


A Developer’s Essential Guide to 
Docker Compose

Simplify the development and orchestration of  
multi-container applications

Emmanouil Gkatziouras

BIRMINGHAM—MUMBAI



A Developer’s Essential Guide to Docker Compose
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, without the prior written permission of the publisher, except in the case 
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable 
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and 
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot 
guarantee the accuracy of this information.

Group Product Manager: Rahul Nair

Publishing Product Manager: Niranjan Naikwadi

Senior Editor: Shazeen Iqbal

Content Development Editor: Romy Dias

Technical Editor: Arjun Varma

Copy Editor: Safis Editing

Project Coordinator: Ashwin Kharwa

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Joshua Misquitta

Marketing Coordinator: Nimisha Dua

First published: September 2022

Production reference: 1150922

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80323-436-6

www.packt.com

http://www.packt.com


To the amazing tech community in London. The vibrant tech community of 
London and its ecosystem helps me to be updated with the latest trends, to be 

motivated, and to interact with great engineers. Also, to my colleagues 
at Yapily.



C o n t r i b u t o r s

About the author
Emmanouil Gkatziouras started his software engineering journey when he joined a computer 
engineering and informatics department in Patras, Greece. He then worked as a software engineer 
for various companies. In 2015, he joined Oseven where he started working with cloud providers such 
as AWS and Azure, and container orchestration tools such as ECS and Kubernetes. He has fulfilled 
many roles, most recently as a cloud architect for the platform team.

He loves to give back to the developer community by contributing to open source projects such as 
InfluxDB, Spring Cloud GCP, and Alpakka and by blogging on various software topics. He is committed 
to continuous learning and is a holder of certifications such as CKA, CCDAK, PSM, CKAD, and PSO.

I want to thank myself, for giving me the time and support I’ve needed to 
write this book, on top of everyday responsibilities and priorities. I’d also like 
to thank my partner Viv for her patience while I was writing this book and 
the whole Packt editing team who assisted me: Romy Dias, Ashwin Dinesh 

Kharwa, and Niranjan Naikwadi.



About the reviewer
Werner Dijkerman is a freelance cloud, Kubernetes (certified), and DevOps engineer. He's currently 
focused on, and working with, cloud-native solutions and tools including AWS, Ansible, Kubernetes, 
and Terraform. He is also focused on Infrastructure as Code and monitoring the correct “thing” with 
tools such as Zabbix, Prometheus, and the ELK Stack, with a passion for automating everything and 
avoiding doing anything that resembles manual work.

Big thanks, hugs, and a shoutout to Ernst Vorsteveld!





Preface� xv

Part 1: Docker Compose 101�

1
Introduction to Docker Compose� 3

Technical requirements� 4
Introducing Docker Compose  
and its usage� 4
Installing Docker Compose� 4
Docker Desktop� 5
Installing Docker� 5
docker compose versus  
docker-compose� 10

Understanding how  
Docker Compose works� 11
Your first Docker Compose 
 file� 13
Using your Docker image  
on Docker Compose� 17
Summary� 20

2
Running the First Application Using Compose� 21

Technical requirements� 21
Creating a core application� 22
Installing Go� 22
A REST API in Go using Gin� 22
The application� 23

Running Redis using  
Compose� 26
Shelling into a container  
managed by Compose� 27

Interacting with a Docker  
Compose service� 28
Packaging your application  
with Docker and Compose� 30
Enabling environment configuration� 30
Docker image creation� 31
Running the image� 32
Build an image using Compose� 34

Running your multi-container 
application using Compose� 35

Table of Contents



Table of Contentsviii

Health check� 35
Depending on services� 37
Labels� 40

Images� 40
Containers� 40

Summary� 41

3
Network and Volumes Fundamentals� 43

Technical requirements� 44
Explaining Docker volumes� 44
Attaching a Docker volume  
to a container� 44
Shared volumes� 46
Read-only volumes� 47

Docker volume drivers� 47
Using a volume driver versus  
mounting locally� 48

Declaring Docker volumes  
on Compose files� 49
Attaching Docker volumes  
to an existing application� 49

Creating a configuration file� 51
Mounting a file using volume� 51
Mounting read-only volumes� 52

Docker networking� 54
Bridge� 55
Host� 56
Overlay� 57

Defining networks on a  
Compose configuration� 57
Adding an extra network  
to the current application� 59
Summary� 61

4 
Executing Docker Compose Commands� 63

Technical requirements� 64
Introducing Compose  
commands� 64
The Docker CLI versus  
Compose commands� 64
Setting up the target application� 65

Provisioning commands� 65
build� 66
create� 66
up� 67

Container commands� 68
exec� 69
run� 69
pause� 70
unpause� 70
start and stop� 71
restart� 71
kill� 72
ps� 72

Cleanup commands� 73



Table of Contents ix

down� 73
rm� 76

Image commands� 78
List images� 78
Pulling images� 78
Pushing images� 79
Local Docker registry on  
Compose� 79
Pushing to the local registry� 80

Monitoring commands� 82

Logs� 82
top� 83
Events� 83

Other commands� 84
help� 84
version� 84
port� 84
config� 85

Summary� 86

Part 2: Daily Development with Docker  
Compose�

5 
Connecting Microservices� 89

Technical requirements� 90
Introducing the location  
microservice� 90
Adding a location service  
to Compose� 97
Adding a network for the  
location microservice� 99

Executing requests to the  
location microservice� 100
Streaming task events� 102
Adding a task events  
processing microservice� 105
Summary� 108

6
Monitoring Services with Prometheus� 109

What is Prometheus?� 110
Adding an endpoint for  
Prometheus� 110
Adding the metrics endpoint to  
the Task Manager � 110
Adding the metrics endpoint to  
the location service � 112

Exporting metrics from the  
Event Service � 112

Configuring Prometheus  
to parse metrics� 114
Adding Prometheus to  
the Compose network� 117



Table of Contentsx

Pushing metrics to Prometheus� 118

Creating your first metrics query� 119

Adding an alert� 121

Summary� 123

7
 Combining Compose Files� 125

Technical requirements� 126
Splitting Compose files� 126
Task Manager base� 126
Location service� 127
Event service� 128
Task Manager� 129
Prometheus� 130

Combining Compose files� 130
Selecting the Compose files  
to run � 131
Using Hoverfly� 131
Extending services� 132

Capturing traffic with Hoverfly� 133
Creating mock applications using  
Ηoverfly� 136

Creating different  
environments� 138
Running with capturing enabled� 138
Running with monitoring disabled� 138
Running applications individually� 138

Combining multiple  
Compose files into one� 139
Using config� 139

Summary� 141

8
 Simulating Production Locally� 143

Technical requirements� 144
Segregating private and  
public workloads� 144
Setting up DynamoDB  
locally� 144
Creating DynamoDB tables� 145
Interacting with the Local  
DynamoDB� 146

Setting up SQS locally� 147

Setting up S3 locally� 149
Setting up a REST-based  
Lambda function� 150
Setting up an SQS-based  
Lambda function� 153
Docker Compose links� 155

Connecting the Lambda  
functions� 156
Summary� 159



Table of Contents xi

9
 Creating Advanced CI/CD Tasks� 161

Technical requirements� 162
Introduction to CI/CD � 162
Using Docker Compose  
with GitHub Actions� 163
Creating your first GitHub Action� 163
Caching built images� 164
Building application images� 164
Testing your Compose application� 165

Using Docker Compose  
with Bitbucket pipelines � 166
Creating your first Bitbucket  
pipeline� 166

Caching Compose and Docker  
images� 168
Building application images� 168
Testing your Compose application� 169

Using Docker Compose  
with Travis� 170
Creating your first Travis job� 170
Caching Compose� 171
Building application images� 171
Testing your Compose  
application� 171

Summary� 172

Part 3: Deployment with Docker Compose�

10
Deploying Docker Compose Using Remote Hosts� 175

Technical requirements� 175
Docker remote hosts� 176
Creating a remote Docker  
host� 176
Creating a Docker host on  
AWS EC2� 176
Using the remote Docker host� 182

Docker Contexts� 183
Deploying Compose to  
remote hosts � 184
Executing remote host  
deployments through  
your IDE� 185
Summary� 187

11
Deploying Docker Compose to AWS� 189

Technical requirements� 190
Introduction to AWS ECS� 190

Hosting your Docker images  
on AWS ECR � 191



Table of Contentsxii

Provision ECR using AWS CLI� 191
Provision ECR using Terraform� 192
Storing a Terraform state file� 193
Pushing images to ECR� 194
Adapting the Compose application  
images� 195

Deploying your application  
to an ECS cluster � 196
Running your Compose  
application to an existing  
cluster� 200
Creating a log group� 200
Creating a private network� 201

Security groups� 203
Configuring the ECS cluster and  
the load balancer� 204
Updating the Compose file� 204
Running your Compose application  
on existing infrastructure� 205

Advanced Docker Compose  
concepts on ECS� 206
Updating the application� 206
Scaling the application� 206
Using secrets� 208

Summary� 209

12
Deploying Docker Compose to Azure� 211

Technical requirements� 211
An introduction to ACI� 212
Pushing to an Azure  
container registry � 212

Storing the Terraform state file� 214

Deploying on ACI� 215
Summary� 221

13
Migrating to Kubernetes Configuration Using Compose� 223

Technical requirements� 224
Introduction to Kubernetes� 224
Kubernetes components  
and Compose� 225
Compose applications versus  
namespaces� 225
Compose services versus  
Kubernetes services� 225

Labels� 225
Compose networks versus  
network policies� 226

Using Kompose to convert  
files� 226
Introduction to Minikube� 228
Deploying to Kubernetes� 230
Summary� 232



Table of Contents xiii

Index� 233

Other Books You May Enjoy� 242





Preface

The book explains the fundamentals of Docker Compose and its usage. You will discover the usage of 
Docker components under Compose along with Compose commands, their purpose, and their use 
cases. Further on, you will explore setting up databases for daily usage, leveraging Docker networking, 
and establishing communication between microservices. You will also run entire stacks locally on 
Compose, simulate production environments, and enhance CI/CD jobs using Docker Compose. 
Finally, you will learn about advanced topics such as Docker Compose on production deployments, 
provisioning infrastructure on public clouds such as AWS and Azure, and also pave the way for a 
migration to the Kubernetes orchestration engine.

Who this book is for
This book is for software engineers, developer advocates, and DevOps engineers looking to set up 
multi-container Docker applications using Compose without the need to set up a Docker orchestration 
engine and the expertise required. It is also for team leads looking to increase the productivity of an 
organization’s software teams by streamlining the provisioning of complex development environments 
locally using Docker Compose. 

What this book covers
Chapter 1, Introduction to Docker Compose, provides an overview of how Compose works and its 
various usages. There will be a brief explanation of the Docker Compose file format and a Compose 
example will be run.

Chapter 2, Running the First Application Using Compose, shows you how to create a simple Golang 
application that interacts with a Redis database. At the end of the chapter, you will have managed to 
run a multi-container application through Compose.

Chapter 3, Network and Volumes Fundamentals, dives into the fundamentals of Docker volumes and 
networks. At the end of the chapter, you will have defined and used a network for the existing application.

Chapter 4, Executing Docker Compose Commands, takes you through the Compose commands, their 
purpose, and the use cases. 

Chapter 5, Connecting Microservices, explores creating new microservices. At the end of the chapter, 
you should have developed new microservices within the same network and established connectivity 
between them.



Prefacexvi

Chapter 6, Monitoring Services with Prometheus, covers adding monitoring to the services backed by 
the monitoring solution Prometheus.

Chapter 7, Combining Compose Files, looks at modularizing the Compose file and splitting it into 
multiple parts.

Chapter 8, Simulating Production Locally, provides an overview of complex Compose configurations 
with the goal of simulating production partially or fully in a local environment. 

Chapter 9, Creating Advanced CI/CD Tasks, shows you how to create more advanced CI/CD tasks by 
simulating cases using Compose.

Chapter 10, Deploying Docker Compose Using Remote Hosts, covers deploying to remote hosts  
using Compose.

Chapter 11, Deploying Docker Compose to AWS, covers utilizing the knowledge acquired on Compose 
to achieve a deployment on AWS using ECS. 

Chapter 12, Deploying Docker Compose to Azure, focuses on another popular cloud provider, Azure. 
At the end of the chapter, you should achieve a deployment on Azure ACI.

Chapter 13, Migrating to Kubernetes Configuration Using Compose, shows you how to translate the 
Compose files to a Kubernetes Deployment. 

To get the most out of this book
You are expected to understand containerization and must possess fundamental Docker knowledge. 
Also, you should be comfortable with shell scripting. Ideally, a UNIX workstation would be the best 
option to progress through the book. Most of the code and commands presented should also be able 
to run on Windows machines.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose. If 
there’s an update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Download the color images xvii

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/kD3i4.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Mount 
the created nginx.conf configuration file as another file in your system."

A block of code is set as follows:

type Task struct {

Id string `json:"id"`

Name string `json:"name"`

Description string `json:"description"`

Timestamp   int64  `json:"timestamp"`

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

services:

  redis:

    image: redis

    ports:

- 6379:6379

Any command-line input or output is written as follows:

$ curl --location --request POST 'localhost:8080/task/'

$ cat /etc/nginx/nginx.conf

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/kD3i4


Prefacexviii

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, 
words in menus or dialog boxes appear in bold. Here is an example: "Select System info from the 
Administration panel."

Tips or Important Notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share your thoughts
Once you’ve read A Developer’s Essential Guide to Docker Compose, we’d love to hear your thoughts! 
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1803234369


Part 1:  
Docker Compose 101

This part will introduce us to Docker Compose and how it works behind the scenes. We will familiarize 
ourselves with Compose by developing and deploying a set of applications using Compose. We will also 
find out how Docker concepts that we use daily (such as networking and volumes) map to Compose. 
Lastly, we will have an overview of the available Compose commands and familiarize ourselves with 
executing them.

The following chapters will be covered under this section:

•	 Chapter 1, Introduction to Docker Compose

•	 Chapter 2, Running the First Application Using Compose

•	 Chapter 3, Network and Volumes Fundamentals

•	 Chapter 4, Executing Docker Compose Commands





1
Introduction to  

Docker Compose

As Docker has rapidly become part of our daily developments and deployments, Docker Compose is 
a tool that you will encounter frequently. You have probably read about it, used it, or you might even 
have stumbled upon it while browsing the official Docker documentation.

As day-to-day development becomes more complex, it’s common for an application to interact 
with more than one software component. Applications that grow in popularity will face the need to 
separate the workloads and facilitate scaling. The separation of logic, along with responsibilities to 
multiple software components, is imminent. Docker has been giving solutions for simplifying the 
containerization, management, and isolation of an application’s workloads. Docker Compose can 
assist in the development of modern multi-container applications and their deployment.

Docker Compose is a simple and effective tool. Utilizing its features, it can help to tackle the challenges 
faced on multi-container applications and increase productivity in day-to-day development. Apart 
from its usage in the development life cycle, it can also be a viable option for production deployments. 
This bridges the gap between your initial local developments and actual production deployment. This 
capability can be utilized to achieve a smooth transition to orchestration engines such as Kubernetes.

This chapter will be an overview of Compose, how it works, and its common use cases. We will install 
Docker Compose and create our first Compose file to run a software component of our choice. By 
diving more into the Compose file format, we will also apply some extra configurations and use one 
of our local images.

In this chapter, the following topics will be covered:

•	 Introducing Docker Compose and its usage

•	 Installing Docker Compose



Introduction to Docker Compose4

•	 Understanding how Docker Compose works

•	 Your first Docker Compose file

•	 Using your Docker image in Docker Compose

Technical requirements
The code for this book is hosted on GitHub at https://github.com/PacktPublishing/A-
Developer-s-Essential-Guide-to-Docker-Compose. In case of an update to the code, 
it will be updated on GitHub. 

Introducing Docker Compose and its usage
Docker Compose is a tool for defining and running multi-container Docker applications. The 
configuration is achieved using YAML files, and through the Docker Compose CLI utility, we can 
provision and perform operations on the containers managed by Docker Compose.

Here is a list of features that Compose offers:

•	 Complex multi-container applications on a single host

•	 The isolation of Docker workloads

•	 Bootstrapping and the distribution of complex applications

•	 Multiple environments

•	 The ability to preserve data on application change

•	 The ability to update application versions

•	 Environment composition

•	 Reusable configurations

•	 The simulation of complex production environments

•	 The deployment of production applications

In this book, we will dive into the preceding features extensively, evaluate how we can benefit from 
them, and incorporate them into our development process. In the next section, we will install Docker 
and Compose on our workstation using the operating system of our choice.

Installing Docker Compose
Both Docker Compose and the Compose CLI are built using Go. Compose can be run on the three 
major operating systems: Linux, Windows, and macOS. Since Compose is about managing multi-
container Docker applications, the prerequisite is to have Docker installed.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Installing Docker Compose 5

Docker Desktop

On Mac and Windows, Docker Desktop is an installation option. Docker Desktop handles the 
complexity of setting up Docker on your local machine. It will create a Linux Virtual Machine (VM) 
on your host and facilitate container interactions with the OS such as access to the filesystem and 
networking. This one-click installation comes with the necessary tools such as the Docker CLI. One 
of the tools that is included is also Docker Compose. Therefore, installing Docker Desktop makes it 
sufficient to interact with Docker Engine using Compose on our workstation.

Installing Docker

To install the correct Docker distribution for the workstation of our choice, we will navigate to the 
corresponding section of the official Docker page:

•	 Docker Desktop for Mac: https://docs.docker.com/desktop/mac/install/

•	 Docker Desktop for Windows: https://docs.docker.com/desktop/windows/
install/

•	 Docker Engine for Linux: https://docs.docker.com/engine/install/

On macOS

Apple provides workstations with two different types of processors: an Intel processor and an Apple 
processor. Docker has an installation option for both. Once the download is complete, by clicking on 
the installer, you can drag and drop the Docker application, as shown in the following screenshot:

Figure 1.1 – Installing Docker on Mac

Once Docker has been installed, we can run a hello world command check:

$ docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

https://docs.docker.com/desktop/mac/install/
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/engine/install/


Introduction to Docker Compose6

latest: Pulling from library/hello-world

93288797bd35: Pull complete

Digest: sha256:97a379f4f88575512824f3b352bc03cd75e239179eea 
0fecc38e597b2209f49a

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working 
correctly.

..

Additionally, we have to check whether Compose has been installed:

$ docker compose version

Docker Compose version v2.2.3

Now, let’s look at how to install Docker Desktop on Windows.

On Windows

Similar to Mac, Docker Desktop is installed seamlessly onto your OS ready to be used.

Once you download the EXE installation file and click on it, Docker will be installed along with its 
utilities. Once this is done, some extra configurations will need to be applied to enable virtualization 
for Windows.

Whether the backend that’s being used is WSL 2 backend or Hyper-V, you have to set up your machine 
BIOS to enable virtualization, as shown in the following screenshot:

Figure 1.2 – Enabling virtualization on Windows via BIOS

Once you have logged in to Windows, you will need to enable the corresponding virtualization features.

For WSL 2, you should enable the Virtual Machine Platform feature and the Windows Subsystem 
for Linux feature:



Installing Docker Compose 7

Figure 1.3 – Enabling virtualization for WSL 2

For Hyper-V you should enable Hyper-V:

Figure 1.4 – Enabling virtualization for Hyper-V



Introduction to Docker Compose8

Before you get started, make sure that your user account is added to the docker-users group. 
Once done, log out from Windows and log in again. You can start Docker, and then you can execute 
your first Docker command on PowerShell, as follows:

PS C:\Users\my-user> docker run -d -p 80:80 docker/getting-
started

Unable to find image 'docker/getting-started:latest' locally

latest: Pulling from docker/getting-started

59bf1c3509f3: Pull complete                                      
8d6ba530f648: Pull complete                                       
5288d7ad7a7f: Pull complete                                   
39e51c61c033: Pull complete                                     
ee6f71c6f4a8: Pull complete                                     
f2303c6c8865: Pull complete                                     
0645fddcff40: Pull complete                                                
d05ee95f5d2f: Pull complete                                      
Digest: sha256:aa945bdff163395d3293834697fa91fd4c725f47093ec499 
f27bc032dc1bdd16

Status: Downloaded newer image for docker/getting-
started:latest

852371fcb34fddfe900bddc669af3a7aaab8743f8555fbb9952904bd2516a 
e7a

PS C:\Users\my-user>

Let’s also check whether Docker Compose has been installed:

PS C:\Users\my-user> docker compose version

Docker Compose version v2.2.3

Next, we will look at how to install Docker Desktop on Linux.

On Linux

At the time of writing, a Docker Desktop installation for Linux is not available, but it’s on the roadmap, 
and it’s just a matter of time before it’ll be available for Linux. However, Docker Engine is sufficient 
in order to use Docker Compose.

The most common method of installation is to add the Docker repositories to your Linux workstation 
and then install Docker Community Edition using the corresponding package manager of the 
distribution used.

If you have an older version of Docker, you should remove and install the new docker-ce and 
docker-ce-cli versions. We will assume that this is the first Docker installation on the workstation 
we are currently using.



Installing Docker Compose 9

Since Red Hat-based Linux distributions are very popular for both workstations and production usage, 
we will install Docker on Fedora, which is a Red Hat-based distribution.

First, install the dnf-plugins-core package since it contains tools that can assist us with the 
management of the dnf repositories:

$ sudo dnf -y install dnf-plugins-core

Then, add the docker-ce repo to access the binaries provided by Docker:

$ sudo dnf config-manager --add-repo https://download.docker.
com/linux/fedora/docker-ce.repo

Now that the repo has been set up, we can add the packages:

$ sudo dnf install docker-ce docker-ce-cli containerd.io -y

Docker is a daemon that will run as a service to our machine. Therefore, the systemctl commands 
apply to Docker running as a device:

$ sudo systemctl start docker

Let’s run a hello-world example:

$ sudo docker run hello-world

Hello from Docker!

This message shows that your installation appears to be working 
correctly.

…

As you can see, we had to use sudo in almost every command. This can be fixed by having a group 
called docker, in which users will have the permission to interact with Docker Engine. On the 
installation of Docker Engine, this group will be created:

$ sudo groupadd docker

$ sudo usermod -aG docker $USER

$ docker run hello-world

Once installed, everything is set up to install Compose on Linux.



Introduction to Docker Compose10

We will proceed with the installation link at https://docs.docker.com/compose/
install/#install-compose-on-linux-systems:

$ sudo curl -L "https://github.com/docker/compose/releases/
download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /
usr/local/bin/docker-compose

$ sudo chmod +x /usr/local/bin/docker-compose

$ docker-compose —version

docker-compose version 1.29.2, build 5becea4c

Here, we can observe that this is an older version of Compose compared to the ones that we saw 
earlier. There isn’t a standard way to install Compose V2 on Linux, for instance, by installing Docker 
Desktop on Mac and Windows. However, since it’s feasible to install Compose V2 on Linux, we will 
proceed in doing so, allowing us to focus on Compose V2.

We will follow the guidelines from the official documentation at https://docs.docker.com/
compose/cli-command/#install-on-linux:

$ mkdir -p ~/.docker/cli-plugins/

$ curl -SL https://github.com/docker/compose/releases/download/
v2.2.3/docker-compose-linux-x86_64 -o ~/.docker/cli-plugins/
docker-compose

$ chmod +x ~/.docker/cli-plugins/docker-compose

$ docker compose version

Docker Compose version v2.2.3

docker compose versus docker-compose

One observation to be made by navigating to the installation instructions for Linux is that a Python 
version of docker compose has been installed.

Also, this same version can be found on a Windows installation if you try to use the docker-
compose command on Windows:

PS C:\Users\my-user> docker-compose-v1.exe version

docker-compose version 1.29.2, build 5becea4c

docker-py version: 5.0.0

CPython version: 3.9.0

OpenSSL version: OpenSSL 1.1.1g  21 Apr 2020

PS C:\Users\my-user> 

https://docs.docker.com/compose/cli-command/#install-on-linux
https://docs.docker.com/compose/cli-command/#install-on-linux


Understanding how Docker Compose works 11

The initial Docker Compose was built in Python; therefore, the installation instructions referenced 
the installation of pip packages.

Note that for new installations of Docker Desktop, the docker-compose command is an alias to 
docker compose.

The initial version of Compose’s docker-compose is still supported and maintained. In the case of 
Compose applications built and run using docker-compose, there are supporting tools available such 
as Compose Switch (https://docs.docker.com/compose/cli-command/#compose-
switch) for a smooth migration.

By installing Compose Switch, the old docker-compose command will be replaced by the 
compose-switch command.

Compose Switch will interpret the command that should have been passed to docker-compose. 
Then, it will translate it into a command that can be executed by Compose V2. Then, it will invoke 
Compose V2 using that command.

In this book, we shall focus on Compose V2 since it's part of docker-cli. This is the default on 
Docker Desktop, has the latest features, and comes with extra commands.

By now, you should have Docker and Docker Compose installed on your workstation and know how 
to execute some basic commands. You should also understand the previous Compose version and 
how you can transition to the latest version. Next, we’re going to take a deeper dive into how Compose 
works and how it interacts with Docker Engine. 

Understanding how Docker Compose works
Since we have Docker and Docker Compose installed onto our system, let’s take some time and 
understand what Compose is and how it works behind the scenes.

On GitHub, we can find a project (https://github.com/docker/compose) where the Docker 
Compose source code is being hosted. By navigating to the source code, we can see and understand 
more about Compose, as follows:

•	 Compose integrates with the Docker CLI as a plugin.

•	 Compose interacts with Docker Engine through the API.

•	 Compose provides a CLI and its actions translate into Docker Engine API calls.

•	 Compose will read the Compose YAML file and generate resources accordingly.

•	 Compose provides a layer for converting docker-compose commands into 
CLI-compliant ones.

•	 Compose will interact with Docker objects and distinguish between them using labels.

https://docs.docker.com/compose/cli-command/#compose-switch
https://docs.docker.com/compose/cli-command/#compose-switch
https://github.com/docker/compose


Introduction to Docker Compose12

The Docker CLI provides an API to create and load plugins. Once a plugin has been created and 
loaded on its invocation, the CLI command will be passed to it:

func pluginMain() {

    plugin.Run(func(dockerCli command.Cli) *cobra.Command {

      …

      }

}

func main() {

    if commands.RunningAsStandalone() {

            os.Args = append([]string{"docker"}, compatibility.
Convert(os.Args[1:])...)

    }

    pluginMain()

}

The CLI is based on Cobra (https://github.com/spf13/cobra), which is a popular Go 
library for CLI applications.

Compose, being a plugin of the Docker CLI, will use a Docker Engine API client provided by the 
Docker CLI:

lazyInit.WithService(compose.NewComposeService(dockerCli.
Client(), dockerCli.ConfigFile()))

Each command passed to the Docker Compose plugin will lead to an interaction with the Docker 
Engine API on our host. For example, the internals of the ls command:

func (s *composeService) List(ctx context.Context, opts api.
ListOptions) ([]api.Stack, error) {

    list, err := s.apiClient.ContainerList(ctx, moby.
ContainerListOptions{

        Filters: filters.NewArgs(hasProjectLabelFilter()),

        All:     opts.All,

    })

    if err != nil {

        return nil, err

    }



Your first Docker Compose file 13

    return containersToStacks(list)

}

We now have a good understanding of how Compose works and interacts with Docker Engine. You 
can also refer to the source code for more information. Next, we’re going to run our first Docker 
Compose application.

Your first Docker Compose file
Imagine a scenario of wanting to run a static page on a server. For this task, an NGINX server is a 
good choice. We have a simple HTML file on the static-site/index.html path:

<!DOCTYPE html>

<html>

    <head>

        <title>Hello World</title>

    </head>

    <body>

       <p>Hi! This application should run on docker-compose</p>

    </body>

</html>

By using Docker, we will run an NGINX server using the official image found at https://www.
docker.com/blog/how-to-use-the-official-nginx-docker-image/:

$ docker run --rm -p 8080:80 --name nginx-compose nginx

Let’s break this down a little bit:

•	 Docker Engine will run a Docker NGINX image.

•	 The default port on the image is 80, so we shall map it locally to 8080 to avoid using a 
privileged port.

•	 The name we assign will be constant in order to make interactions with the container easier.

•	 By using the —rm argument, we ensure that once we are done with our task and stop the 
container, the container will be deleted.

https://www.docker.com/blog/how-to-use-the-official-nginx-docker-image/
https://www.docker.com/blog/how-to-use-the-official-nginx-docker-image/


Introduction to Docker Compose14

Our container is up and running. In a different Terminal session, we should access the default 
NGINX page:

$ curl 127.0.0.1:8080

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully 
installed and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to

<a href="http://nginx.org/">nginx.org</a>.<br/>

Commercial support is available at

<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>

</body>

</html>

Since we have successfully run NGINX, we need to adapt our command in order to use the customized 
HTML page. A simple and fast way to do this is to mount the file at the path of a container. Let’s exit 
the previous command using Ctrl + C and then refine the previous command:

docker run --rm -p 8080:80 --name nginx-compose -v $(pwd)/
static-site:/usr/share/nginx/html nginx



Your first Docker Compose file 15

As expected, the page changes to the one we have specified:

$ curl localhost:8080/index.html

<!DOCTYPE html>

<html>

    <head>

        <title>Hello World</title>

    </head>

    <body>

       <p>Hi! This application should run on docker-compose</p>

    </body>

</html>

$

Now we have everything needed to migrate this application to Compose. We will create a Compose 
file for the default NGINX installation:

services:

  nginx:

    image: nginx

    ports:

      - 8080:80

Let’s break down what we just did:

•	 The name of the service will be NGINX.

•	 The image is the same NGINX image.

•	 The ports are the same ports used previously.

The content shall be saved to a file named docker-compose.yaml.

Next, we will execute the Compose command on the Terminal:

$ docker compose up

[+] Running 2/0

  Network chapter1_default    Created                           
0.0s

  Container chapter1-nginx-1  Created                           
0.0s



Introduction to Docker Compose16

Attaching to chapter1-nginx-1

chapter1-nginx-1  | /docker-entrypoint.sh: /docker-
entrypoint.d/ is not empty, will attempt to perform 
configuration

chapter1-nginx-1  | /docker-entrypoint.sh: Looking for shell 
scripts in /docker-entrypoint.d/

…

$

As expected, the result from the HTTP request is the same as the one that we experienced by just 
running the Docker container.

The naming of the file is important. We did execute the Compose command to spin up the Compose 
file, but we did not specify the file to be used. As it happens with docker build and Dockerfile, 
by running docker compose in a directory, Compose will search for a file named docker-
compose.yaml. If the file exists, it’ll be picked up as the default Compose file. Be aware that we 
are not limited to just one filename; we can use a different filename for our Compose applications. In 
the following chapters, there are cases where we can use a different name for the Compose files and 
run the application using the –f option. 

Next, we shall mount the custom HTML page through the Compose configuration:

services:

  nginx:

    image: nginx

    ports:

      - 8080:80

    volumes:

      - ./static-site:/usr/share/nginx/html

As simple as our previous Docker command seemed to be, behind the scenes, it created a Docker 
volume pointing to a path of our filesystem and then it was attached to the container. The same applies 
to Compose. We specify a volume that points to our filesystem. Then, based on our location, it is 
mounted to a directory of the container:

$  curl localhost:8080/index.html

<!DOCTYPE html>

<html>

    <head>

        <title>Hello World</title>

    </head>



Using your Docker image on Docker Compose 17

    <body>

        <p>Hi! This application should run on docker-compose</
p>

    </body>

</html>

As expected, the result is the same one with the result of the Docker example.

To review this section, we ran an NGINX instance using Docker CLI and made the transition to 
Compose by adding the corresponding YAML sections for the Docker command parameters that 
were used. Now, we are ready to move on to the next stage of this chapter’s journey, where we’ll build 
and run a Docker image on Docker Compose.

Using your Docker image on Docker Compose
By using Compose, we have achieved running the default NGINX image and changing the default 
HTML page that was displayed. Since we have started utilizing Compose, we will proceed with using 
and testing custom Docker images.

For our use case, we want to develop an NGINX image that prints logs in JSON format since it’s feasible 
for tools such as CloudWatch (https://aws.amazon.com/cloudwatch/), StackDriver 
(https://cloud.google.com/products/operations), and ELK Stack (https://
www.elastic.co/elastic-stack/) to persist data in JSON format and offer enhanced 
querying capabilities by having field conditions based on JSON elements.

The problem will require us to identify how NGINX defines the current logging format. Since we 
have a container already running through Compose, we will shell into the container and check  
the configuration:

$  docker ps

CONTAINER ID   IMAGE     COMMAND                  CREATED        
STATUS       PORTS                  NAMES

dc0ca7ebe0cb   nginx     "/docker-entrypoint.…"   7 hours ago    
Up 7 hours   0.0.0.0:8080->80/tcp   chapter1-nginx-1

$ docker exec -it chapter1-nginx-1 cat /etc/nginx/nginx.conf

user  nginx;

worker_processes  auto;

error_log  /var/log/nginx/error.log notice;

pid        /var/run/nginx.pid;

https://aws.amazon.com/cloudwatch/
https://cloud.google.com/products/operations
https://www.elastic.co/elastic-stack/
https://www.elastic.co/elastic-stack/


Introduction to Docker Compose18

events {

    worker_connections  1024;

}

http {

    include       /etc/nginx/mime.types;

    default_type  application/octet-stream;

    log_format  main  '$remote_addr - $remote_user [$time_
local] "$request" '

                    '$status $body_bytes_sent "$http_referer" '

                  '"$http_user_agent" "$http_x_forwarded_for"';

By finding our running container using docker ps and issuing cat, through the container shell, we 
retrieved the current log_format from the instance by checking the /etc/nginx/nginx.conf 
file. We will change this format to JSON and build a custom Docker image preloaded with that format.

We will copy the file locally to apply the change:

$  docker cp chapter1-nginx-1:/etc/nginx/nginx.conf nginx.conf

By editing nginx.conf instead of log_format, we set the json format:

log_format  main escape=json '{"remote_addr":"$remote_
addr","remote_user":"$remote_user","time":"[$time_
local]","request":"$request",'

                     '"status":"$status","body_bytes_
sent":"$body_bytes_sent","http_referer":"$http_referer",'

                      '"http_user_agent":"$http_user_
agent","http_x_forwarded_for":"$http_x_forwarded_for"}';             

Our file will look like this:

user  nginx;

worker_processes  auto;

error_log  /var/log/nginx/error.log notice;

pid        /var/run/nginx.pid;

events {



Using your Docker image on Docker Compose 19

    worker_connections  1024;

}

http {

    include       /etc/nginx/mime.types;

    default_type  application/octet-stream;

    log_format  main  escape=json '{"remote_addr":"$remote_
addr","remote_user":"$remote_user","time":"[$time_
local]","request":"$request",'

                      '"status":"$status","body_bytes_
sent":"$body_bytes_sent","http_referer":"$http_referer",'

                      '"http_user_agent":"$http_user_
agent","http_x_forwarded_for":"$http_x_forwarded_for"}';

    access_log  /var/log/nginx/access.log  main;

    sendfile        on;

    #tcp_nopush     on;

    keepalive_timeout  65;

    #gzip  on;

    include /etc/nginx/conf.d/*.conf;

}

Now that we have the config file needed, we will create the base NGINX image that will use this 
configuration. The Dockerfile will be the following:

FROM nginx

COPY nginx.conf /etc/nginx/nginx.conf

Let’s build the image:

$ docker build -t custom-nginx:0.1 .



Introduction to Docker Compose20

Let’s go ahead and use it with the recently created docker-compose.yaml file:

services:

  nginx:

    image: custom-nginx:0.1

    ports:

      - 8080:80

    volumes:

      - ./static-site:/usr/share/nginx/html

$ docker compose up

…

chapter1-nginx-1  | 2022/02/10 08:09:27 [notice] 1#1: start 
worker process 33

chapter1-nginx-1  | {"remote_addr":"172.19.0.1","remote_
user":"","time":"[10/Feb/2022:08:09:33 +0000]","request":"GET 
/ HTTP/1.1","status":"200","body_bytes_sent":"177","http_
referer":"","http_user_agent":"curl/7.77.0","http_x_forwarded_
for":""}

…

By now, Compose runs successfully on your application that also uses the custom Docker image. So 
far, Compose was sufficient to use a custom image and also include some modification at runtime 
such as mounting a file as well as doing port mapping. The results were the same as the ones we would 
expect if we run the application using Docker commands.

Summary
In this chapter, we were introduced to Docker Compose and some of its most notable features. We 
installed Compose on different operating systems and identified the differences between installations. 
Then, we identified the different Compose versions, Docker-Compose V1 and Docker Compose V2, 
along with the version to be used throughout this book. By checking on the Compose source code, we 
went a step further regarding how Compose works and interacts with the Docker CLI. Then, we ran a 
Docker application using the docker-cli command and created the equivalent of it on Compose. 
The next step was to customize the image we used in our first example and deploy it using Compose.

In the next chapter, we shall create an application that will run and interact with a Redis database 
using Compose.



2
Running the First  

Application Using Compose

In the previous chapter, we learned about Docker Compose and how we can benefit from its features. 
We learned how it works and interacts with the Docker engine and how it integrates with the Docker 
command-line interface (CLI). By installing Compose on the workstation of our choice, we were 
able to run some application examples.

Using Compose throughout an application’s development can be a streamlined process that can have a 
significant role in increasing productivity. By the time you have completed this chapter, you will be able 
to package your application and run it on Compose. You’ll be able to interact with the application and 
enhance its functionality by interacting with a database. Once the basic multi-container application 
is deployed using Compose, we shall dive deeper into more Compose functionalities such as health 
checks, labels, environment variables, and command override.

We will cover the following main topics in this chapter: 

•	 Creating a core application

•	 Running Redis using Compose

•	 Shelling into a container managed by Compose

•	 Interacting with a Docker Compose service

•	 Packaging your application with Docker and Compose

•	 Running your multi-container application using Compose

Technical requirements
The code for the book is hosted on GitHub at https://github.com/PacktPublishing/A-
Developer-s-Essential-Guide-to-Docker-Compose. If there is an update to the code, 
it will be updated on the GitHub repository.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Running the First Application Using Compose22

Creating a core application
In this section, we will create an application using the Go programming language. Throughout the 
course of this book, this application will evolve and will help us display the features that Compose 
offers. Go is an open source programming language. Many software applications that we use nowadays 
are built using Go, including Docker, Kubernetes, and Compose. By programming using Go, we 
benefit from a robust library providing packages that we need such as http server, testing 
utils, and more.

Installing Go

Installing Go on your workstation is streamlined. By navigating to the download page on https://
go.dev/doc/install, you can find installation packages for the major operating systems.

