color
scale from matplotlib

Figure 8.9: Symbology in a static map of a raster, with rasterio.plot.show

Figure 8.10: Adding a legend in rasterio.plot.show
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Figure 8.11: Labels at polygon centroids

fig, ax = plt.subplots()
nz1.plot(ax=ax, color='lightgrey', edgecolor='grey')
nz1.apply(

lambda x: ax.annotate(
text=x['Name'],
xy=x.geometry.centroid.coords[0],
ha='center'

),
axis=1

);
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As another example, let’s create a map of all regions of New Zealand, with
labels for the island names. First, we will calculate the island centroids, which
will be the label placement positions.
ctr = nz[['Island', 'geometry']].dissolve(by='Island').reset_index()
ctr['geometry'] = ctr.centroid
ctr

Island geometry

0 North POINT (1834096.904 5732233.908)
1 South POINT (1401304.646 5125013.652)

Then, we again use .apply, combined with .annotate, to add the text labels.
The main difference compared to the previous example (Figure 8.11) is that
we are directly passing the geometry coordinates (.geometry.coords[0]),
since the geometries are points rather than polygons. We are also using the
weight='bold' argument to use bold font (Figure 8.12).
fig, ax = plt.subplots()
nz.plot(ax=ax, color='none', edgecolor='lightgrey')
ctr.apply(

lambda x: ax.annotate(
text=x['Island'],
xy=x.geometry.coords[0],
ha='center',
weight='bold'

),
axis=1

);

It should be noted that sometimes we wish to add text labels ‘manually’,
one by one, rather than use a loop or .apply. For example, we may want to
add labels of specific locations not stored in a layer, or to have control over
the specific properties of each label. To add text labels manually, we can run
the .annotate expressions one at a time, as shown in the code section below
recreating the last result with the ‘manual’ approach (Figure 8.13).
fig, ax = plt.subplots()
nz.plot(ax=ax, color='none', edgecolor='lightgrey')
ax.annotate('This is label 1', (1.8e6, 5.8e6), ha='center', weight='bold')
ax.annotate('This is label 2', (1.4e6, 5.2e6), ha='center', weight='bold');
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one by one, rather than use a loop or .apply. For example, we may want to
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Figure 8.12: Labels at points

8.2.5 Layers
To display more than one layer in the same static map, we can:

1. Store the first plot in a variable (e.g., base)
2. Pass it as the ax argument of any subsequent plot(s) (e.g., ax=base)

For example, here is how we can plot nz and nz_height together (Figure 8.14).
base = nz.plot(color='none')
nz_height.plot(ax=base, color='red');
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Figure 8.13: Labels at points (manual)

Alternatively (see note in Section 8.2.2), we can:

1. Initialize the plot using fig,ax=plt.subplots()
2. Pass ax to any subsequent plot

fig, ax = plt.subplots()
nz.plot(ax=ax, color='none')
nz_height.plot(ax=ax, color='red');

We can combine rasters and vector layers in the same plot as well, which
we already did earlier in the book, for example when explaining mask-
ing and cropping (Figure 5.2). The technique is to initialize a plot with
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Figure 8.14: Plotting two layers, nz (polygons) and nz_height (points)

fig,ax=plt.subplots(), then pass ax to any of the separate plots, making
them appear together.

For example, Figure 8.16 demonstrates plotting a raster with increasingly
complicated additions:

• Panel (a) shows a raster (New Zealand elevation) and a vector layer (New
Zealand administrative division)

• Panel (b) shows the raster with a buffer of 22.2 km around the dissolved
administrative borders, representing New Zealand’s territorial waters (see
Section 3.3.6)

• Panel (c) shows the raster with two vector layers: the territorial waters (in
red) and elevation measurement points (in yellow)
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Figure 8.15: Plotting two layers, nz (polygons) and nz_height (points), using
plt.subplots

# Raster + vector layer
fig, ax = plt.subplots(figsize=(5, 5))
rasterio.plot.show(nz_elev, ax=ax)
nz.to_crs(nz_elev.crs).plot(ax=ax, color='none', edgecolor='red');
# Raster + computed vector layer
fig, ax = plt.subplots(figsize=(5, 5))
rasterio.plot.show(nz_elev, ax=ax)
gpd.GeoSeries(nz.union_all(), crs=nz.crs) \

.to_crs(nz_elev.crs) \

.buffer(22200) \

.exterior \

.plot(ax=ax, color='red');
# Raster + two vector layers
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Figure 8.15: Plotting two layers, nz (polygons) and nz_height (points), using
plt.subplots

