
#ifdef Considered Harmful, or
Portability Experience With C News
Henry Spencer –Zoology Computer Systems, University of Toronto

Geoff Collyer –Software Tool & Die

ABSTRACT

We believe that a C programmer’s impulse to use#ifdef in an attempt at portability is
usually a mistake. Portability is generally the result of advance planning rather than trench
warfare involving #ifdef. In the course of developing C News on different systems, we
evolved various tactics for dealing with differences among systems without producing a
welter of #ifdefs at points of difference. We discuss the alternatives to, and occasional
proper use of,#ifdef.

Introduction

With UNIX running on many different comput-
ers, vaguelyUNIX-like systems running on still more,
and C running on practically everything, many peo-
ple are suddenly finding it necessary to port C
software from one machine to another. When differ-
ences among systems cause trouble, the usual first
impulse is to write two different versions of the
code—one per system—and use#ifdef to choose the
appropriate one. This is usually a mistake.

Simple use of#ifdef works acceptably well
when differences are localized and only two versions
are present. Unfortunately, as software using this
approach is ported to more and more systems, the
#ifdefs proliferate, nest, and interlock. After a
while, the result is usually an unreadable, unmain-
tainable mess. Portability without tears requires
better advance planning.

When we wrote C News [Coll87a], we put a
high priority on portability, since we ran several dif-
ferent systems ourselves, and expected that the
software would eventually be used on many more.
Planning for future adaptations saved us (and others)
from trying to force changes into an uncooperative
structure when we later encountered new systems.
Porting C News generally involves writing a few
small primitives. There have been surprises, but in
the course of maintaining and improving the code
and its portability, we insisted that the software
remain readable and fixable. And we were not
prepared to sacrifice performance, since one of C
News’s major virtues is that it is far faster than older
news software. We evolved several tactics that
should be widely applicable.

The Nature of the Problem

Consider what happens when#ifdef is used
carelessly. Thefirst #ifdef probably doesn’t cause
much trouble. Unfortunately, they breed. Worse,
they nest, and tend to become more deeply nested
with time. #ifdefs pile on top of #ifdefs as

portability problems are repeatedly worked around
rather than solved. The result is a tangled and often
impenetrable web. Here’s a noteworthy example
from a popular newsreader.1 See Figure 1. Observe
that, not content with merely nesting#ifdefs, the
author has#ifdef and ordinaryif statements (plus the
mysterious IF macros) interweaving. This makes
the structure almost impossible to follow without
going over it repeatedly, one case at a time.

Furthermore, given worst case elaboration and
nesting (each#ifdef always has a matching#else),
the number of alternative code paths doubles with
each extra level of#ifdef. By the time the depth
reaches 5 (not at all rare in the work of#ifdef
enthusiasts), there are potentially 32 alternate code
paths to consider. How many of those paths have
been tested? Probably two or three. How many of
the possible combinations even make sense? Often
not very many. Figure 2 is another wonderful exam-
ple, the Leaning Tower Of Hostnames. It’s most
unlikely thatanyoneunderstands this code any more.
In such situations, maintenance is reduced to hit-or-
miss patching. If you find and fix a bug, how many
other branches does it need to be fixed on? If you
discover a performance bottleneck and work out a
way to fix it, will you have to apply the fix
separately to each branch? Now envision what hap-
pens when hurried or careless maintainersdon’t
apply their fixes in all the places where they are
relevant.

Philosophical Aspects

The key step in avoiding such messes is to
realize thatportability requires planning. There is
an abundance of bad examples to show that portabil-
ity cannot be added onto or patched into unportable
software. Many of the problems we discuss stem
from the ‘‘never mind good, we want it next week’’

1To quote from the oldUNIX kernel: ‘‘you are not
expected to understand this’’.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 185

#ifdef Considered Harmful ... Spencer,& Collyer

approach to software.

void

cleanup_rc()

{

register NG_NUM ngx;

register NG_NUM bogosity = 0;

#ifdef VERBOSE

IF(verbose)

fputs("Checking out your .newsrc--hang on a second...\n",stdout)

FLUSH;

ELSE

#endif

#ifdef TERSE

fputs("Checking .newsrc--hang on...\n",stdout) FLUSH;

#endif

for (ngx = 0; ngx < nextrcline; ngx++) {

if (toread[ngx] >= TR_UNSUB) {

set_toread(ngx); /* this may reset newsgroup */

/* or declare it bogus */

}

if (toread[ngx] == TR_BOGUS)

bogosity++;

}

for (ngx = nextrcline-1; ngx >= 0 && toread[ngx] == TR_BOGUS; ngx--)

bogosity--; /* discount already moved ones */

if (nextrcline > 5 && bogosity > nextrcline / 2) {

fputs(

"It looks like the active file is messed up. Contact your news administrator,\n\

",stdout);

fputs(

"leave the \"bogus\" groups alone, and they may come back to normal. Maybe.\n\

",stdout) FLUSH;

}

#ifdef RELOCATE

else if (bogosity) {

#ifdef VERBOSE

IF(verbose)

fputs("Moving bogus newsgroups to the end of your .newsrc.\n",

stdout) FLUSH;

ELSE

#endif

#ifdef TERSE

fputs("Moving boguses to the end.\n",stdout) FLUSH;

#endif

for (; ngx >= 0; ngx--) {

if (toread[ngx] == TR_BOGUS)

relocate_newsgroup(ngx,nextrcline-1);

}

#ifdef DELBOGUS

reask_bogus:

in_char("Delete bogus newsgroups? [ny] ", ’D’);

setdef(buf,"n");