A REST API in Go using Gin

Building a REST API in Go can be done either by using the existing libraries or by using a framework. 
We will pick the framework option in order to keep our code base simple and keep our focus on 
Compose. The framework we will use is Gin (https://gin-gonic.com/), a popular Go 
framework that will assist us in routing, rendering JSON, and avoiding writing extra code should we 
use only the existing Go libraries.

Let’s create our module with the following: 

$ go mod init task_manager

We shall use an application template to get started:

$ curl https://raw.githubusercontent.com/gin-gonic/examples/
master/basic/main.go > main.go

Now, we are going to download Gin:

$ go get github.com/gin-gonic/gin

Following that, we will build the module using the build command of go:

$ go build

Now, you can run the application using go run:

$ go run main.go

https://go.dev/doc/install
https://go.dev/doc/install
https://gin-gonic.com/


Creating a core application 23

Next, we shall test the application using curl:

$ curl http://localhost:8080/user/John

{"status":"no value","user":"John"}

We have successfully created our first REST API using Go. We have the tools to get started and develop 
our application. The next step is to build upon the template we just used and create our core application.

The application

The application will be a Task Manager available using a REST API interface. The application user will 
submit a task using a POST request. The user will also be able to retrieve the tasks using a GET request 
as well as delete them using a DELETE request. The endpoints we should cover for now are as follows:

•	 GET /task: Retrieve all tasks.

•	 POST /task: Add task.

•	 GET /task/{id}: Retrieve task by ID.

•	 DELETE /task/{id}: Delete task by ID.

With some adaptions to the main.go method, we will transform the class to the task server. The 
current implementation will keep the tasks in memory. The application can be in one file, as we can 
see at https://raw.githubusercontent.com/PacktPublishing/A-Developer-
s-Essential-Guide-to-Docker-Compose/main/Chapter2/example-task-
manager/main.go.

Our data structure will contain an ID, the name of the task, the description, and the timestamp: 

type Task struct {

    Id          string `json:"id"`

    Name        string `json:"name"`

    Description string `json:"description"`

    Timestamp   int64  `json:"timestamp"`

}

Here, we can see the corresponding controllers for the actions mentioned:

// Get tasks

	 r.GET("/task", func(c *gin.Context) {

		  tasks := []Task{}

		  for _, v := range taskMap {

			   tasks = append(tasks, v)

https://raw.githubusercontent.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/main/Chapter2/example-task-manager/main.go
https://raw.githubusercontent.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/main/Chapter2/example-task-manager/main.go
https://raw.githubusercontent.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/main/Chapter2/example-task-manager/main.go


Running the First Application Using Compose24

		  }

		  c.JSON(http.StatusOK, gin.H{"tasks": tasks})

	 })

// Get task

	 r.GET("/task/:id", func(c *gin.Context) {

		  id := c.Params.ByName("id")

		  task, ok := taskMap[id]

		  if ok {

			   c.JSON(http.StatusOK, gin.H{"task": task})

		  } else {

			   c.JSON(http.StatusNotFound, gin.H{"id": id, 
"message": "not found"})

		  }

	 })

// Add task

	 r.POST("/task", func(c *gin.Context) {

		  var task Task

		  if err := c.BindJSON(&task); err != nil {

			   c.JSON(http.StatusOK, gin.H{"task": task, 
"created": false, "message": err.Error()})

		  } else {

			   taskMap[task.Id] = task

			   c.JSON(http.StatusCreated, gin.H{"task": task, 
"created": true, "message": "Task Created Successfully"})

		  }

	 })

// Remove task

	 r.DELETE("/task/:id", func(c *gin.Context) {

		  id := c.Params.ByName("id")

		  delete(taskMap, id)

		  c.JSON(http.StatusOK, gin.H{"id": id, "message": 
"deleted"})

	 })



Creating a core application 25

Since our REST API is up and running, we will interact with it by issuing some calls using curl. To 
issue a create task request, enter the following command: 

$ curl --location --request POST 'localhost:8080/task/' \

--header 'Content-Type: application/json' \

--data-raw '{

    "id": "8b171ce0-6f7b-4c22-aa6f-8b110c19f83a",

    "name": "A task",

    "description": "A task that need to be executed at the 
timestamp specified",

    "timestamp": 1645275972000

}'

{"created":true,"message":"Task Created Successfully","tas
k":{"id":"8b171ce0-6f7b-4c22-aa6f-8b110c19f83a","name":"A 
task","description":"A task that need to be executed at the 
timestamp specified","timestamp":1645275972000}}

To issue a get all tasks request, enter the following command: 

$ curl --location --request GET 'localhost:8080/task'

{"tasks":[{"id":"8b171ce0-6f7b-4c22-aa6f-
8b110c19f83a","name":"A task","description":"A 
task that need to be executed at the timestamp 
specified","timestamp":1645275972000}]}

To retrieve a specific task using a task ID, enter the following command: 

$ curl --location --request GET 'localhost:8080/task/8b171ce0-
6f7b-4c22-aa6f-8b110c19f83a'

{"task":{"id":"8b171ce0-6f7b-4c22-aa6f-8b110c19f83a","name":"A 
task","description":"A task that need to be executed at the 
timestamp specified","timestamp":1645275972000}}

In order to keep our example requests simple and portable, we used curl. As Postman is a popular 
tool for interacting with REST APIs, a collection is available here: https://github.com/
PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/
blob/main/Chapter2/Task-Manager.postman_collection.json.

So far, we’ve created a Task Manager application that provides a REST API. Then, by using curl, 
we tested the application’s functionality. Onward, we will adapt the Task Manager application to use 
a Redis server for storage.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter2/Task-Manager.postman_collection.json
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter2/Task-Manager.postman_collection.json
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter2/Task-Manager.postman_collection.json


Running the First Application Using Compose26

Running Redis using Compose
Our main application is set up. For simplicity purposes, instead of storing the tasks in a database, we 
used an in-memory map. This works well for prototyping; however, our data and tasks remain only 
in one process. In the case of spinning up two instances of our application, each instance will contain 
different tasks.

To tackle this, we will store the data in a database. This way, the data will be kept in one place and 
there will not be any differences in the tasks served by various instances. Redis will be our choice for 
storing the data. 

Redis is a popular in-memory data structure storage. It’s widely used as a cache, and all major cloud 
providers use it as a caching offering. Components such as ElastiCache in Amazon Web Services 
(https://aws.amazon.com/elasticache) or Memorystore in Google Cloud Platform 
(https://cloud.google.com/memorystore) have the option of using Redis. Also, Redis 
can be used for database purposes. Furthermore, it comes with broker and streaming capabilities. 
Throughout this book, Redis and its versatility will help us highlight the features of Docker Compose.

In order to run Redis, we will use Docker Compose. Therefore, let’s create a Compose file with a 
Redis service:

services:

  redis:

    image: redis

    ports:

      - 6379:6379

The service name will be redis. The default port of Redis is 6379, so we shall bind it locally to 
port 6379. By running compose up, we should be able to interact with a redis database locally:

$ docker compose up

…

chapter2-redis-1  | 1:M 19 Feb 2022 14:18:20.302 # Server 
initialized

chapter2-redis-1  | 1:M 19 Feb 2022 14:18:20.303 * Ready to 
accept connections

A Redis database is up and running through Compose and is ready to accept connections. In the 
next section, we will shell into the Redis container, get familiar with it, and execute some commands.

https://aws.amazon.com/elasticache
https://cloud.google.com/memorystore


Shelling into a container managed by Compose 27

Shelling into a container managed by Compose
Since we’ve been successful in running a Redis database using Compose, we will run some commands 
upon that Redis instance and get familiar with the database. As happens with many container-based 
distributions of databases, along with the actual database, the image can contain tools that help the 
user interact with the database for administrative or usage purposes. 

The Redis CLI can be used to send commands to a Redis service. The Redis Docker image does contain 
the Redis CLI, so we should be able to use it with the running database.

Let’s find our running Redis image:

$ docker ps --format "{{.Names}}"

chapter2-redis-1

$

Let’s shell into this image:

$ docker exec -it chapter2-redis-1 bash

root@d189b089bcf6:/data#

We just shelled successfully into a container managed by Compose. Let’s navigate and see what is 
already there:

$ root@d189b089bcf6:/data# ls

dump.rdb

root@d189b089bcf6:/data# ls /usr/local/bin

docker-entrypoint.sh  gosu  redis-benchmark  redis-check-
aof  redis-check-rdb  redis-cli  redis-sentinel  redis-server

The default directory has a dump.rdb file. Also, by using ls, we can see the binaries such as redis-
server, redis-sentinel, and redis-cli. Since the Redis CLI does exist on the image, we 
can execute some commands upon the running Redis server:

$ root@d189b089bcf6:/data# redis-cli

127.0.0.1:6379>

Redis will be the main storage for tasks, so we shall add a task ID using ZADD and then check the 
data stored: 

127.0.0.1:6379> ZADD tasks 1645275972000 "8b171ce0-6f7b-4c22-
aa6f-8b110c19f83a"

(integer) 1



Running the First Application Using Compose28

127.0.0.1:6379> ZRANGE tasks 0 -1 WITHSCORES

1) "8b171ce0-6f7b-4c22-aa6f-8b110c19f83a"

2) "1645275972000"

After running a Redis server using Compose successfully, we managed to shell into the Redis container, 
identified existing command-line tools, and used the redis-cli command to interact with the 
server. Next, we’ll adapt our application in order to use the Redis server for storage purposes.

Interacting with a Docker Compose service
We ran Redis on Compose and we shelled to that instance in order to run some commands and add 
data. Obviously, interacting with that instance doesn’t require us to shell on it. The instance has been 
configured to have the port 6379 bound to our local port 6379.

For example, we should be able to interact with that instance by a redis-cli client that has 
localhost access. In the following, you can see another Redis Docker image accessing our  
Compose-managed Redis:

$ docker run --rm -it --entrypoint bash redis -c 'redis-cli -h 
host.docker.internal -p 6379'

host.docker.internal:6379> ZRANGE tasks 0 -1 WITHSCORES

1) "8b171ce0-6f7b-4c22-aa6f-8b110c19f83a"

2) "1645275972000"

host.docker.internal:6379>

We can see that the entry that we added previously has been displayed on this terminal session. We are 
successfully interacting with the Compose service from the outside, so we shall proceed with adapting 
our application’s code base in order to use Redis instead of an in-memory map. One structure to use 
would be a sorted set. A sorted set is like a set accompanied by a numerical value called a score. The 
elements on the set are sorted by the score. If they have the same score, then they are sorted based on 
the lexicographic order of the value. If we examine the Redis ZADD command that we ran previously, 
we can see that the score that we specified is actually the task’s timestamp. So, the tasks on our services 
will be sorted using the timestamp.

Also, we want to retrieve tasks by id. Hashes are a good option since they are the perfect data type 
to represent objects. By using a hash, we can map and access the struct values in a key-value manner:

host.docker.internal:6379> HMSET task:8b171ce0-6f7b-4c22-
aa6f-8b110c19f83 Id 8b171ce0-6f7b-4c22-aa6f-8b110c19f83a Name 
"A task" Description "A task that need to be executed at the 
timestamp specified" Timestamp 1645275972000

OK



Interacting with a Docker Compose service 29

host.docker.internal:6379> HGETALL task:8b171ce0-6f7b-4c22-
aa6f-8b110c19f83

1) "Id"

2) "8b171ce0-6f7b-4c22-aa6f-8b110c19f83a"

3) "Name"

4) "A task"

5) "Description"

6) "A task that need to be executed at the timestamp specified"

7) "Timestamp"

8) "1645275972000"

host.docker.internal:6379>

Let’s exit and terminate the container using Ctrl + C.

Now, we will adapt our application to use Redis for persistence. There are various client options, so 
we will choose the one that is currently more popular, which is the go-redis/redis client.

Let’s import go-redis/redis on our project:

$ go get github.com/go-redis/redis/v8

After some changes, our code base should serve requests using Redis. We can see the Redis persistence 
operations on GitHub: https://github.com/PacktPublishing/A-Developer-s-
Essential-Guide-to-Docker-Compose/blob/main/Chapter2/main.go#L91.

Also, the methods of the controller will be adapted accordingly, as we can see on GitHub: https://
github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-
Compose/blob/main/Chapter2/main.go#L39.

For every task, there will be an equivalent hash. The prefix of the hash will be the string task. The hash 
will contain all the information submitted for a task. In order to have some sorting based on the date 
of the task, we will use a sorted set. 

This brings us to the following Redis interactions per endpoint:

•	 GET /task: Retrieve task ID using the sorted set and fetch the hash for each task.

•	 POST /task: Add a hash named task:{id} for the task and insert the ID into the sorted set.

•	 GET /task/{id}: Retrieve the task hash using key task:{id}.

•	 DELETE /task/{id}: Remove the hash named task:{id} and remove the ID entry 
from the sorted set.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter2/main.go#L91
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter2/main.go#L91
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter2/main.go#L39
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter2/main.go#L39
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter2/main.go#L39


Running the First Application Using Compose30

Let’s run our application using the updated code base:

$ go run main.go

By running a Redis server using Compose, we’ve been able to migrate the existing core application to 
a Redis-backed solution. The code changes applied helped to replace the app-based storage with the 
appropriate Redis data structures for our use case. In the next section, we will package the application 
using Docker and run it using Compose.

Packaging your application with Docker and Compose
It’s time that we moved on to packaging and deploying our application using Compose. In order to 
achieve this, the requisite is to create a Docker image for our application. Before we go in that direction, 
we need to adapt our code base so it can run in different environments without having to change the 
code and generate another image.

Enabling environment configuration

By examining the code base, we can see that certain configurations are subject to change. Redis 
configuration should be flexible since a Redis server, as long as it is accessible to our code base, 
can be located everywhere. For this reason, the Redis client will derive the configurations through 
environment variables. However, if there were no configurations provided, it should fall back to a 
default configuration. 

The following utility function will assist us with this. In the case of no environment variable being 
provided, a default value will be used:

func getIntEnv(key string, defaultvaule int) int {

    if value := os.Getenv(key); len(value) == 0 {

        return defaultvaule

    } else {

        if i, err := strconv.Atoi(value); err == nil {

            return i

        } else {

            return defaultvaule

        }

    }

}

func getStrEnv(key string, defaultValue string) string {

    if value := os.Getenv(key); len(value) == 0 {



Packaging your application with Docker and Compose 31

        return defaultValue

    } else {

        return value

    }

}

Onward, we will adapt the Redis client configuration to use environment variables:

var (

    client = redis.NewClient(&redis.Options{

            Addr:     getStrEnv("REDIS_HOST", 
"localhost:6379"),

            Password: getStrEnv("REDIS_PASSWORD", ""),

            DB:       getIntEnv("REDIS_DB", 0),

    })

    taskMap = make(map[string]Task)

)

Finally, let’s configure the host and port that our server will operate on: 

func main() {

     r := setupRouter()

     r.Run(getStrEnv("TASK_MANAGER_HOST", ":8080"))

}

So far, we have adapted the existing code base to be configured through environment variables. This 
makes our solution portable in different environments. If no extra configuration is provided, our 
application can fall back to the default settings. We can now proceed to create a Docker image for 
the application.

Docker image creation

Thanks to our previous changes, our code base can now be containerized and run in different 
environments. This will be the Dockerfile for the application:

# syntax=docker/dockerfile:1

FROM golang:1.17-alpine

WORKDIR /app

COPY go.mod ./

COPY go.sum ./



Running the First Application Using Compose32

RUN go mod download

COPY *.go ./

RUN go build -o /task_manager

EXPOSE 8080

CMD [ "/task_manager" ]

Let’s examine the steps:

1.	 We specify the syntax to use when parsing the Dockerfile.

2.	 A golang alpine-based image is used.

3.	 /app is the directory the application will reside in and its dependencies.

4.	 mod and sum files are copied.

5.	 The command to download the dependencies is issued.

6.	 Our application files are copied.

7.	 The main application is built.

8.	 The port the application should run on is defined.

9.	 Our service is running.

Let’s build our image:

$ docker build . -t task-manager:0.1

By creating a Dockerfile, we can now package our application in a Docker image and run it using the 
Docker CLI or Compose.

Running the image

Since our image is built, we can run our Docker image:

$ docker run --rm -p 8080:8080 --env REDIS_HOST=host.docker.
internal:6379 task-manager:0.1

The application will work as expected and as you can see, we specified it using the Redis host. Instead 
of using the Redis host, let’s try to use the Redis container running on Compose. Since Redis is already 
running on Compose, it should be bound to the network created by Compose. We can find the network 
by listing the Docker networks present:

$ docker network ls

NETWORK ID     NAME               DRIVER    SCOPE

1392d8a87032   bridge             bridge    local



Packaging your application with Docker and Compose 33

…

453bafcfd97a   chapter2_default   bridge    local

4a6d6a3e8475   host               host      local

…

We will mount the container to the chapter2_default network:

$ docker run --rm -p 8080:8080 --env REDIS_HOST=redis:6379 
--network=chapter2_default task-manager:0.1

Take note that we changed the host. Because the container runs on the same network, the Redis instance 
can be accessed by using the service name, which will be resolved to the IP address inside the network. 

Now that we have built the images instead of running them as standalone, we can add them to the 
Compose file:

services:

  task-manager:

    image: task-manager:0.1

    ports:

      - 8080:8080

    environment:

      - REDIS_HOST=redis:6379

  redis:

    image: redis

    ports:

      - 6379:6379

Let’s break down how it works:

•	 Both services run on Compose.

•	 Since no network is specified, they use both the default network.

•	 By being on the same network, they can access each other using the service name.

•	 Any environment variables needed are set in the environment section.

We will recreate the application so that our changes will take effect:

$ docker compose up --force-recreate

Our multi-container application is now fully running on Compose, operating through the same network.



Running the First Application Using Compose34

Build an image using Compose

By now, we have packaged our application fully using Compose. One of the things we spotted is that, 
throughout the chapter, our original application changed a lot. From a map-based Task Manager, it 
became an application backed by a Redis database with some configuration options. As expected, 
these will not be the last changes to the code base. The code base will get more changes in the future 
and, therefore, it’s important to run our application on Compose in a more automated way. 

Instead of building an image and changing to the new version using the image section of Compose, 
we should instruct Compose to build the image for us and run it. This is what you need to set up 
Compose to use the Dockerfile in order to build and use the image behind the scenes:

services:

  task-manager:

    build: .

    ports:

      - 8080:8080

    environment:

      - REDIS_HOST=redis:6379

  redis:

    image: redis

    ports:

      - 6379:6379

Since the image happens to have both the Dockerfile and docker-compose.yaml on the same 
directory, by using build ., we point to the same directory. In a scenario where the code base is 
on another image, we have the option to specify a path and run Compose with multiple directories 
and even different projects involved.

Building and defining the image name

So far, we got used to using the Task Manager through an image name. We will try to do the same 
thing on Compose by defining both build and image. By using build and image, the image 
will be built as expected and will then be tagged based on the name given using image:

services:

  task-manager:

    build: .

    image: task-manager:0.1



Running your multi-container application using Compose 35

From building a Docker image using the Docker CLI manually, we executed the build process using 
Compose. The foundation for using Compose with our application has been established, so we can 
proceed with more advanced concepts of Compose.

Running your multi-container application using Compose
By having our multi-container application up and running on Compose, we can now jump on more 
specific concepts and identify how to get the most out of our application on local development.

Health check

Our code base has an extra endpoint that we did not mention previously, known as the ping endpoint. 
As seen on the code base, it’s an endpoint replying with a constant message once invoked:

    // Health Check

    r.GET("/ping", func(c *gin.Context) {

         c.String(http.StatusOK, "pong")

    })

This endpoint will be leveraged as a health check. As long as the application is running, it will always 
give back a response. Should there be something wrong with the application, the endpoint will not 
reply, and so will be marked unhealthy.

How health check works

By adding a health check using Compose, we instruct a command to be run on the container. Based on 
how the command exits and the time threshold, the container will be marked as healthy or unhealthy. 
The command will be executed inside the container. Using a non-existing command will result in a 
failed health check.

The command can be everything executable on the container. It can be an existing command on the 
container or even a customized script with a complex health check algorithm. What Compose will 
consider is the successful execution of the script within the right time limit.

Since our health check endpoint is implemented on http server, we need a command to run on 
it. cURL is a very good choice; therefore, we will adapt the Dockerfile and add it to the image:

# syntax=docker/dockerfile:1

FROM golang:1.17-alpine

RUN apk add curl

…



Running the First Application Using Compose36

Let’s build the latest image by using compose build: 

$ docker compose build

Adding health check to Compose

We have curl installed on the image; therefore, a health check will be added, utilizing the command:

services:

  task-manager:

    build: .

    image: task-manager:0.1

    ports:

      - 8080:8080

    environment:

      - REDIS_HOST=redis:6379

    healthcheck:

      test: ["CMD", "curl", "-f", "http://localhost:8080/ping"]

      interval: 20s

      timeout: 10s

      retries: 5

      start_period: 5s

Every 20 seconds after an initial period of 5 seconds, a ping to task-manager will be issued using 
curl with a timeout of 10 seconds. In case of failure, there should be five retries before marking the 
instance unhealthy. By using curl with -f, there will be a failure on non-successful requests such 
as 5XX responses.

If we run the application, we can observe from the logs that health check requests are being issued:

$ docker compose up

…

chapter2-task-manager-1  | [GIN] 2022/02/20 - 17:23:07 | 200 |       
8.584µs |       127.0.0.1 | GET      "/ping"

chapter2-task-manager-1  | [GIN] 2022/02/20 - 17:23:27 | 200 
|      34.459µs |       127.0.0.1 | GET      "/ping"

chapter2-task-manager-1  | [GIN] 2022/02/20 - 17:23:47 | 200 
|      42.458µs |       127.0.0.1 | GET      "/ping"  



Running your multi-container application using Compose 37

On another shell, let’s check the running containers:

$ docker ps

CONTAINER ID   IMAGE              COMMAND                   
CREATED         STATUS                            PORTS          
           NAMES

20c6d1cb557b   task-manager:0.1   "/task_manager"          4  
seconds ago   Up 3 seconds (health: starting)   0.0.0.0:8080- 
>8080/tcp   chapter2-task-manager-1

$ docker ps

20c6d1cb557b   task-manager:0.1   "/task_manager"          2  
minutes ago   Up 44 seconds (healthy)   0.0.0.0:8080->8080/tcp 
   chapter2-task-manager-1

We can take it a bit further and set the endpoint to fail, so that we can see the service marked  
as unhealthy:

    // Health Check

    r.GET("/ping", func(c *gin.Context) {

         c.String(http.StatusInternalServerError, "pong")

    })

After some time, the container is indeed marked unhealthy:

$ docker ps

CONTAINER ID   IMAGE              COMMAND                       
CREATED         STATUS                     PORTS                 
NAMES

20c6d1cb557b   task-manager:0.1   "/task_manager"          2  
minutes ago   Up 2 minutes (unhealthy)   0.0.0.0:8080->8080/tcp 
chapter2-task-manager-1

We investigated the health-check capabilities of Compose and managed to reproduce successful or 
failed health check scenarios.

Depending on services

The task-manager service depends on Redis. Provided the redis service is not up and running, 
task-manager will not be operational. For this case, we can instruct the service not to run until 
the service depending on it is fully running:

services:

  task-manager:



Running the First Application Using Compose38

    build: .

    image: task-manager:0.1

    ports:

      - 8080:8080

    environment:

      - REDIS_HOST=redis:6379

    depends_on:

      - redis

ENTRYPOINT, arguments, and environment variables

Supposing that before we run the task-manager service, we also want to load the Redis 
database with some data. There are various ways to achieve this. Our choice would be to run 
another redis container using the Redis CLI. To do so, we need to override the entry point and 
specify some custom arguments.

Let’s start with our initial service:

  redis-populate:

    image: redis

    depends_on:

      - redis

It is not functional for now, but we will build on it.

Environment files

Since we already used environment variables using the key-value method, we will try using a file. The 
environment variable file will contain the host and the port the Redis CLI should connect to:

HOST=redis

PORT=6379

The next step is to mount env file to the redis-populate service:

  redis-populate:

    image: redis

    depends_on:

      - redis

    env_file:

      - ./env.redis-populate



Running your multi-container application using Compose 39

The script

Having a script that executes commands on the Redis CLI can be possible with a few tweaks. Suppose 
we want to add a task before starting the application; we would put the commands needed in a txt file:

HMSET task:a3a597d1-26f8-43e5-be05-81373f2c0dc3 Id a3a597d1-
26f8-43e5-be05-81373f2c0dc3 Name "Existing Task" Description "A 
task that was here before" Timestamp 1645393434000

ZADD tasks 1645393434000 "a3a597d1-26f8-43e5-be05-81373f2c0dc3"

By using piping, we will actually forward the commands to be executed by the Redis CLI. The 
environment variable can also help to execute the commands to different servers. The script that will 
execute Redis commands from the txt file should look like this:

#!/bin/sh

cat $1| redis-cli -h $HOST -p $PORT

Those commands will be wrapped to an executable script and mounted to the  
redis-populate container:

  redis-populate:

    image: redis

    depends_on:

      - redis

    env_file:

      - ./env.redis-populate

    volumes:

      - ./redis-populate.txt:/redis-populate.txt

      - ./redis-populate.sh:/redis-populate.sh

Custom ENTRYPOINT

In order to run the script and populate the database, we need to change entrypoint on Docker:

  redis-populate:

    image: redis

    entrypoint: ["/redis-populate.sh","/redis-populate.txt"]

    depends_on:

      - redis

    env_file:



Running the First Application Using Compose40

      - ./env.redis-populate

    volumes:

      - ./redis-populate.txt:/redis-populate.txt

      - ./redis-populate.sh:/redis-populate.sh

Thanks to the custom ENTRYPOINT and the environment variables, we should be able to have some 
data preloaded to our application.

Labels

Labels are a Docker feature that can be used on Compose. Through labels, we can apply metadata to 
Docker objects such as images, containers, networks, and volumes. This makes organizing the apps 
easier, for example, logical grouping or searching resources by using label filters.

Images

By building the image, we can specify a label:

    build:

      context: .

      labels:

        - com.packtpub.compose.app=task-manager

Then, we can filter related images using that label:

$ docker images --filter "label=com.packtpub.compose.app=task-
manager"

REPOSITORY     TAG       IMAGE ID       CREATED        SIZE

task-manager   0.1       de4b8f7c9fff   15 hours ago   529MB

Containers

In the service section, we can add a tag to the container:

  redis:

    image: redis

    ports:

      - 6379:6379

    labels:

      - com.packtpub.compose.app=task-manager



Summary 41

Then, we can filter containers using that label:

docker images --filter "label=com.packtpub.compose.app=task- 
manager"

$ docker ps --filter="label=com.packtpub.compose.app=task- 
manager"

CONTAINER ID   IMAGE              COMMAND                          
CREATED          STATUS                    PORTS                 
NAMES

98c45777bdcd   redis              "docker-entrypoint.s…"   58  
seconds ago   Up 57 seconds             0.0.0.0:6379->6379/tcp   
chapter2-redis-1

We have been successful in packaging our application using Compose, creating the Docker image, and 
labeling it. This helped with running an application on Compose end-to-end, from the implementation 
of the code base until running it on a Docker container.

Summary
In this chapter, we created a multi-container application running on Docker Compose and used 
Compose features such as building and tagging an image, communicating between containers using 
the same network, health checks, labeling, and ENTRYPOINT configuration. Those features make it 
easier to transition from manual Docker-based management to a Compose-based one. By being able 
to package a complex application, we lay the foundation for deploying and distributing our multi-
container application using Compose.

The next chapter is about networking and volume management, including understanding how the 
concept of Docker volumes and networks is mapped to Compose.





3
 Network and  

Volumes Fundamentals

In the previous chapter, we managed to create our core Go application and provide storage using a 
Redis server. By having our core application in place, we proceeded to more advanced Docker concepts 
such as health checks, building images, tagging, and logically grouping using labels. The usage of 
volumes and networking was present throughout the chapter. Networking and volumes were being 
used all along; however, it was done transparently. This chapter will focus extensively on networks 
and volumes and how to configure them on a Compose-based application. 

The first part will focus on volumes, how volumes map to Compose, how they work behind the 
scenes, and how to use them. Volumes play a crucial role in Docker. They allow you to attach external 
documentation and files that are needed for an application. Volumes can be shared and used to help 
with operations in an application. 

The second part will focus on networks. Docker provides networking simply and transparently. In 
special scenarios, various options exist that can ensure multi-host communication, a different layer 
of networks between applications, and better isolation between containers. 

In this chapter, we will cover the following main topics: 

•	 Explaining Docker volumes 

•	 Attaching a Docker volume to a container

•	 Docker volume drivers

•	 Declaring Docker volumes on Compose files

•	 Attaching a Docker volume to an existing application

•	 Creating a configuration file

•	 Mounting a file using volume

•	 Docker networking



 Network and Volumes Fundamentals44

•	 Defining networks on a Compose configuration

•	 Adding an extra network to the current application

Technical requirements
The code for the book is hosted on GitHub at https://github.com/PacktPublishing/A-
Developer-s-Essential-Guide-to-Docker-Compose. In case of an update to the code, 
it will be updated on GitHub. 

Explaining Docker volumes
When developing an application, a crucial aspect is to utilize operations that interact with a filesystem. 
Those operations can be driven by data storage purposes or, in some cases, might be configuration-
driven. For example, take a database application that needs a filesystem to operate and store data. The 
same also applies to configurations that apply to an application. Let’s imagine a JEE application that is 
heavy on XML configuration. It needs to be able to read and store data inside a filesystem. The issue 
with disk operations on a Docker container is that once the container is shut down, all of the changes 
will be lost. In this case, Docker provides us with volumes. Volumes are the preferred mechanism for 
persisting data that is generated and used by a container. 

Here is a list of some of the characteristics of volumes:

•	 Volumes and their data can remain after a container has been deleted.

•	 A volume can be attached to another container.

•	 Volumes can be used by more than one container simultaneously.

•	 Volumes are abstract.

•	 Volumes can be local or remote.

Now that we have an overview of what volumes can provide, in the next section, we will proceed with 
adding volumes to containers and interacting with them.

Attaching a Docker volume to a container
We will create our first Docker volume using the following:

$ docker volume create example-volume

example-volume

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Attaching a Docker volume to a container 45

We will inspect the volume that we’ve just created:

$ docker volume ls --filter="name=example-volume" 
--format='{{json .}}'

{"Driver":"local","Labels":"","Links":"N/A","Mountpoint":"/var/
lib/docker/volumes/example-volume/_data","Name":"example-volume
","Scope":"local","Size":"N/A"}

By inspecting the preceding volume, we see that the volume is using the local driver. A local driver is 
the default driver option when creating volumes. The volume data will reside on the host that Docker 
Engine runs. There’s also a  mount point to our local filesystem. This is where the data in this volume 
resides physically on the host.

Since we created the volume, we will put it to use with a container. We will attach the volume and 
write some data on it. We can do this by mounting the volume to the container using --mount:

$ docker run -it --rm --name example-volume-container --mount 
source=example-volume,target=/storage bash

bash-5.1# echo some-text > /storage/data-file.txt

bash-5.1# cat /storage/data-file.txt

some-text

bash-5.1# exit

Let’s break down what has been executed into steps:

1.	 We run a bash container in interactive mode.

2.	 Once we exit the container, it will be stopped and deleted.

3.	 We mounted the volume at the /storage path.

4.	 We created a file on that path.

5.	 The file should be persisted on the volume.

We will create another container with the volume mounted and examine whether the file will be present:

$ docker run -it --rm --name second-volume-container --mount 
source=example-volume,target=/storage bash

bash-5.1# cat /storage/data-file.txt

some-text

As expected, the volume is mounted, and the file is there.



 Network and Volumes Fundamentals46

In another Terminal session, we will inspect the container and the Mounts section:

$  docker inspect second-volume-container --format '{{json 
.Mounts}}'

[{"Type":"volume","Name":"example-volume","Source":"/var/
lib/docker/volumes/example-volume/_data","Destination":"/
storage","Driver":"local","Mode":"z","RW":true, 
"Propagation":""}]

Let’s exit both Terminal sessions. As you can see, the volume has been attached and contains the 
volume information and the destination directory. After successfully creating a volume and attaching 
it to the containers, we will proceed with the scenario of a volume being shared. 

Shared volumes

Earlier, we used one volume and attached it to a container. After stopping the container and mounting 
the volume to another container, we navigated to the directory and found that the data stored from the 
previous steps was there. A useful feature is that the volume can be attached to more than one container. 
By running the following commands in parallel, there will be writes on the same volume simultaneously:

$ docker run -it --rm  --name container-2 --mount 
source=example-volume,target=/storage bash -c "for i in \$(seq 
1 1 100000); do echo \$HOSTNAME \$i >> /storage/\$HOSTNAME.txt 
; done"

$ docker run -it --rm  --name container-1 --mount 
source=example-volume,target=/storage bash -c "for i in \$(seq 
1 1 100000); do echo \$HOSTNAME \$i >> /storage/\$HOSTNAME.txt 
; done"

As expected, if we attach the volume and navigate to the directory, we should see two different  
files created:

$ docker run -it --rm  --name container-1 --mount 
source=example-volume,target=/storage bash                                       

bash-5.1# ls /storage

770bdfc4dc94.txt  b9b09390cf17.txt data-file.txt

Both containers have been successful in storing files to the volume.



Docker volume drivers 47

Read-only volumes

We were successful in using the original volume in a secondary container. There are scenarios where 
writes should be only executed from one container, whereas other containers could only read the data 
persisted by having read-only permissions.

As shown in the following example, mounting the volume as read-only prevents us from writing any 
files to it:

$ docker run -it --rm  --name read-only-volume-container 
--mount source=example-volume,target=/storage,readonly bash

bash-5.1# cat /storage/data-file.txt

some-text

bash-5.1# touch /storage/test.txt

touch: /storage/test.txt: Read-only file system

bash-5.1# exit

So, we have become familiar with volumes and how to mount and use them with our containers. We 
also successfully mounted a volume for read-only purposes. In the next section, we will learn about 
volume drivers and what they can offer.

Docker volume drivers
We created Docker volumes and we put them to use in our containers. By inspecting the volume in 
the previous example, we can get some valuable information:

$ docker volume inspect example-volume

[

    {

        "CreatedAt": "2022-03-08T07:01:29Z",

        "Driver": "local",

        "Labels": {},

        "Mountpoint": "/var/lib/docker/volumes/example-volume/_
data",

        "Name": "example-volume",

        "Options": {},

        "Scope": "local"

    }

]



 Network and Volumes Fundamentals48

Here, "Driver" is set to "local"; this means that the volume data will reside locally in our 
workstation, and the driver will facilitate disk operations from the Docker container to the VM path.

We will use this as an opportunity to see the physical location of this file. In this example, which  
is running on macOS, we need to connect to the VM that hosts Docker Engine. We will do this 
using netcat:

$ nc -U ~/Library/Containers/com.docker.docker/Data/debug-
shell.sock

/ # cat /var/lib/docker/volumes/example-volume/_data/data-file.
txt

cat /var/lib/docker/volumes/example-volume/_data/data-file.txt

some-text

/ # exit

exit

Let’s break down what we just did. On macOS and Windows, Docker Engine runs on a VM:

1.	 We need to shell to that VM and examine the directory.

2.	 Once we are inside the VM, we can confirm that the data is stored there.

As we understand that a volume can be located anywhere, the driver will facilitate making the usage 
of the volume possible.

Volume drivers can enable interactions with a remote filesystem and persist data. Available drivers 
include Azure File Storage, NFS, and AWS EFS.

Apart from highlighting the feature of interacting with a volume on a remote host, a volume driver 
can be used to add extra functionality when storing data; for example, by adding a form of proprietary 
encryption in transit or storage.

Using a volume driver versus mounting locally

Based on the contents of the last section, there are various options that we can use to interact with 
a remote filesystem. One option that is available and bypasses driver functionality is to mount the 
filesystem to the host. This way, the remote filesystem is attached to the container through the host 
that has already mounted it. It’s up to the user and the use case to decide what should be used. Use 
cases can expand from having less maintenance overhead to the customized handling that a volume 
driver can provide.

So far, we have created some volumes using the command line and we also looked at how volumes 
work behind the scenes along with ways to interact with remote files using drivers. The next section 
will focus on using the volume knowledge that we have acquired in a Compose application.



Declaring Docker volumes on Compose files 49

Declaring Docker volumes on Compose files
We’ve been able to create a Docker volume and use it, and had a look at its features. The step next is to 
create and use volumes using Compose. Volumes on Compose are defined in the volumes sections:

services:

  nginx:

    image: nginx

volumes:

  example-compose-volume:

The configuration option on volumes can apply to example labels:

services:

  nginx:

    image: nginx

volumes:

  example-compose-volume:

    labels:

      - com.packtpub.compose.app=volume-example

Alternatively,  you can have more advanced configurations, for example, a driver that is configured 
to use nfs:

services:

volumes:

  nfsvol: 

    driver_opts: 

      type: "nfs" 

      o: "addr=127.0.0.1,nolock,rw" 

      device: ":/data"

So, we have created and configured volumes using Compose. Now we can proceed with adapting our 
existing Compose application to use volumes.

Attaching Docker volumes to an existing application
The previous chapter was focused on a Task Manager application using a Redis database. Being a 
database, Redis is subject to backups and other disk operations. 



 Network and Volumes Fundamentals50

Our previous Redis Compose configuration is as follows:

services:

  redis:

    image: redis

    ports:

      - 6379:6379

    labels:

      - com.packtpub.compose.app=task-manager

Redis has various options for persistence options (https://redis.io/topics/persistence). 
There are options from point-in-time to AOF (Append-Only File)-based persistence. We will focus on the 
point-in-time snapshot option that Redis provides, and we will use a volume to store those snapshots. 

By default, .rdb backups on the Redis Docker image are stored within the /data directory. We will 
mount a volume to that location.

First, we will create the volume:

volumes:

  redis-data:

    labels:

      - com.packtpub.compose.app=task-manager

Then, we will attach the volume to the container:

services:

  redis:

    image: redis

    ports:

      - 6379:6379

    volumes:

      - redis-data:/data

Since the volume is attached to the database, the backups are stored in the volume and can also be 
accessed by another container. In the following section, we will create a custom configuration for the 
Redis service in order to be able to increase the frequency of our backups.

https://redis.io/topics/persistence


Creating a configuration file 51

Creating a configuration file
Based on the documentation, we will enable Redis to take a snapshot of at least one key change in 60 
seconds. Our Redis configuration will look like this:

dbfilename taskmanager.rdb

save 60 1

Here, we changed the backup name to taskmanager.rdb. We will take a snapshot every 60 
seconds if at least one key changes. Now that the configuration is ready, we need a way to attach this 
configuration file to the database we created earlier using Compose. 