# Raster + vector layer
fig, ax = plt.subplots(figsize=(5, 5))
rasterio.plot.show(nz_elev, ax=ax)
nz.to_crs(nz_elev.crs).plot(ax=ax, color='none', edgecolor='red');
# Raster + computed vector layer
fig, ax = plt.subplots(figsize=(5, 5))
rasterio.plot.show(nz_elev, ax=ax)
gpd.GeoSeries(nz.union_all(), crs=nz.crs) \

.to_crs(nz_elev.crs) \

.buffer(22200) \

.exterior \

.plot(ax=ax, color='red');
# Raster + two vector layers
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fig, ax = plt.subplots(figsize=(5, 5))
rasterio.plot.show(nz_elev, ax=ax)
gpd.GeoSeries(nz.union_all(), crs=nz.crs) \

.to_crs(nz_elev.crs) \

.buffer(22200) \

.exterior \

.plot(ax=ax, color='red')
nz_height.to_crs(nz_elev.crs).plot(ax=ax, color='yellow');

(a) Raster + vector layer (b) Raster + computed
vector layer

(c) Raster + two vector
layers

Figure 8.16: Combining a raster and vector layers in the same plot

� Note

Note that the drawing order of layers is not necessarily according to
the order of expressions, in the code, but according to layer type. For
example, by default line layers are drawn on top of point layers. To
override the default plotting order, we can use the zorder argument
of .plot. Layers with higher zorder values will be drawn on top. For
example, the following would draw layer2 on top of layer1 (regardless
of their types).
base = layer1.plot(zorder=1)
layer2.plot(ax=base, zorder=2);

8.2.6 Basemaps
Basemaps, or background layers, are often useful to provide context to the
displayed layers (which are in the ‘foreground’). Basemaps are ubiquitous in
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(a) ‘OpenStreetMap’ basemap (b) ‘CartoDB Positron’ basemap

Figure 8.17: Adding a basemap to a static map, using contextily

interactive maps (see Section 8.3). However, they are often useful in static
maps too.

Basemaps can be added to geopandas static plots using the contextily
package. A preliminary step is to convert our layers to EPSG:3857 (‘Web
Mercator’), to be in agreement with the basemaps, which are typically provided
in this CRS3. For example, let’s take the small "Nelson" polygon from nz,
and reproject it to 3857.
nzw = nz[nz['Name'] == 'Nelson'].to_crs(epsg=3857)

To add a basemap, we use the cx.add_basemap function, similarly to the
way we added multiple layers (Section 8.2.5). The default basemap is ‘Open-
StreetMap’. You can specify a different basemap using the source parameter,
with one of the values in cx.providers (Figure 8.17).
# OpenStreetMap
fig, ax = plt.subplots(figsize=(7, 7))
ax = nzw.plot(color='none', ax=ax)
cx.add_basemap(ax, source=cx.providers.OpenStreetMap.Mapnik);
# CartoDB.Positron
fig, ax = plt.subplots(figsize=(7, 7))
ax = nzw.plot(color='none', ax=ax)
cx.add_basemap(ax, source=cx.providers.CartoDB.Positron);

3Another option is to reproject the tiles to match the CRS of the foreground layers; this
is less commonly used workflow, as it may lead to distorted appearance of the background
layer.
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package. A preliminary step is to convert our layers to EPSG:3857 (‘Web
Mercator’), to be in agreement with the basemaps, which are typically provided
in this CRS3. For example, let’s take the small "Nelson" polygon from nz,
and reproject it to 3857.
nzw = nz[nz['Name'] == 'Nelson'].to_crs(epsg=3857)

To add a basemap, we use the cx.add_basemap function, similarly to the
way we added multiple layers (Section 8.2.5). The default basemap is ‘Open-
StreetMap’. You can specify a different basemap using the source parameter,
with one of the values in cx.providers (Figure 8.17).
# OpenStreetMap
fig, ax = plt.subplots(figsize=(7, 7))
ax = nzw.plot(color='none', ax=ax)
cx.add_basemap(ax, source=cx.providers.OpenStreetMap.Mapnik);
# CartoDB.Positron
fig, ax = plt.subplots(figsize=(7, 7))
ax = nzw.plot(color='none', ax=ax)
cx.add_basemap(ax, source=cx.providers.CartoDB.Positron);

3Another option is to reproject the tiles to match the CRS of the foreground layers; this
is less commonly used workflow, as it may lead to distorted appearance of the background
layer.
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Check out the gallery4 for more possible basemaps. Custom basemaps (such as
from your own raster tile server) can be also specified using a URL. Finally, you
may read the Adding a background map to plots5 tutorial for more examples.