#ifdef VERIFY

printcmd();

#endif

putchar(’\n’) FLUSH;

if (*buf == ’h’) {

#ifdef VERBOSE

IF(verbose)

fputs("\

Type y to delete bogus newsgroups.\n\

Type n or SP to leave them at the end in case they return.\n\

",stdout) FLUSH;

ELSE

#endif

#ifdef TERSE

fputs("y to delete, n to keep\n",stdout) FLUSH;

#endif

goto reask_bogus;

}

else if (*buf == ’n’ || *buf == ’q’)

;

else if (*buf == ’y’) {

while (toread[nextrcline-1] == TR_BOGUS && nextrcline > 0)

--nextrcline; /* real tough, huh? */

}

else {

fputs(hforhelp,stdout) FLUSH;

settle_down();

goto reask_bogus;

}

#endif

}

#else

#ifdef VERBOSE

IF(verbose)

fputs("You should edit bogus newsgroups out of your .newsrc.\n",

stdout) FLUSH;

ELSE

#endif

#ifdef TERSE

fputs("Edit boguses from .newsrc.\n",stdout) FLUSH;

#endif

#endif

paranoid = FALSE;

}

Figure 1: Example of overuse of #ifdef

Even the best planning cannot anticipate all
problems, but it is important to retain the emphasis
on planning even into ongoing maintenance. When
a new portability problem surfaces, it is important to
step back andthink about the problem and its solu-
tion. Is this a unique problem, or the harbinger of a
whole new class of them? Usually it’s the latter,
which makes planning all the more crucial: how can
the solution deal with all of them, not just the
current one? Failure to think leads to the patch-
upon-patch approach to portability, rapidly producing
unreadable and unmaintainable code.

Once the problem (class) and the solution are
understood, then and only then it is time to start
work on the code. Typically this will mean re-
implementing parts of it, not just hacking up the old
code to work somehow. This highlights another
issue: to revise the code, you must understand it...
and that means not making an incomprehensible
mess this time to interfere with maintenance next
time.

All of this is typically more work than just
hacking in a quick fix. Sometimes a quick fix may
be necessary, or later thought may show that an

earlier ‘‘solution’’ was really a quick fix and needs
generalizing. In such cases, it is important togo
back and fix the kludges. The time is not wasted; it
is an investment in the future.

More generally, portability requires time and
thought. Nobody gets everything right the first time;
getting the code right means taking the time to think
about what went wrong, decide what the mistakes
were, and go back and fix them.

The alert reader may notice that almost all the
remarks in this section could also be applied to
achieving high performance, high reliability, etc.,
and that no specific boundary between development
and maintenance was mentioned. We’ve really dis-
cussed how to achieve high-quality software. In our
experience, this approach works; we can’t imagine
any other that would.

Portable Interfaces

Systems do, unfortunately, differ. It’s often
possible to avoid system-dependent areas well
enough that the same code will run on all systems;
we’ll discuss that later. But sometimes multiple
variants are inevitable. Even within theUNIX family,
there are significant variations between systems.

186 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Spencer,& Collyer #ifdef Considered Harmful ...

#ifdef, or something similar, ultimately is unavoid-
able. It can bemanaged, however, to minimize
problems.

Among the basic principles of good software
engineering are clean interfaces and information hid-
ing: when faced with a decision that might change,
hide it in one module, with a simple outside-world
interface defined independently of exactly how the
decision is made inside. One would think that well-
educated modern programmers would not need to be
taught the virtues of this technique. Unfortunately,
#ifdef doesn’t hide anything, and the interface it
creates is arbitrarily complex and almost never docu-
mented.

/* name of this site */
#ifdef GETHOSTNAME

char *hostname;
undef SITENAME
define SITENAME hostname
#else /* !GETHOSTNAME */
ifdef DOUNAME
include <sys/utsname.h>

struct utsname utsn;
undef SITENAME
define SITENAME utsn.nodename
else /* !DOUNAME */
ifdef PHOSTNAME

char *hostname;
undef SITENAME
define SITENAME hostname
else /* !PHOSTNAME */
ifdef WHOAMI
undef SITENAME
define SITENAME sysname
endif /* WHOAMI */
endif /* PHOSTNAME */
endif /* DOUNAME */
#endif /* GETHOSTNAME */

Figure 2: The Leaning Tower of Hostnames

The best method of managing system-specific
variants is to follow those same basic principles:
define a portable interface to suitably-chosen primi-
tives, and then implement different variants of the
primitives for different systems. The well-defined
interface is the important part: the bulk of the
software, including most of the complexity, can be
written as asingle version using that interface, and
can be read and understood in portable terms. It is
common wisdom2 that localizing system dependen-
cies in this way eases porting in cases where the
code must actually be rewritten. Our point is that it

2Common wisdom, n: something that is widely known
but usually ignored. (UNIX programmer’s definition.)

makes the code simpler, cleaner, and more manage-
able even when no rewrite is expected.

As a small case in point, when part of C News
wishes to arrange that a file descriptor associated
with a stdio stream be closed atexec time, to avoid
passing it to unprepared children, this is done by

fclsexec(fp);

(where fp is the stdio structure pointer) rather than
by some complex invocation ofioctl or something
similar. Only the implementationof fclsexecneeds
to be cluttered with the details. (As others have
noted in the past [ODel87a, Spen88a] in other con-
texts, one paradoxicalproblem of UNIX’s not-too-
complex system interfaces is that that they have
discouraged the development of libraries with
cleaner, higher-level interfaces.)