Mounting a file using volume
The configuration file has been created and will be mounted by using bind mounts. A bind mount 
enables us to mount a file on the workstation running Docker Engine to the Docker container. When 
using Compose, bind mounts are defined in the volumes sections. This might be confusing since 
it’s in the same section as volumes; however, it’s a bind mount.

We will mount the Redis configuration file to the container and alter entrypoint :

services:

  redis:

    image: redis

    ports:

      - 6379:6379

    entrypoint: ["redis-server","/usr/local/etc/redis/redis.
conf"]

    labels:

      - com.packtpub.compose.app=task-manager

    volumes:

      - ./redis.conf:/usr/local/etc/redis/redis.conf

      - redis-data:/data

By inspecting the container, we can justify that the file has been mounted using bind mount:

$ docker inspect chapter3-redis-1 --format '{{json .Mounts }}'

...

           {

                "Type": "bind",



 Network and Volumes Fundamentals52

                "Source": "/path/to/repo/A-Developer-s-
Essential-Guide-to-Docker-Compose/Chapter3/redis.conf",

                "Destination": "/usr/local/etc/redis/redis.
conf",

                "Mode": "rw",

                "RW": true,

                "Propagation": "rprivate"

            }

...

Since we managed to configure Redis to take point-in-time snapshots on a volume of our choice, we 
will proceed with creating a backup of these snapshots using another process that has read access to 
the original backup volume.

Mounting read-only volumes

Now, we would like to save the snapshots created over time to a file. This way, we can restore the 
database from a point in time. However, we want to store the backups to another volume whose sole 
purpose will be for backups: 

...

    volumes:

      - ./redis.conf:/usr/local/etc/redis/redis.conf

      - redis-data:/data

volumes:

  redis-data:

  backup:

Another container will be introduced. The container will have the responsibility of copying the Redis 
backups and moving them to the backup folder. The container will not be very sophisticated; it will 
just be a simple bash script that will run every few seconds.

The bash script for copying the Redis backups is as follows:

#!/bin/sh

 

while true; do cp /data/taskmanager.rdb /backup/$(date +%s 
).rdb; sleep $BACKUP_PERIOD; done

The container will run the script that has been created. Since we’ve got everything we need, let’s 
configure the container.



Mounting a file using volume 53

Both volumes need to be mounted. The Redis backup volume will be read-only. The responsibility 
of the backup process is to copy the current file on the Redis data directory and append a timestamp 
during the time of the backup:

  redis-backup:

    image: bash

    entrypoint: ["/snapshot-backup.sh"]

    depends_on:

      - redis

    environment:

      - BACKUP_PERIOD=10

    volumes:

      - ./snapshot-backup.sh:/snapshot-backup.sh

      - redis-data:/data:ro

      - backup:/backup

volumes:

  redis-data:

  backup:

Note that we used the read-only option on data. This can also be defined alternatively:

    volumes:

      - type: volume

        source: redis-data

        target: /data

        read_only: true

Our Redis database includes the snapshot backup process, as follows:

services:

  ...

  redis-backup:

    image: bash

    entrypoint: ["/snapshot-backup.sh"]

    depends_on:

      - redis

    environment:

      - BACKUP_PERIOD=10

    volumes:



 Network and Volumes Fundamentals54

      - ./snapshot-backup.sh:/snapshot-backup.sh

      - redis-data:/data:ro

      - backup:/backup

    labels:

      - com.packtpub.compose.app=task-manager

volumes:

  redis-data:

    labels:

      - com.packtpub.compose.app=task-manager

  backup:

    labels:

      - com.packtpub.compose.app=task-manager

Let’s run the preceding Compose application:

$ docker compose up

Now we should be able to execute the same cURL requests we executed in Chapter 2, Running the 
First Application Using Compose.

So far, we’ve been able to migrate our original Redis service on Compose to use a volume. Additionally, 
we’ve added another service to issue a backup process by having the backup volume mounted in read-
only mode and storing the backups in a backup purpose container. In the next section, we will dive 
into Docker networking and learn how we can apply it to Compose.

Docker networking
A crucial feature of Docker is its networking features. The containers running on Docker communicate 
and interact transparently. Thanks to the network layer, Docker provides various networking aspects 
that are tackled efficiently, as follows:

•	 Private networks

•	 Internal DNS

•	 Container communication

•	 Bridging containers

Let’s see the available networks that are currently running:

$ docker network ls

NETWORK ID     NAME               DRIVER    SCOPE



Docker networking 55

6a149c758fc2   bridge             bridge    local

9ec7758d7050   chapter1_default   bridge    local

7c95e79497b6   chapter2_default   bridge    local

16fda3c38e57   chapter3_default   bridge    local

4a6d6a3e8475   host               host      local

be28a5cd8a16   none               null      local

Networks on Docker can come in various forms. The most used formats include the following:

•	 Bridge 

•	 Host

•	 Overlay

Let’s look at each of them in the following sections.

Bridge

Bridge is the default network driver when using Docker. A bridge network on Docker is a software 
layer providing connectivity between containers that are connected to the same bridge network. Also, 
those containers are isolated from containers that are not connected to that network.

Previously when we inspected the network, we saw a network named bridge. This should be the 
default network that a container is attached to.

We will run an nginx container and check the network that the container will be attached to:

$ docker run --rm -p 8080:80 --name nginx-compose nginx

Now that the container is up and running, in another Terminal session, we will proceed with inspecting 
the network:

$ docker inspect --format '{{json .NetworkSettings.Networks }}'  
nginx-compose

{"bridge":{"IPAMConfig":null,"Links":null,"Aliases":null, 
"NetworkID":"6a149c758fc27c0c719b7c3c26b74c8f03c866ae1406ac 
2902a1c45af720a79d","EndpointID":"4323e8f8bbceafcb74491e159 
5073adc063fb424f87259ad1dd02078f59eeb13","Gateway":"172. 
17.0.1","IPAddress":"172.17.0.2","IPPrefixLen":16,"IPv6Gateway" 
:"","GlobalIPv6Address":"","GlobalIPv6PrefixLen":0,"MacAddress" 
:"02:42:ac:11:00:02","DriverOpts":null}}



 Network and Volumes Fundamentals56

We can see that the container has been attached to the default bridge network, as we saw earlier:

$ NETWORK_ID=$(docker inspect --format '{{json .NetworkSettings 
.Networks.bridge.NetworkID }}' nginx-compose|sed 's/"//g')

$  docker network ls --filter ID=$NETWORK_ID

NETWORK ID     NAME      DRIVER    SCOPE

6a149c758fc2   bridge    bridge    local

We can now exit the Terminal session by running the NGINX container using CTRL-C.

User-defined bridge network

A user-defined bridge network is superior to using the default network. Containers resolve each other's 
network location with a name or an alias:

•	 Containers are attached to a network bound for their application.

•	 Bridge network can be configured for the application needs.

Host

By using the Docker host, the container is not isolated from it. The container does not have its own 
IP address. The container will be accessed using the host IP.

We will run the nginx instance using the host network:

$ docker run --rm --network host --name host-nginx nginx

We will test that the server is running by using another container to access the container  
through localhost.

In another Terminal session, let’s execute the following:

$ docker run -it --network host --rm --name nginx-wget bash 
wget -O- localhost:80

Connecting to localhost:80 ([::1]:80)

writing to stdout

<!DOCTYPE html>

<html>

<head>

...



Defining networks on a Compose configuration 57

Here, instead of attaching the containers to a network, we mounted them to the host network. As expected, 
the container doesn’t have an IP assigned; therefore, any requests to localhost are mapped to the 
host. This has made it feasible for the nginx-wget container to access the host-nginx container.

Overlay

The networks we investigated earlier centered on Docker Engine installed on one host. Using Docker 
on a production with an orchestration engine such as Swarm requires the use of multiple hosts. The 
overlay network creates a distributed network among those hosts. An overlay network will transparently 
join the host networks and create a unified network on top of them. Now that we have covered Docker 
networking and how it works, we will proceed to check how it works with Compose.

Defining networks on a Compose configuration
So far, our containers have been running and communicating transparently. This is because when 
we run a Compose application, a bridge network is created. Based on our previous examples, the 
containers have been able to interact with other Compose services and communicate through an alias:

$ docker network ls --filter name=chapter1_default

NETWORK ID     NAME               DRIVER    SCOPE

9ec7758d7050   chapter1_default   bridge    local

This can serve us for some time; however, we would like to have a different name for the network. 

Adding a network in Compose is easy:

networks:

  task-manager-pubic-network:

    labels:

      - com.packtpub.compose.app=task-manager

However, creating a network is not enough. Containers need to be attached to the network. We will 
reiterate the application and the services to that network. With some adaption, our Compose file 
should have the services under the network:

// Chapter3/docker-compose.yaml

services:

  task-manager:

    build:

      context: ../Chapter2/.

      labels:



 Network and Volumes Fundamentals58

        - com.packtpub.compose.app=task-manager

    image: task-manager:0.1

    ...

    networks:

      - task-manager-pubic-network

    labels:

      - com.packtpub.compose.app=task-manager

  redis:

    image: redis

    ...

    networks:

      - task-manager-pubic-network  

    labels:

      - com.packtpub.compose.app=task-manager

  redis-backup:

    image: bash

    ...

    networks:

      - task-manager-pubic-network

    labels:

      - com.packtpub.compose.app=task-manager

...

networks:

  task-manager-pubic-network:

    labels:

      - com.packtpub.compose.app=task-manager

So, we managed to create a network for our Compose application and attach the services to it. 

Next, we will put our application into action:

$ docker compose up

Since our service has the network attached, we will inspect the existing Docker networks:

$ docker network ls

NETWORK ID     NAME                                  DRIVER     
SCOPE



Adding an extra network to the current application 59

6a149c758fc2   bridge                                bridge     
local

ce5aa144f0f9   chapter3_task-manager-pubic-network   bridge     
local

4a6d6a3e8475   host                                  host       
local

be28a5cd8a16   none                                  null       
local

Since all our containers have been attached to the newly created network, they are under the hood of 
one network. The default Compose network that was created earlier is not there.

Adding an extra network to the current application
So far, our containers have been running and communicating transparently, and we have managed to 
define the bridge network the services would use. Another thing we have observed is that the bridge 
network that used to be created by default no longer exists. Since we saw only one network being used 
at a time, we will add multiple networks in Compose. 

The target for this would be our Redis database. In real life, databases usually reside on another network 
and are linked to your application:

networks:

  redis-network:

    labels:

      - com.packtpub.compose.app=task-manager

We will attach the Redis database to that network:

 redis:

    image: redis

    ports:

      - 6379:6379

    entrypoint: ["redis-server","/usr/local/etc/redis/redis.
conf"]

    volumes:

      - ./redis.conf:/usr/local/etc/redis/redis.conf

      - redis-data:/data

      - backup:/backup

    networks:



 Network and Volumes Fundamentals60

      - redis-network

    labels:

      - com.packtpub.compose.app=task-manager

If we are curious and try to run the application, we will get an error:

{ "id": "8b171ce0-6f7b-4c22-aa6f-8b110c19f838", "name": "A 
task", "description": "A task that need to be executed at the 
timestamp specified", "timestamp": 1645275972000 }

As expected, the Go application does not have access to the network that the Redis service is attached 
to. We will fix this by attaching the task-manager application to the Redis network:

  task-manager:

    build:

      context: ../Chapter2/.

      labels:

        - com.packtpub.compose.app=task-manager

    image: task-manager:0.1

    ports:

      - 8080:8080

    environment:

      - REDIS_HOST=redis:6379

    depends_on:

      - redis

    healthcheck:

      test: ["CMD", "curl", "-f", "http://localhost:8080/ping"]

      interval: 10s

      timeout: 5s

      retries: 5

      start_period: 5s

    networks:

      - task-manager-pubic-network

      - redis-network

So, the container can be attached to two networks. By attaching the container to the Redis network, 
communication is made possible.



Summary 61

If we run a GET request, we should see a positive result, as follows:

curl --location --request GET 'localhost:8080/task/8b171ce0-
6f7b-4c22-aa6f-8b110c19f83a'

{"task":{"id":"8b171ce0-6f7b-4c22-aa6f-8b110c19f83a","name":"A 
task","description":"A task that need to be executed at the 
timestamp specified","timestamp":1645275972000}}

Summary
In this chapter, we provisioned volumes, attached them to Compose services, and shared them between 
services for maintenance operations. We identified the usages of networks in Docker and how they 
fit into our Compose usage scenarios. By using these networks, we analyzed how a network works on 
Compose and how we can have multiple networks running in Compose applications.

The next chapter will focus on the Docker Compose commands. We will dive into the available commands, 
their purpose, and how they can assist us in managing and provisioning Compose applications.





4 
Executing Docker  

Compose Commands

In the previous chapter, we focused on using Docker networks and volumes on a Compose 
application. By using networks, we managed to establish connectivity between the components of 
a Compose application; by using volumes, we facilitated I/O operations and kept the data created 
portable and permanent.

So far, we have used various Docker Compose commands in order to provision our applications and 
interact with Compose components. This chapter will focus on the available Compose commands and 
their options. Once we have an overview of the available commands, we will dive into the provisioning 
commands and the commands interacting with the Compose containers. After that, we will learn more 
about cleanup commands. By covering the commands that assist in our application development, we 
will have a deep dive into monitoring commands.

The following main topics will be covered in this chapter:

•	 Introducing Compose commands

•	 The Docker CLI versus Compose commands

•	 Provisioning commands

•	 Container commands

•	 Cleanup commands

•	 Image commands

•	 Monitoring commands

•	 Other commands



Executing Docker Compose Commands64

Technical requirements
The code for the book is hosted on GitHub at https://github.com/PacktPublishing/A-
Developer-s-Essential-Guide-to-Docker-Compose. If there is an update to the code, 
it will be updated on the GitHub repository.

Introducing Compose commands
Compose has a variety of commands that can be used to interact with containers, monitor applications, 
and also to manage images. 

Throughout this chapter, we shall examine Compose commands, apply them to a target application, 
break down their usage, and understand how they work behind the scenes. 

The commands we will focus on are the following:

•	 build

•	 create

•	 up

•	 images

•	 pull

•	 push

•	 down

•	 rm

•	 logs

•	 top 

•	 ps 

•	 events

We will learn more about these commands, see how we can benefit from them, and utilize them on 
a Compose application.

The Docker CLI versus Compose commands
Most of these commands seem familiar to the ones we used through the Docker CLI. The difference 
between the Compose and the Docker CLI commands is that the CLI commands operate through 
all the Docker components in your system, whereas the Compose ones are limited in the context of 
the Compose application specified in the docker-compose.yaml file. 

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Provisioning commands 65

Behind the scenes, the Compose command will parse the Compose file and retrieve information about 
the application. The API calls issued to the Docker Engine will contain filters based on the information 
retrieved previously and will interact only with the services and resources of the application. For example, 
the ps command, instead of retrieving all the running containers, which would have happened if we 
used the Docker CLI, will retrieve only the containers that should run on the Compose application.

Setting up the target application

In order to make the commands showcase feasible, we will combine the work of the previous chapters 
and assemble a Compose application. The application should use the source code of the Task Manager 
application we developed in Chapter 2, Running the First Application Using Compose, along with a 
Redis database. 

The Compose service definition uses the previous chapter’s code:

services:

  task-manager:

    build:

      context: ../Chapter2/.

    image: docker.io/library/chapter4_task-manager

    ports:

      - 8080:8080

    environment:

      - REDIS_HOST=redis:6379

  redis:

    image: redis

    ports:

      - 6379:6379

We have a summary of the commands that we will focus on and also an application set up in order 
to apply those commands. In the next section, we shall focus on commands that provision resources.

Provisioning commands
By having a Compose application file set up, we can now provision the application. The commands 
we will use are the following:

•	 build

•	 create

•	 up



Executing Docker Compose Commands66

Let’s take a look at them.

build

As seen previously, we do not need to build a Docker image and tag it manually before using it on 
Compose. Compose can build the image and use it for the application.

Issuing the build command creates the image:

$ docker compose build

=> => exporting layers                                                         
0.0s

...

=> => naming to docker.io/library/chapter4_task 
manager        0.0s

$ docker images                  

REPOSITORY                        TAG       IMAGE ID       
CREATED         SIZE

chapter4_task-manager             latest    58247e548811   35 
hours ago    529MB

By using the build command, we create the image for the Task Manager application, and it has been 
tagged appropriately. We shall now proceed with getting the application up and running.

create

create has been deprecated, since we can use up instead. The purpose of create was to create the 
containers, volumes, and networks but without starting the containers. This functionality has been 
replaced by up –no-start:

$ docker compose create

[+] Running 3/0

 Network chapter4_default           Created                               
0.0s

 Container chapter4-redis-1        Created                  
0.0s

 Container chapter4-task-manager-1  Created



Provisioning commands 67

up

up has many usages and parameters. We will replace the previous create operations with up:

$ docker compose up --no-start

[+] Running 3/3

 Network chapter4_default          Created                     
0.0s

 Container chapter4-task-manager-1  Created                  
0.0s

 Container chapter4-redis-1         Created

$ docker ps -a      

CONTAINER ID   IMAGE                                COMMAND     
CREATED         STATUS                     PORTS      NAMES

3d1ad2f353d3   redis                                "docker- 
entrypoint.s…"   3 seconds ago   Created                        
chapter4-redis-1

b6d1a5f16313   chapter4_task-manager                "/ 
task_manager"          3 seconds ago   Created                  
             chapter4-task-manager-1

The containers and networks have been created but do not run. 

Since we created the resources, we will start the application. A useful command is -d or –detach, 
the detached mode. The detached mode can help run the Compose application without being bound 
to a terminal:

$ docker compose up --detach           

[+] Running 2/2

 Container chapter4-task-manager-1  Started                     
0.3s

 Container chapter4-redis-1         Started

As we have previously created the resources and built the images, we will instruct up not to create 
the image by using --no-build:

$ docker compose up --no-build --detach

[+] Running 3/3

 Network chapter4_default           Created                    
0.0s



Executing Docker Compose Commands68

 Container chapter4-redis-1         Started                                                      
0.3s

 Container chapter4-task-manager-1  Started

If we need to update a service, we can update and delete the resources from old services. For example, 
in the case of rolling out task-manager-2, we would like the old container versions to be removed.

Let’s suppose we renamed the service as follows:

services:

  task-manager-2: 

..

If we execute up, a warning shall be printed:

$ docker compose up                 

WARN[0000] Found orphan containers ([chapter4-task-
manager-2-1]) for this project. If you removed or renamed this 
service in your compose file, you can run this command with the 
--remove-orphans flag to clean it up.

We shall tackle this by using --remove-orphans:

$ docker compose up --remove-orphans

[+] Running 3/0

 Container chapter4-task-manager-1    Removed                                                                                                               
           0.0s

 Container chapter4-redis-1           Created   

We’ve managed to get the application up and running by using the provisioning commands shown in 
this chapter. We can now use Compose commands to interact with the containers that the Compose 
services are running upon; those commands will solely be focused on interacting with containers.

Container commands
Container commands enable us to start, stop, and restart containers, execute commands upon them, 
and also kill them.



Container commands 69

exec

Throughout the book, we have executed commands using the Docker exec command. Docker 
Compose also provides this functionality. The difference is that instead of running the exec command 
directly to a container on Compose, we specify the service to execute upon. The command then will 
be routed to the service’s underlying container:

$ docker compose exec task-manager ls

go.mod    go.sum    main.go         

If we check the existing containers, we will not see any extra containers provisioned:

$ docker ps -a                       

CONTAINER ID   IMAGE                                COMMAND      
             CREATED          STATUS                     PORTS   
NAMES

8e559f9bf6d1   chapter4_task-manager                "/ 
task_manager"          18 seconds ago   Up 17 seconds            
0.0.0.0:8080->8080/tcp   chapter4-task-manager-1

46ca9a239557   redis                                "docker- 
entrypoint.s…"   18 seconds ago   Up 17 seconds               
0.0.0.0:6379->6379/tcp   chapter4-redis-1

run

run might seem similar to exec, but it differs in the fact that a new container will spin up. This makes 
it feasible to run a container in an environment provisioned by a Compose file. Thus, the container 
will have access to the volumes and networks that have been created:

$ docker compose run task-manager sh 

/app #          

On another terminal, we should inspect whether the container is running:

$ docker ps -a

CONTAINER ID   IMAGE                                         
COMMAND                  CREATED          STATUS                
PORTS                    NAMES

b7920b959c98   host.docker.internal:5000/task-manager:0.1    
"sh"                     23 minutes ago   Up 23 minutes         
8080/tcp                 chapter4_task-manager_run_7ad8bcc01122

...



Executing Docker Compose Commands70

b575f8bcd7d3   host.docker.internal:5000/task-manager:0.1   
"/task_manager"          2 hours ago      Up 42 minutes               
0.0.0.0:8080->8080/tcp   chapter4-task-manager-1

As shown, a new container called chapter4_task-manager_run_7ad8bcc01122 has been 
created; by exiting, the container will be stopped.

pause

On Docker, the pause command suspends the processes of the specified container. By using pause 
on Compose, we pause the containers of the service specified: 

$ docker compose pause task-manager            

[+] Running 1/0

 Container chapter4-task-manager-1  Paused

docker ps

CONTAINER ID   
IMAGE                   COMMAND                  CREATED         
STATUS                  PORTS                    NAMES

8e559f9bf6d1   chapter4_task-manager   "/task_
manager"          7 minutes ago   Up 7 minutes (Paused)   
0.0.0.0:8080->8080/tcp   chapter4-task-manager-1

46ca9a239557   redis                   "docker-entrypoint.s…"   
7 minutes ago   Up 7 minutes            0.0.0.0:6379->6379/tcp   
chapter4-redis-1

unpause

Since we previously paused the task-manager container, we shall unpause the container using 
the unpause command:

$ docker compose unpause task-manager

[+] Running 1/0

 Container chapter4-task-manager-1  Unpaused                                                                                                                
           0.0s         

$ docker ps                           

CONTAINER ID   IMAGE                   
COMMAND                  CREATED         STATUS         
PORTS                    NAMES

8e559f9bf6d1   chapter4_task-manager   "/task_
manager"          8 minutes ago   Up 8 minutes   0.0.0.0:8080-
>8080/tcp   chapter4-task-manager-1



Container commands 71

46ca9a239557   redis                   "docker-entrypoint.s…"   
8 minutes ago   Up 8 minutes   0.0.0.0:6379->6379/tcp   
chapter4-redis-1

As expected, the container is unpaused. 

start and stop

By using stop, we should stop running containers. start can be used to start existing containers. 
If a container is stopped, it will not be removed. We will shell into a container, create a file, and then 
stop the container. Once we start, the file should be there:

$ docker compose ps     

NAME                      COMMAND             SERVICE             
STATUS              PORTS

chapter4-task-manager-1   "/task_manager"     task-
manager        running             0.0.0.0:8080->8080/tcp

$ docker compose exec task-manager sh -c "echo test > text.txt"

$ docker compose stop task-manager

[+] Running 2/0

 Container chapter4-task-manager-1                 Stopped                                         
0.1s

The container is stopped. We expect that by starting the container, the file we created previously will exist:

$ docker compose start task-manager

[+] Running 1/1

Container chapter4-task-manager-1  Started

$ docker compose exec task-manager sh -c "cat text.txt"

test

restart

restart will restart the Compose service. Even if the service is stopped, it will start:

$ docker compose restart task-manager

[+] Running 1/1

 Container chapter4-task-manager-1  Started



Executing Docker Compose Commands72

Let’s stop a service and see whether it will start:

$ docker compose stop task-manager

[+] Running 1/0

Container chapter4-task-manager-1  Stopped

$ docker compose restart task-manager

[+] Running 1/1

Container chapter4-task-manager-1  Started                           
0.2s

Regardless of the previous state of the application, the application started. 

kill

kill can be used to kill the containers of a service:

$ docker compose kill task-manager

ps

compose ps is like docker ps. The key difference is that the target of the compose ps is filtered 
based on the ones specified in the Compose file:

$ docker compose ps   

NAME                      COMMAND             SERVICE             
STATUS              PORTS

chapter4-task-manager-1   "/task_manager"     task-
manager        running             0.0.0.0:8080->8080/tcp

We can display only the running services with the --services option:

$ docker compose ps --services        

task-manager            

We can display only the container ID using --quiet:

$ docker compose ps --quiet           

9b612d9ed210ab96d2b340ed8840781c80288097e1af6a96ed208d6b6d1 
fb42a     



Cleanup commands 73

We can even show stopped containers – for example, if we run a command once on the task-
manager service:

$ docker compose run task-manager sh

/app # exit          

Using ps –a, we can show the stopped container, created by the run command:

$ docker compose ps -a                  

NAME                                     COMMAND              
SERVICE             STATUS              PORTS

chapter4-task-manager-1                  "/task_manager"      
task-manager        running             0.0.0.0:8080->8080/tcp

chapter4_task-manager_run_91e7eec48f5d   "sh"                 
task-manager        exited (0)          

In this section, we created our base Compose application. By using Compose commands, we have 
been able to build the application images the application required. By using commands to run the 
application, we also evaluated the extra options the commands offer. Then, we used Compose commands 
to interact with the containers spun up by running the application. We managed to execute commands 
to existing containers as well as to spin up containers using the environment’s existing resources. In 
the next section, we will cover commands that clean up the resources we provisioned using Compose.

Cleanup commands
A common case with Docker is the various resources that are created when using it for day-to-day 
development. Removing images, containers, and also networks and volumes can become redundant. 
Compose offers a more managed way to deal with all those resources.

down

Let’s run the application in attached mode:

$ docker compose up

[+] Running 2/0

 Container chapter4-task-manager-1 Running             0.0s

 Container chapter4-redis-1 Running                    0.0s



Executing Docker Compose Commands74

Once we hit Ctrl + D, we shall escape Compose, the logs will stop being displayed, and the services 
shall stop running:

Gracefully stopping... (press Ctrl+C again to force)

[+] Running 2/2

 Container chapter4-task-manager-1  Stopped                   
0.1s

 Container chapter4-redis-1         Stopped                   
0.1s

canceled

As indicated by the messages, the application has stopped. The resources that have been provisioned 
are still there. We can examine that using images to see the images created, as well as ps to see 
containers that have been running:

$ docker compose images

Container                 Repository              Tag                 
Image Id            Size

chapter4-redis-1          redis                   
latest              f16c30136ff3        107MB

chapter4-task-manager-1   chapter4_task-manager   
latest              58247e548811        529MB

$ docker compose ps    

NAME                      COMMAND                  SERVICE             
STATUS              PORTS

chapter4-redis-1          "docker-entrypoint.s…"   redis               
exited (0)          

chapter4-task-manager-1   "/task_manager"          task-
manager        exited (2)

$ docker network ls

NETWORK ID     
NAME                                  DRIVER    SCOPE

...

ed28fb3286ab   chapter4_
default                      bridge    local

By running docker compose up again, the same resources will be used.



Cleanup commands 75

However, we might want to remove those resources from our system and free some space, or perhaps 
the application that we have been developing is redundant. In this case, we can use docker compose 
down. This will remove the resources provisioned by the Compose application:

$ docker compose down

[+] Running 3/2

 Container chapter4-task-manager-1  Removed                   
0.1s

 Container chapter4-redis-1         Removed                   
0.1s

 Network chapter4_default           Removed                   
0.0s

$ docker compose ps

NAME                COMMAND             SERVICE             
STATUS              PORTS

$  docker network ls|grep chapter4

Based on the commands run afterward, it seems that all the resources have been removed. However, 
there is still something that has been created while running the application, which is the images we 
built previously using docker compose build.

down comes with an option to remove the image that was built when running the application:

$ docker compose down --rmi local

[+] Running 4/2

 Container chapter4-redis-1         Removed                                                   
0.2s

 Container chapter4-task-manager-1  Removed                                                   
0.2s

 Image chapter4_task-manager        Removed                                                   
0.0s

 Network chapter4_default           Removed                                                   
0.0s

local will work for the images that have been built using the compose file and don’t have an image 
name. In our case, since we do have a tag, image: chapter4_task-manager:latest, we 
need to use the all parameter:

$ docker compose down --rmi all

[+] Running 5/0



Executing Docker Compose Commands76

 Container chapter4-task-manager-1              Removed                           
0.0s

 Container chapter4-redis-1                     Removed                             
0.0s

 Image redis                                    Removed                                             
0.0s

 Image docker.io/library/chapter4_task-manager  Removed                                             
0.0s

 Network chapter4_default                       Removed                                             
0.0s

Be aware that all will also remove the locally cached image, as we can see in the preceding code.

rm

In the previous steps, the usage of down removed all the containers. By using rm, we can remove 
containers individually. Let’s suppose we have the scenario of a poorly running container:

services:

  failed-manager: 

    build: 

      context: ../Chapter2/. 

    entrypoint: ["/no-such-command"] 

  task-manager:

    build:

      context: ../Chapter2/.

    image: chapter4_task-manager:latest

    ports:

      - 8080:8080

    environment:

      - REDIS_HOST=redis:6379

  redis:

    image: redis

    ports:

      - 6379:6379

The failed-manager service will fail:

$ docker compose up -d   

[+] Running 3/4



Cleanup commands 77

 Network chapter4_default             Created                                                                                                                                          
 0.0s

 Container chapter4-failed-manager-1  Starting                                                                                                              
                            0.5s

 Container chapter4-redis-1           Started                                                                                                                                          
 0.4s

 Container chapter4-task-manager-1    Started                                                                                                               
                            0.4s

Error response from daemon: OCI runtime create failed: 
container_linux.go:380: starting container process caused: 
exec: "/no-such-command": stat /no-such-command: no such file 
or directory: unknown

We do see the error. If we use ps, we should see that one container is running and that the other 
container was just created:

$ docker compose ps

NAME                        COMMAND                  SERVICE             
STATUS              PORTS

chapter4-failed-manager-1   "/no-such-command"       failed-
manager      created             8080/tcp

chapter4-redis-1            "docker-entrypoint.s…"   redis               
running             0.0.0.0:6379->6379/tcp

chapter4-task-manager-1     "/task_manager"          task-
manager        running             0.0.0.0:8080->8080/tcp

Let’s remove the bad container:

$ docker compose rm failed-manager

? Going to remove chapter4-failed-manager-1 Yes

[+] Running 1/0

 Container chapter4-failed-manager-1  Removed

Alternatively, we can force a removal using the -f or --force flag:

$ docker compose rm failed-manager --force

Going to remove chapter4-failed-manager-1

[+] Running 1/0

 Container chapter4-failed-manager-1  Removed

By using force, we avoided Command Prompt.



Executing Docker Compose Commands78

So far, after managing to run an application and interact with the containers that were created, we 
proceeded to stop the application, as well as to clean up the resources created, in order to make the 
running application feasible. One resource that has been created through the build process was the 
application’s image. Now, we shall dive deeper into managing images using Compose.

Image commands
Compose provides us with various options when using images. This makes its usage efficient, since 
there is no need to build images individually and use them in an application. Building images, tagging 
them, and also pushing them to a repository is something that can be done through Compose. This 
leads to development efforts being focused in one place. 

List images

Our application so far has two services backed by containers. We can see the images used by the 
containers using the docker compose images command:

$ docker compose images

Container                 Repository                Tag                 
Image Id            Size

chapter4-redis-1          redis                     6.2.6               
23d787aaa419        107MB

chapter4-task-manager-1   chapter4_failed-manager   
latest              58247e548811        529MB

We can also make the output less verbose by using the --quiet option:

$ docker compose images --quiet

58247e548811b8812d48467436bc07ed40b4a7d4cd8328e57234d465ef189 
14a

23d787aaa419ab884dd8682dca3153506f4dd00aba2ca9cd5953e94cae36b 
d7d

Pulling images

By using the images command, we have been able to retrieve the images used by the Compose 
application. What if we changed the image? The expected outcome would be to pull the image before 
running. Compose provides the pull command, which should pull the image specified. 



Image commands 79

So, let’s specify another redis image:

services:

  redis:

    image: redis:6.2.6

Instead of using up and pulling the image by default, we will use pull:

$ docker compose pull --ignore-pull-failures --parallel

[+] Running 2/3

 failed-manager Skipped                         0.0s

 redis Pulled                                   1.2s

 task-manager Error                             1.5s

Pulling task-manager: Error response from daemon: pull access 
denied for chapter4_task-manager, repository does not exist or 
may require 'docker login': denied: requested access to the 
resource is denied

$ echo $?                                              

0

As you can see, by issuing the pull command, we pulled the older Redis images specified. Also, 
because the task manager does not exist as an image in the registry and is a local one, it failed to pull. 
This did not block the operation; thus, the return of the command was 0. We achieved this by using 
the --ignore-pull-failures option. Also, by using the --parallel option, the images 
are pulled in parallel.

Pushing images

Pushing images to a Docker registry can also be done using Compose. To show this example, we will 
set up a registry using Compose.

Local Docker registry on Compose

In order to push Docker images, a registry is required. We will deploy a registry using Compose and 
configure our Compose application to use this registry.

Our Compose registry file is as follows:

services:

  registry:

    image: registry:2



Executing Docker Compose Commands80

    ports:

      - 5000:5000

The registry will run on port 5000; thus, we need to make sure this port is available on our system. 
Keep in mind that this is not a secure registry, so we need to edit the Docker daemon config to 
explicitly specify the non-secure registry. 

The location of the daemon.json config varies on the three main operating systems:

•	 Linux: /etc/docker/daemon.json

•	 Windows: C:\ProgramData\docker\config\daemon.json

•	 macOS: ~/.docker/daemon.json

Once the file has been located, we need to add the following entry:

  "insecure-registries" : [

    "host.docker.internal:5000"

   ],

After editing, the file should look like this:

{

...

  "insecure-registries" : [

    "host.docker.internal:5000"

   ],

  "builder" : {

..

  }

}

Pushing to the local registry

Now, it is feasible to push the task-manager image to the local registry, although any available 
registry can work. Since the registry is a local one run by the Docker engine, we will point to it by 
using the host.docker.internal DNS:

services:

  task-manager:

    build:



Image commands 81

      context: ../Chapter2/.

    image: host.docker.internal:5000/task-manager:0.1

    ports:

      - 8080:8080

    environment:

      - REDIS_HOST=redis:6379

  redis:

    image: redis

    ports:

      - 6379:6379

We can now build the image:

$ docker compose build

[+] Building 2.0s (17/17) FINISHED                                                                                                                                         
   

=> [internal] load build definition from Dockerfile  

...

=> => naming to host.docker.internal:5000/task-manager:0.1    

...

Then we push the image: 

$ docker compose push

[+] Running 1/13

 redis Skipped                                             
0.0s

 Pushing task-manager: 98ca4aa0fc4c Pushed                 
15.8s

...

 Pushing task-manager: 590efbee44c0 Pushed                 
15.8s

We built the images using Compose, and we also managed to push to a registry we created. We inspected 
the images used and pulled the new images specified in the compose file. The next section will be 
focused on monitoring our Compose application.



Executing Docker Compose Commands82

Monitoring commands
A common case in day-to-day development is monitoring an application and ensuring it is operating 
properly. From an application using too many resources to an elusive bug, or even an application 
restarting, there are various cases of an application malfunctioning. For these cases, monitoring 
commands play a crucial role.

Logs

Logs provide the ability to view the logs of a Compose application running on our system. If we run 
the up command in detached mode, we won’t be able to see any logs:

$ docker compose up -d

[+] Running 2/2

 Network chapter4_default           Created                                                                                                                             
0.0s

 Container chapter4-task-manager-1  Started      

However, the logs do get generated from our applications; thus, we can retrieve them:

$ docker compose logs

chapter4-task-manager-1  | [GIN-debug] [WARNING] Creating an 
Engine instance with the Logger and Recovery middleware already 
attached.

...

chapter4-task-manager-1  | [GIN-debug] Listening and serving 
HTTP on :8080  

What logs did was display all the logs the application produced on the terminal and exit. There is 
also the option of --follow. This way, we can follow the log output and have all new logs printed 
on our screen:

$ docker compose logs -f

chapter4-task-manager-1  | [GIN-debug] [WARNING] Creating an 
Engine instance with the Logger and Recovery middleware already 
attached.

...

chapter4-task-manager-1  | [GIN-debug] Listening and serving 
HTTP on :8080  



Monitoring commands 83

Apart from that, there are options such as --no-color, where no color is used on the terminal; 
--timestamps, which displays a timestamp of the log when captured; and --tail, which limits 
the logs displayed from each container:

$ docker compose logs -f --timestamps --tail="3" --no-color

chapter4-task-manager-1  | 2022-03-26T07:50:13.846624301Z 
[GIN-debug] [WARNING] You trusted all proxies, this is NOT 
safe. We recommend you to set a value.

chapter4-task-manager-1  | 2022-03-26T07:50:13.846625967Z 
Please check https://pkg.go.dev/github.com/gin-gonic/
gin#readme-don-t-trust-all-proxies for details.

chapter4-task-manager-1  | 2022-03-26T07:50:13.846627551Z 
[GIN-debug] Listening and serving HTTP on :8080

top

logs is indeed a useful command, but it is limited only to the logs and the log messages that an 
application emits. By using top, we display the running Compose processes for the file present:

$ docker compose top

chapter4-task-manager-1

UID    PID    PPID   C    STIME   TTY   TIME       CMD

root   7913   7887   0    07:50   ?     00:00:00   /task_
manager

top on Docker is limited to the container specified. When using top on Compose, it will monitor 
the containers listed in the docker-compose.yaml file.

Events

events is a functionality of Compose similar to the events command that Docker provides. By 
running the events command, we listen for events that happen on the Compose application:

$ docker compose events

...

Let’s stop the container:

$ docker stop chapter4-task-manager-1

chapter4-task-manager-1



Executing Docker Compose Commands84

On the events tab, we should see the deletion:

$ docker compose events

... 

2022-03-26 10:05:45.233256 container stop 
2cda5390558dc9d6b12bae95d6c65b23a6d95b36a5279677834f81af1d62 
69f2 (name=chapter4-task-manager-1, com.packtpub.compose.app 
=task-manager, image=host.docker.internal:5000/task-
manager:0.1)

Every operation that produces Docker events commands and affects the components of our 
application will be printed on the screen.

We just covered monitoring commands; thus, we are now able to track events of our application, 
identify the resources being used, as well as to troubleshoot application issues using logs.