8.2.7 Faceted maps
Faceted maps are multiple maps displaying the same symbology for the same
spatial layers, but with different data in each panel. The data displayed in
the different panels typically refer to different properties, or time steps. For
example, the nz layer has several different properties for each polygon, stored
as separate attributes:
vars = ['Land_area', 'Population', 'Median_income', 'Sex_ratio']
nz[vars]

Land_area Population Median_income Sex_ratio

0 12500.561149 175500.0 23400 0.942453
1 4941.572557 1657200.0 29600 0.944286
2 23900.036383 460100.0 27900 0.952050
... ... ... ... ...
13 9615.976035 51100.0 25700 0.971898
14 422.195242 51400.0 27200 0.925967
15 10457.745485 46200.0 27900 0.957792

We may want to plot them all in a faceted map, that is, four small maps of nz
with the different variables. To do that, we initialize the plot with the expected
number of panels, such as ncols=len(vars) if we wish to have one row and
four columns, and then go over the variables in a for loop, each time plotting
vars[i] into the ax[i] panel (Figure 8.18).
fig, ax = plt.subplots(ncols=len(vars), figsize=(9, 2))
for i in range(len(vars)):

nz.plot(ax=ax[i], column=vars[i], legend=True)
ax[i].set_title(vars[i])

In case we prefer a specific layout, rather than one row or one col-
umn, we can initialize the required number or rows and columns, as in
plt.subplots(nrows,ncols), ‘flatten’ ax, so that the facets are still accessi-
ble using a single index ax[i] (rather than the default ax[i][j]), and plot
into ax[i]. For example, here is how we can reproduce the last plot, this time
in a 2×2 layout, instead of a 1×4 layout (Figure 8.19). One more modification
we are doing here is hiding the axis ticks and labels, to make the map less
‘crowded’, using ax[i].xaxis.set_visible(False) (and same for .yaxis).

4https://xyzservices.readthedocs.io/en/stable/gallery.html
5https://geopandas.org/en/stable/gallery/plotting_basemap_background.html

https://xyzservices.readthedocs.io/en/stable/gallery.html
https://geopandas.org/en/stable/gallery/plotting_basemap_background.html
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Figure 8.18: Faceted map, four different variables of nz

Figure 8.19: Two-dimensional layout in a faceted map, using a for loop
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Figure 8.18: Faceted map, four different variables of nz

Figure 8.19: Two-dimensional layout in a faceted map, using a for loop
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fig, ax = plt.subplots(nrows=int(len(vars)/2), ncols=2, figsize=(6, 6))
ax = ax.flatten()
for i in range(len(vars)):

nz.plot(ax=ax[i], column=vars[i], legend=True)
ax[i].set_title(vars[i])
ax[i].xaxis.set_visible(False)
ax[i].yaxis.set_visible(False)

It is also possible to ‘manually’ specify the properties of each panel, and
which row/column it goes in. This can be useful when the various panels
have different components, or even completely different types of plots (e.g.,
Figure 5.4), making automation with a for loop less applicable. For example,
here is a plot similar to Figure 8.19, but specifying each panel using a separate
expression instead of using a for loop (Figure 8.20).
fig, ax = plt.subplots(ncols=2, nrows=int(len(vars)/2), figsize=(6, 6))
nz.plot(ax=ax[0][0], column=vars[0], legend=True)
ax[0][0].set_title(vars[0])
nz.plot(ax=ax[0][1], column=vars[1], legend=True)
ax[0][1].set_title(vars[1])
nz.plot(ax=ax[1][0], column=vars[2], legend=True)
ax[1][0].set_title(vars[2])
nz.plot(ax=ax[1][1], column=vars[3], legend=True)
ax[1][1].set_title(vars[3]);

8.2.8 Exporting
Static maps can be exported to a file using the matplotlib.pyplot.savefig
function. For example, the following code section recreates Figure 8.14,
but this time the last expression saves the image to a JPG image named
plot_geopandas.jpg.
base = nz.plot(color='none')
nz_height.plot(ax=base, color='red');
plt.savefig('output/plot_geopandas.jpg')

Figures with rasters can be exported exactly the same way. For example, the
following code section (Section 8.2.5) creates an image of a raster and a vector
layer, which is then exported to a file named plot_rasterio.jpg.
fig, ax = plt.subplots(figsize=(5, 5))
rasterio.plot.show(nz_elev, ax=ax)
nz.to_crs(nz_elev.crs).plot(ax=ax, facecolor='none', edgecolor='r');
plt.savefig('output/plot_rasterio.jpg')
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Figure 8.20: Two-dimensional layout in a faceted map, using ‘manual’ specifi-
cation of the panels