This confines#ifdef, but at first glance doesn’t
seem to eliminate it. Sometimes several system-
specific primitives will be compiled from the same
source, with portions selected by#ifdef. Note that
even limiting the damage can be very important.
However, in our experience, it’s much more usual
for the different variants to be completely different
code, compiled from different source files—in
essence, the partsoutside the #ifdef disappear. The
individual source files are generally small and
comprehensible, since they implementonly the prim-
itives and are uncluttered with the complexities of
the main-line logic. Out of 50 such source files in C

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 187

#ifdef Considered Harmful ... Spencer,& Collyer

News, half are less than 25 lines, most are under 50,
and only a few are over 100. As an example, Figure
3 and Figure 4 are two implementations offclsexec.
There is hardly anything to be gained by trying to
combine these two files into one file with#ifdefs
every second line.

/*
* set close on exec (on UNIX)
*/

#include <stdio.h>
#include <sgtty.h>

void
fclsexec(fp)
FILE *fp;
{

(void) ioctl(fileno(fp), FIOCLEX, (struct sgttyb *)NULL);
}

Figure 3: One implementation offclsexec

/*
* set close on exec (on System V)
*/

#include <stdio.h>
#include <fcntl.h>

void
fclsexec(fp)
FILE *fp;
{

(void) fcntl(fileno(fp), F_SETFD, 1);
}

Figure 4: Another implementation offclsexec

#ifdef FASTSTRCHR
#define STRCHR(src, chr, dest) (dest) = strchr(src, chr)
#else
#define STRCHR(src, chr, dest) \

for ((dest) = (src); *(dest) != ’\0’ && *(dest) != (chr); ++(dest)) \
; \

if (*(dest) == ’\0’) \
(dest) = NULL /* N.B.: missing semi-colon */

#endif

Figure 5: To inline or not to inline

There are, of course, things that cannot con-
veniently be encapsulated as functions, for reasons
of either interface or efficiency. But a ‘‘primitive’’
is not necessarily a function. Types and macros
defined in a header file are also useful ways of hid-
ing system-specific detail. Programmers often use
such facilities on a small scale, e.g. the use ofoff_t
as the system-supplied type for a size of a file or an
offset within it, but they don’twrite such header

files nearly as often as they should.

Although C’s limited macro facilities hamper
large-scale use of header-file encapsulation, more
ambitious applications can be useful despite occa-
sional clumsiness. As an example, consider our
STRCHR primitive, which generates in-line code
except on machines with compilers clever enough to
do so automatically (see Figure 5). This is a bit
awkward: what is being defined here is not exactly
a function, but C preprocessor macros nevertheless
force it to look like one. In the absence of a stan-
dard way to force inline expansion of normal func-
tions, it remains a powerful technique for portable
performance engineering despite its flaws: this and
similar portable optimizations sped up major

188 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Spencer,& Collyer #ifdef Considered Harmful ...

components of C News by 40% without serious loss
of clarity.

If one must use #ifdef, and it cannot be
confined to header files and the like, one good rule
of thumb is use #ifdef only in declarations(where
‘‘declarations’’ is understood to include macro
definitions). This at least encourages some thought
about defining an interface, rather than just hacking
in something that somehow seems to work.

/*
* strerror - map error number to descriptive string
*
* This version is obviously somewhat UNIX-specific.
*/

char *
strerror(errnum)
int errnum;
{

extern int sys_nerr;
extern char *sys_errlist[];

if (errnu m > 0 && errnum < sys_nerr)
return(sys_errlist[errnum]);

else if (errnum != 0)
return("unknown error");

else
return("no details given");

}

Figure 6: strerror

Finally, when defining interfaces, it is impor-
tant todocumentthem. The biggest reason for doing
this is that it is important discipline that forces you
to think about the issues and fill in fuzzy spots. The
resulting documentation is also very valuable for
maintenance. Perhaps somewhat surprisingly, it’s
also valuable for development, even if the project is
not an army-of-ants operation using buildings full of
people. We found it very important to document
crucial interfaces like our configuration primitives,
even though only two people were involved, to make
sure things were being done consistently and we
understood each other.3

Standard Interfaces

Of course, good interface design is not simple,
especially given the limitations of existing program-
ming languages. Often the best way to solve this
problem is to avoid it instead. If an interface is
needed, there is much to be said for choosing one
that is already standard.

3Indeed, places where internal interfaces weren’t
completely documented were fruitful sources of
misunderstandings, bugs, and a certain amount of snarling
at each other.

There are several sources of reasonably decent
standard interfaces, notably ANSI C [Inst89a] and
POSIX 1003.1 [Engi90a]. Since these standards are
quite recent, many of the systems of interest do not
implement them fully. This doesn’t preclude using
the interfaces, however: you can supply your own
implementation(s) for use on outdated systems. An
example is the ANSI functionstrerror (shown in
Figure 6).

This approach does impose a few constraints,
since the standard interfaces sometimes are a bit
ugly, and often aren’t ideal for every program. It’s
tempting to come up with customized ones instead.
But the standard ones have major advantages. For
one thing, people understand (or will understand)
them without having to decipher your code. For
another, on systems whichdo implement the stan-
dard interfaces, the system-provided ones can be
used. (This is particularly significant for primitives
like memcpy, where system-specific tuning can pro-
duce major improvements in efficiency [Spen88a]. If
you define your own customized interface, you must
do your own customized implementation, which
denies you the opportunity to benefit from the work
of others.) For a third, while the standard interfaces
may not be ideal, by and large they contain no
grievous mistakes, and avoiding disasters is usually
more important than achieving a precisely optimal
solution. Finally, a standard interface saves endless
puzzling, not to mention uncomplimentary specula-
tion, by later maintainers: ‘‘did he have some deep
subtle reason for using a non-standard interface, or
was he just stupid?’’.