Other commands
There are commands that can help in printing the available information. 

help

help is a terminal command that provides usage instructions for commands available.

version

As seen in previous chapters, version displays the currently running version of Compose:

$ docker compose version

Docker Compose version v2.2.3

port

port prints the port for a binding:

$ docker compose port task-manager 8080

0.0.0.0:8080



Other commands 85

config

config is used to validate the Compose configuration and instruct information to print:

$ docker-compose config

services:

  redis:

    image: redis

    ports:

    - published: 6379

      target: 6379

  task-manager:

    build:

      context: /path/to/Chapter2

    environment:

      REDIS_HOST: redis:6379

    image: host.docker.internal:5000/task-manager:0.1

    ports:

    - published: 8080

      target: 8080

version: '3.9' 

It can also be used to display only the services:

$ docker-compose config --services

task-manager

redis

Alternatively, it can display the volumes specified:

$ docker-compose config --volumes

By using the preceding commands and learning more about their usage, we now have a complete 
overview of Compose commands that are useful on a day-to-day basis. 



Executing Docker Compose Commands86

Summary
In this chapter, we had an extensive look at the available Compose commands and their options. We 
used commands that helped us to provision our multi-container application, as well as commands 
that assist us to interact with the containers of our application. Thanks to the image functionalities 
Compose provides, we pulled, built, and deployed images to a Docker registry without issuing any 
non-Compose commands. By managing to run our applications and evaluate the existing command 
options, we also proceeded to monitor our application, either by monitoring the logs or listening to 
Docker events, and we even monitored the activity of our Compose processors using top.

The following chapters will move on to more specific concepts of Compose that can benefit our daily 
development. We will transition to a microservice-based application using Compose, and monitor 
it, modularize it, and build it using CI/CD.



Part 2:  
Daily Development with Docker 

Compose

This part will take us through more advanced concepts of Docker Compose. We shall set up databases 
for daily usage using Compose. Then, using Docker, networking microservices will communicate with 
each other. We will run entire stacks locally on Compose and simulate production environments. 
Lastly, we shall enhance our CI/CD jobs using Docker Compose.

The following chapters will be covered under this section:

•	 Chapter 5, Connecting Microservices

•	 Chapter 6, Monitoring Services with Prometheus

•	 Chapter 7, Combining Compose Files

•	 Chapter 8, Simulating Production Locally

•	 Chapter 9, Creating Advanced CI/CD Tasks





5 
Connecting Microservices

The previous part was focused on getting started with Docker. Once we had installed Docker on our 
workstation, we learned more about Docker Compose and its day-to-day usage. We learned to combine 
Docker images using Compose and running multi-container applications. After successfully running 
multi-container applications, we moved on to more advanced concepts, such as Docker volumes and 
networks. Volumes helped to define how to store and share data, while networks made it possible to 
isolate certain applications and access them only through a specific network. During this process, 
we gradually moved away from using Docker CLI commands to Docker Compose commands. By 
using Compose commands, our focus shifted to the Compose application we provisioned, and it was 
possible to interact with the containers, monitor and execute administrative commands upon them, 
and focus our operations on the resources provisioned by Compose.

Since we have already created multi-container applications using Compose, we can now proceed with 
more advanced scenarios involving Compose. Nowadays, applications have become more complex. 
This leads to the need to split an application into multiple applications, either for scaling or team 
purposes. Microservices are the new norm. By splitting a problem into smaller parts, teams can benefit 
by increasing their delivery rate. Also, microservices can help with performance tuning and scale the 
parts of an application that matter the most. 

Although the concept of microservices existed long before the introduction of Docker, it played a 
crucial role in mass microservice adoption. The way services can be isolated and deployed everywhere, 
packaged with the tools needed, made it possible to reduce the cost and effort of deploying a microservice 
to a virtual or physical machine.

By using microservices, an application is split into multiple parts. Communication between the services 
is crucial. There are public-facing microservices, the entry points of an application, and microservices 
that are only internal.



Connecting Microservices90

In this chapter, we will focus on the application introduced in Chapter 2, Running the First Application 
Using Compose, the Task Manager application, and transform it into a microservice-based application. 
We will introduce a microservice, the geolocation service, which will be used by the Task Manager. 
By introducing this service, we will add it to a network that can be accessed only by the Task Manager 
application. After that, another service will be introduced, which will generate analytics based on data 
streamed to Redis.

Overall, this chapter will focus on the following topics:

•	 Introducing the location microservice

•	 Adding the location microservice to Compose

•	 Adding the location microservice to a private network

•	 Executing requests to a location microservice

•	 Streaming task events

•	 Adding a task events processing microservice

Technical requirements
The code for the book is hosted on GitHub at https://github.com/PacktPublishing/A-
Developer-s-Essential-Guide-to-Docker-Compose. If there is an update to the code, 
it will be updated on the GitHub repository.

Introducing the location microservice
By using the Task Manager application, introduced in Chapter 2, Running the First Application Using 
Compose, we will enhance its functionality by adding a location where a task should take place. Each 
task will have a location. By gathering those tasks, the locations will be stored; thus, each time a task 
is created, locations that have been previously visited will be recommended.

We shall create the location service as a new microservice. The service will not share anything with 
the Task Manager. It will have an API of its own. For simplicity, we shall use the same programming 
language we used previously, Golang, as well as the same database, Redis.

Let’s proceed with a Redis instance. Since will we use Compose, the following will be our configuration:

services:  

  redis:  

    image: redis

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Introducing the location microservice 91

We can run in detached mode:

$ docker compose -f redis.yaml up -d 

We shall create the location service project and add the gin and redis-go dependencies.

Since our tech stack will be the same, we should execute the same initialization steps we executed in 
Chapter 2, Running the First Application Using Compose.

These are the initialization steps:

go mod init location_service

go get github.com/gin-gonic/gin

go get github.com/go-redis/redis/v8

After this, we shall create the main.go file, which contains the base of our application. We shall use 
the gin framework as we did before, as well as the Redis database; therefore, we should use the same 
helper methods, which we can get from GitHub: https://github.com/PacktPublishing/A-
Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/
location-service/main.go.

Since we have the project set, we can proceed with the application logic. An important part of our 
service is the location model. The location model will hold information such as the unique ID we give 
to that location, the longitude and latitude, the name of that location, as well as its description. Since 
we use a REST API, the location model will be marshaled to JSON and returned through the API calls.

The location model to be used in the code base is as follows:

type Location struct {

    Id          string  `json:"id"`

    Name        string  `json:"name"`

    Description string  `json:"description"`

    Longitude   float64 `json:"longitude"`

    Latitude    float64 `json:"latitude"`

}

This service is based on the concept of geolocation; thus, the proper Redis data structures need to 
be chosen. The location model can be represented in hmset. hmset makes it possible to fetch the 
object in a key-value manner. By using a prefix and the ID of the object (location:id), we can 
have multiple location objects. Also, thanks to the functionality of hmset, we can fetch the individual 
members of the objects.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/location-service/main.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/location-service/main.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/location-service/main.go


Connecting Microservices92

Another important aspect of a location is distance. We would like to be able to retrieve locations in 
our database based on a location and up to a certain distance. For this purpose, Redis provides us 
with the Geohash technique. By using GeoAdd, we add locations to a sorted set. A hash is generated 
using the latitude and longitude and is used as a ranking by the various Geohash functions that can 
operate on a sorted set. This makes it feasible, for example, to find locations that are within a certain 
distance from a location or even calculate the distance between two locations stored on the sorted 
set. Based on these details, to store a location, we shall store it to a hash and make an entry to a sorted 
set using GeoAdd.

The function that persists the location is as follows:

// Chapter5/location-service/main.go:177

func persistLocation(c context.Context, location Location) 
error {

	 hmset := client.HSet(c,

		  fmt.Sprintf(locationIdFormat, location.Id), "Id",

		  location.Id, "Name",

		  location.Name, "Description",

		  location.Description, "Longitude",

		  location.Longitude, "Latitude",

		  location.Latitude)

	 if hmset.Err() != nil {

		  return hmset.Err()

	 }

	 geoLoc := &redis.GeoLocation{Longitude: location.
Longitude, Latitude: location.Latitude, Name: location.Id}

	 gadd := client.GeoAdd(c, "locations", geoLoc)

	 if gadd.Err() != nil {

		  return gadd.Err()

	 }

	 return nil

}



Introducing the location microservice 93

This is the method that retrieves the location from the hash:

// Chapter5/location-service/main.go:153

func fetchLocation(c context.Context, id string) (*Location, 
error) {

	 hgetAll := client.HGetAll(c, fmt.Sprintf(locationIdFormat, 
id))

	 if err := hgetAll.Err(); err != nil {

		  return nil, err

	 }

	 ires, err := hgetAll.Result()

	 if err != nil {

		  return nil, err

	 }

	 if l := len(ires); l == 0 {

		  return nil, nil

	 }

	 latitude, _ := strconv.ParseFloat(ires["Latitude"], 64)

	 longitude, _ := strconv.ParseFloat(ires["Longitude"], 64)

	 location := Location{Id: ires["Id"], Name: ires["Name"], 
Description: ires["Description"], Longitude: longitude, 
Latitude: latitude}

	 return &location, nil

}

Since we would like to retrieve existing locations based on distance and location, we shall use the 
Redis spatial functions. A method will be implemented, using the GEORADIUS method, on the set 
that we added elements to using GEOADD previously:

// Chapter5/location-service/main.go:124

[...]

func nearByLocations(c context.Context, longitude float64, 
latitude float64, unit string, distance float64) ([]



Connecting Microservices94

LocationNearMe, error) {

	 var locationsNearMe []LocationNearMe = make([]
LocationNearMe, 0)

	 query := &redis.GeoRadiusQuery{Unit: unit, WithDist: true, 
Radius: distance, Sort: "ASC"}

	 geoRadius := client.GeoRadius(c, "locations", longitude, 
latitude, query)

	 if err := geoRadius.Err(); err != nil {

		  return nil, err

	 }

	 geoLocations, err := geoRadius.Result()

	 if err != nil {

		  return nil, err

	 }

	 for _, geoLocation := range geoLocations {

		  if location, err := fetchLocation(c, geoLocation.
Name); err != nil {

			   return nil, err

		  } else {

			   locationsNearMe = append(locationsNearMe, 
LocationNearMe{

				    Location: *location,

				    Distance: geoLocation.Dist,

			   })

		  }

	 }

	 return locationsNearMe, nil

}

[...]

Based on the distance from the coordinates and the distance limit provided, the locations closest to 
the point will be returned in ascending order.



Introducing the location microservice 95

Since the core methods are implemented, we shall create the REST API using gin:

// Chapter5/location-service/main.go:49

[...]

r.GET("/location/:id", func(c *gin.Context) {

	 id := c.Params.ByName("id")

 

	 if location, err := fetchLocation(c.Request.Context(), 
id); err != nil {

        [...]

	 } else if location == nil {

		  [...]

	 } else {

		  [...]

	 }

 

})

 

r.POST("/location", func(c *gin.Context) {

	 var location Location

 

	 [...]

	 if err := persistLocation(c, location); err != nil {

		  c.JSON(http.StatusInternalServerError, 
gin.H{"location": location, "created": false, "message": err.
Error()})

		  return

	 }

	 [...]

})

 

r.GET("/location/nearby", func(c *gin.Context) {

	 [...] 

	 if locationsNearMe, err := nearByLocations(c, longitude, 
latitude, unit, distance); err != nil {



Connecting Microservices96

		  c.JSON(http.StatusInternalServerError, 
gin.H{"message": err.Error()})

		  return

	 } else {

		  c.JSON(http.StatusOK, gin.H{"locations": 
locationsNearMe})

	 }

 

})

We shall run the application and execute some requests:

$ go run main.go

And location using curl:

$ curl --location --request POST 'localhost:8080/location/' \

--header 'Content-Type: application/json' \

--data-raw '{

        "id":"0c2e2081-075d-443a-ac20-40bf3b320a6f",

        "name": "Liverpoll Street Station",

    "description": "Station for Tube and National Rail",

        "longitude": -0.082966,

    "latitude": 51.517336

}'

{"created":true,"location":{"id":"0c2e2081-075d-
443a-ac20-40bf3b320a6f","name":"Liverpoll Street 
Station","description":"Station for Tube and National 
Rail","Longitude":-0.082966,"Latitude":51.517336},"message":"Lo
cation Created Successfully"}

Find a location using the location ID:

$ curl --location --request GET 'localhost:8080/
location/0c2e2081-075d-443a-ac20-40bf3b320a6f'

{"location":{"id":"0c2e2081-075d-443a-ac20-
40bf3b320a6f","name":"Liverpoll Street 
Station","description":"Station for Tube and National 
Rail","Longitude":-0.082966,"Latitude":51.517336}}



Adding a location service to Compose 97

Finally, we will retrieve the location near a point specified, limited by a certain distance. Because we 
would like to know the distance to each location, we need a new model. The model will contain the 
location itself as well as the distance calculated:

type LocationNearMe struct { 

    Location Location `json:"location"` 

    Distance float64 `json:"distance"` 

} 

Retrieve the locations near to a point using curl:

curl --location --request GET 'localhost:8080/location/
nearby?longitude=-0.0197&latitude=51.5055&distance=5&unit=km'

{"locations":[{"location":{"id":"0c2e2081-075d-
443a-ac20-40bf3b320a6f","name":"Liverpoll Street 
Station","description":"Station for Tube and National 
Rail","Longitude":-0.082966,"Latitude":51.517336},"dista
nce":4.5729}]}

To assist the preceding commands, a Postman collection can be found in the book’s repository 
(https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-
to-Docker-Compose/blob/main/Chapter5/location-service/Location%20
Service.postman_collection.json).

We have created our first microservice in this section. We stored the locations and utilized the spatial 
capabilities of Redis to assist in searching for existing locations. The Task Manager should interact 
with the location service by using the REST interface provided. In the next section, we shall package 
the application in a Docker image and create the Compose application.

Adding a location service to Compose
We have implemented the service and have been able to add locations and execute spatial queries. The 
next step is to package the application using Docker and run it through Compose.

The first step is to create the Dockerfile. The same steps we followed in the previous chapter also 
apply here:

1.	 Adding a Dockerfile

2.	 Building the image using Compose

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/location-service/Location%20Service.postman_collection.json
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/location-service/Location%20Service.postman_collection.json
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/location-service/Location%20Service.postman_collection.json


Connecting Microservices98

This is the Dockerfile for the location service:

# syntax=docker/dockerfile:1

FROM golang:1.17-alpine

 

RUN apk add curl

 

WORKDIR /app

 

COPY go.mod ./

COPY go.sum ./

 

RUN go mod download

 

COPY *.go ./

 

RUN go build -o /location_service

 

EXPOSE 8080

 

CMD [ "/location_service" ]

The Dockerfile is in place, and we can now proceed to run it through Compose. Now, to test the 
application, we need Redis and the image of the application to be built.

Our docker-compose.yaml, at this stage, should look like this:

services: 

  location-service: 

    build: 

      context: ./location-service 

    image: location-service:0.1 

    environment: 

      - REDIS_HOST=redis:6379 

    depends_on: 

      - redis 

    healthcheck: 



Adding a network for the location microservice 99

      test: ["CMD", "curl", "-f", "http://localhost:8080/ping"] 

      interval: 10s 

      timeout: 5s 

      retries: 5 

      start_period: 5s 

  redis: 

    image: redis

Note that the ports section is missing. This is because the location service is going to be a private 
one. It shall be accessed only by other containers hosted on Compose.

An image called location-service will be built once we spin up the Compose application. The 
Redis image should work as it is. 

We managed to package the location-service microservice using Docker and run it through 
Compose. Since we will introduce the Task Manager, we need to revise the networks that the Compose 
application will provision.

Adding a network for the location microservice
We can now specify the network on which the application shall run instead of using the default network, 
as we did previously. The network shall be named geolocation-network, and we also need a 
network for Redis. We shall add those networks to Compose:

services:

  location-service:

[...]

    networks:

      - location-network

      - redis-network

[...]

  redis:

    image: redis

    networks:

      - redis-network

networks:

  location-network:

  redis-network:



Connecting Microservices100

Redis does not expose any port locally; the geolocation service is able to access the service only because 
it has redis-network included in the networks section. redis-network is a familiar name. 
It is the same network name we used in Chapter 3, Network and Volumes Fundamentals. Since our 
microservice is up and running on a dedicated network, we can now proceed with integrating it with 
the Task Manager application.

Executing requests to the location microservice
Previously, we successfully ran the recently introduced location microservice using Compose. However, 
the application will be unusable if we do not use it along with the Task Manager. By integrating the Task 
Manager with the location service, the user should be able to specify a location when creating a task. 
If the user also retrieves one of the existing tasks, locations near the task’s location shall be presented.

The Task Manager would have to communicate with the location service. For this reason, we shall 
create a service inside the Task Manager that will issue requests to the location microservice. The same 
models we used on the location service will also be used for this module.

The location service module in the Task Manager application can be found on GitHub: https://
github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-
Compose/blob/main/Chapter5/task-manager/location/location_service.go.

Since the Task Manager will have various feature additions in this chapter, it makes sense to refactor 
the code. The models should change and include the location models we defined previously:

type Task struct {

Id          string             `json:"id"`

Name        string             `json:"name"`

Description string             `json:"description"`

Timestamp   int64              `json:"timestamp"`

Location    *location.Location `json:"location"`

}

Also, we shall separate the persistence methods from the controller method and move them to another 
file, task_service.go (https://github.com/PacktPublishing/A-Developer-s-
Essential-Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/
task/task_service.go).

If we take a close look at the logic, the user is free to add just a task without specifying the location. If 
the location is specified and the ID already exists, it will pass through without any persistence to the 
location service. If the location is specified and does not exist, then we can specify the entire location 
payload and persist it. By specifying only an existing location ID, we do not have to specify the entire 
payload. Since we modularized the Task Manager code base, we can proceed to adapt the http 
controllers (https://github.com/PacktPublishing/A-Developer-s-Essential-
Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/main.go).

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/location/location_service.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/location/location_service.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/location/location_service.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/task/task_service.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/task/task_service.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/task/task_service.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/main.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter5/task-manager/main.go


Executing requests to the location microservice 101

Now that the Task Manager is adapted, we can update the Compose application and add the Task 
Manager interacting with location-service.

There are some requirements before doing so:

•	 The Task Manager requires Redis and location-service to be up and running.

•	 The Task Manager needs to have access to the networks of the preceding services.

•	 The Task Manager is an entry point; thus, we shall bind the port to host.

The Docker image shall be built the same way we did in Chapter 2, Running the First Application Using 
Compose, but we do need to add the extra source code created previously:

# syntax=docker/dockerfile:1

FROM golang:1.17-alpine

RUN apk add curl

WORKDIR /app

RUN mkdir location 

RUN mkdir task 

RUN mkdir stream

COPY go.mod ./

COPY go.sum ./

RUN go mod download

COPY *.go ./

COPY location/*.go ./location

COPY task/*.go ./task

COPY stream/*.go ./stream

RUN go build -o /task_manager

EXPOSE 8080

CMD [ "/task_manager" ]

We can now see the Compose file, including the Task Manager and the location service:

// Chapter5/task-manager/docker-compose.yaml:19

[...]

  task-manager: 

    build: 

      context: ./task-manager/

    image: task-manager:0.1

    ports: 



Connecting Microservices102

      - 8080:8080 

    environment: 

      - REDIS_HOST=redis:6379 

      - LOCATION_HOST=http://location-service:8080

    depends_on: 

      - redis 

      - location-service

    networks: 

      - location-network 

      - redis-network 

    healthcheck: 

      test: ["CMD", "curl", "-f", "http://localhost:8080/ping"] 

      interval: 10s 

      timeout: 5s 

      retries: 5 

      start_period: 5s 

[...]

The Task Manager was created and integrated with the location service. The location service remained 
an internal microservice without the need to expose it. The Task Manager established communication 
through a REST endpoint. In the next section, we shall evaluate accessing the application using a 
message-based form of communication.

Streaming task events
We have been successful previously in running the new microservice using Compose. However, we 
would like to know how many times a location has been visited or how many tasks have been created 
over time.

This is a data-driven task. We want to capture and stream information about our application. Redis 
provides us with streams. By using streams, our application can stream data that can later be processed 
by another application and create the analytics of our choice.

This will be possible with a simple adaptation to our code. Once a task is added, a message shall be 
published to a Redis stream.

We will add a service to the Task Manager that will be able to stream events. For now, only when 
adding a task will a message be sent.



Streaming task events 103

The following code base is the implementation of the TaskStream service, which will be responsible 
for sending messages on task creation:

// Chapter5/task-manager/task/task-service.go:14

[...] 

type TaskMessage struct {

	 taskId      string

	 location_id string

	 timestamp   int64

}

 

func CreateTaskMessage(taskId string, location *location.
Location, timestamp int64) TaskMessage {

	 taskMessage := TaskMessage{

		  taskId:    taskId,

		  timestamp: timestamp,

	 }

 

	 if location != nil {

		  taskMessage.location_id = location.Id

	 }

 

	 return taskMessage

}

 

func (ts *TaskMessage) toXValues() map[string]interface{} {

	 return map[string]interface{}{"task_id": ts.taskId, 
"timestamp": ts.timestamp, "location_id": ts.location_id}

}

 

func (ts *TaskStream) Publish(c context.Context, message 
TaskMessage) error {

 

	 cmd := ts.Client.XAdd(c, &redis.XAddArgs{

		  Stream: "task-stream",

		  ID:     "*",

		  Values: message.toXValues(),



Connecting Microservices104

	 })

 

	 if _, err := cmd.Result(); err != nil {

		  return err

	 }

 

	 return nil

}

Since we have the message-sending functionality implemented, we will change the PersistTask 
method in order to send an update once a task is created:

// Chapter5/task-manager/task/task-service.go:28

[...]

func (ts *TaskService) PersistTask(c context.Context, task 
Task) error {

 

	 values := []interface{}{"Id", task.Id, "Name", task.Name, 
"Description", task.Description, "Timestamp", task.Timestamp}

 

	 if task.Location != nil {

		  if err := ts.LocationService.AddLocation(task.
Location); err != nil {

			   return err

	 }

	 values = append(values, "location", task.Location.Id)

}

 

	 hmset := ts.Client.HSet(c, fmt.Sprintf("task:%s", task.
Id), values)

 

	 if hmset.Err() != nil {

		  return hmset.Err()

	 }

 

	 z := redis.Z{Score: float64(task.Timestamp), Member: task.
Id}

	 zadd := ts.Client.ZAdd(c, "tasks", &z)



Adding a task events processing microservice 105

 

	 if zadd.Err() != nil {

		  return hmset.Err()

	 }

 

	 mes := stream.CreateTaskMessage(task.Id, task.Location, 
task.Timestamp)

 

	 return ts.TaskStream.Publish(c, mes)

}

[...]

So far, we have enhanced our application to send events on task insertions. In the next section, we 
shall proceed with consuming those messages.

Adding a task events processing microservice
In the previous section, we produced events regarding our Task Manager application. This enables us 
to add an application that shall be message-driven. For now, the events service will consume the 
data from a Redis stream and print data on the console. 

Our code base will be lean and require only the Redis client.

Let’s add the code that will consume the events:

[...]

client. XGroupCreateMkStream (ctx, stream, consumerGroup, "0").
Result()

 

for {

	 entries, err := client.XReadGroup(ctx,

		  &redis.XReadGroupArgs{

			   Group:    consumerGroup,

			   Consumer: consumer,

			   Streams:  []string{stream, ">"},

			   Count:    1,

			   Block:    0,

			   NoAck:    false,

		  },

	 ).Result()



Connecting Microservices106

 

	 for i := 0; i < len(entries[0].Messages); i++ {

		  messageID := entries[0].Messages[i].ID

		  values := entries[0].Messages[i].Values

 

		  taskId := values["task_id"]

		  timestamp := values["timestamp"]

		  locationId := values["location_id"]

 

		  log.Printf("Received %v %v %v", taskId, timestamp, 
locationId)

 

		  client.XAck(ctx, stream, consumerGroup, messageID)

	 }

}

[...]

Let’s create the Dockerfile for it:

# syntax=docker/dockerfile:1

 

FROM golang:1.17-alpine

 

RUN apk add curl

 

WORKDIR /app

 

COPY go.mod ./

COPY go.sum ./

 

RUN go mod download

 

COPY *.go ./

 

RUN go build -o /events_service

 

CMD [ "/events_service" ]



Adding a task events processing microservice 107

Then, we should add a task service to Compose:

services: 

  location-service: 

    [...]

  task-manager: 

    [...]

  event-service: 

    build: 

      context: ./events-service/

    image: event-service:0.1 

    environment: 

      - REDIS_HOST=redis:6379 

    depends_on: 

      - redis 

    networks: 

      - redis-network 

networks:

  location-network:

  redis-network:

It is obvious that the new service does not need to have as many settings on Compose as the REST-
based service. Being stream-based, it only needs the connection to the Redis stream.

Since all the service’s configurations are in place, we can run the application and observe task events 
getting streamed to the events microservice:

$ docker compose up

...

chapter5-event-service-1     | 2022/05/08 09:03:38 Received 
8b171ce0-6f7b-4c22-aa6f-8b110c19f83a 1645275972000 0c2e2081-
075d-443a-ac20-40bf3b320a6f

...

We have been successful in listening to events when a task is created, and incorporated that code into 
our existing Compose application.



108

Summary
In this chapter, we created two microservices that will integrate with the Task Manager. The microservices 
had a different nature; one used REST-based communication, and the other was message-driven. 
Regardless of the differences, by using Compose, it was possible to orchestrate those microservices 
and isolate them. As expected, monitoring plays a crucial part in the service we created. By monitoring 
properly, we can ensure availability and smooth usage for the end user. 

The next chapter will be focused on monitoring and how to achieve it by using Prometheus.



6
 Monitoring Services with 

Prometheus

In the previous chapter, we managed to create multiple services for the Task Manager application 
and orchestrated them using Compose. By transforming the Task Manager application into a 
microservice-based application, we made code adjustments and facilitated the communication 
between multiple microservices.

The communication was either REST-based or message-based. By establishing the communication 
between the microservices, we managed to highlight the network features of Compose and made the 
distinction between services that were operating privately and services that were publicly accessible.

This chapter will be focused on the monitoring of the services through Compose. When it comes to 
microservices, we need to monitor our services and effectively troubleshoot any issues that might arise. 
We did have some monitoring commands through Compose in Chapter 4, Executing Docker Compose 
Commands; however, we would like to gain more insights. Our goal is to have monitoring and metrics 
for our applications. Those metrics should be stored in a database, and we should be able to retrieve 
them using queries. For this reason, Prometheus would be the tool of our choice in this chapter.

In this chapter, the following topics will be covered:

•	 What is Prometheus?

•	 Adding an endpoint for Prometheus

•	 Configuring Prometheus to parse metrics

•	 Adding Prometheus to the Compose network 

•	 Your first metrics query 



 Monitoring Services with Prometheus110

What is Prometheus?
Prometheus is a popular open source monitoring solution with a wide range of capabilities including 
event monitoring and alerting. Prometheus follows an HTTP pull model. The applications expose 
their metrics through an HTTP endpoint. Prometheus has the ability to parse the exposed metrics. 
By configuring certain applications as targets on Prometheus, Prometheus will proceed with parsing 
the exposed metrics. Additionally, for services where exposing an HTTP endpoint is not feasible, 
Prometheus offers Pushgateway, an intermediary service where other services can push their data. 

Once retrieved, the data is recorded inside a real-time series database, which is part of Prometheus. 
This makes it possible to have flexible queries and real-time alerting.

Here are some of the features that Prometheus offers:

•	 A data model for time series metrics

•	 A query language to execute queries upon the retrieved time series data

•	 Storing metrics in one single autonomous server

•	 A pull model over HTTP for collecting data

•	 Pushing metrics through an intermediary gateway, for non-HTTP applications

•	 Discovery or configuration of targets exposing metrics

•	 Dashboard capabilities

In this chapter, we will adapt our application and help them to export data to Prometheus. We will take 
an extensive look at the features that Prometheus provides and create a dashboard for our applications.

Adding an endpoint for Prometheus
Let’s see how to add an endpoint to our existing Compose endpoints. The code base that will be used in 
this chapter will be the code base that we created in Chapter 5, Connecting Microservices. We should update 
the code base and add the endpoints that will enable Prometheus to scrap metrics from our applications.

Adding the metrics endpoint to the Task Manager 

Adding Prometheus to an HTTP-based Go application is streamlined. By following the instructions 
online (https://prometheus.io/docs/guides/go-application), we can find the 
following go get commands that will download the necessary libraries to use with our Go application:

$ go get github.com/prometheus/client_golang/prometheus 

$ go get github.com/prometheus/client_golang/prometheus/
promauto 

https://prometheus.io/docs/guides/go-application


Adding an endpoint for Prometheus 111

$ go get github.com/prometheus/client_golang/prometheus/
promhttp

The default way to add a Prometheus endpoint is by using the Go http server:

func main() {

        http.Handle("/metrics", promhttp.Handler())

        http.ListenAndServe(":2112", nil)

}

Task Manager is based on the go framework and the gin framework. This will require a minor 
workaround since gin offers a wrapper for the http handlers:

import (

...

"github.com/prometheus/client_golang/prometheus/promhttp"

...

)

...

// Metrics Endpoint

r.GET("/metrics", gin.WrapH(promhttp.Handler()))

...

Now if we run the application, we should be able to access the metrics:

$ curl localhost:8080/metrics

# HELP go_gc_cycles_automatic_gc_cycles_total Count of 
completed GC cycles generated by the Go runtime.

# TYPE go_gc_cycles_automatic_gc_cycles_total counter

go_gc_cycles_automatic_gc_cycles_total 0

# HELP go_gc_cycles_forced_gc_cycles_total Count of completed 
GC cycles forced by the application.

# TYPE go_gc_cycles_forced_gc_cycles_total counter

go_gc_cycles_forced_gc_cycles_total 0

# HELP go_gc_cycles_total_gc_cycles_total Count of all 
completed GC cycles.

# TYPE go_gc_cycles_total_gc_cycles_total counter

go_gc_cycles_total_gc_cycles_total 0

…



 Monitoring Services with Prometheus112

We have just retrieved the metrics for our application, the metrics that have been collected since its 
start. We can observe various metrics such as memory, garbage collection, and more.

Adding the metrics endpoint to the location service 

Just like the Task Manager, the location service is also based on go gin; therefore, exactly the 
same steps should be followed. The results should be the same, and you can check them on GitHub 
(https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-
to-Docker-Compose/tree/main/Chapter6/location-service).

Exporting metrics from the Event Service 

The Event Service is a microservice but an event-driven one. The events are received through a Redis 
stream; therefore there is no need for an HTTP endpoint to be set up. In order to enable monitoring 
using Prometheus, we can either add an HTTP server on the application just for this purpose or we 
can enable the use of the Pushgateway service mentioned earlier.

We would like to track how fast the messages that are received are processed. Therefore, every time 
a new message is received and processed, we should submit those points to Prometheus using the 
Pushgateway service.

For our use case, we will use a gauge. Based on the documentation, a gauge is a metric that represents 
a single numerical value that can arbitrarily go up and down (https://prometheus.io/docs/
concepts/metric_types/#gauge).

For now, we will assume that the Pushgateway service is already present and will accept the 
presented metrics.

The following method will be the metrics to push:

...

processingTime = prometheus.NewGauge(prometheus.GaugeOpts{

	 Name: "task_event_process_duration",

	 Help: "Time it took to complete a task",

})

processedCounter = prometheus.NewCounterVec(

	 prometheus.CounterOpts{

		  Name: "task_event_processing_total",

		  Help: "How many tasks have been processed",

	 },

	 []string{"task"},

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/tree/main/Chapter6/location-service
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/tree/main/Chapter6/location-service
https://prometheus.io/docs/concepts/metric_types/#gauge
https://prometheus.io/docs/concepts/metric_types/#gauge


Adding an endpoint for Prometheus 113

).WithLabelValues("task")

...

In the main processing method, we will call the method once the message has been processed:

...

start := time.Now()

log.Printf("Received %v %v %v", taskId, timestamp, locationId)

 

client.XAck(ctx, stream, consumerGroup, messageID)

elapsed := time.Since(start)

 

processedCounter.Add(1)

 

millis := float64(elapsed.Milliseconds())

processingTime.Set(millis)

 

pushProcessingDurationToPrometheus(processingTime)

pushProcessingCount(processedCounter)

...

And last but not least, we will add the methods that push the data toward the gateway:

...

func pushProcessingDurationToPrometheus(processingTime 
prometheus.Gauge) {

	 if err := push.New(getStrEnv("PUSH_GATEWAY", "http://
localhost:9091"), "task_event_process_duration").

		  Collector(processingTime).

		  Grouping("db", "event-service").

		  Push(); err != nil {

		  fmt.Println("Could not push completion time to 
Pushgateway:", err)

	 }

}

 

func pushProcessingCount(processedCounter prometheus.Counter) {

	 if err := push.New(getStrEnv("PUSH_GATEWAY", "http://
localhost:9091"), "task_event_processing_total").



 Monitoring Services with Prometheus114

		  Collector(processedCounter).

		  Grouping("db", "event-service").

		  Push(); err != nil {

		  fmt.Println("Could not push tasks processed to 
Pushgateway:", err)

	 }

}

...

So, we have managed to apply the changes to our code base and made it possible for our applications 
to expose their metrics. The next step is to set up a Prometheus instance in order to parse the exposed 
data. So, let’s proceed and see how a Prometheus instance will interact with one of our services.

Configuring Prometheus to parse metrics
As mentioned earlier, Prometheus operates using a pull-based model. This means that the data is 
exposed through an HTTP endpoint and Prometheus should parse it, provided it has been configured 
properly to access it. 

In order for Prometheus to parse from an endpoint, a job configuration needs to be applied. Job 
configurations for Prometheus are in YAML format. 

In our scenario, we would like to parse metrics with an interval of one minute, from the Task Manager.

The configuration should look like this:

scrape_configs: 

  - job_name: 'task-manager' 

    scrape_interval: 1m 

    metrics_path: '/metrics' 

    static_configs: 

      - targets: ['host.docker.internal:8080']

Provided the Task Manager application is running and the YAML file is ready, we can create the 
Compose YAML file:

services:

  prometheus: 

    image: prom/prometheus 

    ports:  

      - 9090:9090 



Configuring Prometheus to parse metrics 115

    volumes: 

      - ./prometheus.yaml:/etc/prometheus/prometheus.yml

By running the following code, Prometheus will pick the specified configuration:

$ docker compose -f ./prometheusold.yaml up

After waiting a few minutes, we can navigate to the Prometheus URL. We should see the results of 
the scraping on our screen:

Figure 6.1 – Metrics plotted on the Prometheus dashboard



 Monitoring Services with Prometheus116

Also, in the configuration tab, we can see the configuration we applied:

Figure 6.2 – The configuration retrieved from Prometheus

We managed to monitor Task Manager through Prometheus by making it possible for Prometheus to 
scrape some metrics. In the next section, we will apply Prometheus to all of our services.



Adding Prometheus to the Compose network 117

Adding Prometheus to the Compose network
We have set Prometheus up so that it is running successfully and also managed to monitor the Task 
Manager application. Since we added Prometheus to all of our applications, we should add it to the 
Compose file and parse the services. 

Since Prometheus is interacting with the existing services, this is not an operation that should place 
from an external network. We should add a network that Prometheus will be able to operate. We will 
name it monitoring-network:

networks:

  location-network:

  redis-network:

  monitoring-network:

Then, we should create the Prometheus configuration file. So far, we have introduced three services:

•	 task-manager

•	 location-service

•	 events-service

Here, task-manager and location-service are on port 8080. The configuration should 
look like this:

scrape_configs: 

  - job_name: 'task-manager' 

    scrape_interval: 1m 

    metrics_path: '/metrics' 

    static_configs: 

      - targets: ['task-manager:8080'] 

  - job_name: 'location-service' 

    scrape_interval: 1m 

    metrics_path: '/metrics' 

    static_configs: 

      - targets: ['location-service:8080'] 

As we can see, we take advantage of Compose’s internal DNS. Let’s put the Prometheus configuration 
and add other services to the same network:

  prometheus:

    image: prom/prometheus



 Monitoring Services with Prometheus118

    ports: 

      - 9090:9090

    volumes:

      - ./prometheus.yaml:/etc/prometheus/prometheus.yml

    networks:

      - monitoring-network

We should attach each service to the Docker network.

Note that both task-manager and location-service will have their networks altered:

...

    networks: 

      - location-network 

      - redis-network 

      - monitoring-network

...

By running the Compose application, Prometheus will be able to operate and parse the metrics.

We can see the results by accessing the running Prometheus instance at localhost:9090.

Pushing metrics to Prometheus

By running the Compose application, Prometheus will be able to operate and parse the metrics. 
However, there is a need to push the metrics instead of exposing them. Our analytics services will 
benefit from this purpose. To do so, we should enable the Prometheus gateway. 

Let’s add the gateway Compose configuration:

// Chapter6/docker-compose.yaml:68

  push-gateway:

    image: prom/pushgateway

    networks:

      - monitoring-network

By having the Pushgateway service available, the Event Service can push metrics to Prometheus. 
By pushing the metrics to Pushgateway, the gateway will expose them through an endpoint. Then, 
Prometheus should be configured to pull the messages from the gateway:

// Chapter6/prometheus.yaml

  - job_name: 'push-gateway' 



Creating your first metrics query 119

    scrape_interval: 1m 

    metrics_path: '/metrics' 

    static_configs: 

      - targets: ['push-gateway:9091']

Based on the preceding steps, we can use the code we changed in the event-service application. Now, 
all of our services are monitored and push data to Kubernetes. As expected, we can run the entire 
application using compose up:

$ docker compose build

$ docker compose up -d

Now we can proceed to the next section and make use of what we have built.

Creating your first metrics query
We managed to submit our metrics to Prometheus, so now we can execute queries upon metrics. By 
having metric data, we can now create dashboards in Prometheus.

Let’s suppose we have lots of tasks created over time and we want to monitor them. To simulate the 
task creation, we will use the following script:

while true; do

curl --location --request POST 'localhost:8080/task/' \

--header 'Content-Type: application/json' \

--data-raw '{

    "id": "'$(date +%s%N)'",

    "name": "A task",

    "description": "A task that need to be executed at the 
timestamp specified",

    "timestamp": 1645275972000,

    "location": {

        "id": "1c2e2081-075d-443a-ac20-40bf3b320a6f",

        "name": "Liverpoll Street Station",

        "description": "Station for Tube and National Rail",

        "longitude": -0.081966,

        "latitude": 51.517336

    }

}'



 Monitoring Services with Prometheus120

sleep 1

done

The preceding script runs every second and creates a different task with a name generated by the date 
command in bash.  

Moving forward, we will create a PromQL query to check the rate of tasks created over time. 