Image file properties can be controlled through the plt.subplots and
plt.savefig parameters. For example, the following code section exports
the same raster plot to a file named plot_rasterio2.svg, which has different
dimensions (width = 5 in, height = 7 in), a different format (SVG), and
different resolution (300 DPI).
fig, ax = plt.subplots(figsize=(5, 7))
rasterio.plot.show(nz_elev, ax=ax)
nz.to_crs(nz_elev.crs).plot(ax=ax, facecolor='none', edgecolor='r');
plt.savefig('output/plot_rasterio2.svg', dpi=300)
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Figure 8.20: Two-dimensional layout in a faceted map, using ‘manual’ specifi-
cation of the panels
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plt.savefig parameters. For example, the following code section exports
the same raster plot to a file named plot_rasterio2.svg, which has different
dimensions (width = 5 in, height = 7 in), a different format (SVG), and
different resolution (300 DPI).
fig, ax = plt.subplots(figsize=(5, 7))
rasterio.plot.show(nz_elev, ax=ax)
nz.to_crs(nz_elev.crs).plot(ax=ax, facecolor='none', edgecolor='r');
plt.savefig('output/plot_rasterio2.svg', dpi=300)
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8.3 Interactive maps
While static maps can enliven geographic datasets, interactive maps can take
them to a new level. Interactivity can take many forms, the most common
and useful of which is the ability to pan around and zoom into any part of a
geographic dataset overlaid on a ‘web map’ to show context. Less advanced
interactivity levels include popups which appear when you click on different
features, a kind of interactive label. More advanced levels of interactivity
include the ability to tilt and rotate maps, and the provision of ‘dynamically
linked’ sub-plots which automatically update when the user pans and zooms
(Pezanowski et al. 2018).

The most important type of interactivity, however, is the display of geographic
data on interactive or ‘slippy’ web maps. Significant features of web maps
are that (1) they eventually comprise static HTML files, easily shared and
accessed by a wide audience, and (2) they can ‘grab’ content (e.g., basemaps)
or use services from other locations on the internet, that way providing detailed
context without requiring much effort from the person who created the map.
The most popular approaches for web mapping, in Python and elsewhere, are
based on the Leaflet JavaScript library (Dorman 2020). The folium Python
package provides an extensive interface to create customized web maps based
on Leaflet; it is recommended for highly customized maps. However, the
geopandas wrapper .explore, introduced in Section 1.2.2, can be used for
a wide range of scenarios which are often sufficient. This is what we cover in
this section.

8.3.1 Minimal example
An interactive map of a GeoSeries or GeoDataFrame can be created with
.explore (Section 1.2.2).
nz.explore()

8.3.2 Styling
The .explore method has a color parameter which affects both the fill and
outline color. Other styling properties are specified using a dict through
style_kwds (for general properties) and the marker_kwds (point-layer specific
properties), as follows.

The style_kwds keys are mostly used to control the color and opacity of the
outline and the fill:

• stroke—Whether to draw the outline
• color—Outline color
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Figure 8.21: Minimal example of an interactive vector layer plot with .explore

• weight—Outline width (in pixels)
• opacity—Outline opacity (from 0 to 1)
• fill—Whether to draw fill
• fillColor—Fill color
• fillOpacity—Fill opacity (from 0 to 1)

For example, here is how we can set green fill color and 30% opaque black
outline of nz polygons in .explore (Figure 8.22).
nz.explore(color='green', style_kwds={'color':'black', 'opacity':0.3})

Figure 8.22: Styling of polygons in .explore
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Figure 8.21: Minimal example of an interactive vector layer plot with .explore

• weight—Outline width (in pixels)
• opacity—Outline opacity (from 0 to 1)
• fill—Whether to draw fill
• fillColor—Fill color
• fillOpacity—Fill opacity (from 0 to 1)

For example, here is how we can set green fill color and 30% opaque black
outline of nz polygons in .explore (Figure 8.22).
nz.explore(color='green', style_kwds={'color':'black', 'opacity':0.3})

Figure 8.22: Styling of polygons in .explore
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The dict passed to marker_kwds controls the way that points are displayed:

• radius—Curcle radius, in m for circle (see below), or in pixels for
circle_marker

• fill—Whether to draw fill (for circle or circle_marker)

Accordingly, for points, we can set the marker_type, to one of:

• 'marker'—A PNG image of a marker
• 'circle'—A vector circle with radius specified in m
• 'circle_marker'—A vector circle with radius specified in pixels (the de-

fault)