Reimplementing a standard interface can be a
useful tactic when the standard interface does the
right thing but the usual implementations perform

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 189

#ifdef Considered Harmful ... Spencer,& Collyer

poorly. A version which is faster but compatible
can solve performance problems while leaving the
door open to the possibility that the system imple-
mentations will improve someday. Thestdio library
is a particular case in point: old implementations of
functions like fgets and fread are extremely
inefficient, and even modern ones often can be
improved on. This particular case gets tricky,

/*
* nfclose(stream) - flush the stream, fsync its file descriptor and
* fclose the stream, checking for errors at all stages. This dance
* is needed to work around the lack of UNIX file system semantics
* in Sun’s NFS. Returns EOF on error.
*/

#include <stdio.h>

int
nfclose(stream)
register FILE *stream;
{

register int ret = 0;

if (fflush(stream) == EOF)
ret = EOF;

if (fsync(fileno(stream)) < 0) /* may get delayed error here */
ret = EOF;

if (fclose(stream) == EOF)
ret = EOF;

return ret;
}

Figure 7: Necessary error checking

because doing better means relying on ill-
documented and somewhat variable internal inter-
faces,4 but the performance wins for C News are so
massive that we nevertheless did it.

Pitfalls that need careful attention when using
standard interfaces are error checking and boundary
conditions. It is important not to make assumptions
that aren’t in the standard. For example, a depress-
ing amount of UNIX software assumes thatclose
never returns any interesting status. Unfortunately,
as networked file systems get more common and
other complications are introduced, it is not at all
unthinkable for an I/O error to be discovered only at
close time. Meticulous error checking is
important [Darw85a]. For example, see Figure 7.

Finally, note that standard interfaces exist on
more than just the C level. By including an ‘‘over-
ride’’ directory early in the shell’s search path, it
becomes trivial to substitute reimplemented pro-
grams for standard ones that are missing or

4The standard build procedure for C News runs a test
program to check compatibility with the localstdio
implementation.

defective. We have a remarkably large—and
steadily growing—list of known portability problems
that arise from defective implementations of standard
UNIX programs.5

Inside-Out Interfaces

Sometimes there simply isn’t any way to pro-
vide a necessary primitive on some systems. For
example, most modernUNIXes permit setting the real
userID to equal the effective userID, but some old
systems allow onlyroot to change the real IDs...
and it is necessary to change the real IDs to create
directories with proper ownerships. Given that many
people will be6 reluctant to let a large and complex
program written by a stranger run asroot, there
doesn’t seem to be any easy way out.

In this case, there is: turn the interface inside
out, and have the dirty work done by caller rather
than callee. Specifically, have the complex program
invoked by a simple setuid-root program which sets
things up properly on uncooperative systems.

5Lest anyone think we are disparaging porters and
resellers only, we should comment that AT&T is as guilty
as anyone else. For example, several releases of System
V makehave violated the System V Interface Definition in
their handling of command lines liketest -s file in
makefiles. (Makefile command lines are specified to be
executed just as if by the shell, but iftest is a shell built-
in and there is no actualprogram by that name,make
often chokes and dies on this line.)

6Or shouldbe!!!

190 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Spencer,& Collyer #ifdef Considered Harmful ...

A more mundane example is the problem of
reading directories. Thanks to the lack of a library
package for directory-reading in the oldestUNIXes,
there isn’t any standard way to do it. Raw reads
don’t work on 4.2+BSD systems (and increasingly-
many others), the Berkeley directory library works
well but has stupid name clashes with many old sys-
tems, and the POSIX library isn’t widespread yet.
Worse, because the insides of a directory-reading
library are system-specific, it’s difficult to provide a
portable reimplementation of the POSIX functions.

The simplest way around this one is to move
the problem out to a higher level of abstraction. The
ls utility portably does the job, so wrap the invoca-
tion of the program in a shell file, with the list of
names generated byls and fed into the application as
arguments or on standard input. The performance
impact is rarely significant, and the alternative
currently involves at leastsix different variants of
the code, with more surfacing daily.

A less happy example of this technique is C
News’s spaceforprogram, used to check disk space
so activity can be curtailed when it runs short. Its
interface is simple and clean, and it is used every-
where in C News. Making it a shell program
offered the possibility of exploiting thedf command,
which encapsulates the ugly complications of finding
out how much space is available (and, sometimes,
the root privileges needed to do so). Unfortunately,
df is often relatively costly to invoke; worse, the
only portable way to do 32-bit arithmetic from shell
scripts is to useawk, which likewise tends to have
considerable startup overhead. With some care, the
performance impact was tolerable, although not
entirely pleasant.

What we had not anticipated was that every lit-
tle UNIX variant has its own different, incompatible
df output format. Even ‘‘consider it standard’’ Sys-
tem V has at least three. The importance of pro-
gram output being useful as programinput[Ritc78a]
has been disregarded completely. In the end, we
found that while thedf version remains useful—
people with really odd systems can customize it
easily—it was best to also provide C variants that
use the three or four commonest space-determining
system calls, improving (!) portability within a fairly
large subset ofUNIX variants.