The query in PromQL should be like this:

rate(task_event_processing_total[5m])

The dashboard will display the following result:

Figure 6.3 – The metric query plotted on Prometheus



Creating your first metrics query 121

Now we can also exit the script we run previously using Ctrl + C.

By submitting our metrics, we can plot queries and track incidents. This can help us to monitor our 
application. However, it requires our constant attention. We need to have a mechanism in place that 
will notify us of certain events that occur. Therefore, we should utilize Prometheus’ alerts capabilities.

Adding an alert

Another thing Prometheus provides us with is the capability of alerts. In our case, if the rate of tasks 
over 5 minutes is bigger than 0.2 for 1 minute, an alert should be raised:

// Chapter6/alerts.yaml

groups:

- name: task-manager

  rules:

  - alert: too-many-tasks

    expr: rate(task_event_processing_total[5m]) > 0.2

    for: 1m

    annotations:

      summary: Too many tasks

We should mount this file to Prometheus; therefore, add it to the configuration of the prometheus.
yaml file:

// Chapter6/prometheus.yaml:17

...

rule_files:

  - '/etc/prometheus/alerts.yaml'

After some tasks are continuously created, we get the expected results.



 Monitoring Services with Prometheus122

Initially, we see that no alerts have been raised:

Figure 6.4 – The Prometheus alert screen

As we proceed and more alerts are added, we get to the pending state:

Figure 6.5 – Prometheus alerts in the pending state



Summary 123

Eventually, we should end up in the alert state:

Figure 6.6 – The Prometheus alerts triggered

We have managed to create alerts based on the queries we plotted earlier. By extracting those queries, 
we added them to a configuration file and mounted them to the Prometheus container through the 
Compose configuration.

Summary
In this chapter, we set up Prometheus on Compose and made it feasible to collect and receive metrics 
and raise alerts. By doing so, the multi-container application we created using Compose could submit 
metrics. This enabled us to monitor our application and get alerted if something was wrong. All of this has 
been made possible by changing our Compose installation and simply adding some extra configuration 
files using volumes on Compose. One issue with the preceding approach is the lack of flexibility. We 
need to have all services in one file running regardless if we only want to run individual components. 

In the next chapter, we will evaluate how we can modularize our Compose application and run it on 
multiple files.





7
 Combining Compose Files

So far, we have run our multi-container application in a monolithic way, where the application is 
run by specifying a Compose file that contains application containers, containers for databases such 
as Redis, and applications for monitoring purposes such as Prometheus. This will serve us well in 
the beginning; however, always running the application with all the dependencies available might 
bring us issues. Running a full-fledged application can consume many resources, it can be harder to 
troubleshoot issues, and it can prevent you from being focused on a certain component that requires 
your attention. There could be scenarios where you might want to use only one component and avoid 
interacting with or initiating other components. Also, there might be cases where you don’t want to 
have monitoring enabled or any other stack that assists your application but is not directly related to 
the scope of your application.

Compose provides us with the option to split an application into multiple files and run the entire 
application by combining those files. This will give us the ability to run our application in a more modular 
way. We should be able to run certain parts of the application and completely ignore an entire stack.

In this chapter, we will proceed with splitting our application into multiple files and running them 
in a modular way.

In this chapter, we will cover the following topics:

•	 Splitting Compose files

•	 Combining Compose files

•	 Selecting the Compose files to run

•	 Creating different environments

•	 Combining multiple Compose files into one



 Combining Compose Files126

Technical requirements
The code for this book is hosted on the GitHub repository at https://github.com/
PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose. In 
case of an update to the code, it will be updated on the GitHub repository.

Splitting Compose files
Throughout the Task Manager application development, we started using one simple Go application 
backed by a Redis database. Onward, we enhanced the functionality of our main application by adding 
two extra microservices. Since we ended up with a full-functional microservice-based application, we 
reckoned that more monitoring was needed; therefore, we added Prometheus and the Pushgateway 
to facilitate proper monitoring of our applications. Each step is required to incorporate the services 
into the Docker Compose file. 

If we properly examine each step, we could identify components that are shared between applications 
and need to be available regardless of the applications we want to run. Those are core components that 
we should share with other services; thus, they can be logically grouped into a Compose file. More 
specifically, the networks and the database are a part of our core Compose project, which is essential 
for our application to run. 

In our application, we can also identify that certain services can have their own compose file. For 
example, the location service can run standalone provided it has a service database available. The 
same applies to the event service.

The Prometheus stack is also something that can run separately since it is not directly related to the 
goal of our applications server. However, they are essential for running our applications properly.

So, let’s proceed to create the base of our compose application.

Task Manager base

The task-manager base would be from the networks and the Redis database. The definition of 
the Docker networks is essential since they are the backbone of our application’s connectivity. The 
database where we store data is also essential since all of our applications need to be backed by a 
database assisting them to store the data.

Therefore, at the root of our project, we will create the base-compose.yaml file:

// Chapter7/base-compose.yaml

services:

  redis: 

    image: redis 

    networks:

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Splitting Compose files 127

      - redis-network

networks:

  location-network:

  redis-network:

  monitoring-network:

If we spin up the base service, we should see the Redis database up:

// Chapter7/base-compose.yaml

$ docker compose -f base-compose.yaml up -d

$ docker compose -f base-compose.yaml ps   

NAME                COMMAND                  SERVICE             
STATUS              PORTS

chapter7-redis-1    "docker-entrypoint.s…"   redis               
running             6379/tcp

$ docker compose -f base-compose.yaml down

The base is ready. It provides us with a Redis database and the essential network configurations. Next, 
we will proceed with the location service.

Location service

The location service is the first Go-based service to have a Compose file dedicated only to run this 
service. We will extract the compose configuration we had previously and will use the components 
from the base-compose.yaml file.

The compose file for the location service is detailed as follows:

// Chapter7/location-service/docker-compose.yaml

services: 

  location-service: 

    build: 

      context: location-service

    image: location-service:0.1 

    environment: 

      - REDIS_HOST=redis:6379 

    depends_on: 

      - redis 

    networks: 

      - location-network 



 Combining Compose Files128

      - redis-network

      - monitoring-network

    healthcheck: 

      test: ["CMD", "curl", "-f", "http://localhost:8080/ping"] 

      interval: 10s 

      timeout: 5s 

      retries: 5 

      start_period: 5s

As you can see, extracting the Compose configuration for the location service is streamlined, and all 
we had to do was to copy the service configuration. However, we do see a small adaption. Instead of 
context: ., our code base is switched to context: location-service. The reason for this 
has to do with base-compose.yaml and location-service/docker-compose.yaml 
being located on different files. The location paths on Compose are absolute and follow the location 
of the first file specified. For this reason, we will use the context path from compose. The next service 
will be the event service.

Event service

The event service will also have no changes and will be moved to a separate file:

// Chapter7/event-service/docker-compose.yaml

services: 

  event-service: 

    build: 

      context: event-service

    image: event-service:0.1 

    environment: 

      - REDIS_HOST=redis:6379 

      - PUSH_GATEWAY=push-gateway:9091

    depends_on: 

      - redis 

    networks: 

      - redis-network

      - monitoring-network

By having the first two services split up, we can proceed to the main service, the  
task-manager service. 



Splitting Compose files 129

Task Manager

We proceed to the task-manager service last, mainly because it is a service that interacts with 
the other two services.

By extracting the content to another file, the following would be the dedicated compose file:

// Chapter7/task-manager/docker-compose.yaml

services:

  task-manager: 

    build: 

      context: task-manager

    image: task-manager:0.1

    ports: 

      - 8080:8080 

    environment: 

      - REDIS_HOST=redis:6379 

      - LOCATION_HOST=http://location-service:8080

    depends_on: 

      - redis 

      - location-service

    networks: 

      - location-network 

      - redis-network 

      - monitoring-network

    healthcheck: 

      test: ["CMD", "curl", "-f", "http://localhost:8080/ping"] 

      interval: 10s 

      timeout: 5s 

      retries: 5 

      start_period: 5s

With Τask Μanager setup, we did split the Go-based services. Now, we can proceed with splitting up 
the Prometheus components.



 Combining Compose Files130

Prometheus

Prometheus is targeted toward monitoring; therefore, it’s going to be on a separate file, and whether 
it is going to be used among the other files will be up to the user. By not including Prometheus when 
running the task-manager application, the monitoring features will not be there. However, there 
would be fewer dependencies and fewer resources will be needed. 

The Prometheus compose file will require the Prometheus server and the push-gateway included. 
This makes sense if we take into consideration that they are both monitoring solutions.

In the following compose file, we have the configuration for Prometheus and push-gateway:

// Chapter7/monitoring/docker-compose.yaml

services:

  prometheus:

    image: prom/prometheus

    ports: 

      - 9090:9090

    volumes:

      - ./monitoring/prometheus.yaml:/etc/prometheus/
prometheus.yml

      - ./monitoring/alerts.yml:/etc/prometheus/alerts.yaml

    networks:

      - monitoring-network

    depends_on:

      - task-manager

  push-gateway:

    image: prom/pushgateway

    networks:

      - monitoring-network

By extracting the compose Prometheus components to another Compose file, we have modularized 
the task-manager application and can proceed with combining the files we created previously. 
Now, we should be able to use our application and have exactly the same behavior.

Combining Compose files
Now that we have split the task-manager application, we should be able to run and have the same 
functionality we had in Chapter 6, Monitoring Services with Prometheus. We should be able to store 
the tasks by executing requests to the Task Manager combined with a location.



Selecting the Compose files to run 131

Compose offers the option to combine multiple files. 

Let’s run the application and all the services needed together:

docker compose -f base-compose.yaml -f monitoring/docker-
compose.yaml -f event-service/docker-compose.yaml -f location-
service/docker-compose.yaml -f task-manager/docker-compose.yaml 
up

 Network chapter7_location-network     Created     0.0s

 Network chapter7_redis-network        Created     0.0s

 Network chapter7_monitoring-network   Created     0.0s

 Container chapter7-redis-1            Created     0.0s

 Container chapter7-push-gateway-1     Created     0.0s

 Container chapter7-location-service-1 Created     0.0s

 Container chapter7-event-service1     Created     0.0s

 Container chapter7-task-manager 1     Created     0.0s

 Container chapter7-prometheus-1       Created     0.0s

An observation is that the prefix starts with chapter7. This has to do with the base compose file, which 
is the first on the list. base-compose.yaml is on the root of Chapter7; therefore, the relative 
path is set to Chapter7. This works well with the configuration we have set in the monitoring project.

So far, we have been successful in splitting our original application into parts and also running 
them all together. The qualities of the application have been the same, and the modularization of 
our application makes development easier. However, we are still not flexible enough. We still need 
to run the application including all of the files, and we are not able to select the application we want 
to focus on individually. In the next section, we will see how Compose can assist us in making the 
application modular.

Selecting the Compose files to run 
In the previous section, one of the issues we stumbled upon is the fact that we run the application’s 
Compose file altogether. However, modularization is in place since we split the compose file into multiple 
parts. Thus, the next step would be to run debug and test different modules of the application individually.

Using Hoverfly

Since our applications depend on each other, the only viable option is to run the applications together 
until we find an alternative. For development and testing purposes, we can mock some of the services 
that introduce dependencies and still be able to run our application locally. 

For this purpose, Hoverfly (https://hoverfly.io/) can be of significant help. Hoverfly can 
intercept traffic and mock requests and responses.

https://hoverfly.io/


 Combining Compose Files132

We will spin up a Hoverfly instance with a capture mode in Compose:

services:

  hoverfly:

    image: spectolabs/hoverfly

    ports: 

      - :8888

    networks:

      - location-network

      - monitoring-network

    entrypoint: ["hoverfly","-capture","-listen-on-
host","0.0.0.0"]

By having Hoverfly enabled, we will use it in order to intercept traffic and then use it to replay the 
traffic as we test our application. 

Extending services

In order to have a modified version of the existing service without duplicating the content, Compose 
provides us with the feature of extending services.

By extending services, we import the existing compose file and make alterations to the components 
of interest.

Let’s take a look at the following example:

services:

  db:

    extends:

      file: databases.yml

      service: postgresql

    environment:

      - AUTOVACUUM=true

Here, we created another Compose file that extends the postgresql service defined in the 
databases.yml Compose file and added an extra environment variable.



Selecting the Compose files to run 133

Capturing traffic with Hoverfly

Two services create HTTP traffic:

•	 task-manager toward location-service

•	 event-service toward push-gateway

In both cases, since the default http Go client is used, this makes it easy to set up using Hoverfly as 
a proxy through an env variable.

In this case, we will extend the task-manager and event-service services and enable the 
http proxy.

The following is the event-service adaptation:

services:

  event-service:

    extends:

      file: ./event-service/docker-compose.yaml

      service: event-service

    environment:

      - HTTP_PROXY=hoverfly:8500

    depends_on:

      - hoverfly

The following is the task-manager adaptation:

// Chapter7/task-manager/capture-traffic-docker-compose.yaml

services:

  task-manager:

    extends:

      file: ./task-manager/docker-compose.yaml

      service: task-manager

    environment:

      - HTTP_PROXY=hoverfly:8500

    depends_on:

      - hoverfly 0



 Combining Compose Files134

By using this configuration, we can capture the traffic exchanged. Then, we can run the stack together 
and check whether Hoverfly has captured anything:

docker compose -f base-compose.yaml -f monitoring/docker-
compose.yaml -f event-service/capture-traffic-docker-compose.
yaml -f location-service/docker-compose.yaml -f task-manager/
capture-traffic-docker-compose.yaml -f hoverfly/docker-compose.
yaml up

After creating some tasks, we can navigate to Hoverfly and check for requests that have been captured:

Figure 7.1 – The Hoverfly landing page

Indeed, the requests have been captured. Now we should export the data that Ηoverfly has captured.

We can export all captured data into a JSON file:

curl http://localhost:8888/api/v2/simulation

{"data":{"pairs":[{"request":{"path":[{"matcher":"exact", 



Selecting the Compose files to run 135

"value":"/location/0c2e2081-075d-443a-ac20-

...

"schemaVersion":"v5.1","hoverflyVersion":"v1.3.6", 
"timeExported":"2022-05-22T13:35:46Z"}}

The simulation retrieved earlier will fetch the captured data from all the services that are subject to 
intercepting traffic. We will go one step further and extract the captured traffic per service.

Extracting the location service simulation

Note that task-manager uses location-service. In order to be able to run task-manager 
for testing purposes, we should simulate location-service using Hoverfly.

A simulation file is already placed inside the location-service directory. In order to extract a simulation 
from your previous request, you can follow the next step.

Extract the simulation for the location-service directory:

cd location-service

curl --location --request GET 'http://localhost:8888/api/
v2/simulation?urlPattern=location-service:8080' > location-
simulation.json

The location-simulation.json file will contain a simulation scenario that can be used by 
running Hoverfly in simulation mode.

Extracting the Pushgateway simulation

event-service issues requests to the Pushgateway in order to expose metrics. We will export the 
captured from the Pushgateway.

A simulation file is already placed in the monitoring directory. In order to extract a simulation 
from your previous request, you can extract the simulation for the push-gateway service:

cd monitoring

curl --location --request GET 'http://localhost:8888/api/
v2/simulation?urlPattern=push-gateway:9091' >  push-gateway-
simulation.json

The push-gateway-simulation.json file will contain a simulation scenario that can be used 
by running Hoverfly in simulation mode.



 Combining Compose Files136

Adapting the simulation

While in simulation mode, Hoverfly has certain rules and matchers in terms of the components of 
an http request. For example, in order to simulate a request for a dynamic endpoint with path 
variables, Ηoverfly should be configured to respond with a payload provided the target endpoint 
matches a regex expression of an existing endpoint in the Ηoverfly simulation.

In our case, the body of the REST calls will be dynamic. Therefore, we will make an adaption to the 
previously exported simulations and accept the payload found in the body of a POST request using 
"body":[{"matcher":"glob","value":"*"}]}.

Creating mock applications using Ηoverfly

We can now create mock applications using the simulations we exported previously.

First, we will focus on creating a task-manager deployment using the Ηoverfly simulation for 
location-service.

Mock location service

Now that we have the Ηoverfly simulation, we are able to simulate location-service without 
the need to run the actual service. Our Compose deployment will be focused only on the task-
manager service.

The compose file that will utilize Hoverfly for simulation will be the following:

services:

  location-service:

    image: spectolabs/hoverfly:v1.3.6

    ports:

      - 8888:8888

    networks: 

      - location-network 

      - redis-network 

    volumes:

      - ./location-service/location-simulation.json:/etc/
hoverfly/location-simulation.json

    entrypoint: ["hoverfly","-webserver","-listen-on-
host","0.0.0.0", "-import", "/etc/hoverfly/location-simulation.
json", "-pp","8080"]



Selecting the Compose files to run 137

Let’s run and see the results:

docker compose -f base-compose.yaml -f task-manager/docker-
compose.yaml -f location-service/mock-location-service.yaml up

We are able to interact with the task-manager service without the need to spin up the  
location service.

Mock Pushgateway

The next service to try to run standalone would be the event service. The component it was depending 
on was push-gateway. Since we have the simulation from the previous step, let’s create a Docker 
file that would not have that dependency:

services: 

  push-gateway:

    image: spectolabs/hoverfly:v1.3.6

    ports:

      - 8888:8888

    networks: 

      - monitoring-network

      - redis-network 

    volumes:

      - ./monitoring/push-gateway-simulation.json:/etc/
hoverfly/push-gateway-simulation.json

    entrypoint: ["hoverfly","-webserver","-listen-on-
host","0.0.0.0", "-import", "/etc/hoverfly/push-gateway-
simulation.json", "-pp","8080"]

Now we will run the event service as a standalone without depending on using the Compose files of 
the other services:

docker compose -f base-compose.yaml -f event-service/docker-
compose.yaml -f monitoring/mock-push-gateway.yaml  up

We are able to interact with the task-manager service without the need to spin up the location 
service. Also, we can run the event service without the need to run the push-gateway component. 
We run the applications by only using the components needed and no other services. By doing so, we 
are able to be flexible with our development.



 Combining Compose Files138

Creating different environments
Previously, we managed to resolve the dependencies between our services and offer the ability to run 
only what we needed, which served our scenario back then.

If we examine the compose commands that we ran, we can identify that different files have been used 
in each case.

Compose gives us the flexibility to combine the different compose files and assemble  
different environments.

Running with capturing enabled

As we discovered earlier, we can have an environment for capturing the traffic exchanged between 
applications using Hoverfly:

docker compose -f base-compose.yaml -f monitoring/docker-
compose.yaml -f event-service/capture-traffic-docker-compose.
yaml -f location-service/docker-compose.yaml -f task-manager/
capture-traffic-docker-compose.yaml -f hoverfly/proxy.yaml up

This environment could be used when users want to create new simulations for testing.

Running with monitoring disabled

Also, we can have a lean environment without monitoring enabled:

docker compose -f base-compose.yaml -f monitoring/mock-push-
gateway.yaml -f event-service/docker-compose.yaml -f location-
service/docker-compose.yaml -f task-manager/docker-compose.yaml 
up

This environment could help in running the Compose application with fewer resources.

Running applications individually

During development, focusing on one component at a time is crucial. We are now able to do so by 
running the services in isolation and using mocks wherever applicable:

•	 task-manager:

docker compose -f base-compose.yaml -f location-service/
mock-location-service.yaml -f task-manager/docker-
compose.yaml up



Combining multiple Compose files into one 139

•	 location-service:

docker compose -f base-compose.yaml -f location-service/
docker-compose.yaml up

•	 event-service:

docker compose -f base-compose.yaml -f monitoring/mock-
push-gateway.yaml -f event-service/docker-compose.yaml up

By having the original application split into different Compose files, it was possible for us to try different 
combinations of those files and have a different application outcome. By combining the different 
compose files that we used, we ended up with different environments serving certain purposes. For 
example, we can have an environment without monitoring, an environment focused on capturing 
traffic, or a mock environment for testing. Since we are now aware of the combinations that interest 
us, instead of combining the compose files manually through the command line, we can proceed with 
extracting a unified configuration for each case.

Combining multiple Compose files into one
We have created various environments by combining compose files. This will assist the development 
process; however, it will make it more complex. Compose gives us the option to combine the various 
compose files used for the various use cases into one.

Using config

Note that config is a Docker compose command that will merge the files specified. 

For example, we can try it when we want to run the location service as standalone:

docker compose -f base-compose.yaml -f location-service/docker-
compose.yaml config

The result will be the unified JSON:

name: chapter7

services:

  location-service:

    build:

      context: /path/to/git/A-Developer-s-Essential-Guide-to-
Docker-Compose/Chapter7/location-service

      dockerfile: Dockerfile

    depends_on:



 Combining Compose Files140

      redis:

        condition: service_started

    environment:

      REDIS_HOST: redis:6379

    healthcheck:

      test:

      - CMD

      - curl

      - -f

      - http://localhost:8080/ping

      timeout: 5s

      interval: 10s

      retries: 5

      start_period: 5s

    image: location-service:0.1

    networks:

      location-network: null

      monitoring-network: null

      redis-network: null

  redis:

    image: redis

    networks:

      redis-network: null

networks:

  location-network:

    name: chapter7_location-network

  monitoring-network:

    name: chapter7_monitoring-network

  redis-network:

    name: chapter7_redis-network

Here, we managed to generate a merged compose installation using config. This way, we have a 
more managed way to assemble the compose files we use in different scenarios.



Summary 141

Summary
We managed to transform a monolithic compose application into a flexible modular one with multiple 
Compose files. Also, based on the dependencies among Compose files, we proceeded with creating 
mock services in order to be able to run each service for development purposes in a lean way. Onward, 
we combined various compose files and created different environments for our application. Then, we 
proceeded to merge the various assembled files into one based on the scenario that needed tackling.

In the next chapter, we will see how we can simulate production environments using compose.





8
 Simulating Production Locally

In the previous chapter, we managed to modularize our microservice-based application into different 
Compose files. Also, we went ahead with creating different environments for those applications. We 
have an environment with mock services, an environment that captures traffic between services, and 
an environment with monitoring enabled.

By being able to use mock services, generate different environments, and monitor our applications, 
we are able to be more productive and efficient in everyday development. In this chapter, we shall 
focus on simulating production locally using Compose.

A development team can be productive from the start if it has fewer dependencies and a development 
environment ready for testing.

Our target scenario will be an AWS environment. We shall simulate AWS services locally and also 
make a representation of a Lambda-based AWS environment through a Docker Compose application.

The target environment will be a simple application receiving a JSON payload. The application shall 
store the information in DynamoDB and then send the updates to a Simple Queue Service (SQS) 
queue. Another Lambda application will read the SQS messages and store them in Simple Storage 
Service (S3) for archival purposes.

In a real AWS environment, all the components involved, including SQS, Simple Notification Service 
(SNS), S3, and DynamoDB, are well integrated, thus making the operation of the application streamlined. 
However, having this environment available for local testing will require some workarounds to make 
up a well-integrated AWS environment. The components of our application will be a REST-based 
Lambda application storing the request in DynamoDB, an application simulating the publishing of 
SQS messages in a Lambda function, and the SQS-based Lambda application storing SQS events in S3.

The topics we shall cover in this chapter are the following:

•	 Segregating private and public workloads

•	 Setting up DynamoDB locally

•	 Setting up SQS locally



 Simulating Production Locally144

•	 Setting up S3 locally

•	 Setting up a REST-based Lambda function

•	 Setting up an SQS-based Lambda function

•	 Connecting the Lambda functions

Technical requirements
The code for this book is hosted on the GitHub repository at https://github.com/
PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose. If 
there is an update to the code, it will be updated on the GitHub repository.

Segregating private and public workloads
Since the actions taking place in AWS are internal, we should separate the workloads into private 
and public.

The REST-based Lambda application receiving the JSON payload needs to be on a public network, 
since it will interact with the end user. The SQS-based Lambda application, reading the SQS events and 
storing them in S3, needs to be private. The application simulating the SQS events to the SQS-based 
Lambda application will also be private. 

The mock AWS components, such as DynamoDB, SQS, and S3, should use the private network.

We shall define the networks with the following Compose configuration:

networks:

  aws-internal:

  aws-public:

By having the private networks defined, we can now proceed with adding the mock AWS components 
to the Compose application.

Setting up DynamoDB locally
A commonly used Database on AWS is DynamoDB. DynamoDB is a serverless key/value NoSQL 
database. For local testing, AWS provides us with a local version of DynamoDB. 

We shall use the Docker images provided by AWS and add them to the Compose configuration. For 
convenience, we shall expose the port locally.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Setting up DynamoDB locally 145

As mentioned before, the DynamoDB service will use the private network defined previously:

services:

  dynamodb:

    image: amazon/dynamodb-local

    ports:

     - 8000:8000

    networks:

     - aws-internal

Since DynamoDB locally is up and running, let’s create a table on it.

Creating DynamoDB tables

Unlike Redis, in DynamoDB we need to create a table beforehand. We shall add a container to the 
Compose application, which creates the table in DynamoDB.

We did something similar to this in Chapter 2, Running the First Application Using Compose.

The container will use the AWS CLI image (https://hub.docker.com/r/amazon/aws-cli), 
override the command in order to use the DynamoDB util included, and create the table.

The initialization container will depend on the DynamoDB service, since DynamoDB needs to be 
available. The rest of the application will depend on the initialization service, since the table needs 
to exist before using it.

The script that will create the table will be the following:

#!/bin/sh

aws dynamodb create-table \

    --table-name newsletter \

    --attribute-definitions \

        AttributeName=email,AttributeType=S \

    --key-schema \

        AttributeName=email,KeyType=HASH \

    --provisioned-throughput \

        ReadCapacityUnits=5,WriteCapacityUnits=5 \

    --table-class STANDARD --endpoint-url  http://dynamodb:8000 
http://host.docker.internal:8000

https://hub.docker.com/r/amazon/aws-cli


 Simulating Production Locally146

Then, we shall add the initialization container to the Compose application:

services:

  dynamodb-initializer:

    image: amazon/aws-cli

    env_file:

      - ./mock_crentials.env

    entrypoint: "/create_table.sh"

    depends_on:

      - dynamodb

    volumes:

      - ./create_table.sh:/create_table.sh

    networks:

     - aws-internal

As you can see, we added some mock credentials in order to use the AWS CLI and also override the 
endpoint for DynamoDB. We can now test DynamoDB locally.

Interacting with the Local DynamoDB

We can test the local DynamoDB we set up previously by running a small snippet.

First, let’s start DynamoDB:

$ docker compose -f base-compose.yaml up

We shall use Go for running the example; therefore, we can use an existing go project, or create an 
example project with the initialization commands we used in the previous chapters.

Once done, we need to include the following dependencies (the following commands need to be 
executed from the dynamodb-snippet directory):

$ go get github.com/aws/aws-sdk-go/aws

$ go get github.com/aws/aws-sdk-go-v2/service/dynamodb

We can now use the following small snippet that puts an entry in the DynamoDB table:

sess, _ := session.NewSession(&aws.Config{

    Region:      aws.String("us-west-2"),

    Credentials: credentials.
NewStaticCredentials("fakeMyKeyId", "fakeSecretAccessKey", ""),

})



Setting up SQS locally 147

svc := dynamodb.New(sess, aws.NewConfig().WithEndpoint("http://
localhost:8000").WithRegion("eu-west-2"))

item := Subscribe{

    Email: "john@doe.com",

    Topic: "what I subscribed",

}

av, _ := dynamodbattribute.MarshalMap(item)

input := &dynamodb.PutItemInput{

    Item:      av,

    TableName: aws.String("Newsletter"),

} 

svc.PutItem(input)

We have been successful in simulating using DynamoDB locally. We also managed to create a table 
using a container. We also ran a code example that will persist items in the DynamoDB table we 
created. Our Compose application has a DynamoDB running, making it possible for our services to 
interact with it. The next step would be to add a mock SQS component to our Compose application.

Setting up SQS locally
SQS will be used in order to notify us when a DynamoDB entry has been created. The REST-based 
Lambda application will send a message in SQS.

elasticmq is a very popular SQS emulator tool (https://github.com/softwaremill/
elasticmq), which covers most of the features provided by SQS.

In order to push data to SQS, a queue should be created. elasticmq provides us with the option 
to create a queue on initialization.

The configuration will be the following:

//sqs.conf

include classpath("application.conf")

 

queues {

  subscription-event{}

}

https://github.com/softwaremill/elasticmq
https://github.com/softwaremill/elasticmq


 Simulating Production Locally148

Let’s now add the elasticmq configuration to our Compose file:

services:

  sqs:

    image: softwaremill/elasticmq

    ports:

     - 9324:9324

     - 9325:9325

    networks:

     - aws-internal

    volumes:

      - ./sqs.conf:/opt/elasticmq.conf

...

As we did with DynamoDB, for convenience reasons, we shall expose the port locally. Also, elasticmq 
provides us with an administrator interface on port 9325 (http://localhost:9325/).

Let’s interact with the local SQS broker using a Go snippet.

The following module needs to be included (the following commands need to be executed from the 
sqs-snippet directory):

$ go get github.com/aws/aws-sdk-go/aws

$ go get github.com/aws/aws-sdk-go/service/sqs

Our code snippet will print the available queues in the service:

session, _ := session.NewSession(&aws.Config{

	 Region:      aws.String("us-west-2"),

	 Credentials: credentials.NewStaticCredentials("fakeMyKeyId", 
"fakeSecretAccessKey", ""),

})

svc := sqs.New(session, aws.NewConfig().WithEndpoint("http://
localhost:9324").WithRegion(os.Getenv(AWS_REGION_ENV)))

 

result, _ := svc.ListQueues(nil)

 

for i, url := range result.QueueUrls {

	 fmt.Printf("%d: %s\n", i, *url)

}



Setting up S3 locally 149

We have successfully run an SQS simulator locally. We also created an SQS queue using the emulator’s 
integrated functionalities in creating queues. We also implemented a code example, which was 
successful in publishing data to the SQS queue by using the emulator endpoint. The services hosted 
on Compose should be able to interact with SQS and publish messages. In the next section, we shall 
set up a mock S3 server on Compose to facilitate blob storage in our application.

Setting up S3 locally
S3 is a highly available object storage service provided by AWS. As with most AWS services, it provides 
a REST API to interact with as well as an SDK.

In order to simulate S3 locally, we shall use S3mock (https://github.com/adobe/S3Mock), 
a highly rated project on GitHub. 

A Docker image is available for it, which also provides the configuration option to create a bucket 
from the start.

We shall add it to our Compose file and attach it to the internal network:

services:

...

  s3:

    image: adobe/s3mock

    ports:

     - 9090:9090

    networks:

     - aws-internal

    environment:

      - initialBuckets=subscription-bucket

We will add a code snippet for it; thus, the following package needs to be included (the following 
commands need to be executed from the s3-snippet directory):

$ go get github.com/aws/aws-sdk-go/aws

$ go get github.com/aws/aws-sdk-go/service/s3

Our code snippet will list the available buckets:

sess := session.Must(session.NewSessionWithOptions(session.
Options{

	 SharedConfigState: session.SharedConfigEnable,

}))

https://github.com/adobe/S3Mock


 Simulating Production Locally150

s3 := s3.New(sess, aws.NewConfig().WithEndpoint("http://
localhost:9090").WithRegion("us-west-2")) 

buckets, _ := s3.ListBuckets(nil)

for i, bucket := range buckets.Buckets {

	 fmt.Printf("%d: %s\n", i, *bucket.Name)

}

We managed to run an S3 emulator locally. We configured the emulator and initialized it by using a 
bucket. Next, we ran a code example that will point to the local S3 bucket and list the existing buckets 
created. In the next section, we shall set up a REST-based Lambda function.

Setting up a REST-based Lambda function
AWS provides us with Lambda. AWS Lambda is a serverless computing offering that can be integrated 
and invoked in various ways. One way it can be utilized is by using it as a backend for REST APIs.

The REST-based Lambda function that we shall implement will receive a JSON payload and store it 
in DynamoDB. 

This can be easily simulated locally, since AWS provides docker-lambda.

By using docker-lambda, we can create a container image that can simulate our AWS Lambda 
function. AWS provides images for this purpose that also include a runtime interface client that 
facilitates the interaction between our function code and Lambda (https://github.com/
lambci/docker-lambda).

Furthermore, this makes it feasible to simulate calls to the Lambda function locally.

Let’s start with the function’s code base.

Initially, we shall persist the request in DynamoDB:

type Subscribe struct {

	 Email string `json:"email"`

	 Topic string `json:"topic"`

}

func HandleRequest(ctx context.Context, subscribe Subscribe) 
(string, error) {

	 dynamoDb, _:= dynamoDBSession()

	 marshalled, _ := dynamodbattribute.MarshalMap(subscribe)

	 input := &dynamodb.PutItemInput{

		  Item:      marshalled,

https://github.com/lambci/docker-lambda
https://github.com/lambci/docker-lambda


Setting up a REST-based Lambda function 151

		  TableName: aws.String(TableName),

	 }

 

	 dynamoDb.PutItem(input)

	 sendToSQS(subscribe)

 

	 return fmt.Sprintf("You have been subscribed to the %s 
newsletter", subscribe.Topic), nil

}

Then, we shall send a message to SQS:

func sendToSQS(subscribe Subscribe) {

	 if !isSimulated() {

		  return

	 }

	 if session, err := sqsSession(); err == nil {

		  if bytes, err := jsonutil.BuildJSON(subscribe); err 
== nil {

			   smsInput := &sqs.SendMessageInput{

				    MessageBody: aws.String(string(bytes)),

				    QueueUrl:    aws.String(os.Getenv(SQS_
TOPIC_ENV)),

			   }

			   if _, err := session.SendMessage(smsInput); 
err != nil {

				    fmt.Println(err)

			   }

[...]

func sqsSession() (*sqs.SQS, error) {

	 session, _ := session.NewSession()

	 return sqs.New(session, aws.NewConfig().WithEndpoint(os.
Getenv(SQS_ENDPOINT_ENV)).WithRegion(os.Getenv(AWS_REGION_
ENV))), nil

}



 Simulating Production Locally152

The full source example can be found on GitHub (https://github.com/PacktPublishing/
A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter8/
newsletter-lambda/newsletter.go).

Let’s now create the Dockerfile for the application:

FROM amazon/aws-lambda-go:latest as build 

RUN yum install -y golang

RUN go env -w GOPROXY=direct

COPY go.mod ./

COPY go.sum ./

RUN go mod download 

COPY *.go ./

RUN go build -o /main

FROM amazon/aws-lambda-go:latest

COPY --from=build /main /var/task/main

CMD [ "main" ]

Everything is set up to add a Compose file for the application:

services:

  newsletter-lambda:

    build: 

      context: ./newsletter-lambda/

    image: newsletter_lambda

    ports:

     - 8080:8080

    environment:

     - SIMULATED=true

     - DYNAMODB_ENDPOINT=http://dynamodb:8000

     - SQS_ENDPOINT=http://sqs:9324

     - SQS_TOPIC=/000000000000/subscription-event

    depends_on:

      - dynamodb-initializer

      - sqs

    env_file:

      - ./mock_crentials.env

    networks:

      aws-internal:

      aws-public:

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter8/newsletter-lambda/newsletter.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter8/newsletter-lambda/newsletter.go
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/blob/main/Chapter8/newsletter-lambda/newsletter.go


Setting up an SQS-based Lambda function 153

As we can see, we reference the mock AWS services we created previously. Also, we build the Docker 
image through the Compose file. This is a public service and the entry point for our application; 
therefore, we expose the port locally.

Let’s run it using Compose:

docker compose -f docker-compose.yaml -f newsletter-lambda/
docker-compose.yaml build

docker compose -f docker-compose.yaml -f newsletter-lambda/
docker-compose.yaml up

As we can see, we combined the Compose files as we did in Chapter 7, Combining Compose Files.

Our service is up and running, and we can test it by issuing a request with curl:

curl -XPOST "http://localhost:8080/2015-03-31/
functions/function/invocations" -d '{"email":"john@doe.
com","topic":"Books"}' 

"You have been subscribed to the Books newsletter"

To sum up, we managed to create an AWS Lambda function on Compose and facilitated its interactions 
with the mock DynamoDB and SQS services. We managed to simulate an AWS serverless-based 
application through Compose without interacting with the AWS console. In the next section, we will 
go one step further and introduce an SQS-based AWS Lambda function to our Compose application.

Setting up an SQS-based Lambda function
Previously, we managed to run locally a REST-based AWS Lambda function. Our next component 
will also be a Lambda function but message-based; more specifically, it will listen to the SQS events 
we emitted previously.

The Lambda application, by receiving the SQS events, will then persist them in S3. The same components 
we used previously will also be used for this application.

Let’s see the function handler:

func HandleRequest(ctx context.Context, sqsEvent events.
SQSEvent) error {

    session := s3Session()

    for _, message := range sqsEvent.Records {

        var subscribe Subscribe

        json.Unmarshal([]byte(message.Body), &subscribe)

 

        key := fmt.Sprintf("%s.%d", hash(subscribe.Email), 



 Simulating Production Locally154

time.Now().UnixNano()/int64(time.Millisecond))

 

        marshalled, _ := json.Marshal(subscribe)

 

        session.PutObject(&s3.PutObjectInput{

            Bucket: aws.String(os.Getenv(SUBSCRIPTION_BUCKET_
ENV)),

            Key:    aws.String(key),

            Body:   bytes.NewReader(marshalled),

            })

        }

    return nil

}

The function handler will receive SQSEvent containing SQS messages. Each message will be 
unmarshalled and stored in S3 using a hash- and time-based generated key.

AWS streamlines the SQS message handling. If the function invocation is successful, the message shall 
be removed from SQS. If not, the message will stay in the queue.

In order to build the image, a Dockerfile is needed:

FROM amazon/aws-lambda-go:latest as build

RUN yum install -y golang

RUN go env -w GOPROXY=direct

COPY go.mod ./

COPY go.sum ./

RUN go mod download

COPY *.go ./

RUN go build -o /main

FROM amazon/aws-lambda-go:latest

COPY --from=build /main /var/task/main

CMD [ "main" ]

Due to this being a Lambda-based application, the Dockerfile is identical to the one we implemented 
for the REST-based Lambda application.

Next, we shall create the Compose file:

services:

  s3store-lambda:



Setting up an SQS-based Lambda function 155

    build: 

      context: ./s3store-lambda/

    image: s3store-lambda

    environment:

     - SIMULATED=true

     - S3_ENDPOINT=http://s3:9090

     - SUBSCRIPTION_BUCKET=subscription-bucket

     - AWS_REGION=eu-west-2

    links:

    -  "s3:subscription-bucket.s3"

    depends_on:

      - s3

    env_file:

      - ./mock_crentials.env

    networks:

      aws-internal:

The application is accessed only internally; thus, it resides in the internal network. Also, we reference 
the mock AWS service we defined previously; however, there is a crucial detail in the links section.