For example, the following expression draws 'circle_marker’ points with
20-pixel radius, green fill, and black outline (Figure 8.23).
nz_height.explore(

color='green',
style_kwds={'color':'black', 'opacity':0.5, 'fillOpacity':0.1},
marker_kwds={'radius':20}

)

Figure 8.23: Styling of points in .explore (using 'circle_marker')

Figure 8.24 demonstrates the 'marker' option. Note that the above-mentioned
styling properties (other than opacity) are not applicable when using
marker_type='marker', because the markers are fixed PNG images.
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Figure 8.24: Styling of points in .explore (using 'marker')

nz_height.explore(marker_type='marker')

8.3.3 Layers
To display multiple layers, one on top of another, with .explore, we use the
m argument, which stands for the previous map (Figure 8.25).
m = nz.explore()
nz_height.explore(m=m, color='red')

Figure 8.25: Displaying multiple layers in an interactive map with .explore
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Figure 8.24: Styling of points in .explore (using 'marker')
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To display multiple layers, one on top of another, with .explore, we use the
m argument, which stands for the previous map (Figure 8.25).
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Figure 8.25: Displaying multiple layers in an interactive map with .explore
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One of the advantages of interactive maps is the ability to turn layers ‘on’ and
‘off’. This capability is implemented in folium.LayerControl from package
folium, which the geopandas .explore method is a wrapper of. For example,
this is how we can add a layer control for the nz and nz_height layers
(Figure 8.26). Note the name properties, used to specify layer names in the
control, and the collapsed property, used to specify whether the control is
fully visible at all times (False), or only on mouse hover (True, the default).
m = nz.explore(name='Polygons (adm. areas)')
nz_height.explore(m=m, color='red', name='Points (elevation)')
folium.LayerControl(collapsed=False).add_to(m)
m

Figure 8.26: Displaying multiple layers in an interactive map with .explore,
with layer controls

8.3.4 Symbology
Symbology can be specified in .explore using similar arguments as in .plot
(Section 8.2.3). For example, Figure 8.27 is an interactive version of Figure 8.6
(a).
nz.explore(column='Median_income', legend=True, cmap='Reds')

Fixed styling (Section 8.3.4) can be combined with symbology settings.
For example, polygon outline colors in Figure 8.27 are styled according to
'Median_income', however, this layer has overlapping outlines and their color
is arbitrarily set according to the order of features (top-most features), which
may be misleading and confusing. To specify fixed outline colors (e.g., black),
we can use the color and weight properties of style_kwds (Figure 8.28):



278 8 Making maps with Python

Figure 8.27: Symbology in an interactive map of a vector layer, created with
.explore

nz.explore(
column='Median_income',
legend=True,
cmap='Reds',
style_kwds={'color':'black', 'weight': 0.5}

)

Figure 8.28: Symbology combined with fixed styling in .explore
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Figure 8.27: Symbology in an interactive map of a vector layer, created with
.explore

nz.explore(
column='Median_income',
legend=True,
cmap='Reds',
style_kwds={'color':'black', 'weight': 0.5}

)

Figure 8.28: Symbology combined with fixed styling in .explore
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8.3.5 Basemaps
The basemap in .explore can be specified using the tiles argument. Several
popular built-in basemaps can be specified using a string:

• 'OpenStreetMap'
• 'CartoDB positron'
• 'CartoDB dark_matter'

Other basemaps are available through the xyzservices package (see
xyzservices.providers for a list), or using a custom tile server URL. For
example, the following expression displays the 'CartoDB positron' tiles in
an .explore map (Figure 8.29).
nz.explore(tiles='CartoDB positron')

Figure 8.29: Specifying the basemap in .explore

8.3.6 Exporting
An interactive map can be exported to an HTML file using the .save method
of the map object. The HTML file can then be shared with other people, or
published on a server and shared through a URL6. A good free option for
publishing a web map is through GitHub Pages.

6The GeoJSON representation of the data is embedded in the HTML file, which means
that the file size can get large, and the web map may become unusable due to browser
performance limitations.
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For example, here is how we can export the map shown in Figure 8.26, to a
file named map.html.
m = nz.explore(name='Polygons (adm. areas)')
nz_height.explore(m=m, color='red', name='Points (elevation)')
folium.LayerControl(collapsed=False).add_to(m)
m.save('output/map.html')
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For example, here is how we can export the map shown in Figure 8.26, to a
file named map.html.
m = nz.explore(name='Polygons (adm. areas)')
nz_height.explore(m=m, color='red', name='Points (elevation)')
folium.LayerControl(collapsed=False).add_to(m)
m.save('output/map.html')
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