Levels of Abstraction

In general, avoiding problems is better than
solving them. The best way to solve portability
problems is not to get involved with them. Some-
times they can’t be avoided, but often a bit of
ingenuity suffices to find a way around them.

The most powerful way of avoiding problems is
to choose a level of abstraction where they don’t
show up. The ls example earlier was a case in
point. The standardUNIX shell is a very powerful

programming language, sufficiently removed from
the lower levels of the system that shell programs
are often highly portable. (Gratuitous differences in
utility programs do get in the way, as do attempts to
‘‘improve’’ the shell that result in subtle or not-so-
subtle incompatibilities, but this is usually a manage-
able problem.)

The usual objection to shell programming is the
inefficiency of the result, but a careful division of
labor between the shell and the programs it invokes
is all that is needed. Most of the C News batching
subsystem is written in shell, but it remains highly
efficient, because most of its time is spent in the
‘‘ batcher | compress | uux ’’ pipeline, and
those are all C programs.

Intermediate levels of abstraction, although
harder to find, do exist. Substantial pieces of C
News are coded inawk[Spen91a] where efficiency is
not crucial and requirements permit.

One situation where high-level abstractions are
particularly beneficial is when one must step outside
‘‘common base UNIX’’. Common base UNIX is
essentially Version 7 [Labo82a], though the later V7
innovations have taken a while to find their way into
System V (and some have never done so). POSIX
1003.1 [Engi90a] is mostly an attempt to codify com-
mon baseUNIX. Unfortunately, common baseUNIX
did not address some issues at all, notably dealing
with real-time networks like the Internet. Attempts
to define interfaces for real-time networks [Divi83a,
ATT86a] have generally resulted in complex and
ugly messes.7 Worse, there is no consensus on which
one to use, and the quality of the designs can be
judged by the rate at which they are being
redesigned to deal with unexpected problems.
Although higher-level abstractions for networking
are not as common or as well-designed as they
should be, networked file systems and shell invoca-
tion of programs likersh can provide limited net-
working functionality without having to deal with
the underlying mess.

A side benefit of high-level abstractions is that
the resulting programs are generally far easier to
modify and customize. This is a particularly impor-
tant consideration for software intended to be run on
many systems with varying administrative policies.
Many system administrators who are not up to deci-
phering a 5000-line C program can cope quite well
with modifying a 50-line shell script. We have
made a conscious effort to put policy decisions in
shell scripts, not in C code, wherever possible, and
have had extensive and loud positive feedback on
this.

7There are occasional exceptions like V10 Research
UNIX [Cent90a] that are useful sources of interface ideas.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 191

#ifdef Considered Harmful ... Spencer,& Collyer

There is one negative aspect to moving to a
higher level of abstraction: the resulting programs

#ifdef SYSLOG
#ifdef BSD_42

openlog("nntpxfer", LOG_PID);
#else

openlog("nntpxfer", LOG_PID, SYSLOG);
#endif
#endif

#ifdef DBM
if (dbminit(HISTORY_FILE) < 0)

{
#ifdef SYSLOG

syslog(LOG_ERR,"couldn’t open history file: %m");
#else

perror("nntpxfer: couldn’t open history file");
#endif

exit(1);
}

#endif
#ifdef NDBM

if ((db = dbm_open(HISTORY_FILE, O_RDONLY, 0)) == NULL)
{

#ifdef SYSLOG
syslog(LOG_ERR,"couldn’t open history file: %m");

#else
perror("nntpxfer: couldn’t open history file");

#endif
exit(1);
}

#endif
if ((server = get_tcp_conn(argv[1],"nntp")) < 0)

{
#ifdef SYSLOG

syslog(LOG_ERR,"could not open socket: %m");
#else

perror("nntpxfer: could not open socket");
#endif

exit(1);
}

if ((rd_fp = fdopen(server,"r")) == (FILE *) 0){
#ifdef SYSLOG

syslog(LOG_ERR,"could not fdopen socket: %m");
#else

perror("nntpxfer: could not fdopen socket");
#endif

exit(1);
}

#ifdef SYSLOG
syslog(LOG_DEBUG,"connected to nntp server at %s", argv[1]);

#endif
#ifdef DEBUG

printf("connected to nntp server at %s\n", argv[1]);
#endif

/*
* ok, at this point we’re connected to the nntp daemon
* at the distant host.
*/

Figure 8: A truly awful style

depend on a larger and perhaps more fragile set of

underlying abstractions. Porting C News to a radi-
cally non-UNIX-like operating system reportedly typi-
cally involves little change to the C code, since the

192 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Spencer,& Collyer #ifdef Considered Harmful ...

UNIX and C programming interfaces are widespread
even on non-UNIX systems, but substantial shell files
relying on dozens of majorUNIX utilities are more of
a challenge. There is also the problem, mentioned
earlier, ofUNIX suppliers breaking formerly-working
utilities.

Low-Level Portability

We assume that everyone reading this has had
exposure to elementary notions of portability like
using typedef names, avoiding stupid assumptions
about the sizes of integers and/or pointers, being
careful about byte order in interchange formats, etc.
There are nevertheless a good many fine points that
deserve some illumination, particularly in the area of
how to use#ifdef safely.

As mentioned earlier, if#ifdef is needed at all,
it is best confined to declarations, to try to preserve
some explicit notion of interfaces. Such declara-
tions, in turn, preferably should be confined to
header (.h) files, to minimize the temptation to intro-
duce#ifdef into main-line code.