Docker Compose links

Due to the way S3 works when accessing a bucket, instead of accessing through the root of the S3 
endpoints, the bucket name is appended at the endpoints.

If the bucket name is my-bucket, the URL in order to interact with this bucket will be https://
my-bucket.s3.your-region.amazonaws.com/.

This is in conflict with our deployment, since we have s3 as our endpoint, and our code base will try 
to access subscription-bucket.s3.

To tackle this, we shall utilize the links functionality that Compose provides us with.

By using links, we can define subscription-bucket.s3 as an extra alias for the s3 service; 
therefore, we shall be able to reach it via our service.

So far, we have successfully created an SQS-based Lambda function as well as run it locally. We 
managed to use S3 and an alias workaround for the bucket-based endpoint. In the next section, we 
shall combine the two applications through an intermediate local-only application that simulates the 
AWS environment for SQS-based Lambda functions.

https://my-bucket.s3.your-region.amazonaws.com/
https://my-bucket.s3.your-region.amazonaws.com/


 Simulating Production Locally156

Connecting the Lambda functions
So far, we have set up the mock AWS components for S3 and SQS, and we created two Lambda 
functions, one for REST-based communication and one for SQS-based communication. In an AWS 
environment, both functions would be seamlessly integrated, since by publishing a message to SQS, 
AWS handles the dispatching of that message to the Lambda function that should process it. 

This seamless integration is what we miss in the current state of our Compose application. In order 
to facilitate this functionality, we shall create a service that pulls images from SQS and pushes them 
to the SQS-based function.

The code base is very streamlined:

session, _ := sqsSession()

queueUrl := aws.String(os.Getenv(SQS_TOPIC_ENV))

msgResult, _ := session.ReceiveMessage(&sqs.
ReceiveMessageInput{

    QueueUrl: queueUrl,

})

if msgResult != nil && len(msgResult.Messages) > 0 {

    sqsEvent := map[string][]*sqs.Message{

    "Records": msgResult.Messages,

}

 

marshalled, _ := json.Marshal(sqsEvent)

http.Post(os.Getenv(S3STORE_LAMBDA_ENDPOINT_ENV), "application/
json", bytes.NewBuffer(marshalled))

     for i := 0; i < len(msgResult.Messages); i++ {

        session.DeleteMessage(&sqs.DeleteMessageInput{

            QueueUrl:      queueUrl,

            ReceiptHandle:

            msgResult.Messages[i].ReceiptHandle,

       })

    }

}

The messages will be pulled from an SQS service, formatted in the format that the Lambda function 
expects to receive. Once the messages have been dispatched to the Lambda function, they shall be 
deleted from the queue.

This service will work only locally; thus, the image creation will be much simpler.



Connecting the Lambda functions 157

Let’s build the Dockerfile for the image:

# syntax=docker/dockerfile:1

FROM golang:1.17-alpine

WORKDIR /app 

COPY go.mod ./

COPY go.sum ./

RUN go mod download

COPY *.go ./

RUN go build -o /main

CMD [ "/main" ] 

Next, we shall create the Compose configuration:

services:

  sqs-to-lambda:

    build: 

      context: ./sqs-to-lambda/

    image: sqs-to-lambda

    environment:

     - SQS_ENDPOINT=http://sqs:9324

     - SQS_TOPIC=/000000000000/subscription-event

     - S3STORE_LAMBDA_ENDPOINT=http://s3store-
lambda:8080/2015-03-31/functions/function/invocations

    depends_on:

      - sqs

      - s3store-lambda

    env_file:

      - ./mock_crentials.env

    networks:

      aws-internal:

networks:

  aws-internal:

The service is internal and will use only SQS. Since it will execute requests to s3store-lambda, 
it is dependent on it.



 Simulating Production Locally158

Note
If you have any active Compose sessions, ensure that they are stopped before moving on and 
executing the commands that will follow next.

Let’s run the entire application and see how the services interact together:

docker compose -f docker-compose.yaml -f newsletter-lambda/
docker-compose.yaml -f s3store-lambda/docker-compose.yaml -f 
sqs-to-lambda/docker-compose.yaml build

docker compose -f docker-compose.yaml -f newsletter-lambda/
docker-compose.yaml -f s3store-lambda/docker-compose.yaml -f 
sqs-to-lambda/docker-compose.yaml up

Let’s invoke the REST-based Lambda function the same way we did previously:

curl -XPOST "http://localhost:8080/2015-03-31/
functions/function/invocations" -d '{"email":"john@doe.
com","topic":"Books"}' 

"You have been subscribed to the Books newsletter"

We should be able to see logs on all services by now:

...

chapter8-newsletter-lambda-1     | START RequestId: f2dcc750-
35a1-40d8-9c54-f7c2edc3bcfe Version: $LATEST

chapter8-newsletter-lambda-1     | END RequestId: f2dcc750-
35a1-40d8-9c54-f7c2edc3bcfe

...

chapter8-sqs-to-lambda-1         | 2022/07/24 21:31:03 
Dispatching 1 received messages

...

chapter8-s3store-lambda-1        | START RequestId: 7caff9ab-
ddb4-46c7-b75f-0f726eaf2ae8 Version: $LATEST

chapter8-s3store-lambda-1        | END RequestId: 7caff9ab-
ddb4-46c7-b75f-0f726eaf2ae8

Through this internal service, we managed to simulate a functionality that AWS provides out of the box. 
The limitations that we had initially were resolved by a Compose-driven solution. Being the entry point 
for our application, the REST-based service stores data on DynamoDB and sends messages to SQS. 
The SQS messages are then transmitted to the SQS-based Lambda function using this internal service.



Summary 159

Summary
In this chapter, we managed to spin a cloud-based infrastructure locally on our workstation in a 
seamless way. We configured the equivalent mock components for the AWS services DynamoDB, SQS 
and S3. Through our Compose configuration, we managed to configure them and also tackle some 
limitations that happen during local development. This gave us the option to develop our code base 
upon those services without the need to interact with an actual production environment. 

Next, we proceeded to implement services suitable for the AWS Lambda environment. We successfully 
run those Lambda functions through our Compose application while making them eligible for 
deployment to a cloud environment. Last but not least, we simulated some functionality that AWS 
provides by introducing a local private application. Through the course of this chapter, there was no 
need to interact with the AWS console and a real production environment, and the focus remained 
on the development of the code base. 

In the next chapter, we shall take advantage of this chapter’s code base and use Compose for our 
Continuous Integration and Continuous Deployment (CI/CD).





9
 Creating Advanced CI/CD Tasks

In the previous chapter, we managed to simulate an AWS environment locally through a Compose 
application. We mocked AWS services such as DynamoDB, S3, and SQS. Also, we simulated the 
invocation of Lambda functions through Docker containers and came up with a workaround to simulate 
traffic toward SQS-based Lambda services by introducing an extra service in the Compose installation.

This enabled us to be focused on developing our application without the need to interact with the AWS 
console, provision any AWS infrastructure, and deal with the needs of a cloud-hosted environment. 
From the beginning, we were focused on developing the application locally and simulating the 
components needed.

Since we have been productive so far in developing the application, the next logical step is to introduce 
some CI/CD to our current application. Throughout the development life cycle, we want our application 
to build, test, and deploy automatically.

Our Lambda-based application is a good example of how we can benefit from Compose and simulate 
a complex application on the chosen CI/CD solution. The Lambda application requires more than 
one component to operate in order to test. Compose can assist in spinning up this environment in 
the CI/CD solution of our choice.

In this chapter, the focus will be on enabling Docker Compose in a CI/CD solution. When it comes to 
CI/CD, there are various vendors and software packages out there. Therefore, we will examine more 
than one CI/CD solution.

In this chapter, we will cover the following topics:

•	 Introduction to CI/CD

•	 Using Docker Compose with GitHub Actions

•	 Using Docker Compose with Bitbucket pipelines

•	 Using Docker Compose with Travis



 Creating Advanced CI/CD Tasks162

Technical requirements
The code for this book is hosted on the GitHub repository at https://github.com/
PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose. In 
the case of an update to the code, it will be updated to the GitHub repository.

Introduction to CI/CD 
CI/CD stands for continuous integration and continuous delivery. It is a combination of practices 
that facilitate continuous integration, continuous delivery, and continuous deployment. Part of its 
scope is the automation of building, testing, and deploying applications.

For example, let’s take our Lambda application. It is a complex environment consisting of two Lambda-
based applications and three different AWS services.

For our use case, we assume that we have a team that follows trunk-based development, a practice that 
facilitates CI. Our team will contribute small commits to the trunk-main branch every time. This can 
be done with short-lived feature branches. Pull requests will be raised in order to merge changes from 
those branches to the trunk-master branch. A pull request should be reviewed by the development 
team, in parallel, a CI/CD automated process that builds and tests the newly introduced code should 
take place and be part of the merge check. Once the merge checks have been passed, our branch is 
ready to be merged and a deployment of the component should happen.

Regardless of the component that we change, whether it is a REST-based Lambda function or an 
SQS-based Lambda function, we need to make sure that the changes on that function will not break 
our code base and the applications that interact with that component.

Once a merge takes place, the component that we have merged should be built and then pushed to a 
live environment. Deploying code to a live environment can vary based on where the workloads are 
getting deployed. For example, a Lambda function deployment requires a new Docker image and an 
invocation of the AWS API to point to the Docker image we have built. This would also require some 
extra configuration based on the environment that an AWS Lambda function can have. If, in the future, 
we switch to Kubernetes for deploying the application, a Helm chart can be deployed manually, or a 
GitOps solution such as Argo CD can be adopted. A GitOps solution will poll for changes that took 
place on the trunk branch, pick the latest build artifact, and deploy it to the live environment without 
any user intervention.

We want to be feasible for our application to use Compose in CI/CD tasks. The deployment canary 
can either be the Go binary deployed to the Lambda function or a Docker image. Also, in the case 
of changing the code base in the future, another environment might require a different deployment. 
Therefore, we will ignore the deployment and focus on enabling the execution of Compose commands 
for the required CI/CD jobs.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Using Docker Compose with GitHub Actions 163

For every commit that happens on our main branch, we will spin up the Compose application on the 
CI/CD job that will be triggered. Our goal is to make the entire Compose application run on a CI/
CD build and test the application before we proceed to deployment.

We have an overview of CI/CD and what we want to achieve in terms of our Lambda-based application. 
Since the source code is hosted on GitHub, we will proceed with implementing CI/CD jobs for our 
application using GitHub Actions.

Using Docker Compose with GitHub Actions
If your code base is hosted on GitHub, it is highly like that you are aware of GitHub Actions. GitHub 
Actions is the CI/CD platform provided by GitHub. By using GitHub Actions, we can add workflows 
that build and test our code base. This can be adapted for each branch and pull request or be used to 
add custom workflows and deploy our code base through GitHub.

Creating your first GitHub Action

In order to add a GitHub workflow, you need to place YAML files along with workflow instructions 
inside the .github/workflows directory. Multiple files can be added, and they should be executed 
by GitHub independently.

For now, we will focus our app to execute on the main branch.

This is the base of our workflow:

name: subscription-service

 

on:

  push:

    branches:

    - main

jobs:

  build:

    timeout-minutes: 10

    runs-on: ubuntu-latest

    steps:

    - name: Checkout

      uses: actions/checkout@v2

The name of our workflow is subscription-service, and the workflow will be executed once 
there is a push on the main branch.



 Creating Advanced CI/CD Tasks164

The virtual environment to use is ubuntu-latest, which is provided by GitHub Actions. The 
benefit of using this environment is that Compose comes preloaded with it.

Then, we add a step to check out the repository. Since each job will take place on a new instance of 
a virtual environment, we should be concerned about the dependencies and the artifacts that get 
produced in each step. For this case, a cache mechanism is provided by GitHub so that we can speed 
up the time it takes to load these dependencies.

Caching built images

Building images can be time-consuming. This is something we want to avoid in CI/CD since we want 
our jobs to be fast and as smooth as possible. 

Long-running jobs can have a negative impact on the automation process:

•	 The job can time out, thus making it impossible to be invoked.

•	 The development process gets slower.

•	 CI/CD becomes painful for developers.

For this reason, we will use the caching capabilities provided by GitHub Actions:

...

    - name: Cache Local Images

      id: local-images

      uses: actions/cache@v3

      with:

        path: /var/lib/docker/

        key: local-docker-directory

...

By adding this step, we instruct actions to cache the /var/lib/docker directory. This is the 
directory where images are stored. By doing so, the steps that will interact with this directory will 
have the content-generated cache; therefore, the next jobs will be able to pick up the artefacts that 
have already been downloaded from the previous steps.

Building application images

We are ready to add our next step, which will be to build the application images. As we saw in Chapter 
4, Executing Docker Compose Commands, we can use Compose to build the application images.



Using Docker Compose with GitHub Actions 165

The action step should be the following:

...

    - name: Build Images

      working-directory: ./Chapter8

      run: |

        docker compose -f docker-compose.yaml -f newsletter-
lambda/docker-compose.yaml -f s3store-lambda/docker-compose.
yaml -f sqs-to-lambda/docker-compose.yaml build

...

Since we focused on the application we developed in Chapter 8, Simulating Production Locally, we 
should switch the working directory to the corresponding directory. We will use the working-
directory section pointing to the Chapter8 directory.

In the run section, we specify the build command that we used previously. This can be any bash 
command available through the virtual environment chosen.

The outcome of this action will be the application’s Docker images to be built.

Since we have built the images, we are ready to proceed with making a proof-of-concept test for  
our application.

Testing your Compose application

It’s time to add our next Compose step, which will be a proof-of-concept test. We will spin up the 
entire Compose application and then run a curl command, as we did earlier, and check the results.

The step we are going to add is the following:

...

    - name: Test application

      working-directory: ./Chapter8

      run: |

        docker compose -f docker-compose.yaml -f newsletter-
lambda/docker-compose.yaml -f s3store-lambda/docker-compose.
yaml -f sqs-to-lambda/docker-compose.yaml up -d

        sleep 20

        curl -XPOST "http://localhost:8080/2015-03-31/
functions/function/invocations" -d '{"email":"john@doe.
com","topic":"Books"}'

        sleep 20



 Creating Advanced CI/CD Tasks166

        docker compose logs --tail="all"

...

We set up Chapter8 as the working directory. Then, we spin up the Compose application in daemon 
mode. Daemon mode gives us the ability to continue to use the Terminal session while the application 
is running.

By sleeping for 20 seconds, we can make sure every service is running. Then, a curl command will 
invoke the Lambda function serving as an entry point.

Since the actions are async, we will wait for some seconds.

Provided our command is successful, we can then check for the logs using the Compose logs command 
with the –tail option. 

Overall, we managed to run the entire Compose application in a pipeline. Also, we did manage to run 
a test. This will make our automation efforts more efficient since we can use Compose to simulate a 
prod-like infrastructure in CI/CD, interact with it, and apply automated checks during the development 
process. Onward, we will implement the same job on Bitbucket pipelines.

Using Docker Compose with Bitbucket pipelines 
Bitbucket pipelines are a CI/CD solution for the repositories hosted on Bitbucket. By having a repository 
hosted on Bitbucket instead of using an external solution for CI/CD purposes, Bitbucket pipelines can 
be very useful since they are readily available and seamlessly integrated. As with the previous case in 
GitHub Actions, we will follow the same process.

Creating your first Bitbucket pipeline

In order to enable Bitbucket pipelines, you need to create a bitbucket-pipelines.yml file 
in the root directory of your project. Then, you can enable the pipelines in your repository through 
the settings:

Figure 9.1 – Bitbucket pipelines enabled



Using Docker Compose with Bitbucket pipelines 167

Once the pipelines are enabled, Bitbucket will proceed with executing the instructions specified in 
the bitbucket-pipelines.yml file.

The bitbucket-pipelines.yml base will be the following:

image: atlassian/default-image:3

options:

  docker: true

definitions:

  caches:

    compose: ~/.docker/cli-plugins

 

pipelines:

  default:

    - step:

        name: "Install Compose"

        caches:

          - compose

        script:

          - mkdir -p ~/.docker/cli-plugins/

          - curl -SL https://github.com/docker/compose/
releases/download/v2.2.3/docker-compose-linux-x86_64 -o 
~/.docker/cli-plugins/docker-compose

          - chmod +x ~/.docker/cli-plugins/docker-compose

          - docker compose version

In the image section, we specify the Docker image that we should use throughout the execution of the 
CI/CD tasks. The atlassian/default-image:3 image is based on a Linux distribution that is 
more specific to Ubuntu 20.04 LTS. By default, this image does not have Compose support; therefore, 
we will have to install Compose in a Linux environment. We follow the same step that we followed 
in Chapter 1, Introduction to Docker Compose, in order to install Compose on a Linux distribution.

Also, as we can see, in the pipeline, we enable the Docker services. This is crucial to enable access to 
the Docker daemon and, thus, be able to interact through Docker commands. By enabling Docker 
services through these options, we enable their Docker capabilities for all of the pipeline steps.



 Creating Advanced CI/CD Tasks168

Caching Compose and Docker images

Our first step was to add support for Compose to the Docker image used. Since in every step, a new 
Docker container is being created, we need to execute the same commands for each pipeline step. To 
prevent this, we will cache the Docker plugin directory. Once the next step takes place, the directory 
and its contents will be present through the cache, making it feasible to use Compose.

So, what we did in the caches section is to add a custom cache for Bitbucket pipelines, pointing to 
a directory. 

Take note that although this is a workaround for the current pipelines, there is a more efficient 
workaround for building an image based on atlassian/default-image:3, which will have 
the Compose installation instructions executed.

Instead of creating custom caches, we can use existing implementations. Bitbucket comes with various 
caches predefined, and one of them is for Docker. By having Docker caching enabled on a pipeline 
step, we can make sure that the images that are already downloaded and the images built will be cached 
and ready to be used for the next steps.

The caches to be used in each step are specified using the caches section:

...

    - step:

        name: "Hello world"

        caches:

          - docker

        script:

          - docker run --rm hello-world

...

In this case, the image for hello-world will be downloaded and cached.

By having caching enabled for Compose and Docker, we can speed up the process of the pipeline 
steps without the need to retrieve the dependencies needed in each step. Therefore, we will proceed 
to the next step, which is building the images.  

Building application images

We have been able to execute Compose commands in a Bitbucket pipeline environment. Now, we can 
proceed with interacting with our Compose application using Compose commands.



Using Docker Compose with Bitbucket pipelines 169

We will add a step in the pipeline that builds the images: 

...

    - step:

        name: "Chapter 8 Build Images"

        caches:

          - docker

          - compose          

        script:

          - cd Chapter8

          - docker compose -f docker-compose.yaml -f 
newsletter-lambda/docker-compose.yaml -f s3store-lambda/docker-
compose.yaml -f sqs-to-lambda/docker-compose.yaml build

...

There is not much difference compared to the previous GitHub Actions example; we switched to the 
directory manually and issued the same build command. 

As we can see, we have the docker and compose caches enabled. Therefore, there is no need to 
install Compose again. Also, the images that we built will be available for the next pipeline step. By 
having the images built, we can proceed with executing a test for our application.

Testing your Compose application

The images have been built, so now we can test the Compose application as we did earlier.

The step for testing the application is as follows:

...

    - step:

        name: "Chatper 8 Test Application"

        caches:

          - docker

          - compose          

        script:

          - cd Chapter8

          - docker compose -f docker-compose.yaml -f 
newsletter-lambda/docker-compose.yaml -f s3store-lambda/docker-
compose.yaml -f sqs-to-lambda/docker-compose.yaml up -d

          - sleep 20



 Creating Advanced CI/CD Tasks170

          - curl -XPOST "http://localhost:8080/2015-03-31/
functions/function/invocations" -d '{"email":"john@doe.
com","topic":"Books"}'

          - sleep 20          

          - docker compose logs --tail="all"

...

We will have the same outcome that we had with GitHub Actions. Docker Compose is set up in 
Bitbucket pipelines. This enables us to proceed with more advanced CI/CD tasks in Compose that 
utilize Compose. Now we can proceed with implementing this logic on another popular CI/CD 
provider, Travis CI.

Using Docker Compose with Travis
Travis is a YAML-based CI/CD solution. It does provide source code hosting, but it is very well integrated 
with GitHub. Travis used to provide free CI/CD for open source projects, so it is very common to 
work on an open source project that uses Travis. The same steps we followed in the previous CI/CD 
vendors will also be applied to Travis. 

Creating your first Travis job

Travis is YAML-based just like the previous CI/CD tools we examined. Once we enabled Travis 
integration with a GitHub project, a file named .travis.yml containing the job instructions needs 
to be present at the root location of the project.

Our.travis.yml base should be the following:   

services:

  - docker

 

cache:

  directories:

    - $HOME/.docker/cli-plugins

 

jobs:

  include:

    - stage: "Install Compose"

      script:

      - mkdir -p /home/travis/.docker/cli-plugins/



Using Docker Compose with Travis 171

      - curl -SL https://github.com/docker/compose/releases/
download/v2.2.3/docker-compose-linux-x86_64 -o ~/.docker/cli-
plugins/docker-compose

      - chmod +x ~/.docker/cli-plugins/docker-compose

      - docker compose version

The job specification seems familiar. As we did with the Bitbucket pipelines, here, we also installed 
the Compose binary for the Linux distribution. Therefore, caching this step is as essential as before.

Caching Compose

Travis has caching capabilities. As we can see, we cached the directory where Compose is installed. 
By specifying the cache, it will take effect for all the jobs included in our configuration. 

From the online documentation, Travis CI discourages the caching of Docker images. Therefore, we 
won’t proceed in this direction. However, if caching is needed, certain images can be cached by saving 
and loading the images through a cached directory. 

Building application images

By being able to execute Compose commands on Travis, we can now proceed with building the images.

Here is the job that will build the images:

...

    - stage: "Build Images"

      script:

      - cd Chapter8

      - docker compose -f docker-compose.yaml -f newsletter-
lambda/docker-compose.yaml -f s3store-lambda/docker-compose.
yaml -f sqs-to-lambda/docker-compose.yaml build

...

Since the job is successful the next step is to test the application.

Testing your Compose application

Our testing stage will not have any significant difference from the ones we implemented earlier apart 
from the syntax used. 

The test section will be the following:

...

    - stage: "Test application"



 Creating Advanced CI/CD Tasks172

      script:

        - cd Chapter8

        - docker compose -f docker-compose.yaml -f newsletter-
lambda/docker-compose.yaml -f s3store-lambda/docker-compose.
yaml -f sqs-to-lambda/docker-compose.yaml up -d

        - sleep 20

        - curl -XPOST "http://localhost:8080/2015-03-31/
functions/function/invocations" -d '{"email":"john@doe.
com","topic":"Books"}'

        - sleep 20

        - docker compose logs --tail="all"

...

As expected, the images have been built and tested successfully. So, we are able to use Compose on 
multiple CI/CD providers and enhance our automation pipeline.

Summary
We did it! We managed to run CI/CD tasks that utilized the functionalities of Compose. This way, 
complex production environments could be simulated through CI/CD allowing us to have a fine-
grained way of integrating the code base and a sufficient amount of merge checks.

In the next chapter, we will check how we can use Compose to deploy to a remote host.



Part 3:  
Deployment with Docker 

Compose

This part will focus on how to benefit from Docker Compose on production deployments. Infrastructure 
on public clouds such as AWS and Azure will be provisioned and Compose deployments will be 
deployed upon that infrastructure. Lastly, we will also see how we can migrate our Compose workloads 
to the Kubernetes orchestration engine.

The following chapters will be covered under this section:

•	 Chapter 10, Deploying Docker Compose Using Remote Hosts

•	 Chapter 11, Deploying Docker Compose to AWS

•	 Chapter 12, Deploying Docker Compose to Azure

•	 Chapter 13, Migrating to Kubernetes Configuration Using Compose





10
 Deploying Docker Compose 

Using Remote Hosts

In the previous chapter, we created CI/CD tasks by using Docker Compose. We also created various 
environments that we can use and utilize regarding the scenario presented. 

In this chapter, we will focus on deploying our Docker applications to a remote host. While developing 
an application, there are various reasons why you may not want to deploy your application to another 
host: the application can be resource-intensive, you may want to share the progress with a colleague 
or the host, the application is getting deployed to, may have access to resources through the network 
that your workstation doesn’t. A remote host could be a solution to those issues since it allows us to 
deploy a Docker application to another workstation and thus make it available externally.

In this chapter, we will cover the following topics:

•	 Docker remote hosts

•	 Creating a remote Docker host

•	 Docker Contexts

•	 Deploying Compose to remote hosts

•	 Executing remote host deployments through your IDE

Technical requirements
The code for this book can be found in the following GitHub repository: https://github.com/
PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose. If any 
updates are made to the code, they will be reflected in the GitHub repository.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


 Deploying Docker Compose Using Remote Hosts176

Docker remote hosts
Imagine an application running locally on a machine and you want it to be accessible by another 
individual through a Linux machine located on the cloud for general usage. If this application is based 
on Docker Compose, the application can be deployed manually to the VM through shell commands. 
However, there is a more streamlined way to deploy this application to the target VM. Provided a 
server has Docker installed, it is eligible to become a Docker host. Docker gives you the ability to 
use the Docker capabilities of another machine, provided it has Docker installed and access to that 
machine has been set up.

An example of a remote host is the Docker installation on Windows and macOS. They both require a 
Linux VM to run Docker. The Linux VM is the remote host that the Docker CLI uses to interact with.

Now, let’s learn how to create a remote host.

Creating a remote Docker host
To create a Docker host, we need a Linux machine. This can even be a spare laptop or a spare VM 
that runs a Linux distribution. The provisioning commands are the same commands we followed in 
Chapter 1, Introduction to Docker Compose. Since a spare Linux workstation may not be available, we 
shall create a Docker host using AWS EC2. 

Creating a Docker host on AWS EC2

In this section, we shall spin up a machine on AWS using EC2. This instance will become our remote 
host. These steps apply to any available Linux-based server, so the EC2 part can be skipped if you 
have a Linux workstation available.

By navigating to the IAM section of the AWS console, we should retrieve a key and a secret. This key 
and secret need to belong to a user that can provision an EC2 machine:



Creating a remote Docker host 177

Figure 10.1 – AWS user 

Once we’ve retrieved the credentials, we can proceed to the VPC section to find the default VPC for 
the region selected:

Figure 10.2 – VPC network



 Deploying Docker Compose Using Remote Hosts178

Copy that VPC ID since we’ll need it later.

To streamline the provisioning of EC2, we shall use Terraform.

Installing Terraform

Terraform is a modern Infrastructure as Code (IaC) solution. Infrastructure and resources on the 
cloud can be defined by using a declarative configuration language.

To install Terraform on your system, you can follow the instructions in the official documentation 
(https://learn.hashicorp.com/tutorials/terraform/install-cli).

Once the Terraform binary is present in the command line, we can check its version, as follows:

$ terraform version

Terraform v1.2.3

on darwin_arm64

Terraform provisions your infrastructure and keeps track of the changes in the Terraform state. The 
Terraform state can be a local file, a file hosted on AWS S3 with the equivalent blob solutions of other 
cloud providers, or it can be customized provided the user creates a plugin for it. For example, it is 
possible to store the state in a database such as RavenDB, provided you develop a plugin for it. In our 
case, we will just use the local filesystem to store the state.

When running Terraform, it will pick up the cloud provider used and download the binaries needed. 
For example, if we provision code for AWS using Terraform, Terraform will download the AWS plugins 
without us having to do any extra installation work.

Setting up an EC2 machine with SSH enabled

The goal is to set up an EC2 instance that we can use to log in using SSH. This instance needs to have 
Docker and Docker Compose installed.

We would like this machine to only be accessible from our workstation’s IP. Thus, we should provide 
our IP when provisioning the infrastructure. Also, the EC2 machine will be in a virtual private network. 
In our case, we want to use the default VPC. To do so, we shall use the ID of the default VPC – the 
one that we copied previously.

We should specify the IP and the VPC ID, as variables so that we can use them when we provision 
the infrastructure:

variable "myvpc" {  

}

variable "myip" {

}

https://learn.hashicorp.com/tutorials/terraform/install-cli


Creating a remote Docker host 179

Now, let’s generate those SSH keys that we will use for the EC2 machine.

Once the keys have been generated, the private key should be added to the OpenSSH 
authentication agent.

The command to generate the keys and add them to the OpenSSH authentication agent:

// Chapter10/generate-key.sh

$ ssh-keygen -t rsa -b 2048 -f $(pwd)/ssh.key -N ""

$ ssh-add ssh.key

We need to execute this step before provisioning the EC2 instance to provision the EC2 machine using 
an existing key. Also, by adding this key to the SSH authentication agent, we streamline the process 
of connecting to the server we will be provisioning.

The next step is defining the infrastructure. Since we will SSH to that machine, we need a security 
group that will allow ingress to the instance from our workstation.

The ingress rule for this is as follows:

resource "aws_security_group" "remote_docker_host_security_
group" {

  ...

  ingress {

    description      = "SSH from workstation"

    from_port        = 22   

    to_port          = 22

    protocol         = "tcp"

    cidr_blocks      = ["${var.myip}/32"]

  }

  ...

}

As you can see, we use the ip variable we specified previously.

We also need to enable egress. If we are going to have a remote host on that machine, we need to be 
able to interact with external Docker registries:

resource "aws_security_group" "remote_docker_host_security_
group" {

  ...

  egress = [

    {



 Deploying Docker Compose Using Remote Hosts180

      cidr_blocks      = [ "0.0.0.0/0", ]

      description      = ""

      from_port        = 0

      ipv6_cidr_blocks = []

      prefix_list_ids  = []

      protocol         = "-1"

      security_groups  = []

      self             = false

      to_port          = 0

    }

  ]

  ...

} 

Having generated the keys, AWS gives us the option to upload the public key as a resource. This can 
make the procedure involve more bootstrapping and will add the SSH key to multiple machines, 
which may act as Docker hosts.

The SSH key resource is as follows:

resource "aws_key_pair" "docker_remote_host_key" {

  key_name   = "docker-remote-host-key"

  public_key = file("${path.module}/ssh.key.pub") 

}

An EC2 machine will be created and will use the key we created previously.

Finally, we must create the EC2 instance:

resource "aws_instance" "remote_docker_host" {

    ami = "ami-078a289ddf4b09ae0"

    instance_type = "t2.micro"

 

    key_name = aws_key_pair.docker_remote_host_key.key_name

 

 

    vpc_security_group_ids = [ 

        aws_security_group.remote_docker_host_security_group.id

     ] 

  }



Creating a remote Docker host 181

This EC2 instance will be provisioned. It will allow traffic from our workstation, and we will be able 
to have access from the outside.

However, this will require us to install Docker on the machine that’s running. Instead, we can use 
the user-data functionality of an EC2 machine. user-data is the script that runs once an EC2 
machine has been provisioned. 

By utilizing this functionality, we can set up Docker Compose on the EC2 machine:

resource "aws_instance" "remote_docker_host" {

...

  user_data = <<-EOF

    #!/bin/bash

    yum install docker -y

    usermod -aG docker ec2-user

    systemctl start docker

    su ec2-user

    mkdir -p /home/ec2-user/.docker/cli-plugins

    curl -SL https://github.com/docker/compose/releases/
download/v2.2.3/docker-compose-linux-x86_64 -o /home/ec2-user/.
docker/cli-plugins/docker-compose

    chmod +x /home/ec2-user/.docker/cli-plugins/docker-compose

  EOF

...

}

The preceding commands should seem familiar to you; we ran them in Chapter 1, Introduction to 
Docker Compose. Since we picked up a Red Hat-based VM image, we used yum. 

Since we’ll be connecting to that machine, let’s also print the EC2 machine’s IP address:

output "instance_ip" {

  description = "Remote host ip"

  value       = aws_instance.remote_docker_host.public_ip

}

Now, we have everything we need to provision the infrastructure.



 Deploying Docker Compose Using Remote Hosts182

To execute the necessary Terraform commands, we can pass the credentials needed for AWS through 
the AWS_ACCESS_KEY_ID and  AWS_SECRET_ACCESS_KEY environment variables. We must 
also specify the region we will operate in via AWS_REGION. These variables can be exported or passed 
directly to the Terraform command. You can also use them indirectly by using the credentials files 
and configuration that was generated when configuring aws-cli.

First, let’s initialize Terraform:

AWS_ACCESS_KEY_ID=key-id AWS_SECRET_ACCESS_KEY=access-key AWS_
REGION="eu-west-2" terraform init

This will provide our state in a file.

Now, run the following command:

AWS_ACCESS_KEY_ID=*** AWS_SECRET_ACCESS_KEY=*** AWS_REGION="eu-
west-2" terraform apply -var myip=51.241.***.182 -var 
myvpc=vpc-a8d1b***

By doing this, the infrastructure will be provisioned. Based on the output, we shall get the IP needed 
to SSH:

instance_ip = "18.133.27.148"

Now, we can SSH using the key we created previously and check that Docker Compose exists:

$ ssh ec2-user@18.130.80.179

[ec2-user@ip-172-31-37-105 ~]$ docker compose version

Docker Compose version v2.2.3

As expected, the user data script runs successfully. We were also able to ssh to the instance since the 
keys have been set up.

Using the remote Docker host

Now that the remote host is available, let’s see how we can make it execute a Docker command using 
the host.

Let’s try to run Redis using the host:

DOCKER_HOST="ssh://ec2-user@18.130.80.179" docker run -it --rm 
redis



Docker Contexts 183

If we log into the EC2 instance and execute docker ps, we shall see that redis is running on 
that machine:

$ ssh ec2-user@18.130.80.179 docker ps

CONTAINER ID   IMAGE     COMMAND                  CREATED           
STATUS         PORTS      NAMES

e44e3bd3a41d   redis     "docker-entrypoint.s…"   10 seconds  
ago   Up 9 seconds   6379/tcp   nifty_aryabhata

By creating a Docker remote host, we can create Docker containers on that host by using our local 
workstation. This opens new possibilities since more than one host can be used. Managing hosts can 
be demanding. Therefore, in the next section, we’ll learn how to achieve this using Docker Contexts.

Docker Contexts
Using the host on each command that we use is redundant and error-prone. For example, a deployment 
may fail due to it reaching a different host because we omitted to specify the host when running the 
command and we executed a different command on our local host.

For this case, Docker Contexts can be of help.

By creating contexts, we can switch our Docker configuration to multiple contexts and pick the right 
context per case.

So, let’s create a context for our EC2 host:

$ docker context create ec2-remote --docker host=ssh://
ec2-user@18.130.80.179

Although we have created the context, we are still in the default context. Let’s switch to the recently 
created context:

$ docker context use ec2-remote

Run the following command:

$ docker run -it --rm redis

Check the results on the server:

ssh ec2-user@18.130.80.179 docker ps

CONTAINER ID   IMAGE     COMMAND                  CREATED        
   STATUS          PORTS      NAMES



 Deploying Docker Compose Using Remote Hosts184

1b5b0459bf48   redis     "docker-entrypoint.s…"   15 seconds  
ago   Up 13 seconds   6379/tcp   peaceful_feynman

However, there is no need to run this command on the server. Thanks to using the context of 
EC2-remote, we can use the docker ps command locally and the results will be the same. The 
context will take effect until we switch contexts again:

$ docker ps

CONTAINER ID   IMAGE     COMMAND                  CREATED          
STATUS         PORTS      NAMES

1b5b0459bf48   redis     "docker-entrypoint.s…"   3 minutes ago    
Up 3 minutes   6379/tcp   peaceful_feynman

By, having Docker Contexts enabled, we can use Docker Compose on a remote host.

Deploying Compose to remote hosts 
Let’s move the Redis example we run previously into a Compose file:

services:

  redis:

    image: redis

The following command will have to be adjusted with regards to the DOCKER_HOST variable, since 
a different IP will be allocated to the EC2 instance. The outcome should be the same on another host:

$ DOCKER_HOST="ssh://ec2-user@18.130.80.179" docker compose up

[+] Running 2/2

 Network chapter10_default    Created                                                                                                           
0.1s

 Container chapter10-redis-1  Created                                                                                                           
0.1s

Attaching to chapter10-redis-1

chapter10-redis-1  | 1:C 22 Jun 2022 22:50:52.725 # 
oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo

By checking the host, we should see that a Redis instance is running.



Executing remote host deployments through your IDE 185

Since we just used Docker Contexts, we don’t need to specify the host. So, let’s try one more time 
without the DOCKER_HOST environment:

$ docker context use ec2-remote

$ docker compose up

[+] Running 2/2

...

Here, we ran our application using a remote host on an EC2 machine. Now, we need to clean up 
the infrastructure we provisioned and keep the costs minimized. We can destroy the infrastructure 
manually through the AWS console, but since we provisioned the infrastructure using Terraform, we 
can use the destroy command it provides.

Let’s clean up our infrastructure:

AWS_ACCESS_KEY_ID=*** AWS_SECRET_ACCESS_KEY=*** AWS_REGION="eu-
west-2" terraform destroy -var myip=51.241.***.182 -var 
myvpc=vpc-a8d1b***

The use cases we’ve covered so far can provide a solid developer experience. The necessary code is 
being developed, environments are being provisioned and deployed through Compose, and we can 
deploy the application to a remote host, making it accessible to other users. The next step will be to 
enhance our development efforts by deploying to a Docker host straight from our IDE.

Executing remote host deployments through your IDE
When developing an application, an integrated development environment (IDE) has a crucial role 
in making us more productive. By using Compose, we can deploy and simulate environments, which 
is why it has become part of our day-to-day development. In this section, we shall combine the usage 
of an IDE and Compose.

In this section, we will use IntelliJ IDEA Ultimate Edition (https://www.jetbrains.com/idea/
download/#section=mac) as our IDE. Ultimate Edition comes with the option of a free trial.

Let’s configure the Docker host. First, go through the Preferences section, then the Build, Execution, 
Deployment, and Docker sections. Now, a new Docker configuration can be added:

https://www.jetbrains.com/idea/download/#section=mac
https://www.jetbrains.com/idea/download/#section=mac


 Deploying Docker Compose Using Remote Hosts186

Figure 10.3 – Docker configuration

Then, provided we have docker-compose.yaml, we can run it locally:

Figure 10.4 – Running Compose

As a result, when we run the Compose file from our IDE, it will use the remote host:



Summary 187

Figure 10.5 – Logs

So, apart from developing our application locally, we managed to deploy it to a remote host and make 
it feasible for other individuals to check out our progress.

Summary
In this chapter, we deployed our Compose applications to a remote server. This helped us utilize remote 
server resources and share our application through a remote server. By doing so, we deployed an application 
to a server. However, this is not a suitable way to deploy a Compose application to production. 