An optional feature such as debugging assis-
tance or logging can be defined as a macro or func-
tion that does nothing when not needed, else the
full-blown function can be defined (perhaps in one of
several system-specific ways, e.g. using asyslogdae-
mon or not). At worst, this requires one#ifdef per
such feature rather than the now-notorious style,
seen in various bits of popular software, of clustering
#ifdefs at the site of eachcall of said function(s),
see Figure 8.

One awkward area8 is functions with variable
numbers of arguments. There is no way to write a C
macro that can take a variable number of arguments,
which makes it awkward to provide such an inter-
face while still being able to hide the innards. Vari-
ous tricks are in use, none of them entirely satisfac-
tory; perhaps the least objectionable is an extra level
of parentheses:

DEBUG(("oops: %s %d\n", b, c));

which lets a header file decide to either pass or dis-
card the whole argument list:

#ifdef NDEBUG
define DEBUG(list) /* nothing */
#else
define DEBUG(list) printf list
#endif

A related problem is that definition of a
variable-arguments function pretty well invariably
involves some#ifdefing to cope with the unfortunate
differences between ANSI Cstdarg.hand the tradi-
tional (although less portable)varargs.h.

8Actually, it’s awkward in a great many ways, this being
only one.

Although macros cannot take variable numbers
of arguments, itis still possible to have them pick
and choose among a fixed number of arguments.
For example, the VERBOSE-TERSE business in one
of our first exhibits, an attempt to avoid compiling in
unneeded strings, can be handled with a macro:

MSG(short_form, long_form, iostream)

A short-form-only definition of the macro simply
doesn’t use thelong_formargument. The choice can
even be made at run time usingif or the ‘?’ opera-
tor, all by changing only thedefinitionof the macro.

One valid use of#ifdef, particularly in header
files, is the idiom

#ifndef COPYSIZE
#define COPYSIZE 8192

/* unit of copying */
#endif

to supply a default value that can be overridden at
compilation time (with cc –DCOPYSIZE=4096).
One could wish for a shorter form (e.g.,#ifndefdef),
or even a compiler option allowing one to specify a
value that overrides the first one defined in the pro-
gram, since this idiom is common and very useful.

However, the first question to ask about such
numeric parameters is whether they should be there
at all. Consider:

#ifdef pdp11
#define LBUFLEN 512

/* line buffer length */
#else
#define LBUFLEN 1024

/* line buffer length */
#endif

This code presumes that people on small machines
(or at least PDP-11s) prefer their programs to crash
earlier than people on large machines. Any code
using such (unchecked) fixed-sized buffers is prone
to falling over and dying (or at best mysteriously
truncating or wrapping long lines) anyway; the
#ifdefs tip us off that these limits should be abol-
ished and replaced with code that deals with
dynamically-sized strings.

Another legitimate use of#ifdef, in fact
required by the ANSI C standard in standard header
files, is in protecting header files against multiple
inclusion. In complex programs it can be quite
difficult to ensure that a needed header file is
included once and only once, and including it more
than once typically causes problems with duplicate
typedefs, structure tags, etc. Ignoring some issues of
name-space control, the usual idiom for defending
header files against multiple inclusion goes some-
thing like this:

#ifndef FOO_H
#define FOO_H 1
/* interface to the foo module */

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 193

#ifdef Considered Harmful ... Spencer,& Collyer

typedef struct {
char *foo_a;
char *foo_b;

} foo;
extern foo *mkfoo();
extern int rmfoo();
#endif

(Some compiler implementors have invented bizarre
special-purpose constructs, typically using ANSI C’s
#pragma, to avoid having the compiler re-scan the

#ifdef vax
f(*ptr);

#endif
#ifdef pyr

/*
* darned Pyramid is so picky
* about null pointers
*/

if (ptr != NULL)
f(*ptr);

#endif
#ifdef sparc

/* the Sun 4 is just as bad! */
if (ptr != NULL)

f(*ptr);
#endif
/* ... */

Figure 9: Protecting broken code

header file on later inclusions. That is not neces-
sary. It suffices to have the compiler remember that
the entire text of the file is inside the#ifndef, and
hence need not be rescanned ifFOO_H is still
defined.)

#ifdef cray
} while (*s != ’\r’); /* till a newline (not echoed) */

#else
} while (*s != ’\n’); /* till a newline (not echoed) */

#endif

Figure 10: Mysterious code

#ifdef is often used to protect broken code in
the style shown in Figure 9. The solution here is to
face realities and write the code in a correct and
portable manner:

/* avoid dereferencing null */
if (ptr != NULL)

f(*ptr);

A related point, also illustrated by that exam-
ple, is that if onemustuse#ifdef, one should test for
specific features or characteristics (typically indi-
cated to the compiler by symbols defined in a header
file or on a command line), not for specific
machines. There will almost always be another
machine with the same problem. Consider the

interesting bit of code shown in Figure 10. Rather
mysterious, isn’t it? What is so odd about Crays,
and is it only Crays that are affected?

If testing for particular machines is unavoid-
able, perhaps because of some highly machine-
specific operation, consider what happens if no
machine is specified (or if the machine is one you’ve
never heard of and hence didn’t bother to list).
Don’t assume there is a default machine. It is much
kinder to produce a syntax error than silently inap-
propriate code.