In the next chapter, we will learn how to deploy Compose applications to the cloud using the necessary 
tools and make them production-ready.





11
 Deploying Docker Compose  

to AWS

In the previous chapter, we deployed our application to a Docker host. The feature of deploying to 
a remote host could help in many ways, for example, we could share the application with another 
individual or use the remote host for development and testing purposes. Deploying to a remote host 
brings us closer to the context of deploying to production. However, a deployment to a remote host is 
not up to the standards of a production deployment. A production deployment needs our application 
to be highly available, secure, and accessible through a load balancer, and the logs of the application 
need to be easy accessible and securely stored.

This chapter is all about bringing our Docker Compose application to production. Elastic Container 
Service (ECS) is one of the container orchestration services that AWS provides. ECS is integrated with 
Docker Compose, therefore by using an existing Compose application we can have a cloud-native 
application deployed through ECS.

We will start by pushing our Docker images to the AWS Elastic Container Registry (ECR). Then, 
we shall apply some minor adjustments to an existing Compose application to use the images, from 
the registry provisioned, and deploy to ECS using a Docker profile for AWS. Once we have deployed 
our application, we shall proceed to more advanced concepts, such as using an existing cluster in a 
private network, as well as scaling and secret management.

Here are the topics we will cover in this chapter:

•	 Introduction to AWS ECS

•	 Hosting your Docker images on AWS ECR

•	 Deploying your application to an ECS cluster

•	 Adapting Compose files for ECS deployment

•	 Running your Compose application to existing infrastructure

•	 Advanced Docker Compose concepts on ECS



 Deploying Docker Compose to AWS190

Technical requirements
The code for this book is hosted on the GitHub repository at https://github.com/
PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose. If 
there is an update to the code, it will be updated in the GitHub repository.

In order to provision AWS resources through the command line, it is essential to install the AWS 
CLI tool at https://docs.aws.amazon.com/cli/latest/userguide/getting-
started-install.html. The AWS CLI tool can help us with administrative tasks as well as 
troubleshooting issues on our AWS infrastructure.

In this chapter, Terraform plans will be used. To install Terraform on your system, follow the 
instructions from the official documentation (https://learn.hashicorp.com/tutorials/
terraform/install-cli).

Introduction to AWS ECS
ECS is a container orchestration engine that is provided by AWS. We can use ECS in order to deploy, 
manage, and scale our container applications. Since it is provided by AWS, it is integrated with the 
rest of the AWS platform. By deploying an application on ECS it will use an elastic load balancer to 
expose an application; it will use EC2 instances to run the application, and the application will reside 
on an AWS Virtual Private Cloud (VPC) and its subnets. The logs of the applications will also be 
accessible through CloudWatch.

ECS comes with the option of AWS Fargate. AWS is a serverless compute option that enables you to 
deploy your Docker workloads without needing to manage EC2 instances and autoscaling groups. If 
the application’s workloads are small, require low overhead, and have non-frequent bursts of requests 
and usage, then Fargate is a solution that our application can benefit from. We will choose Fargate for 
our application, since our application is still in the prototype phase.

For applications with more demanding workloads, or workloads that have certain needs, we can back 
ECS with EC2 and autoscaling groups. For example, if an application is CPU intensive, it makes sense 
to create an autoscaling group that uses a compute-optimized EC2 type.

Working locally with containers is easy, and concerns such as image distribution might not be present 
in the beginning. However, to use a container that we created, it is essential to be able to distribute 
the image of that container. Instead of creating and provisioning a registry, AWS provides us with a 
container registry. In the next section, we shall push our images to an AWS-hosted container registry.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://learn.hashicorp.com/tutorials/terraform/install-cli


Hosting your Docker images on AWS ECR 191

Hosting your Docker images on AWS ECR 
Previously, we have been building images for Compose applications that would later be stored and 
retrieved from the Docker host. To use the Docker images on ECS, a Docker Image registry is essential. 
The registry to use on AWS is ECR. By using ECR, we push and pull the images from the registry 
and use them on any workstation or server that has Docker installed, provided we have configured 
access to that registry.

ECR is a fully managed container registry. It is a highly available solution backed by AWS Simple 
Storage Service (S3), thus images are stored across multiple systems. Also, it has features such as 
scanning the images for vulnerabilities. By using a managed container registry, the maintenance 
overhead is reduced; for example, there is no need to provision a server or plan the storage capacity.

Another benefit of ECR is how well integrated it is with the rest of the AWS services. An ECS server or 
a Lambda function, provided they have the right AWS IAM permissions, can pull images seamlessly 
without any extra configuration.

Since ECR is going to be the Docker registry that we shall use, let’s proceed and provision our registry.

Provision ECR using AWS CLI

With the AWS CLI, provisioning an ECR is a one-liner:

$ aws ecr create-repository --repository-name developer-guide-
to-compose-ecr

{

    "repository": {

…

     "  "repository"ri": "111111111111.dkr.ecr.eu-west-1.
amazonaws.com/ developer-guide-to-compose-e"r ",

...

     "  "imageScanningConfigurat"on": {

         "  "scanOnP"sh": false

        },

     "  "encryptionConfigurat"on": {

         "  "encryptionT"pe": "AES"56"

        }

    }

}



 Deploying Docker Compose to AWS192

We can get some valuable information from the output. For example, we shall use repositoryUri 
to tag our images, imageScanningConfiguration scans the images for vulnerabilities when 
enabled, and encryptionConfiguration is how the images we push are encrypted at rest. 
repositoryUri has a number prefix. In the preceding example, it is 111111111111. This 
should be your AWS account number, therefore it will be different whenever another AWS account 
is being used.

Since we managed to create the registry from the command line, we can also try and create the registry 
using Terraform.

Be aware that you might want to delete the registry first if you want to create it again:

$ aws ecr delete-repository --repository-name developer-guide-
to-compose-ecr

Onward! We shall provision the ECR we need using Terraform.

Provision ECR using Terraform

In the previous chapter, Terraform helped us to provision the infrastructure without much effort. We 
can use Terraform to create the Docker registry.

This is how we can define the ECR registry:

resource "aws_ecr_repository" "developer_guide_to_compose_ecr" 
{

  name                 = "developer-guide-to-compose-ecr"

  image_tag_mutability = "MUTABLE"

 

  image_scanning_configuration {

    scan_on_push = true

  }

}

We can now initialize the Terraform plan:

$ AWS_ACCESS_KEY_ID=*** AWS_SECRET_ACCESS_KEY=*** AWS_DEFAULT_
REGION=eu-west-1 terraform init

And then proceed to execute the Terraform plan:

$ AWS_ACCESS_KEY_ID=*** AWS_SECRET_ACCESS_KEY=*** AWS_DEFAULT_
REGION=eu-west-1 terraform apply



Hosting your Docker images on AWS ECR 193

These commands will handle the Terraform state locally. However, for an application that is deployed 
publicly, and various engineers interact with it or create infrastructure for it, we want a better way of 
storing and sharing the state.

Storing a Terraform state file

When applying the Terraform plan commands for testing purposes, storing the state locally can be 
an option. However, for production use, the state should reside in the form of storage that can be 
accessible by other individuals. In our case, we shall store the Terraform state in an S3 bucket.

Before creating a bucket on AWS, we need to be aware of the bucket naming rules on AWS. A bucket 
name should be unique across all AWS accounts. This means that if an AWS account has created a 
bucket with a name you want to use, it will not be possible, and another name should be used.

Let’s create the bucket:

$ AWS_ACCESS_KEY_ID=*** AWS_SECRET_ACCESS_KEY=*** AWS_DEFAULT_
REGION=eu-west-1 aws s3api create-bucket --bucket developer-
guide-to-compose-state --region eu-west-1 --create-bucket-
configuration LocationConstraint=eu-west-1

$ AWS_ACCESS_KEY_ID=*** AWS_SECRET_ACCESS_KEY=*** AWS_DEFAULT_
REGION=eu-west-1 aws s3api put-bucket-versioning --bucket 
developer-guide-to-compose-state --versioning-configuration 
Status=Enabled

Since the bucket is created, we can configure Terraform to use it to store the state:

//provider.tf

terraform {

  required_providers {

    aws = {

      source  = "hashicorp/aws"

      version = "~> 4.16"

    }

  }

  backend "s3" {

    bucket = "developer-guide-to-compose-state"

    region = "eu-west-1"

    key = "terraform.tfstate"

  }

 



 Deploying Docker Compose to AWS194

  required_version = ">= 1.2.0"

}

 

provider "aws" {

  region  = "eu-west-1"

}

Since this bucket has already been created on S3, the name is reserved. When you apply the script, 
another bucket name should be chosen before you create your bucket.

Before running terraform apply, it is worth making sure that the changes that will take place 
are the ones we want. We can use terraform plan, which helps us to preview the changes we 
will apply to our infrastructure:

$ AWS_ACCESS_KEY_ID=*** AWS_SECRET_ACCESS_KEY=*** AWS_DEFAULT_
REGION=eu-west-1 terraform plan

Now that we are confident with the changes that will take place, we shall apply the Terraform plan:

$ AWS_ACCESS_KEY_ID=*** AWS_SECRET_ACCESS_KEY=*** AWS_DEFAULT_
REGION=eu-west-1 terraform apply

Also, you can benefit from enabling versioning on the bucket. Apart from the Git commit history, 
versioning can be another way to have a history of the state changes.

Since the container registry has been created, we can proceed and push the images to the registry.

Pushing images to ECR

Before interacting with a registry, we need to set up authentication.

To authenticate to ECR, we shall use the AWS CLI:

aws ecr get-login-password --region eu-west-1|docker login 
--username AWS --password-stdin 111111111111.dkr.ecr.eu-west-1.
amazonaws.com

This will generate a token that will be used by the Docker client to communicate with the registry. As 
we can see in the first section of the command, the token is generated and in the second section after 
the pipe, the output of the command is used to log in to the registry we created previously.

We can now test that it works and push an image to the registry:

$ docker tag nginx 111111111111.dkr.ecr.eu-west-1.amazonaws.
com/developer-guide-to-compose-ecr:ngnix



Hosting your Docker images on AWS ECR 195

$ docker push 111111111111.dkr.ecr.eu-west-1.amazonaws.com/
developer-guide-to-compose-ecr:ngnix

f2089ca22bc1: Pushed

9e13ccef5ed0: Pushed

9dfe3def52f1: Pushed

7b11943dbe46: Pushed

80730baf8465: Pushed

5978b6b69f17: Pushed

ngnix: digest: 
sha256:ec2290b7c5d15abb4b3384ad66a89e9c523a4668c057898f3114fa6 
1df4a5586 size: 1570

We tagged the Nginx image and pushed it to the registry. By using the registry, we can share our images 
with a container orchestration engine such as ECS.

Adapting the Compose application images

The application to use would be the Task Manager we created in Chapter 5, Connecting Microservices. 
We will modify the Compose file to push the images to ECR.

We should change the images on each service:

services:

  location-service: 

...

    image: 111111111111.dkr.ecr.eu-west-1.amazonaws.com/
developer-guide-to-compose-ecr:location-service_0.1 

...

  event-service: 

    image: 111111111111.dkr.ecr.eu-west-1.amazonaws.com/
developer-guide-to-compose-ecr:events-service_0.1 

...

  task-manager: 

...

    image: 111111111111.dkr.ecr.eu-west-1.amazonaws.com/
developer-guide-to-compose-ecr:task-manager_0.1

...

The images we created previously are dependent on the platform our workstation is running on. ECS 
can support various platforms. In our case, in order to simplify the deployment, we shall pick the 
linux/amd64 platform.



 Deploying Docker Compose to AWS196

Let’s specify the platform to use before building:

services:

  location-service: 

    platform: linux/amd64

   ...

  event-service: 

    platform: linux/amd64    

   ...

  task-manager: 

    platform: linux/amd64

...

We can now build and push the images using Compose:

$ docker compose build --no-cache

$ docker compose push

We used the –-no-cache option. This is essential to make sure that the images that are built are 
going to be built on the platform we specified. Also, it will not use any cached images from our previous 
builds. By using compose push, all our images will be pushed to the ECR registry.

We can now proceed and deploy the application to an ECS cluster.

Deploying your application to an ECS cluster 
Deploying to ECS is seamless; however, we need to create a profile on Docker that will use AWS 
credentials to be able to interact with AWS and provision resources.

Therefore, we need to create a Docker Context that’s specific to AWS ECS scenarios:

$ docker context create ecs guide-to-compose

? Create a Docker context using:  [Use arrows to move, type to 
filter]

> An existing AWS profile

  AWS secret and token credentials

  AWS environment variables

? Select AWS Profile  [Use arrows to move, type to filter]

  default

> guide-to-docker-compose

Successfully created ecs context "guide-to-compose"



Deploying your application to an ECS cluster 197

By using the credentials, the context will try to provision infrastructure or evaluate if infrastructure 
already exists for the Compose application. Thus, it is important for the user/role behind the AWS 
profile to have sufficient permissions for those actions.

Behind the scenes, Compose will generate and apply a CloudFormation template, provisioning the 
necessary infrastructure to facilitate running the application.

We can check the CloudFormation template, since we have export functionality in Compose, by using 
the convert command:

$ docker --context=guide-to-compose compose convert

AWSTemplateFormatVersion: 2010-09-09

Resources:

  CloudMap:

    Properties:

      Description: Service Map for Docker Compose project aws

      Name: aws.local

      Vpc: vpc-8efaaceb

...

CloudFormation is an infrastructure as code solution similar to Terraform. 

An example file can be found on https://github.com/PacktPublishing/A-Developer-
s-Essential-Guide-to-Docker-Compose/tree/main/Chapter11/compose-
cloudformation.yaml.

By applying a CloudFormation template, newly defined infrastructure will be created, or existing 
infrastructure will be deleted or updated, depending on the changes. Essentially, based on the services 
and the various elements defined through the Compose application, a CloudFormation file will be 
generated that in turn will be applied to the existing stack created previously.

Be aware that in the previous command, we specified context. As we saw in Chapter 10, Deploying 
Docker Compose Using Remote Hosts, we can set context permanently. This is done for convenience 
purposes since we will not do as many administrative actions; instead, we shall focus on deployments.

We are now ready to deploy the Compose application:

$ docker --context=guide-to-compose compose -f compose.backup.
yaml up

 LocationserviceService     CreateComplete      56.0s

 EventserviceService        CreateComplete      76.1s

 TaskmanagerTCP8080Listener CreateComplete      2.0s

 TaskmanagerService         CreateComplete      55.1s

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/tree/main/Chapter11/compose-cloudformation.yaml
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/tree/main/Chapter11/compose-cloudformation.yaml
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose/tree/main/Chapter11/compose-cloudformation.yaml


 Deploying Docker Compose to AWS198

...

This will create the Compose application and the infrastructure.

We can also go to CloudFormation and check the progress of the application 
(https://eu-west-2.console.aws.amazon.com/cloudformation/
home?rfilteringText=&viewNested=true&hideStacks=false#/
stacks?filteringStatus=active&filteringText=&viewNested= 
true&hideStacks=false).

We can see the progress of our application while it’s being created:

Figure 11.1 – CloudFormation progress

As we can see, the name of the stack is aws. This is because it uses the same name that a Compose 
deployment will use; therefore, in our case it is the name of the directory we are currently located in.

https://eu-west-2.console.aws.amazon.com/cloudformation/home?rfilteringText=&viewNested=true&hideStacks=false#/stacks?filteringStatus=active&filteringText=&viewNested=true&hideStacks=false
https://eu-west-2.console.aws.amazon.com/cloudformation/home?rfilteringText=&viewNested=true&hideStacks=false#/stacks?filteringStatus=active&filteringText=&viewNested=true&hideStacks=false
https://eu-west-2.console.aws.amazon.com/cloudformation/home?rfilteringText=&viewNested=true&hideStacks=false#/stacks?filteringStatus=active&filteringText=&viewNested=true&hideStacks=false
https://eu-west-2.console.aws.amazon.com/cloudformation/home?rfilteringText=&viewNested=true&hideStacks=false#/stacks?filteringStatus=active&filteringText=&viewNested=true&hideStacks=false


Deploying your application to an ECS cluster 199

We can change this by using the project name flag:

$ docker --context=guide-to-compose compose -p guidetocompose 
up

Once the application has been deployed, we can check the running containers by using docker 
compose ps:

$ docker --context=guide-to-compose compose ps

NAME                                        COMMAND            
  SERVICE             STATUS              PORTS

task/aws/337ff364e53e4a59b14bdaf65e4fe655   ""                 
  redis               Running             

task/aws/6f08bff5e5ee42a0b2d9995124debd8c   
""                  location-service    Running             

task/aws/bf76ab48000d49b38017e6b3b4d6b073   ""                 
  event-service       Running             

task/aws/cea75425182c4e08ad571efcce0c82f2   ""                
   task-manager        Running              
aws-LoadBal-1Q44XRW9WNYF5-5fdfe7e98727ac85.elb.eu-west-1. 
amazonaws.com:8080:8080->8080/tcp

As we can see, the Task Manager application that we exposed the port of is running and is accessible 
through a DNS entry.

Let’s issue a test request:

$ curl aws-LoadBal-1Q44XRW9WNYF5-5fdfe7e98727ac85.elb.
eu-west-1.amazonaws.com:8080/ping

pong

Since we have achieved our goal, we will proceed with deleting the infrastructure:

$ docker --context=guide-to-compose compose -f compose.backup.
yaml down

We did manage to deploy our Compose application to AWS ECS. We did not have to provision any 
infrastructure since it was created by Compose using the credentials we configured through the context.

This can be a way to deploy our application; however, it forces us to create a new cluster for each 
application. This causes various billing concerns, and it is not the optimum way to run applications 
since it can lead to a maintenance overhead. In the next section, we will deploy Compose to an existing 
ECS cluster.



 Deploying Docker Compose to AWS200

Running your Compose application to an existing cluster
Previously, we managed to run a Compose application on ECS by using an ECS Docker context. 
By deploying the application, a new infrastructure was provisioned through CloudFormation and an 
entire new ECS cluster was created for the application.

If we take our time and check the CloudFormation file, we can see that various AWS components 
have been created:

•	 A VPC and its subnets

•	 A CloudWatch log group

•	 Security groups

•	 A load balancer

•	 CloudMap for service discovery

•	 An ECS cluster

•	 ECS tasks

By default, CloudFormation will use the default VPC and subnets that already exist in our AWS 
account. The load balancer, security groups, and CloudMap, which assist with service discovery, will 
have to be created, as well as the ECS cluster and the ECS tasks. Those applications will be deployed 
to AWS Fargate.

It is obvious that these resources are provisioned and we have no control over their settings. There 
might be a business use case where we would like to have a private network. Also, we might want 
more strict egress and ingress rules.

Compose provides the option to deploy the application to an existing cluster and use resources that 
we have already provisioned.

In the following subsections, we will create an ECS cluster and then make adjustments to our existing 
application so it will use the existing infrastructure.

We will be using Terraform to provision the infrastructure.

Creating a log group

We want to keep our logs for our application in one Cloudwatch group. Therefore, we will create a 
log group and a log stream dedicated to our application:

resource "aws_cloudwatch_log_group" "task_api" {

  name              = "/ecs/task-api" 

} 



Running your Compose application to an existing cluster 201

resource "aws_cloudwatch_log_stream" "cb_log_stream" {

  name           = "tasl-log-stream"

  log_group_name = aws_cloudwatch_log_group.task_api.name

}

Let’s now move on to a very important aspect, which is networking.

Creating a private network

We will create a private network that will span across the specified availability zones, therefore creating 
a subnet per availability zone.

The Terraform plan for the VPC:

resource "aws_vpc" "compose_vpc" {

  cidr_block = "172.17.0.0/16"

  enable_dns_hostnames = true

  enable_dns_support = true

}

As we can see, we have created the VPC and specified a cidr_block value. Also, we enabled DNS 
hostnames and DNS support. This is crucial for our ECS application since communication between 
services requires this option to be enabled.

Let’s create a subnet per availability zone:

resource "aws_subnet" "private_subnet" {

  count = length(var.availability_zones)

  cidr_block        = cidrsubnet(aws_vpc.compose_vpc.cidr_
block, 8, count.index)

  availability_zone = var.availability_zones[count.index]

  vpc_id            = aws_vpc.compose_vpc.id

}

resource "aws_subnet" "public_subnet" {

  count = length(var.availability_zones)

  cidr_block        = cidrsubnet(aws_vpc.compose_vpc.cidr_
block, 8, length(var.availability_zones) + count.index)

  availability_zone = var.availability_zones[count.index]

  vpc_id            = aws_vpc.compose_vpc.id

}



 Deploying Docker Compose to AWS202

The region is specified when we run the terraform command. In a file containing the variables, 
we can have the chosen availability zones:

variable "availability_zones" {

  type = list(string)

  default = [ "eu-west-1a" ,"eu-west-1b" ]

}

Our application might need to have access to the internet. For example, we use the Redis image, 
which we did not deploy on the ECR registry we created. To enable access to the internet, we need an 
internet gateway, and we need to specify a route table that will route traffic to the internet gateway:

resource "aws_internet_gateway" "internet_gateway" {

  vpc_id = aws_vpc.compose_vpc.id

}

resource "aws_route" "internet_route" {

  route_table_id         = aws_vpc.compose_vpc.main_route_
table_id

  destination_cidr_block = "0.0.0.0/0"

  gateway_id             = aws_internet_gateway.internet_
gateway.id

}

This will work for the instances deployed to the public subnet; however, it won’t work for instances 
that reside on the private subnet. To enable connectivity to the internet, we should use a NAT gateway.

A NAT gateway needs a public IP to operate, thus we create two for each availability zone:

resource "aws_eip" "nat_ips" {

  count      = length(var.availability_zones)

  vpc        = true

  depends_on = [aws_internet_gateway.internet_gateway]

}

A NAT gateway will be set for each public subnet:

resource "aws_nat_gateway" "nat_gateway" {

  count         = length(var.availability_zones)

  subnet_id     = element(aws_subnet.public_subnet.*.id, count.
index)

  allocation_id = element(aws_eip.nat_ips.*.id, count.index)



Running your Compose application to an existing cluster 203

}

resource "aws_route_table" "private_route_table" {

  count  = length(var.availability_zones)

  vpc_id = aws_vpc.compose_vpc.id

 

  route {

    cidr_block     = "0.0.0.0/0"

    nat_gateway_id = element(aws_nat_gateway.nat_gateway.*.id, 
count.index)

  }

}

Finally, we define a route table association for the private subnets:

resource "aws_route_table_association" "private_association" {

  count          = length(var.availability_zones)

  subnet_id      = element(aws_subnet.private_subnet.*.id, 
count.index)

  route_table_id = element(aws_route_table.private_route_
table.*.id, count.index)

}

This is the most important part as it enables us to use a private network on ECS and have network 
connectivity.

Security groups

Security groups allow ingress and egress traffic. The full security group configuration can be found on 
GitHub. An important parameter is to enable connectivity between two Compose services.

To enable ingress between Compose services, use this code:

resource "aws_security_group_rule" "allow_services_
connectivity" {

  type                     = "ingress"

  from_port                = 0

  to_port                  = 0

  protocol                 = "-1"

  source_security_group_id = aws_security_group.compose_
security_group.id



 Deploying Docker Compose to AWS204

  security_group_id        = aws_security_group.compose_
security_group.id

}

This way, Compose services will be able to communicate with each other.

Configuring the ECS cluster and the load balancer

Since networking ingress and egress rules are in place, we can now configure the load balancer and 
the ECS cluster:

resource "aws_alb" "compose_alb" {

  name            = "guide-to-compose-load-balancer"

  subnets         = aws_subnet.public_subnet.*.id

  security_groups = [aws_security_group.lb.id]

}

resource "aws_ecs_cluster" "compose_ecs" {

  name = "guide-to-compose-ecs"

}

Updating the Compose file

Let’s adapt the Compose configuration so it can use the existing cluster, VPC, and load balancer:

x-aws-vpc: "vpc-0144f03210f0da8e5"

x-aws-cluster: "guide-to-compose-ecs"

x-aws-loadbalancer: "guide-to-compose-load-balancer"

 

services:

  location-service: 

   ...

    logging:

      options:

        awslogs-group: "/ecs/task-api"

  redis: 

    ...

    logging:

      options:

        awslogs-group: "/ecs/task-api"



Running your Compose application to an existing cluster 205

  task-manager: 

    ...

    logging:

      options:

        awslogs-group: "/ecs/task-api"

    links:

      - "redis:redis"

...

As we can see, we specified the VPC in which our workloads will be located, the ECS cluster that will 
orchestrate our application’s containers, and the load balancer that will serve as the entry point to our 
application. We are now ready to deploy the application to the recently provisioned cluster.

Running your Compose application on existing infrastructure

We have provisioned the infrastructure, and we have adjusted our Compose application so that it 
will use the existing infrastructure. The command to provision our infrastructure will be the same as 
before, and the Docker profile used will be the one we used previously.

Run the application:$ docker --context=guide-to-compose compose 
-f ./compose.aws.yaml -p guidetocompose up –d

Check the application containers:

$ docker --context=guide-to-compose compose -f ./compose.aws.
yaml -p guidetocompose ps

task/guide-to-compose-ecs/13ddf3ab03f146cc95b59005c308c5ad   
""                  redis               Running             

task/guide-to-compose-ecs/af645c4f87ad4a9f8d3aac5fd313bdc5   
""                  location-service    Running             

task/guide-to-compose-ecs/d96338ba685a401394ba9d61b802
38e6   ""                  task-manager        Running             
guide-to-compose-load-balancer-1956561308.eu-west-1.elb.
amazonaws.com:80:80->80/http

$ curl guide-to-compose-load-balancer-1956561308.eu-west-1.elb.
amazonaws.com:80/ping

We did it! Our application is now running on a private network using the ECS cluster we defined 
using Terraform.

When you don’t need the infrastructure anymore, don’t forget to decommission the ECS cluster and 
the other resources provisioned since it will lead to extra costs.



 Deploying Docker Compose to AWS206

You can do this using terraform destroy:

$ AWS_ACCESS_KEY_ID=*** AWS_SECRET_ACCESS_KEY=*** AWS_DEFAULT_
REGION=eu-west-1 terraform destroy

Or you can do it manually by visiting the AWS console.

Since we took more advantage of AWS components, we can also explore more advanced concepts of 
a Compose application deployed on ECS. Let’s move on to updating and scaling our application, as 
well as configuring secrets.

Advanced Docker Compose concepts on ECS
We have managed to deploy our Compose application to a dedicated VPC and a dedicated ECS 
cluster. This gives us more control over our application and the resources we use. Building a cloud-
native application comes with various benefits. We can have a rolling application update without any 
downtime, we can tune and scale an application based on its requirements, and we can manage and 
share secrets efficiently.

Updating the application

The docker compose up command is sufficient to update the application. Hence, the same 
command that is used to spin up the services will be used to update them.

Since Compose is backed by CloudFormation, the update will take place, but it can also cause downtime 
if a certain component of the infrastructure is removed and recreated. Rolling updates need to be 
configured. By using a rolling update, the container instances of a service are updated incrementally. 
This ensures that the application can still service requests while the containers are being updated with 
the latest version one at a time. We should dive deeper into scaling an application and configuring a 
rolling update.

Scaling the application

Since the application is deployed on an orchestration engine, we can scale up the replicas of a service. 
We will have two replicas of each service, except for Redis, and will configure a rolling update.

Let’s put scaling instructions on all services:

    deploy: 

      mode: replicated 

      replicas: 2 

      update_config:

        parallelism: 1



Advanced Docker Compose concepts on ECS 207

        delay: 10s

        order: start-first

By increasing the replicas, the service will have two instances and ECS will handle the internal load 
balancing. Also, by using update-config, we ensure we update one service at a time.

By using compose ps, we can see an increase in the number of running Docker containers:

$ docker --context=guide-to-compose compose -f ./compose.aws.
yaml -p guidetocompose ps

NAME                                                         
COMMAND             SERVICE             
STATUS              PORTS

task/guide-to-compose-ecs/505c7b2c962642459a8b156c4c069f73   
""                  redis               Running             

task/guide-to-compose-ecs/50c74375216842dba62fea2c19772e55   
""                  location-service    Running             

task/guide-to-compose-ecs/8b84d785dee14441bb4a3b1808b02419   
""                  event-service       Running             

task/guide-to-compose-ecs/ac84fe91790244d1836238a40890c54d   
""                  event-service       Running             

task/guide-to-compose-ecs/b42f9c9b18704dfb888f97112b343e0b   
""                  task-manager        Running             
guide-to-compose-load-balancer-1757643662.eu-west-1.elb.
amazonaws.com:80:80->80/http

task/guide-to-compose-ecs/bcce928092294fc1bcc57875954307bc   
""                  task-manager        Pending             
guide-to-compose-load-balancer-1757643662.eu-west-1.elb.
amazonaws.com:80:80->80/http

task/guide-to-compose-ecs/cfd3370bfb61467e9ec15a2a1fc0763c   
""                  location-service    Running             

Instead of manually increasing the number of replicas, autoscaling can be configured:

    deploy: 

      mode: replicated 

      replicas: 2

      update_config:

        parallelism: 1

        delay: 10s

        order: start-first

      x-aws-autoscaling:



 Deploying Docker Compose to AWS208

        min: 2

        max: 3

        cpu: 75

We did it! We have a minimum of 2 replicas that will scale up to 3 if over 75% of the allocated CPU 
is utilized.

Using secrets

Secrets are a big part of our application. Access to a database or cloud resources needs to be configured 
properly. Compose gives us the option to create secrets and mount them to containers. We will mount 
a secret to the Task Manager:

    secrets:

      - secret-file   

    command:

      - /bin/sh

      - -c

      - |

        ls /run/secrets/secret-file

        /task_manager

networks:

  location-network:

  redis-network:

secrets:

  secret-file:

    file: ./secret.file.txt

We also changed command of the container, before we run the task-manager application, we ls 
the secret-file, thus we justify that the secret is indeed mounted and resides on the container. 
By default, secrets are mounted on /run/secrets/secret-name.

If we check the console, the file path is printed:

/run/secrets/secret-file[GIN-debug] [WARNING] Creating an 
Engine instance with the Logger and Recovery middleware already 
attached.

In a production environment, secrets need to be handled very carefully. A local file mounted as a 
secret might need to be encrypted. KMS can be used for encrypting secrets and decrypting them 
once they’ve been deployed during initialization. For example, sops (https://github.com/
mozilla/sops) is a tool that can be used for securely storing secrets on a repository using KMS.

https://github.com/mozilla/sops
https://github.com/mozilla/sops


Summary 209

Summary
In this chapter, we managed to deploy our Compose application to an AWS environment. We created 
a container registry on AWS and pushed the Docker images to the registry. We then deployed our 
application to ECS and a new set of infrastructure was provisioned for our application. Then we 
created a private network and an ECS cluster. Our Compose application has the security benefits of a 
private network and our infrastructure is reusable for other Compose applications. This was achieved 
by adapting our Compose file and specifying the infrastructure to be used. We moved on to more 
advanced deployment concepts, such as autoscaling and storing secrets. By adapting the Compose 
application, we took advantage of ECS’ autoscaling capabilities and the rolling update functionality, 
and we shared our secrets among multiple applications.

In the next chapter, we shall deploy our Compose application to another popular cloud provider, 
Microsoft Azure.





12
 Deploying Docker Compose  

to Azure

In the previous chapter, we deployed our application to AWS. We deployed the application using 
autoscaling and health checks, and we even managed to access the application through a DNS domain. 
In this chapter, we shall focus on another popular cloud provider, Azure. Azure provides us with Azure 
Container Instances (ACI), a seamless way to run Compose-based applications without managing 
any infrastructure. Deploying to ACI is simple; first, we shall push the application images to an Azure 
container registry, and then, with a few adjustments, we shall deploy our application to Azure ACI. 

Deploying to ACI comes with less infrastructure maintenance overhead as well as with the simplicity 
of the Compose syntax.

We will cover the following topics in this chapter:

•	 An introduction to ACI

•	 Pushing to an Azure container registry

•	 Adapting Compose files for Azure container groups

•	 Deploying your Compose application to Azure container groups

Technical requirements
The code for this book is hosted on the GitHub repository at https://github.com/
PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose. If 
there is an update to the code, it will be updated on the GitHub repository.

In this chapter, Terraform plans will be used. To install Terraform on your system, you can follow the 
instructions from the official documentation (https://learn.hashicorp.com/tutorials/
terraform/install-cli).

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://learn.hashicorp.com/tutorials/terraform/install-cli


 Deploying Docker Compose to Azure212

Also, az , the Azure command-line interface, needs to be installed. The instructions can be found 
in the official documentation (https://docs.microsoft.com/en-us/cli/azure/).

An introduction to ACI
ACI is a serverless solution provided by Microsoft Azure. ACI makes it possible to deploy containers 
without managing any servers and infrastructure. 

A benefit of ACI is that you can run multiple containers without the need to deal with the complexity 
of a Docker orchestration engine.

However, ACI has some limitations. Based on the region, there are some limits on the maximum 
number of CPUs (four CPUs for every region) as well as on the available memory. More information 
on the limitations can be found in the docs (https://docs.microsoft.com/en-us/azure/
container-instances/container-instances-region-availability). Another 
limitation is the fact that scaling on the containers is not available (https://docs.microsoft.
com/en-us/azure/container-instances/container-instances-faq#how-do-
i-scale-a-container-group-). 

It is important to take the preceding into consideration, since they play a crucial role in understanding 
whether our application is suitable for ACI. In our case, our application can benefit from ACI since 
it is easy to deploy and has simple requirements.

To deploy to ACI, we need to have our images accessible in a way so that ACI will retrieve them. A 
registry must be in place, so we will use the Docker registry that Azure provides. Next, we will create 
an Azure container registry.

Pushing to an Azure container registry 
An Azure container registry will play a significant role in our deployment. It will be a universally 
available registry well integrated with the Azure infrastructure that we will provision. 

A basic step to creating resources on Azure is to manage them under a resource group. Think of an 
Azure resource group as a container that includes all the resources needed for our application. It is a 
way to logically separate infrastructure. For example, deleting a resource group will lead to the deletion 
of the resources provisioned under this resource group.

Our Azure container registry as well as our ACI will reside in a resource group that we will provision. 
This can be done in many ways – for example, through the command line, the Azure portal, as well 
as using Terraform.

Adding a resource group via Terraform should look like this:

resource "azurerm_resource_group" "guide_to_docker_compose_
resource_group" {

https://docs.microsoft.com/en-us/cli/azure/
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-region-availability
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-region-availability
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-faq#how-do-i-scale-a-container-group-
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-faq#how-do-i-scale-a-container-group-
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-faq#how-do-i-scale-a-container-group-


Pushing to an Azure container registry 213

  name     = "guidetodockercompose"

  location = "eastus"

}

We picked eastus on purpose, since it has more features and fewer limitations than other regions 
when it comes to ACI.

Now that we have the resource group in place, we can create a registry: 

resource "azurerm_container_registry" "guide_to_docker_compose_
registry" {

  name                = "developerguidetocomposeacr"

  resource_group_name = azurerm_resource_group.guide_to_docker_
compose_resource_group.name

  location            = azurerm_resource_group.guide_to_docker_
compose_resource_group.location

  sku                 = "Basic"

  admin_enabled       = false

}

Before we proceed to provision infrastructure using Terraform, we need to authenticate to Azure 
through the command line so that Terraform will be able to authenticate to Azure. One of the ways 
is through the Azure CLI. There are other ways to authenticate Terraform to Azure such as a service 
principal, or using a client secret or certificate; we will use the az command for simplicity purposes.

Authenticate using az:

$ az login

A web browser has been opened at https://login.microsoftonline.
com/organizations/oauth2/v2.0/authorize. Please continue the 
login in the web browser. If no web browser is available or if 
the web browser fails to open, use device code flow with `az 
login --use-device-code`.

[

  {

    ...

    "user": {

      "name": "john@doe",

      "type": "user"

    ... 

    }



 Deploying Docker Compose to Azure214

  }

]

A browser link will open asking us to log in. Once done, we shall be able to execute commands using 
az but also, we should be able to run Terraform plans on our Azure account.

The commands to use are the same as we used in the previous chapter:

$ terraform init

$ terraform apply

The infrastructure will be provisioned and the Terraform state will be hosted on our local filesystem. 
However, there is a more managed way to store the Terraform state,  distribute it to other team 
members, and prevent conflicts when accessing it.

Storing the Terraform state file

By just running the previous snippet, the state of the infrastructure provisioned will be kept locally. 
This is not something recommended in production, as the state should remain physically somewhere 
where it is feasible for multiple team members to access it. We shall use a storage account from Azure 
to achieve our goal.

Since we can create multiple resource groups, there will be a dedicated storage account for our 
Terraform plans.

Let’s create the storage account through a script:

#!/bin/bash

RESOURCE_GROUP_NAME=guide-to-docker-compose-tf

STORAGE_ACCOUNT_NAME=guidetodockercomposetf

CONTAINER_NAME=tfstate

az group create --name $RESOURCE_GROUP_NAME --location 
northeurope

az storage account create --resource-group $RESOURCE_GROUP_NAME 
--name $STORAGE_ACCOUNT_NAME --sku Standard_LRS --encryption-
services blob

az storage container create --name $CONTAINER_NAME --account-
name $STORAGE_ACCOUNT_NAME

We can now change the provider so that the state will be stored on the storage account:

terraform {

  required_providers {



Deploying on ACI 215

    azurerm = {

      source  = "hashicorp/azurerm"

      version = "=2.48.0"

    }

  }

    backend "azurerm" {

        resource_group_name  = "guide-to-docker-compose-tf"

        storage_account_name = "guidetodockercomposetf"

        container_name       = "tfstate"

        key                  = "terraform.tfstate"

    }

}

provider "azurerm" {

  features {}

}

We set up the foundation to be able to use the ACI. We have a container registry available as well as 
a resource group where our ACI application will be provisioned. We will now proceed and adapt our 
application to make a deployment to ACI.

Deploying on ACI
Since we have a container registry in place, we can now upload the Docker images we shall build 
through our Compose application. The container endpoint can be retrieved by checking the registry 
on the Azure account.

The registry endpoint should be developerguidetocomposeecr.azurecr.io/developer-
guide-to-compose.

We can now adapt our Compose file and set the name with the container images we shall push:

services:

  location-service: 

...

    image: developerguidetocomposeacr.azurecr.io/developer-
guide-to-compose:location-service_0.1 

...

  event-service: 

...

    image: developerguidetocomposeacr.azurecr.io/developer-



 Deploying Docker Compose to Azure216

guide-to-compose:events-service_0.1 

...

  task-manager: 

...

    image: developerguidetocomposeacr.azurecr.io/developer-
guide-to-compose:task-manager_0.1

Changing the image to the full path of the Azure registry brings us closer to deployment; however, there 
are more adjustments to be made due to the nature of ACI. More specifically, there are limits on the 
ports that can be used on an application as well as the limitation in regards to the resources available. 