Occurrences of#include inside #ifdef should
always be viewed with suspicion. There are better
ways. Consider:

#ifdef NDIR
#ifdef M_XENIX
#include <sys/ndir.h>
#else
#include <ndir.h>
#endif
#else
#include <sys/dir.h>
#endif
#ifdef USG
#include <time.h>
#else
#include <sys/time.h>
#endif

This clutter could be avoided via judicious use ofcc
–I/usr/include/sysand consistent use ofdirent.h, pro-
viding a fake one if necessary:

#include <direct.h>
#define dirent direct

Arranging, typically via amakefile, to put an ‘‘over-
ride’’ directory in the search path for header files is
a tremendously powerful way of fixing botches in a
site’s header fileswithout #ifdef.

When one uses#ifdef, one should base the tests
on individual features:

#include <signal.h>
/* may define SIGTSTP */

#ifdef SIGTSTP
(void) signal(SIGTSTP, SIG_IGN);

/* no suspension, thanks */
#endif

and not on (inaccurate) generalisations:

194 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Spencer,& Collyer #ifdef Considered Harmful ...

#ifndef SYSV
(void) signal(SIGTSTP, SIG_IGN);

/* no suspension, thanks */
#endif

or this example of the reverse problem (generalising
from the specific) from a newsreader

/* Things we can figure out */

#ifdef SIGTSTP
define BERKELEY

/* include job control signals? */
#endif

This particular point is worth emphasizing: theUNIX
world is not cleanly split into System V and 4BSD
camps, particularly with the advent of System V
Release 4. HybridUNIXes are the rule, not the
exception, nowadays.

Pragmatic Aspects of Portability

In practice, one encounters all manner of break-
age in vendor-supplied system software: compilers,
utilities (notably the shell andawk), libraries, ker-
nels. Optimizers may need to be turned off if they
are broken.9 Installers may have to pick up working
commands from other sources (e.g. the Usenet
group comp.sources.unixor the GNU [Founa] pro-
ject). Sometimes it is worth supplying simple but
correct versions of small things (e.g. library func-
tions) when a large class of machines is known to
have broken ones. We ultimately decided that we
could not provide complete replacements, or even
workarounds, for all potentially-broken system
software. Sometimes the problems are horrific
enough that the right response is not to contort one’s
code but to get the customers to complain about the
breakage until it is fixed.

Given all these potential problems, it is impor-
tant todetectbreakage as well as avoiding it or cop-
ing with it. We think very highly of regression
tests, prepackaged tests that exercise the basic func-
tionality of the software and check that the results
are correct. They are very useful during develop-
ment, both for bug-hunting in new code10 and for
confidence testing before release.11 Of equal impor-
tance, though, is that they give the installer reason-
able confidence that the software is actually working
on his system, and that no glaring portability prob-
lems have escaped his notice.

9The single most frequently reported ‘‘bug’’ in C News
is actually a bug in a popular 386 C compiler’s optimizer.

10One of us (HS) observes: ‘‘When I set up a
regression test for software that has never had one before,
I always find bugs. Always.Every time.’’

11One very useful trick is to add a regression-test item
looking for each bug that is found. This avoids the classic
syndrome of having ‘‘fixed’’ bugs reappear in a later
release.

Similarly, internal consistency checks, such as
validated magic numbers in structures passed
between user code and libraries, can save one’s san-
ity by detecting breakage in system software early,
before corruption spreads everywhere. Trying to
debug a core dump by mail on an unfamiliar
machine is not fun.

To a greater extent than we had anticipated,
one learns about portability by porting. The system
call variations amongUNIX systems are fairly well
documented and understood. The variations in com-
mands were less well understood, at least by us, and
the variations in programming environments were
still more surprising. There is no substitute fortry-
ing your software on several seriously-different12

machines before release. It’s also worth making an
effort to pick your beta-testers for maximum diver-
sity of environments: we found a lot of unexpected
problems that way.

Finally, a plea: if you find portability prob-
lems, document them. You can’t expect everyone to
actually read the documentation—we frequently
respond to queries with ‘‘please read section so-
and-so in document such-and-such, it’ll tell you all
about it’’—but the more careful and conscientious
installers benefit greatly from an advance look at
known problems, especially when a truly weird sys-
tem is involved.

Configuration

Given the senseless diversity in existing sys-
tems, some way to configure software for a new sys-
tem is needed. Given that#ifdef can’t do the whole
job, how should we proceed? C News currently has
an interactive build script that interrogates the
installer about his system and then constructs a few
shell scripts, which when run will usemaketo build
the software. We intend to push most of the shell
scripts into themakefiles, so that casual use ofmake
works as people expect,13 but the general approach
seems to be a good one: ask which emulation rou-
tines and header files are necessary, rather than try-
ing to guess. This strategy even allows cross-
configuration and some degree of cross-compilation,
which autoconfiguration schemes generally don’t. It
is also more trustworthy than autoconfiguration
schemes, which can be fooled by some new innova-
tion.

Almost all of build’s configuration questions14

turn into choices of files rather than values for#ifdef

12One problem we had: in our university environment,
it was quite difficult to find System V machines. When
we actually tried one, not long before our first real release,
there were some unpleasant surprises.

13The main reason for not doing this from the start was
the lack of a standard#include mechanism inmake.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 195

#ifdef Considered Harmful ... Spencer,& Collyer

to examine. The few exceptions are mostly histori-
cal relics, and will be revised or deleted as time per-
mits.

Statistics

A snapshot of current C News working sources
shows 955 lines of header files and 19,762 lines of C
files, split between 5,640 lines from libraries (includ-
ing alternate versions of primitives), and 14,122 lines
of mainline C code. Here is a breakdown of the
#ifdef usage in that code:

reason .h main .c dbz rna total
ifndefdef 13 40 6 0 59
comment 4 21 0 0 25
config. 6 25 19 7 57
protect .h 5 0 0 0 5
__STDC__ 3 3 1 0 7
pdp11 2 0 0 0 2
lint 1 1 2 0 4
sccsid 0 1 0 0 1
STATS 0 5 0 0 5
other 0 1 0 0 1
total 34 97 28 7 166

The .h column represents header files. Themain .c
column represents all.c files other than those in the
dbz and rna (Australian readnews) directories. The
ifndefdef row represents the ‘if not defined, define’
idiom. The commentrow represents uses of#ifdef
to comment out obsolete, futuristic or otherwise
unwanted code. Theconfig. row represents uses of
#ifdef to configure the software.

rna is presented separately because we inher-
ited it rather than writing it. dbz is presented
separately because it uses#ifdef heavily for
configuration, for backward compatibility and to
attempt to stand independently of C News. The
main C files’ use of#ifdef for ‘‘configuration’’ is
misleading; in fact this is mostly vestigial code,
superseded but not yet deleted from our current
working copies.

Conclusions

Despite problems along the way, C News is
outstandingly portable. It comes up easily on an
amazing variety ofUNIX systems. Other people have
reported porting C News relatively easily to environ-
ments that we had considered too hostile, or at least
too different fromUNIX, to even consider as possible
target systems: notably VMS, MS-DOS and Amiga
DOS. The only major operating system known to
present serious obstacles is VM/CMS.

14Of those that affect compilation at all; some questions
are decisions affecting setup of control files for the
compiled software to use.

In our experience,#ifdef is usually a bad idea
(although we do use it in places). Its legitimate uses
are fairly narrow, and it gets abused almost as badly
as the notoriousgoto statement. Like thegoto, the
#ifdef often degrades modularity and readability
(intentionally or not). Given some advance plan-
ning, there are better ways to be portable.

Acknowledgements

Thanks to Rob Kolstad for helpful comments
on a draft of this paper. Thanks to James Clark for
grefer (and the rest ofgroff). And thanks to the
authors of our bad examples—you know who you
are.

References

ATT86a. AT&T, System V Interface Definition, 2,
1986.

Cent90a. Computing Science Research Center,
AT&T Bell Laboratories, Murray Hill, New
Jersey,UNIX Research System Programmer’s
Manual, Tenth Edition,Saunders College Pub-
lishing, 1990.

Coll87a. Geoff Collyer and Henry Spencer, ‘‘News
Need Not Be Slow,’’ Proc. Winter Usenix
Conf. Washington 1987, pp. 181-190, January
1987.

Darw85a. Ian Darwin and Geoff Collyer, ‘‘Can’t
Happen or /* NOTREACHED */ or Real Pro-
grams Dump Core,’’Proc. Winter Usenix Conf.
Dallas 1985, pp. 136-151, January 1985.

Divi83a. Computer Science Division, Dept. of E.E.
and C.S., UCB,UNIX Programmer’s Manual,
4.2 Berkeley Softare Distribution, August,
1983.

Engi90a. Institute of Electrical and Electronics
Engineers,Portable Operating System Interface
(POSIX), Part 1: System Application Program
Interface (API) [C Language] (IEEE Std
1003.1-1990) = ISO/IEC 9945-1:1990,IEEE,
New York, 1990.

Founa. Free Software Foundation,GNU software,
anonymous ftp from prep.ai.mit.edu:/pub/gnu.

Inst89a. American National Standards Institute,
X3J11 committee, American National Stan-
dards Institute X3.159-1989 – Programming
Language C, = ISO/IEC 9899:1990,ANSI,
New York, 1989.

Labo82a. Bell Laboratories,UNIX Programmer’s
Manual,Holt, Rinehart and Winston, 1982.

ODel87a. Mike O’Dell, ‘‘UNIX: The World View,’’
Proc. Winter Usenix Conf. Washington 1987,
pp. 35-45, January 1987.

Ritc78a. D. M. Ritchie, ‘‘UNIX Time-Sharing Sys-
tem: A Retrospective,’’Bell Sys. Tech. J., vol.
57, no. 6, pp. 1947-1969, 1978. Also in Proc.
Hawaii International Conference on Systems
Science, Honolulu, Hawaii, Jan. 1977.

196 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

Spencer,& Collyer #ifdef Considered Harmful ...

Spen88a. Henry Spencer, ‘‘How To Steal Code,’’
Proc. Winter Usenix Conf. Dallas 1988, pp.
335-345, January 1988.

Spen91a. Henry Spencer, ‘‘Awk As A Major Sys-
tems Programming Language,’’Proc. Winter
Usenix Conf. Dallas 1991, pp. 137-143, January
1991.

Author Information

Henry Spencer is head of Zoology Computer
Systems at the University of Toronto. He is known
for his regular expression and string libraries, and as
a co-author of the C News netnews software. Reach
him via Canada Post at Zoology Computer Systems,
25 Harbord St., University of Toronto, Toronto, Ont.
M5S 1A1 Canada. His electronic mail address is
utzoo!henry or henry@zoo.toronto.edu .

Geoff Collyer leads C News development at
Software Tool & Die. He is senior author of the C
News netnews software. His interests include sim-
ple, small, fast, elegant and powerful system
software. Reach him via U.S. Mail at Software Tool
& Die, 1330 Beacon St. #215, Brookline, MA
02146. His electronic mail address is
world!geoff or geoff@world.std.com .

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 197

198 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