One workaround we need has to do with ports.

As mentioned in the documentation (https://docs.microsoft.com/en-us/azure/
container-instances/container-instances-container-groups#networking), 
“within a container group, container instances can reach each other via localhost on any port, even if 
those ports aren’t exposed externally on the group’s IP address or from the container.”

If Task Manager and the location service have the same port, then there is going to be a conflict and 
the following error will occur:

listen tcp :8080: bind: address already in use

To resolve this, we shall set Task Manager to use port 80: 

  task-manager: 

    container_name: task-manager

    ...

    image: developerguidetocomposeacr.azurecr.io/developer-
guide-to-compose:task-manager_0.1

    ports: 

      - 80:80

    environment: 

    ...

      - TASK_MANAGER_HOST=:80

By using this workaround, we shall avoid the port conflict.

Another issue also has to do with the readiness of some services. event-service will try to 
access the Redis service immediately after being initiated, and this might cause a failure. At the 
time of writing, depends_on is unsupported (https://docs.microsoft.com/en-us/
azure/app-service/configure-custom-container?pivots=container-
linux#unsupported-options). 

https://docs.microsoft.com/en-us/azure/container-instances/container-instances-container-groups#networking
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-container-groups#networking
https://docs.microsoft.com/en-us/azure/app-service/configure-custom-container?pivots=container-linux#unsupported-options
https://docs.microsoft.com/en-us/azure/app-service/configure-custom-container?pivots=container-linux#unsupported-options
https://docs.microsoft.com/en-us/azure/app-service/configure-custom-container?pivots=container-linux#unsupported-options


Deploying on ACI 217

We can overcome this issue in a creative way. We shall adapt event-service and add some sleep 
before running the binary that is listening to the Redis stream:

  event-service: 

    container_name: event-service

    ...

    command:

      - /bin/sh

      - -c

      - |

        sleep 120

        /events_service

This is a simple workaround; however, there can be more effective workarounds that might even 
include a change in the code base and a health check adaption.

The next issue we should tackle is the resource limitations that come along with ACI.

In most regions, ACI comes with the limitation of four CPUs. By default, when a service is spun up, 
one CPU is allocated per service. This makes our deployment non-feasible, since we have more than 
four services.

In order to tackle this, we will adapt the resources used by the containers in our Compose application.

Docker Compose enables us to define resource constraints on the containers of a service. The available 
resource options are CPU and memory. 

When we define the memory in the resources section such as memory: 512M, we instruct the 
container of the service to use up to 512 megabytes.

When we define the CPU on the resources section such as cpu: 0.5, we instruct the container of 
the service to use half of the available time of a processing core.

When defining the resources that a container will use, we have two options, limits and reservations. 

The purpose of limits is to constrain the amount of resources to be used. This means that if our 
application has a burst of requests that require extra resources, the resources allocated will be capped 
by the limits specified. 

By using reservations, we reserve the minimum resources that our application needs in order 
to be functional. If the resources are not available, our application is not able to operate.



 Deploying Docker Compose to Azure218

For our application, due to the resource limitations, and because the default settings of our application 
will surpass the limitations (one CPU per service), we will proceed to use the resources configuration 
from Compose:

Setting cpu and memory limits:services:

  location-service: 

  ...

    deploy:

      resources:

        limits:

          cpus: '0.5'

          memory: 512M

        reservations:

          cpus: '0.5'

          memory: 512M

  event-service: 

    ...

    deploy:

      resources:

        limits:

          cpus: '0.5'

          memory: 1024M

        reservations:

          cpus: '0.5'

          memory: 1024M 

  task-manager: 

    ...

    deploy:

      resources:

        limits:

          cpus: '0.5'

          memory: 1024M

        reservations:

          cpus: '0.5'

          memory: 1024M

...



Deploying on ACI 219

So now, we can push the images and execute requests toward our application. Before we push the 
Docker images, we need to authenticate to the recently created Azure registry. 

First, we need to log in to Azure and then the registry:

$ az login

$ az acr login --name developerguidetocomposeacr

Now, it is possible to push to the container registries. 

Let’s build and push:

$ docker compose build --no-cache

$ docker compose push

...

Pushing location-service: cf8204bbc172 Pushing [============ 
==================================== 
==>]  557.8MB                                        265.5s

[+] Running 1/43ion-service: db60c013991c Pushed              
                            265.5s

...

 Pushing event-service: 24302eb7d908 Pushed                   
                       269.7s

Pushing was a success; we now need to make it feasible for Docker to create resources on Azure:

$ docker login azure

This way, Docker will retrieve credentials in order to be able to interact with Azure. Onward, we shall 
create a Docker context that will interact with the Azure resource group we created previously:

$ docker context create aci guide-to-compose-azure 

Using only available subscription : Pay-As-You-Go (c8ce802e-
f8d5-4634-b279-8d203a9c4882)

? Select a resource group  [Use arrows to move, type to filter]

  create a new resource group

> guidetodockercompose (eastus)

We are set up and can proceed to deploy our application to ACI:

$ docker --context=guide-to-compose-azure compose up

[+] Running 5/5

 Group azure       Created                      10.1s



 Deploying Docker Compose to Azure220

 redis             Created                     144.7s

 event-service     Created                     144.7s

 task-manager      Created                     144.7s

 location-service  Created                     144.7s

By using docker compose ps, we shall retrieve the IP for our application:

$ docker --context=guide-to-compose-azure compose ps

NAME                     COMMAND              
SERVICE             STATUS              PORTS

azure_event-service      ""                  event-
service       Running             

azure_location-service   ""                  location-
service    Running             

azure_redis              ""                  redis                
Running             

azure_task-manager       ""                  task-
manager        Running             20.237.67.76:80->80/tcp:80-
>80/TCP

By exposing a port through Compose, ACI will set up a load balancer and forward the requests from 
that IP to our service. Only one service can expose the specified port number.

As we can see, port 80 is exposed through the IP. We also configure the application to be accessible 
through a DNS domain:

services:

  task-manager: 

    …

    domainname: "developerguidetocompose" 

By updating the application using compose up, we should be able to have the service exposed 
through DNS:

$ docker --context=guide-to-compose-azure compose up

...

$ docker --context=guide-to-compose-azure compose ps

...

azure_task-manager       ""                  task-
manager        Running             developerguidetocompose.
eastus.azurecontainer.io:80->80/tcp:80->80/TCP



Summary 221

We can now access our application using a DNS. Using our own DNS name is also feasible.

As we can see, we have made it and managed to access our application through DNS. We uploaded 
the containers to the Azure container registry, adapted our application, and made it feasible to be 
deployed to ACI.

Summary
In this chapter, we managed to deploy our Compose application to ACI. We created a Docker registry 
on Azure and pushed the Docker images to the registry. We then deployed our application to ACI 
without the need of provisioning any infrastructure. We did some essential modifications for our 
application to run and also tested our application through a DNS domain. So far, we have covered 
running Compose on two major cloud providers, AWS and Azure, while utilizing their container 
orchestration engine offerings. 

In the next chapter, we shall try a different orchestration engine, the popular Kubernetes. We shall 
migrate an existing Compose application to a Kubernetes one.





13
 Migrating to Kubernetes 

Configuration Using Compose

In the last few chapters, we deployed a Compose application to production using two cloud providers: 
AWS and Azure. We provisioned container registries and VPCs, as well as other cloud components such 
as load balancers. We created cloud-native applications and took advantage of the features provided 
by the cloud such as autoscaling, as well as load balancing. 

In this chapter, we will focus on migrating our Compose application to a popular container orchestration 
engine: Kubernetes. Over the last few years, Kubernetes has grown a lot in popularity and it has a rich 
ecosystem of utilities and tools. There are many reasons nowadays for an engineer to choose Kubernetes 
as a container orchestration engine. This does not conflict with using Compose and Kubernetes. 
Compose can be the lightweight tool that can assist during local development, while Kubernetes can 
be the choice for production. In this chapter, we will make a transition from Compose to Kubernetes. 
We will identify the corresponding Kubernetes components to the Compose ones and we will generate 
the Kubernetes deployment configurations.

In this chapter, we will cover the following topics:

•	 Introduction to Kubernetes

•	 Kubernetes components and Compose

•	 Using Kompose to convert files

•	 Introduction to Minikube

•	 Deploying your application to Kubernetes



 Migrating to Kubernetes Configuration Using Compose224

Technical requirements
The code for this book is hosted in this book’s GitHub repository at https://github.com/
PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose. If 
updates are made to the code, they will be reflected in this GitHub repository.

Introduction to Kubernetes
Kubernetes is a container orchestration engine. By using Kubernetes, we can automate the deployment, 
scaling, and management of container-based applications. Since it is open source, a Kubernetes cluster 
can be set up from scratch in your data center, whether it is an on-premise data center or in the cloud. 
Also, there is the option of using a managed Kubernetes cluster. Due to its growing popularity, every 
major cloud provider, such as AWS, Google Cloud, and Azure, has a managed Kubernetes offering.

When we deploy an application on Kubernetes, we deploy the application to an environment that has 
various capabilities that assist in provisioning, scaling, and monitoring that application.

Kubernetes provides a distributed and robust way to store application secrets and configurations. It 
offers a health check and readiness system for a deployed application. It can scale the application that’s 
been provisioned as well as load balance the traffic. It also provides the necessary tools to monitor as 
well as debug an application. Finally, it provides a layer of service communication through naming 
a service discovery.

Considering these points, by deploying an application to Kubernetes, we expect the following to happen:

•	 The application is scheduled to be deployed and run on the node of the Kubernetes cluster.

•	 The application will use the configuration, secrets, and environment variables that are defined 
when deploying.

•	 Kubernetes will scale the application to the number of application instances we defined.

•	 Kubernetes will monitor the health and readiness of the application and will replace 
unresponsive containers.

•	 Kubernetes will load balance the traffic toward our application to the multiple instances that 
are running inside the cluster.

•	 Kubernetes will provide an extra layer of security by enabling and disabling traffic  
between applications.

•	 Kubernetes will provide a service discovery so that our applications will be able to seamlessly 
connect to other applications through the cluster without any manual intervention.

Now that we know more about Kubernetes and how this works for our applications, let’s see how 
the Compose components of Kubernetes match with the ones we use for Compose and how we can 
make a migration feasible.

https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose
https://github.com/PacktPublishing/A-Developer-s-Essential-Guide-to-Docker-Compose


Kubernetes components and Compose 225

Kubernetes components and Compose
Our Compose applications are simplistic, but if we look carefully, they do have certain components 
in place. Those components have their corresponding Kubernetes components.

Compose applications versus namespaces

As we saw in Chapter 11, Deploying Docker Compose to AWS, an ECS cluster can host multiple 
Compose applications. Our Compose application, in a way, provides a way to group the resources 
that we provision on an ECS cluster. In Kubernetes, this is done through namespaces. Namespaces 
can help different applications share a cluster while being logically isolated from each other. 

Compose services versus Kubernetes services

In the Compose specification, service represents the context of a service that is backed by one 
or more containers. As we know, when we define the service, we can configure the name of the 
underlying containers.

The equivalent of this on Kubernetes is the combination of Kubernetes Pods, Deployments, and 
Services. A Pod on Kubernetes is the smallest deployable unit of computing that can be deployed to 
Kubernetes. When deploying a Pod to Kubernetes, a singular container will be deployed to a Node 
in Kubernetes with the configuration specified. It is a single instance of the deployment we made, 
which leads us to Deployments. 

Deployments on Kubernetes are a declarative way to define an application and specify the Pods that 
comprise that application, as well as the number of replicas that the Pod will have. Since we introduced 
the concept of replicas, load balancing is the next logical step to identify.

Services on Kubernetes provide an abstract way to access the Pods of a Deployment. In Compose, we 
can access a service directly by using the service name as a DNS. In Kubernetes, we need to define a 
Service that provides this abstraction inside the Kubernetes cluster. The Service will provide a single 
DNS name under which we shall be able to interact with the Pods of an application. Also, by using 
the Service, the traffic will be load balanced across the Pods of the Deployment. 

Labels

In Compose, we can use labels – that is, key/value pairs that are attached to Compose components. 
Labels can be added to services, images, and every resource defined in the Compose application. With 
labels, we have a way to attach metadata to the Compose components. Kubernetes takes the same 
concept of labels and takes it one step further. In Kubernetes, labels are not limited only to some type 
of metadata information.



 Migrating to Kubernetes Configuration Using Compose226

Labels can be attached to every component in Kubernetes. What makes Kubernetes labels important 
is their usage. Through labels, a Service can identify the Pods it should direct traffic to. Through labels, 
we can define rules that enable ingress and egress between Kubernetes Pods. 

Compose networks versus network policies

In Compose, we have networks, which represent communication links between services. If we create 
a Compose application without a network defined, all the services will reside on the same network. 
This way, all the services can communicate with each other. If we define networks on Compose, for 
the services to communicate, they need to be on the same network. In Kubernetes, this is done with 
the help of NetworkPolicy. By defining a network policy, we can specify ingress and egress rules 
by using IP blocks, namespace matchers, or Pod selectors.

Labels have a key role in this since we can route traffic between Pods by using just labels. On the 
other hand, since we might want to be able to establish communication between multiple applications 
on a Kubernetes cluster located on different namespaces, traffic routing can also be defined using 
namespace selectors. 

Now that we’ve provided an overview of the Compose components and their equivalent in Kubernetes, 
let’s convert our existing Compose application into a Kubernetes one.

Using Kompose to convert files
Converting an existing Compose application into Kubernetes should not be difficult. A Compose 
application has a much simpler structure, whereas a Kubernetes deployment can get much more 
complex as Kubernetes comes with many features and capabilities.

As a use case, we will pick the application we built in Chapter 5, Connecting Microservices. We will 
just use the Compose file with some adaptations.

There is the option to convert a Compose application into the equivalent Kubernetes resources manually. 
Alternatively, a tool such as Kompose can be used. By using Kompose, we can convert our Compose 
application into the equivalent Kubernetes resources needed for our application. 

Installing Kompose should be easy – we can just follow the instructions at https://kompose.
io/installation/. 

Before we jump into conversion, we need to make some adaptations to our application.

One of the things that Kompose needs is the version of our Compose file:

version: '3'

Another important part of the Compose service is to expose the ports. By exposing the ports, we make 
it feasible for Kompose to identify a port that needs to be exposed on a deployment. 

https://kompose.io/installation/
https://kompose.io/installation/


Using Kompose to convert files 227

In Compose, when exposing a port, it will translate into a public port so that it can be deployed to 
ECS and Azure.

In Kubernetes, exposing a port on a deployment serves documentation, just like EXPOSE on a 
Dockerfile. To expose a Pod in Kubernetes in a load-balanced form internally, a Service is needed.

Let’s add the port on Redis:

services:

  redis: 

    image: redis 

    networks:

      - redis-network

    ports: 

      - 6379: 6379

...

Now, let’s add the port to the location service:

services: 

  location-service: 

  ...

    ports: 

      - 8080:8080

   ...

Another adaptation we need to do has to do with health checks’ start_period. In Kubernetes, 
there is the context of health checks but also the context of readiness prompts. Instead of waiting for 
when the health checks should start, a readiness prompt is provided to identify when the application 
is ready, and when the health checks should take effect.

Therefore, the applications with health checks should be adapted to this:

    healthcheck: 

      test: ["CMD", "curl", "-f", "http://localhost:8080/ping"] 

      interval: 10s 

      timeout: 5s 

      retries: 5 

      start_period: 5s



 Migrating to Kubernetes Configuration Using Compose228

We are now ready to generate the files:

$ kompose convert

Provided we run on the same directory where the Compose file exists, we shall see the files  
being generated.

If we examine these files, we shall see three distinct types:

•	 Deployment

•	 Services

•	 Network policies

The content of our application and configuration resides in the deployment file.

If we inspect the task-manager-deployment.yaml file, we will see that the environment 
variables and their corresponding health checks are there. Also, take note that the port is exposed. 

The next file to inspect is the service. Unlike Compose, where the application can be reached under 
the service name without any adaptation, in Kubernetes, we need to place a Service in front of it so 
that rooting traffic through a DNS name takes effect. 

Then, we can see the network policies. Provided a network plugin is installed in Kubernetes, we allow 
traffic ingress from other Pods based on their labels.

In both Redis and the location network policies, the ingress between the Pods is routed by using the 
Pod labels.

Now, let’s deploy the application to a Kubernetes cluster.

Introduction to Minikube
A way to run and test your Kubernetes deployments locally is through Minikube. Minikube is a local 
Kubernetes engine that we can deploy and test our Kubernetes application on. 

Since Minikube is not a fully operational Kubernetes cluster, in the context of having some highly 
available master nodes and some node groups attached, we are limited to what we can test. For example, 
we cannot scale the underlying node group based on the increase of our workloads or spread the 
deployment of our applications to different availability zones. However, for our usage, it covers all 
the aspects of our application.

Based on your workstation instance, you can find the corresponding installation instructions (https://
minikube.sigs.k8s.io/docs/start/).

https://minikube.sigs.k8s.io/docs/start/
https://minikube.sigs.k8s.io/docs/start/


Introduction to Minikube 229

If you have Minikube installed and want to start fresh, you can delete the previous container and 
start a new one:

$ minikube stop && minikube delete

A network policy requires a network plugin. This way, the rules will take effect and we can enable 
the service to communicate together or prevent them. By default, Minikube does not have a network 
plugin enabled. We shall use Calligo for our network policies to take effect.

Let’s start Minikube:

$ minikube start --network-plugin=cni --cni=calico

If a failure occurs on macOS, you will see an error message similar to the following:

You might also need to resize the docker driver desktop.

In this case, resizing the disk image size of your Docker Desktop configuration can help:

Figure 13.1 – Disk image resize



 Migrating to Kubernetes Configuration Using Compose230

Let’s test Minikube by applying a deployment:

$ kubectl create deployment nginx --image=nginx

deployment.apps/nginx created

$ kubectl get pod

NAME                              READY   
STATUS    RESTARTS        AGE

nginx-8f458dc5b-z2ctk             1/1     Running   0               
55s

Now, we can install the files that have been generated. The next step is to have Task Manager fully 
working on Kubernetes.

Deploying to Kubernetes
With this Kubernetes Deployment, we are closer to the goal of migrating our application. However, 
there is one thing we need to take care of and this has to do with pulling the images from a registry. 
As we have seen on ECS and ACI, it is essential to have a way for the container orchestration engine 
to be able to access the images from a registry. Since we are using Minikube, there is no need for us 
to provision a registry.

We can build our images and deploy them to the local Minikube registry. To achieve this, we shall 
point our build operations to the Minikube local registry.

We shall do this through the docker-env command of Minikube:

$ eval $(minikube docker-env)

Now, let’s build and deploy those images toward that registry:

$ docker compose build

Applying the files we’ve generated previously should now be streamlined.

Let’s start with the Redis deployments:

kubectl apply -f redis-deployment.yaml

kubectl apply -f redis-service.yaml

kubectl apply -f redis-network-networkpolicy.yaml

Since Redis is up and running, the next component we will cover is the Event Service. The only 
dependency the Event Service has is Redis:

kubectl apply -f event-service-deployment.yaml



Deploying to Kubernetes 231

The next Service that is also dependent on Redis is the location service:

kubectl apply -f location-service-deployment.yaml

kubectl apply -f location-service-service.yaml

kubectl apply -f location-network-networkpolicy.yaml

Last but not least, let’s deploy Task Manager:

kubectl apply -f task-manager-deployment.yaml

kubectl apply -f task-manager-service.yaml

At this point, our application should have been fully deployed to Kubernetes.

Let’s port-forward Task Manager: 

$ kubectl port-forward svc/task-manager 8080:8080

Since our application is up and running, let’s create a task by executing a request using curl:

$ curl --location --request POST '127.0.0.1:8080/task/' \

--header 'Content-Type: application/json' \

--data-raw '{

    "id": "8b171ce0-6f7b-4c22-aa6f-8b110c19f83a",

    "name": "A task",

    "description": "A task that need to be executed at the 
timestamp specified",

    "timestamp": 1645275972000,

    "location": {

        "id": "1c2e2081-075d-443a-ac20-40bf3b320a6f",

        "name": "Liverpoll Street Station",

        "description": "Station for Tube and National Rail",

        "longitude": -0.081966,

        "latitude": 51.517336

    }

}'

{"created":true,"message":"Task Created Successfully","tas
k":{"id":"8b171ce0-6f7b-4c22-aa6f-8b110c19f83a","name":"A 
task","description":"A task that need to be executed at the 
timestamp specified","timestamp":1645275972000,"location":{"
id":"1c2e2081-075d-443a-ac20-40bf3b320a6f","name":"Liverpoll 
Street Station","description":"Station for Tube and National 
Rail","longitude":-0.081966,"latitude":51.517336}}}



 Migrating to Kubernetes Configuration Using Compose232

We can check that the network policies work by tweaking the configurations. 

Now, let’s apply a deny-all network policy:

$ kubectl create -f - <<EOF

kind: NetworkPolicy

apiVersion: networking.k8s.io/v1

metadata:

  name: deny-all

spec:

  podSelector:

    matchLabels: {}

EOF

If we delete the Redis network policy, we won’t be able to access the Redis database from the Pods 
anymore:

$ kubectl delete –f ./redis-network-networkpolicy.yaml

We did it! We just migrated our application to Kubernetes! The Compose services are running as 
deployments with a Kubernetes Service in front of them and we have our network policy rules 
taking effect.

Summary
In this chapter, we were introduced to Kubernetes, some of its basic components, and the corresponding 
Kubernetes components for our Compose application’s components. Then, we migrated the Compose 
application to the necessary Kubernetes resources that are required to make our application operational. 
To do so, we used Kompose to streamline the generation of Kubernetes files. Then, we installed 
Minikube, including the network plugin Calico. By having Minikube up and running, we managed 
to deploy our application and test it.

So far, we have used Compose extensively for different occasions. We used it for day-to-day development, 
testing production deployments, and also to implement a Kubernetes deployment. At this point, you 
should be able to confidently use Compose for your day-to-day work productively.

I would like to thank you for choosing this book. Now, it is your choice where and how you will apply 
this recently acquired knowledge. Whether it will be your new cloud-native application, an environment 
for CI/CD tasks, or a local environment for your team, it is your choice.

That’s it! This is the end of this book. Go ahead and build amazing things.



Index

A
advanced Docker Compose

on ECS  206
application packaging, with 

Docker and Compose
about  30
Docker image creation  31, 32
environment configuration, enabling  30, 31
image, building with Compose  34
image name, building  34, 35
image name, defining  34, 35
image, running  32, 33

AWS CLI
ECR, provisioning with  191, 192
reference link for image  145

AWS EC2
Docker remote hosts, creating  176, 177

AWS ECS  190
AWS Fargate  190
AWS Simple Storage Service (S3)  191
AWS Virtual Private Cloud (VPC)  190
Azure Container Instances (ACI)

about  211, 212
benefit  212
Compose application, deploying on  215-220
limitations  212

Azure container registry
about  212
resource group, adding  212, 213
Terraform state file, storing  214, 215

B
bind mounts  51
BIOS

virtualization, enabling on Windows  6
Bitbucket pipelines  166
bridge network

about  55, 56
user-defined bridge network  56

build command  66

C
cleanup commands

about  73
down  73-76
rm  76, 77

CloudFormation  197
CloudWatch

URL  17
Cobra  12



Index234

Compose
environments, creating  138
local Docker registry  79
location service, adding  97-99
used, for running Redis  26

Compose application
deploying, to Azure ACI  211, 215-221
deploying, to ECS cluster  196-199
event service  128
location service  127, 128
running individually  138, 139
running, on existing infrastructure  205
running, to existing cluster  200
running, with capturing enabled  138
running, with monitoring disabled  138
scaling  206-208
secrets, using  208
task-manager base  126
task-manager service  129
updating  206
versus namespaces  225

Compose commands
about  64
target application, setting up  65
versus Docker CLI commands  64

Compose configuration
network, defining on  57, 58

Compose files
combining  130, 131
combining into one, with config  139, 140
Docker volumes, declaring on  49
extending services feature  132
Hoverfly, using  131
in event service  128
in location service  127, 128
in Prometheus  130
in task-manager base  126
in task-manager service  129

selecting, for execution  131
splitting  126
updating  204, 205

Compose network
Prometheus, adding to  117, 118
versus network policies  226

Compose services
about  28
versus Kubernetes services  225

Compose Switch
reference link  11

config command  85
configuration file

creating  51
container

Docker volume, attaching to  44, 45
container commands

about  68
exec  69
kill  72
pause  70
ps  72, 73
restart  71, 72
run  69
start  71
stop  71
unpause  70

continuous integration/continuous 
delivery (CI/CD)  162, 163

core application
creating  22

create command  66
cURL  35

D
Docker

about  3



Index 235

installing  5
installing, on macOS  5, 6

Docker CLI commands
versus Compose commands  64

docker compose command
versus docker-compose command  10, 11

Docker Compose
about  3, 4
deploying, to remote hosts  184, 185
features  4
installing  4
links  155
usage  4
working  11-13

Docker Compose CLI utility  4
Docker Compose file  13-16
Docker Compose service

interacting with  28, 29
Docker Compose, using with 

Bitbucket pipelines
about  166
application images, building  168, 169
Bitbucket pipeline, creating  166, 167
Compose and Docker images, caching  168
Compose application, testing  169, 170

Docker Compose, using with GitHub Actions
about  163
application images, building  164
built images, caching  164
Compose application, testing  165, 166
GitHub Action, creating  163, 164

Docker Compose, using with Travis
about  170
application images, building  171
Compose application, testing  171, 172
Compose, caching  171
Travis job, creating  170, 171

Docker Contexts  183, 184

Docker Desktop
about  5
installing, on Linux  8, 10
installing, on Windows  6-8

Docker Desktop for Mac
installation link  5

Docker Desktop for Windows
installation link  5

Docker Engine  8
Docker Engine for Linux

installation link  5
Docker image

using, on Docker Compose  17-20
Docker images, hosting on AWS ECR

about  191
Compose application images, 

adapting  195, 196
ECR, provisioning with AWS CLI  191, 192
ECR, provisioning with Terraform  192
images, pushing to ECR  194
Terraform state file, storing  193, 194

Docker networking
about  54, 55
bridge  55, 56
host  56
overlay  57

Docker remote hosts
about  176
creating  176
creating, on AWS EC2  176, 177
deployments, executing 

through IDE  185-187
Docker Compose, deploying  184, 185
using  182

Docker remote hosts, on AWS EC2
EC2 machine, setting up with 

SSH enabled  178-182
Terraform, installing  178



Index236

Docker volumes
about  44
attaching, to container  44, 45
attaching, to existing application  49, 50
characteristics  44
declaring, on Compose files  49
file, mounting  51
read-only volumes  47
shared volumes  46

down command  73-76
DynamoDB

setting up locally  144
tables, creating  145, 146

E
EC2 machine

setting up, with SSH enabled  178-182
ECR

images, pushing to  194
provisioning, with AWS CLI  191, 192
provisioning, with Terraform  192

ECS cluster
Compose application, deploying to  196-199
configuring  204

ElastiCache
reference link  26

elasticmq
reference link  147

ELK Stack
URL  17

endpoint
adding, to Prometheus  110

environments
creating  138

environment variables  31
events command  83, 84
Event Service

metrics, exporting from  112-114
exec command  69

F
file

converting, with Kompose  226-228
mounting, with volume  51

G
gauge

reference link  112
Gin

URL  22
GitHub Actions  163
Go

about  4, 22
download link  22
installing  22
REST API, building with Gin  22, 23

Go application
reference link  110

H
hash  28
health check, multi-container application

about  35
adding, to Compose  36, 37
working  35

help command  84
host network  56
Hoverfly

about  131
mock applications, creating with  136
traffic, capturing with  133, 134
URL  131



Index 237

using  132
HTTP traffic capturing, with Hoverfly

location service simulation, extracting  135
Pushgateway simulation, extracting  135
simulation, adapting  136

I
image commands

about  78
list  78
pull  78, 79
push  79-81

Infrastructure as Code (IaC)  178
integrated development environment (IDE)

about  185
remote host deployments, executing 

through  185-187

K
kill command  72
Kompose

for converting files  226-228
reference link  226

Kubernetes
about  224
components, and Compose  225
considerations, for application 

deployment  224
deploying to  230-232

L
labels

using  225
Lambda functions

connecting  156-158

Linux
Docker Desktop, installing on  8-10

list command  78
load balancer

configuring  204
local driver  45
local DynamoDB

interacting with  146, 147
location service

about  90-97
adding, to Compose  97-99
network, adding  99, 100
requests, executing  100-102

log group
creating  200

logs command  82, 83

M
macOS

Docker, installing on  5, 6
Memorystore

reference link  26
metrics

exporting, from Event Service  112-114
parsing, with Prometheus 

configuration  114-116
pushing, to Prometheus  118, 119

metrics endpoint
adding, to location service  112
adding, to Task Manager  110, 111

metrics query
alert, adding  121, 123
creating  119-121

Minikube
about  228-230
reference link  228

mock applications, creating with Hoverfly



Index238

mock location service  136, 137
mock Pushgateway  137

monitoring commands
about  82
events  83, 84
logs  82, 83
top  83

multi-container application
containers  40, 41
health check  35
images  40
labels  40
running, with Compose  35
task-manager service  37

N
network

adding, for location microservice  99, 100
adding, to current application  59, 60
defining, on Compose configuration  57, 58

NGINX server  13
NoSQL database  144

O
overlay network  57

P
pause command  70
persistence options, Redis

reference link  50
ping endpoint  35
port command  84
private network

creating  201-203

Prometheus
about  110
adding, to Compose network  117, 118
configuring, to parse metrics  114-116
endpoint, adding  110
features  110
metrics, pushing to  118, 119

provisioning commands
about  65
build  66
create  66
up  67, 68

ps command  72
pull command  78, 79
push command  79

R
read-only volumes

about  47
mounting  52-54

Redis
about  26
commands, running  27
running, Compose used  26

Redis CLI  27
requests

executing, to location microservice  100-102
REST API

building, with Gin  22, 23
used, for Task Manager application  23-25

restart command  71, 72
REST-based Lambda function

setting up  150-153
rm command  76, 77
run command  69



Index 239

S
score  28
security groups  203
shared volumes  46
Simple Queue Service (SQS)

setting up locally  147-149
Simple Storage Service (S3)

setting up locally  149, 150
sops

reference link  208
sorted set  28
SQS-based Lambda function

setting up  153-155
SSH enabled

EC2 machine, setting up with  178-182
StackDriver

URL  17
start command  71
stop command  71
Swarm  57

T
task events

streaming  102-105
task events processing microservice

adding  105-107
Task Manager

metrics endpoint, adding  110, 111
REST API, using  23-25

task-manager image
pushing, to local registry  80

task-manager service
about  37
custom ENTRYPOINT  39, 40

entry point  38
environment files  38
script  39

Terraform
ECR, provisioning with  192
installing  178

top command  83
Travis  170

U
unpause command  70
up command  67, 68
user-defined bridge network  56

V
version command  84
volume drivers

about  47, 48
using  48

W
Windows

Docker Desktop, installing on  6-8
workloads

segregating, into private and public  144





Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packt.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of 
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
http://www.packt.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Docker - Fourth Edition

Russ McKendrick

ISBN: 9781839216572

•	 Get to grips with essential Docker components and concepts 

•	 Discover the best ways to build, store, and distribute container images 

•	 Understand how Docker can fit into your development workflow 

•	 Secure your containers and files with Docker’s security features 

•	 Explore first-party and third-party cluster tools and plugins 

•	 Launch and manage your Kubernetes clusters in major public clouds  

https://www.packtpub.com/product/mastering-docker-fourth-edition/9781839216572


Other Books You May Enjoy 243

Continuous Delivery with Docker and Jenkins - Third Edition

Rafał Leszko

ISBN: 9781803237480

•	 Grasp Docker fundamentals and dockerize applications for the CD process 

•	 Understand how to use Jenkins on-premises and in the cloud 

•	 Scale a pool of Docker servers using Kubernetes 

•	 Write acceptance tests using Cucumber 

•	 Run tests in the Docker ecosystem using Jenkins 

•	 Provision your servers and infrastructure using Ansible and Terraform 

•	 Publish a built Docker image to a Docker registry 

•	 Deploy cycles of Jenkins pipelines using community best practices 

https://www.packtpub.com/product/continuous-delivery-with-docker-and-jenkins-third-edition/9781803237480


244

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished A Developer’s Essential Guide to Docker Compose, we’d love to hear your thoughts! 
If you purchased the book from Amazon, please click here to go straight to the Amazon review page 
for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803234369 



	Cover
	Title Page
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1: 
Docker Compose 101
	Chapter 1: Introduction to Docker Compose
	Technical requirements
	Introducing Docker Compose and its usage
	Installing Docker Compose
	Docker Desktop
	Installing Docker
	docker compose versus docker-compose

	Understanding how Docker Compose works
	Your first Docker Compose file
	Using your Docker image on Docker Compose
	Summary

	Chapter 2: Running the First 
Application Using Compose
	Technical requirements
	Creating a core application
	Installing Go
	A REST API in Go using Gin
	The application

	Running Redis using Compose
	Shelling into a container managed by Compose
	Interacting with a Docker Compose service
	Packaging your application with Docker and Compose
	Enabling environment configuration
	Docker image creation
	Running the image
	Build an image using Compose

	Running your multi-container application using Compose
	Health check
	Depending on services
	Labels
	Images
	Containers

	Summary

	Chapter 3: Network and 
Volumes Fundamentals
	Technical requirements
	Explaining Docker volumes
	Attaching a Docker volume to a container
	Shared volumes
	Read-only volumes

	Docker volume drivers
	Using a volume driver versus mounting locally

	Declaring Docker volumes on Compose files
	Attaching Docker volumes to an existing application
	Creating a configuration file
	Mounting a file using volume
	Mounting read-only volumes

	Docker networking
	Bridge
	Host
	Overlay

	Defining networks on a Compose configuration
	Adding an extra network to the current application
	Summary

	Chapter 4: Executing Docker 
Compose Commands
	Technical requirements
	Introducing Compose commands
	The Docker CLI versus Compose commands
	Setting up the target application

	Provisioning commands
	build
	create
	up

	Container commands
	exec
	run
	pause
	unpause
	start and stop
	restart
	kill
	ps

	Cleanup commands
	down
	rm

	Image commands
	List images
	Pulling images
	Pushing images
	Local Docker registry on Compose
	Pushing to the local registry

	Monitoring commands
	Logs
	top
	Events

	Other commands
	help
	version
	port
	config

	Summary

	Part 2: 
Daily Development with Docker Compose
	Chapter 5: Connecting Microservices
	Technical requirements
	Introducing the location microservice
	Adding a location service to Compose
	Adding a network for the location microservice
	Executing requests to the location microservice
	Streaming task events
	Adding a task events processing microservice
	Summary

	Chapter 6: Monitoring Services with Prometheus
	What is Prometheus?
	Adding an endpoint for Prometheus
	Adding the metrics endpoint to the Task Manager 
	Adding the metrics endpoint to the location service 
	Exporting metrics from the Event Service 

	Configuring Prometheus to parse metrics
	Adding Prometheus to the Compose network
	Pushing metrics to Prometheus

	Creating your first metrics query
	Adding an alert

	Summary

	Chapter 7: Combining Compose Files
	Technical requirements
	Splitting Compose files
	Task Manager base
	Location service
	Event service
	Task Manager
	Prometheus

	Combining Compose files
	Selecting the Compose files to run 
	Using Hoverfly
	Extending services
	Capturing traffic with Hoverfly
	Creating mock applications using Ηoverfly

	Creating different environments
	Running with capturing enabled
	Running with monitoring disabled
	Running applications individually

	Combining multiple Compose files into one
	Using config

	Summary

	Chapter 8: Simulating Production Locally
	Technical requirements
	Segregating private and public workloads
	Setting up DynamoDB locally
	Creating DynamoDB tables
	Interacting with the Local DynamoDB

	Setting up SQS locally
	Setting up S3 locally
	Setting up a REST-based Lambda function
	Setting up an SQS-based Lambda function
	Docker Compose links

	Connecting the Lambda functions
	Summary

	Chapter 9: Creating Advanced CI/CD Tasks
	Technical requirements
	Introduction to CI/CD 
	Using Docker Compose with GitHub Actions
	Creating your first GitHub Action
	Caching built images
	Building application images
	Testing your Compose application

	Using Docker Compose with Bitbucket pipelines 
	Creating your first Bitbucket pipeline
	Caching Compose and Docker images
	Building application images
	Testing your Compose application

	Using Docker Compose with Travis
	Creating your first Travis job
	Caching Compose
	Building application images
	Testing your Compose application

	Summary

	Part 3: 
Deployment with Docker Compose
	Chapter 10: Deploying Docker Compose Using Remote Hosts
	Technical requirements
	Docker remote hosts
	Creating a remote Docker host
	Creating a Docker host on AWS EC2
	Using the remote Docker host

	Docker Contexts
	Deploying Compose to remote hosts 
	Executing remote host deployments through your IDE
	Summary

	Chapter 11: Deploying Docker Compose 
to AWS
	Technical requirements
	Introduction to AWS ECS
	Hosting your Docker images on AWS ECR 
	Provision ECR using AWS CLI
	Provision ECR using Terraform
	Storing a Terraform state file
	Pushing images to ECR
	Adapting the Compose application images

	Deploying your application to an ECS cluster 
	Running your Compose application to an existing cluster
	Creating a log group
	Creating a private network
	Security groups
	Configuring the ECS cluster and the load balancer
	Updating the Compose file
	Running your Compose application on existing infrastructure

	Advanced Docker Compose concepts on ECS
	Updating the application
	Scaling the application
	Using secrets

	Summary

	Chapter 12: Deploying Docker Compose 
to Azure
	Technical requirements
	An introduction to ACI
	Pushing to an Azure container registry 
	Storing the Terraform state file

	Deploying on ACI
	Summary

	Chapter 13: Migrating to Kubernetes Configuration Using Compose
	Technical requirements
	Introduction to Kubernetes
	Kubernetes components and Compose
	Compose applications versus namespaces
	Compose services versus Kubernetes services
	Labels
	Compose networks versus network policies

	Using Kompose to convert files
	Introduction to Minikube
	Deploying to Kubernetes
	Summary

	Index
	About Packt
	Other Books You May Enjoy



